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Existence of Uncertainty

Uncertainty in any physical structure comes from several factors, including:
-Modeling Errors
-Discretization Errors
-Computational Errors (truncation)
-Material Abnormalities/Defects 
-Load-Structure Interaction Complexities

Uncertainties are unable to be handled with deterministic analyses and thus 
require some form of uncertain analyses to properly analyze



Uncertainty Modeling

There are two distinct types of uncertainty:

-Aleatoric: Due to inherent randomness in a system.  Always present and 
irreducible.

-Epistemic: Due to lack of knowledge, modeling errors, and/or insufficient 
data to accurately reflect the system.  Is reducible with further data 
acquisition and model updating.



Uncertainty Analysis Paradigms

There are likewise two distinct types of uncertainty analysis:

-Isomorphic: Analyses which consider only either probabilistic or 
possibilisticmethods of analysis.  Allows for uncertainty in the parameter 
being modeled.

-Polymorphic: Analyses which generate probabilistic information on 
possibilisticbounds.  Allows for uncertainty in both the parameter and the 
model itself.
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Imprecise Probability
• Framework for handling incomplete information with uncertain PDF or 

CDF

• Involves setting bounds on CDF based on deterministic or non-
deterministic parameters (mean, variance, etc.)



Imprecise Probability

● Drawing a vertical line:

● represents the UPPER bound and      represents the LOWER bound on CDF for 
known  x*



Imprecise Probability

● Drawing a horizontal line:

● represents the LOWER bound and      represents the UPPER bound on RV x for 
known CDF



Imprecise Probability

● Using imprecise probability requires choice of whether to model CDF or 
RV x with uncertainty

● Chose to model CDF values as exact such that all error is in the value of RV x



Probability Box

• A probability box is formed by discretizing the imprecise CDF bounds into     
z intervals.



Combining Imprecise Probabilities
● Dempster Shafer Structures

● Dependency Bounds Convolutions (Williamson and Downs 1990)

● Probability Bounds Analysis (Ferson and Donald 1998)

● Many methods expanded by Ferson et al. 2003, including:

● Enveloping

● For this method, use enveloping for combining p-boxes



P-box Imprecise Probability 

● Each independent imprecise probability structure is discretized into a 
p-box of z intervals, each of 1/z probability mass, in order to combine 
multiple p-boxes

● For the developed method, p-box uncertainty is considered only in 
the stiffness matrix

● Because many common distributions have infinite tails, the tails must 
be truncated (such as at CDF=.005)



Combining P-boxes

• Because a equally discretized p-box is really a group of equally probable 
intervals, the p-box eigenvalue problem can be treated as a cluster of 
interval eigenvalue problems 



Advantages of Imprecise Probability

● Allows for accurate modeling of true system and RV behavior, regardless 
of the level of information known

● Increased information moves         and           closer together, thus 
yielding tighter bounds with greater reliability

● Allows for engineering decision making without requiring assumptions 
on the CDF

● One disadvantage of Imprecise Probability is that it still requires either 
empirical data or expert opinion to generate the CDF bounding curves.



Dynamic Analysis

• An essential procedure to design a structure subjected to time-
dependent excitations.

• In conventional dynamic analysis, the existence of any uncertainty 
present in the structure’s geometric and mechanical properties are 
neglected.



Uncertainty in Dynamics

• Structure’s Physical Imperfections

• Structure Modeling Inaccuracies

• Structure-Load Interaction Complexities



Conventional Modal Dynamic Analysis

• For a structure with [M] and [K] representing the global mass 

and stiffness matrices, and assumed modal damping ratios,

, the deterministic dynamic analysis is completed by:

• Computing natural circular frequencies,      , and corresponding mode 
shapes, 

• Determine maximum dynamic amplification for each mode

• Compute modal participation factor for each mode

• Calculate maximum modal responses

• Combine maximum modal responses to compute maximum total 
response



Imprecise Probability Response 
Spectrum Analysis (IPRSA)
● If uncertainty is introduced into any of the structure's parameters, a new 

method of dynamic analysis is required capable of carrying this 
uncertainty throughout the dynamic analysis; the steps of IPRSA are:

● Quantify all uncertain parameters

● Determine uncertain bounds on natural circular frequencies and mode shapes

● Determine uncertain bounds on dynamic amplification

● Determine uncertain bounds on modal participation factor

● Determine uncertain bounds on maximum modal response

● Determine maximum bound on uncertain maximum total response



Quantification of Uncertain Parameters

● For uncertainty existing in the Modulus of Elasticity of member i, the 
uncertain parameter is defined as an uncertain coefficient times a 
deterministic value, or:

● This formulation for defining uncertainty is likewise carried through to 
the member’s element stiffness contribution to the uncertain global 
stiffness matrix as:

● The contributions of all deterministic and uncertain members are then 
summed to obtain the global uncertain stiffness matrix:



Uncertain Bounds on Natural 
Frequencies Using Interval Monte-
Carlo Frequency Analysis (IMFA)
• Bounds on natural circular frequencies can be obtained utilizing IMFA by 

randomly selecting CDF values for each uncertain parameter and then 
analyzing the interval bounds as:

Modares, Mullen & Muhanna, 2006
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Uncertain Bounds on Mode Shapes
● Uncertain bounds on the mode shapes for a structure with uncertain 

parameters may be computed by completing a pseudo-deterministic 
(central) analysis to determine deterministic natural circular frequencies 
and mode shapes to then computed bounds on the uncertain mode 
shapes as:

where:

and



Uncertain Bounds on Dynamic 
Amplification
● For a given response spectrum, the uncertain maximum dynamic 

amplification is found by evaluating the bounds on each uncertain 
natural circular frequency to obtain interval bounds on each uncertain 
maximum dynamic amplification, 



Uncertain Modal Participation Factor
● For a structure subjected to proportional dynamic loading, or:

the uncertain modal participation factor is computed as:



Uncertain Maximum Modal Response
● The uncertain maximum modal response for the jth mode is computed 

as:

● Because the uncertain modal participation factor is a function of the 
uncertain mode shape, the above equation must be expanded to 
account for dependencies as:

Modares and Mullen, 2013



Maximum Uncertain Maximum Modal 
Response & Maximum Uncertain Total 
Response
● As only the maximum of the uncertain maximum modal response is of 

interested for design, we evaluate:

● The total structure response is then found by combining the modal 
contribution of all modes.  For this work, the Square Root Sum of 
Squares (SRSS) method is utilized to combine all maximum uncertain 
maximum modal responses as:



Consider 2D, 18 DOF system shown below.

For normally distributed
uncertainty only in each
members’ elasticity:

Assuming A, I & L are deterministic, solve for bounds on 
the system’s natural frequencies and total response for 
first and second floors if the system is subjected to NBK 
Response Spectrum

Example 1

E*.0194 E,*[.95,1.05]μ~ :E  i



P-box
Discretization
• The modulus of elasticity of 

each member in the system is 

given by the bounds given on 

the previous slide.

• The lower p-box shows the 

discretized p-box for the 

modulus of elasticity of each 

member for z=5 intervals.



Uncertain bounds on fundamental 
natural frequency,     ,Example 1
•The dashed lines in the graph 
represent the IMFA verification 
of the combinatorial results, 
represented by the solid lines

• IMFA results are all inner 
bounds of the combinatorial 
results

1



Maximum Uncertain and Pseudo-
Deterministic Story Drifts 
•The dashed lines in the graph 
represent the pseudo-
deterministic (central) 
response for the response of 
each floor

•Solid lines are the maximum 
uncertain response of IPRSA

•Top figure is response of first 
floor and lower is response of 
second floor



Example 2

Consider the truss system shown below.

The structure is subjected to a heavy-side step loading function.

Given all parameters are deterministic, with each member having 
equal cross sectional properties

Uncertainty exists only in the damping ratio for each mode defined 
as:



Uncertain Maximum Modal 
Response
• For a heavy-side step load function, the deterministic dynamic 

response coordinate is computed as:

• Because only the maximum nodal responses are of interest, for 

uncertain damping ratio, only the lower bounds on the uncertain 

damping ratios control. Thus:

• Therefor the uncertain maximum modal response is computed as:



Maximum Uncertain and Pseudo-
Deterministic Top Chord Nodal 
Responses
•The dashed lines in
the graph represent
the pseudo-
deterministic (central) 
response for each top
chord node of the truss

•Solid lines are the maximum 
uncertain response of IPRSA



Summary & Conclusions
• Imprecise Probability approach, as one of the newer 

polymorphic uncertainty analyses, is capable of treating 
uncertainties not only in the data and model, but also on their 
distributions.

• Using this approach, due to its set based (interval) 
configuration, computationally feasible schemes can be 
developed for uncertain system analyses.

• Application of Imprecise Probability on dynamics of a system 
has led to the development of computationally feasible 
methods that are capable of enumerating uncertainties in the 
PDF of input parameters.

• This method is versatile to level of uncertainty present in the 
system i.e. the less uncertainty (more information), the tighter 
the bounds on the output.



QUESTIONS


