The solution to $\underset{\mathbf{x}}{\operatorname{arg\,min}} \|\mathbf{A}\mathbf{x}\|_{2}^{2}$ subject to $\langle \mathbf{x}, \mathbf{1} \rangle = 1$ is $\mathbf{x}^{*} = \frac{(\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{1}}{\mathbf{1}^{\top}(\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{1}}$

Andersen Ang

Mathématique et recherche opérationnelle UMONS, Belgium

manshun.ang@umons.ac.be Homepage: angms.science

First draft: August 14, 2019 Last update : August 14, 2019

A constrained problem

Given a matrix $\mathbf{A} \in {\rm I\!R}^{m \times n}$ with rank n, find \mathbf{x}^* by solving

$$(\mathcal{P}) : \mathbf{x}^* = \underset{\mathbf{x} \in \mathbb{R}^n}{\arg\min} \|\mathbf{A}\mathbf{x}\|_2^2 \text{ subjec to } \langle \mathbf{x}, \mathbf{1} \rangle = 1$$

where 1 is all-1 vector in \mathbb{R}^n .

- The problem means find a vector \mathbf{x} in \mathbb{R}^n such that it minimizes $\|\mathbf{A}\mathbf{x}\|_2^2$ while all its elements sum to 1
- It is possible to replace $\|Ax\|_2^2$ with $\|Ax\|_2^1$, the square is just for convince of taking derivatives
- \bullet An example where problem (\mathcal{P}) appear : Anderson Acceleration

It can be shown that, this problem has analytic close form solution as

$$\mathbf{x}^* = \frac{(\mathbf{A}^\top \mathbf{A})^{-1} \mathbf{1}}{\mathbf{1}^\top (\mathbf{A}^\top \mathbf{A})^{-1} \mathbf{1}}$$

This document : show how to prove this.

Lagrangian

The problem

$$(\mathcal{P})$$
 : $\mathbf{x}^* = \underset{\mathbf{x} \in \mathbb{R}^n}{\operatorname{arg\,min}} \|\mathbf{A}\mathbf{x}\|_2^2$ subjec to $\langle \mathbf{x}, \mathbf{1} \rangle = 1$

is a problem with equality constraint. Hence we solve it by consider the Lagrangian : let λ be the Lagrangian multiplier, we have

$$L(\mathbf{x}, \lambda) = \|\mathbf{A}\mathbf{x}\|_2^2 + \lambda (\langle \mathbf{x}, \mathbf{1} \rangle - 1)$$

The solution of $\left(\mathcal{P}\right)$ can be found by solving the following system of equations

$$\begin{array}{rcl} \displaystyle \frac{\partial L(\mathbf{x},\lambda)}{\partial \mathbf{x}} &=& 0\\ \displaystyle \frac{\partial L(\mathbf{x},\lambda)}{\partial \lambda} &=& 0 \end{array}$$

On details of minimizing the Lagrangian $\dots (1/3)$

For
$$L(\mathbf{x}, \lambda) = \|\mathbf{A}\mathbf{x}\|_2^2 + \lambda (\langle \mathbf{x}, \mathbf{1} \rangle - 1)$$
, we have

$$\frac{\partial L(\mathbf{x}, \lambda)}{\partial \mathbf{x}} = 2\mathbf{A}^\top \mathbf{A}\mathbf{x} + \lambda \mathbf{1} = 0$$

$$\frac{\partial L(\mathbf{x}, \lambda)}{\partial \lambda} = \langle \mathbf{x}, \mathbf{1} \rangle - 1 = 0$$

(Recall, the derivative of $\langle \mathbf{x}, \mathbf{a} \rangle$ w.r.t. \mathbf{x} is \mathbf{a}). Therefore, the optimal pair $(\mathbf{x}^*, \lambda^*)$ fulfil the KKT system :

$$\begin{bmatrix} 2\mathbf{A}^{\top}\mathbf{A} & \mathbf{1} \\ \mathbf{1}^{\top} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x}^* \\ \lambda^* \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Our goal is to find the expression $\mathbf{x}^*,$ hence we solve the KKT system

$$\begin{bmatrix} \mathbf{x}^* \\ \lambda^* \end{bmatrix} = \begin{bmatrix} 2\mathbf{A}^\top \mathbf{A} & \mathbf{1} \\ \mathbf{1}^\top & 0 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

The matrix is a 2-by-2 block matrix, we need to apply Schur complement.

On details of minimizing the Lagrangian $\dots (2/3)$

For 2-by-2 block matrix
$$\mathbf{R} = \begin{bmatrix} \mathbf{W} & \mathbf{X} \\ \mathbf{Y} & \mathbf{Z} \end{bmatrix}$$
, if \mathbf{W} is non-singular, then

$$\mathbf{R}^{-1} = \begin{bmatrix} \mathbf{W}^{-1} + \mathbf{W}^{-1}\mathbf{X}(\mathbf{Z} - \mathbf{Y}\mathbf{W}^{-1}\mathbf{X})^{-1}\mathbf{Y}\mathbf{W}^{-1} & -\mathbf{W}^{-1}\mathbf{X}(\mathbf{Z} - \mathbf{Y}\mathbf{W}^{-1}\mathbf{X})^{-1} \\ -(\mathbf{Z} - \mathbf{Y}\mathbf{W}^{-1}\mathbf{X})^{-1}\mathbf{Y}\mathbf{W}^{-1} & (\mathbf{Z} - \mathbf{Y}\mathbf{W}^{-1}\mathbf{X})^{-1} \end{bmatrix}$$
For $\mathbf{R} = \begin{bmatrix} 2\mathbf{A}^{\top}\mathbf{A} & \mathbf{1} \\ \mathbf{1}^{\top} & 0 \end{bmatrix}$ we have $\mathbf{Z} = 0$, then

$$\mathbf{R}^{-1} = \begin{bmatrix} \mathbf{W}^{-1} - \mathbf{W}^{-1}\mathbf{X}(\mathbf{Y}\mathbf{W}^{-1}\mathbf{X})^{-1}\mathbf{Y}\mathbf{W}^{-1} & \mathbf{W}^{-1}\mathbf{X}(\mathbf{Y}\mathbf{W}^{-1}\mathbf{X})^{-1} \\ (\mathbf{Y}\mathbf{W}^{-1}\mathbf{X})^{-1}\mathbf{Y}\mathbf{W}^{-1} & -(\mathbf{Y}\mathbf{W}^{-1}\mathbf{X})^{-1} \end{bmatrix}$$
As $\mathbf{X} = \mathbf{1}$, $\mathbf{Y} = \mathbf{1}^{\top}$, $\mathbf{W} = 2\mathbf{A}^{\top}\mathbf{A}$, we have $\mathbf{Y}\mathbf{W}^{-1}\mathbf{X} = \frac{1}{2}\mathbf{1}^{\top}(\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{1}$,
which is a scalar, denote it as a , we have

$$\mathbf{R}^{-1} = \begin{bmatrix} \mathbf{W}^{-1} - \mathbf{W}^{-1} \mathbf{X} a^{-1} \mathbf{Y} \mathbf{W}^{-1} & \mathbf{W}^{-1} \mathbf{X} a^{-1} \\ a^{-1} \mathbf{Y} \mathbf{W}^{-1} & -a^{-1} \end{bmatrix}$$

Factorize the a out

$$\mathbf{R}^{-1} = \frac{1}{a} \begin{bmatrix} a\mathbf{W}^{-1} - \mathbf{W}^{-1}\mathbf{X}\mathbf{Y}\mathbf{W}^{-1} & \mathbf{W}^{-1}\mathbf{X} \\ \mathbf{Y}\mathbf{W}^{-1} & -1 \end{bmatrix}$$
$$= \frac{1}{a} \begin{bmatrix} \mathbf{W}^{-1}(a\mathbf{I} - \mathbf{X}\mathbf{Y}\mathbf{W}^{-1}) & \mathbf{W}^{-1}\mathbf{X} \\ \mathbf{Y}\mathbf{W}^{-1} & -1 \end{bmatrix}$$

On details of minimizing the Lagrangian \dots (3/3)

Put
$$\mathbf{X} = \mathbf{1}, \ \mathbf{Y} = \mathbf{1}^{\top}$$
 and $\mathbf{W} = 2\mathbf{A}^{\top}\mathbf{A}$

$$\begin{aligned} \mathbf{R}^{-1} &= \frac{1}{a} \begin{bmatrix} (2\mathbf{A}^{\top}\mathbf{A})^{-1} (a\mathbf{I} - \mathbf{1}\mathbf{1}^{\top}(2\mathbf{A}^{\top}\mathbf{A})^{-1}) & (2\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{1} \\ \mathbf{1}^{\top}(2\mathbf{A}^{\top}\mathbf{A})^{-1} & -1 \end{bmatrix} \\ &= \frac{2}{\mathbf{1}^{\top}(\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{1}} \begin{bmatrix} \frac{1}{2}(\mathbf{A}^{\top}\mathbf{A})^{-1} (a\mathbf{I} - \mathbf{1}\mathbf{1}^{\top}\frac{1}{2}(\mathbf{A}^{\top}\mathbf{A})^{-1}) & \frac{1}{2}(\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{1} \\ \mathbf{1}^{\top}\frac{1}{2}(\mathbf{A}^{\top}\mathbf{A})^{-1} & -1 \end{bmatrix} \\ &= \frac{1}{\mathbf{1}^{\top}(\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{1}} \begin{bmatrix} (\mathbf{A}^{\top}\mathbf{A})^{-1} (a\mathbf{I} - \mathbf{1}\mathbf{1}^{\top}\frac{1}{2}(\mathbf{A}^{\top}\mathbf{A})^{-1}) & (\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{1} \\ \mathbf{1}^{\top}(\mathbf{A}^{\top}\mathbf{A})^{-1} & -2 \end{bmatrix} \\ &= \frac{1}{\mathbf{1}^{\top}(\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{1}} \begin{bmatrix} \frac{1}{2}(\mathbf{A}^{\top}\mathbf{A})^{-1} (\mathbf{1}^{\top}(\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{1}\mathbf{I} - \mathbf{1}\mathbf{1}^{\top}(\mathbf{A}^{\top}\mathbf{A})^{-1}) & (\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{1} \\ \mathbf{1}^{\top}(\mathbf{A}^{\top}\mathbf{A})^{-1} & -2 \end{bmatrix} \end{aligned}$$

With this $\mathbf{R}^{-1},$ we can now compute the optimal $\mathbf{x}^*,$ which gives

$$\begin{bmatrix} \mathbf{x}^* \\ \lambda^* \end{bmatrix} = \mathbf{R}^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{\mathbf{1}^\top (\mathbf{A}^\top \mathbf{A})^{-1} \mathbf{1}} \begin{bmatrix} (\mathbf{A}^\top \mathbf{A})^{-1} \mathbf{1} \\ -2 \end{bmatrix} \quad [$$

End of document