The solution to $\underset{\mathbf{x}}{\arg \min }\|\mathbf{A x}\|_{2}^{2}$ subject to $\langle\mathbf{x}, \mathbf{1}\rangle=1$

$$
\text { is } \mathbf{x}^{*}=\frac{\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{1}}{\mathbf{1}^{\top}\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{1}}
$$

Andersen Ang

Mathématique et recherche opérationnelle UMONS, Belgium
manshun.ang@umons.ac.be Homepage: angms.science
First draft: August 14, 2019
Last update : August 14, 2019

A constrained problem

Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ with rank n, find x^{*} by solving

$$
(\mathcal{P}): \mathbf{x}^{*}=\underset{\mathbf{v} \subset \mathbb{R}^{n}}{\arg \min }\|\mathbf{A} \mathbf{x}\|_{2}^{2} \text { subjec to }\langle\mathbf{x}, \mathbf{1}\rangle=1
$$

where $\mathbf{1}$ is all- 1 vector in \mathbb{R}^{n}.

- The problem means find a vector \mathbf{x} in \mathbb{R}^{n} such that it minimizes $\|\mathbf{A} \mathbf{x}\|_{2}^{2}$ while all its elements sum to 1
- It is possible to replace $\|\mathbf{A} \mathbf{x}\|_{2}^{2}$ with $\|\mathbf{A x}\|_{2}^{1}$, the square is just for convince of taking derivatives
- An example where problem (\mathcal{P}) appear : Anderson Acceleration It can be shown that, this problem has analytic close form solution as

$$
\mathbf{x}^{*}=\frac{\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{1}}{\mathbf{1}^{\top}\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{1}}
$$

This document: show how to prove this.

Lagrangian

The problem

$$
(\mathcal{P}): \mathbf{x}^{*}=\underset{\mathbf{x} \in \mathbb{R}^{n}}{\arg \min }\|\mathbf{A} \mathbf{x}\|_{2}^{2} \text { subjec to }\langle\mathbf{x}, \mathbf{1}\rangle=1
$$

is a problem with equality constraint. Hence we solve it by consider the Lagrangian : let λ be the Lagrangian multiplier, we have

$$
L(\mathbf{x}, \lambda)=\|\mathbf{A} \mathbf{x}\|_{2}^{2}+\lambda(\langle\mathbf{x}, \mathbf{1}\rangle-1)
$$

The solution of (\mathcal{P}) can be found by solving the following system of equations

$$
\begin{aligned}
& \frac{\partial L(\mathbf{x}, \lambda)}{\partial \mathbf{x}}=0 \\
& \frac{\partial L(\mathbf{x}, \lambda)}{\partial \lambda}=0
\end{aligned}
$$

On details of minimizing the Lagrangian ... (1/3)

For $L(\mathbf{x}, \lambda)=\|\mathbf{A} \mathbf{x}\|_{2}^{2}+\lambda(\langle\mathbf{x}, \mathbf{1}\rangle-1)$, we have

$$
\begin{aligned}
& \frac{\partial L(\mathbf{x}, \lambda)}{\partial \mathbf{x}}=2 \mathbf{A}^{\top} \mathbf{A} \mathbf{x}+\lambda \mathbf{1}=0 \\
& \frac{\partial L(\mathbf{x}, \lambda)}{\partial \lambda}=\langle\mathbf{x}, \mathbf{1}\rangle-1=0
\end{aligned}
$$

(Recall, the derivative of $\langle\mathbf{x}, \mathbf{a}\rangle$ w.r.t. \mathbf{x} is \mathbf{a}).
Therefore, the optimal pair $\left(\mathrm{x}^{*}, \lambda^{*}\right)$ fulfil the KKT system :

$$
\left[\begin{array}{cc}
2 \mathbf{A}^{\top} \mathbf{A} & \mathbf{1} \\
\mathbf{1}^{\top} & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{*} \\
\lambda^{*}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Our goal is to find the expression x^{*}, hence we solve the KKT system

$$
\left[\begin{array}{l}
\mathbf{x}^{*} \\
\lambda^{*}
\end{array}\right]=\left[\begin{array}{cc}
2 \mathbf{A}^{\top} \mathbf{A} & \mathbf{1} \\
\mathbf{1}^{\top} & 0
\end{array}\right]^{-1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

The matrix is a 2-by-2 block matrix, we need to apply Schur complement.

On details of minimizing the Lagrangian ... (2/3)

For 2-by-2 block matrix $\mathbf{R}=\left[\begin{array}{cc}\mathbf{W} & \mathbf{X} \\ \mathbf{Y} & \mathbf{Z}\end{array}\right]$, if \mathbf{W} is non-singular, then

$$
\mathbf{R}^{-1}=\left[\begin{array}{cc}
\mathbf{W}^{-1}+\mathbf{W}^{-1} \mathbf{X}\left(\mathbf{Z}-\mathbf{Y} \mathbf{W}^{-1} \mathbf{X}\right)^{-1} \mathbf{Y} \mathbf{W}^{-1} & -\mathbf{W}^{-1} \mathbf{X}\left(\mathbf{Z}-\mathbf{Y} \mathbf{W}^{-1} \mathbf{X}\right)^{-1} \\
-\left(\mathbf{Z}-\mathbf{Y} \mathbf{W}^{-1} \mathbf{X}\right)^{-1} \mathbf{Y} \mathbf{W}^{-1} & \left(\mathbf{Z}-\mathbf{Y} \mathbf{W}^{-1} \mathbf{X}\right)^{-1}
\end{array}\right]
$$

For $\mathbf{R}=\left[\begin{array}{cc}2 \mathbf{A}^{\top} \mathbf{A} & 1 \\ \mathbf{1}^{\top} & 0\end{array}\right]$ we have $\mathbf{Z}=0$, then

$$
\mathbf{R}^{-1}=\left[\begin{array}{cc}
\mathbf{W}^{-1}-\underset{\left(\mathbf{Y} \mathbf{W}^{-1} \mathbf{X}\right)^{-1} \mathbf{Y} \mathbf{W}^{-1}}{\mathbf{W}^{-1} \mathbf{X}\left(\mathbf{Y} \mathbf{W}^{-1} \mathbf{X}\right)^{-1}} \mathbf{Y} \mathbf{W}^{-1} & \mathbf{W}^{-1} \mathbf{X}\left(\mathbf{Y} \mathbf{W}^{-1} \mathbf{X}\right)^{-1} \\
-\left(\mathbf{Y} \mathbf{W}^{-1} \mathbf{X}\right)^{-1}
\end{array}\right]
$$

As $\mathbf{X}=\mathbf{1}, \mathbf{Y}=\mathbf{1}^{\top}, \mathbf{W}=2 \mathbf{A}^{\top} \mathbf{A}$, we have $\mathbf{Y} \mathbf{W}^{-1} \mathbf{X}=\frac{1}{2} \mathbf{1}^{\top}\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{1}$, which is a scalar, denote it as a, we have

$$
\mathbf{R}^{-1}=\left[\begin{array}{cc}
\mathbf{W}^{-1}-\mathbf{W}^{-1} \mathbf{X} a^{-1} \mathbf{Y} \mathbf{W}^{-1} & \mathbf{W}^{-1} \mathbf{X} a^{-1} \\
a^{-1} \mathbf{Y} \mathbf{W}^{-1} & -a^{-1}
\end{array}\right]
$$

Factorize the a out

$$
\begin{aligned}
\mathbf{R}^{-1} & =\frac{1}{a}\left[\begin{array}{cc}
a \mathbf{W}^{-1}-\mathbf{W}^{-1} \mathbf{X} \mathbf{Y} \mathbf{W}^{-1} & \mathbf{W}^{-1} \mathbf{X} \\
& =\frac{1}{a}\left[\begin{array}{cc}
\mathbf{W}^{-1}\left(a \mathbf{I}-\mathbf{X Y} \mathbf{W}^{-1}\right) & \mathbf{W}^{-1} \mathbf{X} \\
\mathbf{Y} \mathbf{W}^{-1} & -1
\end{array}\right] \\
& =
\end{array}\right]
\end{aligned}
$$

On details of minimizing the Lagrangian ... (3/3)

$$
\begin{aligned}
& \text { Put } \mathbf{X}=\mathbf{1}, \mathbf{Y}=\mathbf{1}^{\top} \text { and } \mathbf{W}=2 \mathbf{A}^{\top} \mathbf{A} \\
& \left.\begin{array}{rl}
\mathbf{R}^{-1} & =\frac{1}{a}\left[\left(2 \mathbf{A}^{\top} \mathbf{A}\right)^{-1}\left(a \mathbf{I}-\mathbf{1 1}^{\top}\left(2 \mathbf{A}^{\top} \mathbf{A}\right)^{-1}\right)\right. \\
\mathbf{1}^{\top}\left(2 \mathbf{A}^{\top} \mathbf{A}\right)^{-1} & \left(2 \mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{1} \\
-1
\end{array}\right] \\
& \\
& =\frac{2}{\mathbf{1}^{\top}\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{1}}\left[\begin{array}{cc}
\frac{1}{2}\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1}\left(a \mathbf{I}-\mathbf{1 1} \mathbf{1}^{\top} \frac{1}{2}\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1}\right) & \frac{1}{2}\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{1} \\
\mathbf{1}^{\top} \frac{1}{2}\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} & -1
\end{array}\right] \\
& \\
& =\frac{1}{\mathbf{1}^{\top}\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{1}}\left[\begin{array}{cc}
\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1}\left(a \mathbf{I}-\mathbf{1 1}^{\top} \frac{1}{2}\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1}\right) & \left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{1} \\
\mathbf{1}^{\top}\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} & -2
\end{array}\right] \\
& \\
&
\end{aligned}=\frac{1}{\mathbf{1}^{\top}\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{1}}\left[\begin{array}{cc}
\frac{1}{2}\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1}\left(\mathbf{1}^{\top}\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{1} \mathbf{I}-\mathbf{1 1}\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1}\right) & \left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{1} \\
\mathbf{1}^{\top}\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} & -2
\end{array}\right] .
$$

With this \mathbf{R}^{-1}, we can now compute the optimal \mathbf{x}^{*}, which gives

$$
\left[\begin{array}{l}
\mathbf{x}^{*} \\
\lambda^{*}
\end{array}\right]=\mathbf{R}^{-1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\frac{1}{\mathbf{1}^{\top}\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{1}}\left[\begin{array}{c}
\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{1} \\
-2
\end{array}\right] \square
$$

End of document

