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CHAPTER I: GENERAL INTRODUCTION 

Carnitine (3-hydroxy-4-trimethylaminobutyrate) is prevails in mammalian tissues and 

plasma and within the skeletal and cardiac muscles. Carnitine exists in two isomer forms: D-

carnitine (inactive form) and L-Carnitine (active form). Carnitine is made available to the 

body by two independent pathways: an endogenous biosynthesis from methionine and lysine 

and from dietary sources, such as meat and dairy products. L-Carnitine in humans and 

animals tissues is present in two forms: free carnitine (FC) and acylated carnitine (AC) 

(Shruti and Stephen, 2010; Figure 1). Normally, FC constitutes approximately 80% of TC 

(Kenichiro et al., 2004).  

 

 

 

 

Figure 1. Chemical structures of free L-Carnitine and acetylated carnitine. Adopted 
from Shruti and Stephen (2010).  
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Function of Carnitine 

The primary function of L-Carnitine is to transport and enhance entry of long-chain 

fatty acids (LCFA) into the mitochondrial matrix for ß-oxidation (Figure 2) (Reda et al., 

2003). Additionally, L-Carnitine buffers excess production of acetyl-CoA in the 

mitochondria by producing AC with concomitant production of coenzyme A (CoA-SH), 

which plays a main role in various mitochondrial energy metabolic processes. It has been  
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Figure 2. Function of carnitine in the transport and oxidation of mitochondrial long-
chain fatty acyl and regulation of mitochondrial acyl-CoA/CoA ratio. Carnitine 
palmitoyltransferase I (CPT I), coenzyme CoA (CoA), carnitine-acylcarnitine translocase 
(CACT), long-chain fatty acids (LCFA), carnitine palmitoyltransferase II (CPT II), carnitine 
acetyltransferase (CAT).  
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shown that AC plays two vital metabolic functions. First, it transports fatty acyl groups 

among various body organs. Second, it detoxifies excess acyl compounds produced from the 

metabolism of xenobiotic compounds, such as, valproyl- CoA (Lheureux et al., 2005). As 

was previously emphasized, the primary function of L-Carnitine is to facilitate ß-oxidation of 

esterified fatty acids in the mitochondrial matrix. An uptake disorder of L-Carnitine by 

skeletal or cardiac myocytes can induce myopathy that progresses to cardiac diseases 

(Lahjouji et al., 2001). Additionally, L-Carnitine transports very long-chain fatty acids to the 

peroxisomes to undergo ß-oxidation that generates long-chain fatty acids that subsequently 

become suitable substrates for the mitochondria (Wanders, 2000). Thus, carnitine is critical 

for fatty acids catabolism and energy homeostasis. 

Acetyl-CoA generated by β-oxidation of fatty acids, is an important intermediate in 

glucose and fatty acid metabolism. To be oxidized to CO2, acetyl-CoA is condensed with 

oxaloacetate to form citrate in a reaction catalyzed by citrate synthase in TCA cycle in 

skeletal muscle and other aerobic tissues (Wachter et al., 2002). Of importance, during 

accelerated lipolysis, carnitine converts excess acetyl-CoA into AC. The conversion of 

acetyl-CoA into AC buffers the toxic effect of elevated intracellular acetyl-CoA and 

regenerates the reduced form of CoA (Kenichiro et al., 2004). However, inadequate CoA 

concentration decreases production of acetyl-CoA and N-acetylglutamate. Subsequently, 

carbamoyl phosphate synthetase-1 will be inactivated inhibiting urea cycle and causing an 

accumulation of ammonia (Scaglia, 2001). Thus, sufficient L-Carnitine concentration is an 

important factor in the cellular energy homeostasis. The concentrations of L-Carnitine in beef 

and ram rump have been shown to be higher than that of chicken, fish, or pigs (Table 1) 

(Shamada et al., 2004). Report by Nelson and coworkers (1985) indicated that in bovine  
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Table 1. L-Carnitine and myoglobin concentrations of semitendinosus muscles from 
various animals 
 
Species 

Age  
(mo) 

L- Carnitine 
umol/g tissue (n) 

Myoglobin 
mg/g tissue (n) 

Chicken    
Broiler 1.5 0.69 ± 0.27 (6) 1.37 ± 0.08(4) 
White leg-horn 3–4 1.33 ± 0.6 (33) 1.58 ± 0.04(27) 

Pigs    
Large White x Landrace x Duroc 9 1.09 ± 0.06 (2) 1.01 ± 0.68(2) 

Beef cattle    
Angus x Hereford 32 3.47 ± 0.04 (2) 3.98 ± 0.04 (2) 
Japanese Black 32 3.57 ± 0.20 (3) 4.09 ± 0.14 (3) 
Holstein, Steer 12 1.86 ± 0.49 (4) 1.87 ± 0.12 (4) 
Holstein, Steer 24 2.04 ± 0.15 (2) 2.87 ± 0.28 (2) 

Dairy cattle    
Holstein 36 2.73 (1) 4.11 (1) 
Holstein 60 2.97 (1) 6.57 (1) 

Calf    
Holstein 1 1.67 ± 0.46 (3) 1.49 ± 0.45 (3) 

Horse    
Thoroughbred 3 2.79 (1) 1.89 (1) 
Hokkaido native horse 36 4.95 (1) 5.84 (1) 

Deer    
Hokkaido native deer > 36 4.57 ± 0.62 (8) 6.01 ± 2.44 (4) 

Goat Unknown 11.36 ± 0.71 (3) 6.35 ± 1.18 (3) 
Note. Values are means ± SD of the numbers (n) of samples. Adopted from Shamada et al. 
(2004). 
 
 

longissmus dorsi muscle, L-Carnitine concentration diminishes gradually during 

postmortem aging, suggesting that a long a storage period might decrease carnitine 

concentration in beef. Worth mentioning, tissue L-Carnitine is quantified by a method 

based on the enzymatic reaction that generates acetylcarnitine and CoA from carnitine. This 

reaction is catalyzed by acetyl-CoA and carnitine acetyltransferase (Marquis and Fritz, 

1964; Xia and Folker, 1991). 
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Carnitine Biosynthesis 

The liver, kidney, and brain are the main human organs that carry carnitine synthesis 

(Rigault et al., 2006). Synthesis of carnitine (Figure 3) involves condensation of methionine 

and lysine as precursors followed by five sequential enzymatic reactions that include some 

cofactors such as ionic iron and ascorbate (Vaz and Wanders, 2002). During carnitine 

synthesis, lysine presents the carbon backbone of carnitine (Tanphaichitr et al., 1973), the 4-

N-methyl groups are donated by the methionine in reaction catalyzed by methyl transferases. 

Specific mammalian functional proteins are rich in N6-trimethyl-lysine (TML ) residues (Paik 

et al., 1971). Such proteins include myosin, actin, cytochrome c, calmodulin (calcium-

binding protein), and histones (Morse et al., 1975). The methyl groups are donated to the 

lysine by s-adenosylmethionie in a reaction catalyzed by methyltransferse enzymes. 

Eventually, TML is released via hydrolysis (Dunn and Rettura, 1984) and utilized to for the 

synthesis of new carnitine molecules.  

Initially, TML undergoes hydroxylation at the 3-position in a reaction catalyzed by 

TML dioxygenase (TMLD ), which uses Fe2+ and vitamin c as cofactors to yield 3-hydroxy-

TML (HTM L). Next, 4-trimethylaminobutyraldehyde (TMABA ) and glycine are generated 

by an aldolytic cleavage of HTML in a reaction catalyzed by HTML aldolase that uses PLP 

as cofactor. Dehydrogenation of TMABA by TMABA dehydrogenase (TMABA-DH ), 

which has specificity for NAD+ and TMABA results in the production of 4-N-

trimethylaminobutyrate (butyrobetaine; BB). Eventually, BB is hydroxylated at the 3- 

position by butyrobetaine dioxygenase (BBD) to produce carnitine. Worth mentioning, BBD, 

similar to TMLD, recruits ascorbate and Fe2+ as cofactors (Vaz and Wanders, 2002). Newly 

synthesized carnitine is excreted in the blood and distributed to tissues that lack BBD activity 
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Figure 3. The carnitine biosynthesis pathway. Trimethyllysine (TML); trimethyllysine 
deoxygenase (TMLD); 3-hydroxyl trimethyllysine (HTML); 4-Trimethylaminobutyr-
aldehyde (TMABA); 4-Trimethylaminobutanal dehydrogenase; (TMABA-DH); 4-N-
trimethylaminobutyrate (butyrobetaine; BB) butyrobetaine dioxygenase (BBD); free 
carnitine (FC). Adapted from Shruti and Stephen (2010).  
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but depend on carnitine for their energy metabolism, such as the skeletal and cardiac muscles 

(Vaz and Wanders, 2002). Studies on carnitine homoeostasis in humans have unraveled that 

carnitine is endogenously synthesized in the liver, kidney, and brain. Non-renal and non-

hepatic tissues do not contribute to carnitine synthesis and take up carnitine that is readily 

available in the circulation (Figure 4). Express Sequence Tag clones analyses indicated that 

carnitine might be synthesized endogenously in the testis and the lung (Rigault et al., 2006). 

Additionally, sequencing of the genome of numerous organisms revealed the 

presence of homologous carnitine synthesis enzymes. Rebouche and Engel (1980b) 

investigated the tissue distribution of the enzymes involved in carnitine synthesis in humans.  

 

Carnitine
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TML

HTML

Other tissues

Protein degradation         TML         HTML         TMABA        BB

Circulation

BBCarnitine

carnitine uptake

BB

BB

TML
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Carnitine

Kidney
Liver

Carnitine

 

Figure 4. Schematic representation of carnitine homoeostasis. Carnitine is synthesized in 
the kidney, liver and brain (not shown). Trimethyllysine (TML); butyrobetaine (BB); 
butyrobetaine dioxygenase (BBD).  
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TMLD activity is detectable in the liver, heart, muscle, and brain; however, its activity is 

highest in renal tissues. In contrast, HTMLA is predominantly active in the liver compared 

with extrahepatic tissues. Similarly, the rate of TMABA oxidation is high in hepatic and 

renal tissues and low in brain and cardiac muscles. Thus, these results demonstrate that the 

enzymes necessary to convert TML into BB are widely distributed among different body 

tissues. The kidney, liver, and brain, however, are capable of hydroxylating BB into carnitine 

(Rebouche and Engel, 1980b). Also, TML is produced by the protein degradation. 

TML can be directly converted to BB almost in all tissues. In contrast, only the liver, kidney, 

testis and brain are able to express BBD that catalyze the hydroxylation of BB to carnitine 

(Rebouche and Engel, 1980b). Tissues that lack BBD release BB in the circulation. Liver and 

kidney take up BB from circulation and convert it into carnitine. The kidney reabsorbs 

carnitine and BB efficiently, thereby decreasing their loss in urine. It was shown that BBD 

activity in kidney is about 3- to 16-fold greater than that of the liver (Englard, 1979). In 

comparison, BBD activity in the brain has been shown by Rebouche and Engel (1980b) to be 

only about 50% of its activity in hepatic tissues. In rodents and humans, hepatic BBD activity 

increases readily with age (Hahn, 1981; Englard, 1979). Activity of renal BBD, however, 

does not correlate with age and remains unaltered in newborn and adult humans (Olson and 

Rebouche, 1987). In contrast, the correlation of hepatic TMLD, HTML, or TMABA with age 

warrants investigation (Rebouche and Engel, 1980b). 

 

Transport of Carnitine Metabolites 

Until recently, the homeostasis of carnitine and of the metabolites associated with 

carnitine biosynthesis has not been completely clear. An earlier report by Zapel and 
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colleagues (1980) demonstrated that TML and HTML are absorbed by the intestine. To date, 

transporters associated with carnitine and its metabolites, such as TML and HTML, are 

poorly characterized. Similarly, the cellular concentrations of TML and HTML have not been 

determined. Because in rats the kidney is able to effectively reabsorb TML, it is likely that a 

system of carnitine transporters is present, at least in rodents. As cardiac and skeletal 

muscles, liver, and kidney are extremely dependent on the energy generated by ß-oxidation, 

it is crucial that these tissues have adequate carnitine. Carnitine concentration in tissues is 

generally 20- to 50-fold higher than that in plasma (Bremer et al., 1983). In humans, apart 

from kidney, liver, and brain that have the required enzymes to synthesize carnitine, most 

tissues take up plasma carnitine by sodium-dependent active transport. Kinetic studies of the 

plasmalemmal carnitine transporter by Rebouche and Engel (1982) have shown analogous 

similar Km values of 2-60 µM for carnitine transport in skeletal muscle (Rebouche, 1977), 

fibroblasts (Tein et al., 1990), heart (Bahl et al.,1981), and placenta (Prasad et al., 1996), 

indicating a common carnitine transporter. This same carnitine transporter seems to carry 

renal reabsorption of carnitine (Rebouche and Engel, 1980a). Carnitine transporters that 

actively transport carnitine have been identified. cDNA sequencing study by Wu et al. (1998) 

has identified the organic cation transporter 2 (OCTN2). This OCTN2 gene expression is 

robustly inhibited by BB and acetylcarnitine, indicating a role for OCTN2 in carnitine 

transport (Tamai et al., 1998). Later, it was shown that OCTN2 localizes to the apical 

membrane of renal tubular epithelial cells and facilitates carnitine reabsorption (Tamai et al., 

2001).  
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Carnitine Degradation and Excretion 

Both FC and AC are chiefly excreted through urine (Brass and Hoppel, 1978). In rats, 

about 20 pmol of carnitine are excreted daily per gram of body weight (Tasi et al., 1975). 

This amount represents about 5% of the total body pool suggesting sluggish homeostasis in 

skeletal muscle (Brooks and Mcintosh, 1975). Under physiological conditions, renal 

clearance of carnitine in rats is less than 50 milliliters daily. The glomerular filtration rate is 

~17 milliliter/g body weight daily (Bauman et al., 1970). Thus, most of the carnitine in the 

glomerular filtrate is reabsorbed by the kidney. In contrast, in fasting rats, both the plasma 

concentration and the renal excretion decrease initially followed by an increase above the 

initial values after a 3- to 4-day fast. Additionally, carnitine is as well excreted through the 

mammary gland into milk raising milk carnitine concentration to about 0.3 mM (Erfle and 

Sauer, 1974). Feeding high amounts of carnitine to and rodents substantially increased 

urinary excretion of trimethylamine, trimethylamineoxide, crotonobetaine and BB (Seim and 

Strack, 1980a). Prentiss and colleagues (1961) implicated intestinal microbiota with 

degrading dietary carnitine to these metabolites.  

Under physiological conditions, small concentration of trimethyaminoacetone has 

been detected in urine that seems to be formed by microbiota degradation of dietary 

carnitine. Interestingly, oral administration of unphysiological isomer (+) carnitine to rodents 

induced excretion of trimethylaminoacetone higher than that induced by (-) carnitine 

administration. This result is suggestive that (+) carnitine is catabolized in mammalian 

tissues to trimethylaminoacetone by a pathway yet to be unraveled (Seim et al., 1980b). 

Whereas some degradation of (-) carnitine by mammalian tissues cannot be completely ruled 
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out this degradation might be of less physiological significance. Thus, it likely that carnitine 

is mostly generally unchanged in the urine (Stanley, 1995).  

 

Regulation of Carnitine Homeostasis 

Regulation of carnitine homeostasis is poorly understood and might be limited. Rat 

neonates seem to obtain significant amount of carnitine from doe’s milk (Robles et al., 1976). 

Growing rats are able to adequately synthesize sufficient carnitine even when fed carnitine-

lacking diets (Borum, 1978) because they possess carnitine biosynthesis enzymes in most of 

their tissues. In contrast, in human babies, dietary carnitine seems to be essential for normal 

development (Borum et al., 1981). It has been shown that inadequate dietary lysine decreases 

carnitine content in epididymis and cardiac and skeletal muscles (Borum and Broquist, 

1977). Similarly, it has been shown that dietary carnitine enhances growth of rats fed a low-

methionine diet, indicating that dietary carnitine may possibly have a methionine-sparing 

effect (Khairallah and Wolf, 1965). On the other hand, protein that contains methylated 

lysine is required for carnitine synthesis (Labadie et al., 1976). Bremer (1961) showed that 

less of the methionine methyl groups is incorporated into carnitine. Therefore, Dunn and 

Englard (1981) suggested that availability of carnitine does not interfere with protein 

methylation. It is evident that the trimethyllysine generated from protein degradation is either 

converted to carnitine or excreted in urine (Kakimoto and Akazawa, 1970), depending on 

carnitine tissue concentrations. Thus, production of carnitine from trimethyllysine too may be 

regulated, but whether this process is influenced by carnitine status is yet to be determined. A 

study by Holme et al. in 1982 has indicated that the γ-BB and 2-oxoglutarate dioxygenase 

reaction is not dictated by carnitine status. Because 2-oxoglutarate dioxygenase also converts 
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trimethyllysine to carnitine, it has been speculated that carnitine status may not regulate 

trimethyllysine metabolism (Hulse et al., 1978). As previously mentioned, in animals, 

carnitine is execrated mainly unaltered in urine. Additionally, trimethyllysine excretion is 

decreased by hypothyroidism but increased in patients suffering thyrotoxic conditions 

(Maebashi et al., 1977) as protein turnover increases. Kidney failure is known to increase 

plasma carnitine concentrations (Chen and Lincoln, 1977), suggesting that an active role for 

the kidneys in regulation of the plasma carnitine concentrations.  

 

Carnitine Deficiencies 

Primary carnitine deficiency is triggered by defective plasma membrane carnitine 

transporters (OCTN2) in muscle and kidney and is predominantly limited to muscular 

tissues. The lack of the plasma membrane carnitine transporters results in enhanced urinary 

carnitine excretion coupled with decreased intracellular carnitine concentration (Makhseed et 

al, 2004). Mutations of OCTN2 have been shown to cause carnitine deficiency. Myopathic 

carnitine deficiency is well characterized in muscles and is manifested as severe reduction in 

muscle carnitine concentrations. The basic etiologic trigger of the primary carnitine 

deficiency is not identified yet. In contrast, secondary carnitine deficiency is manifested as 

low tissue or plasma carnitine concentrations. Usually, secondary carnitine deficiency has 

been found to accompany certain metabolic genetic defects, iatrogenic conditions, or medical 

disorders. Disturbance of the carnitine metabolic pathway or ß-oxidation of fatty acids has 

been implicated with causing secondary carnitine deficiency. For instance, repressed fatty 

acid β-oxidation induces a buildup of acyl-CoA intermediates. Conjugation with carnitine 

forms acylcarnitine and free CoA. These AC forms are eliminated readily by the kidney and 
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excreted in urine. In the kidney, AC inhibits carnitine reabsorption by the carnitine 

transporter associated with renal cells. Subsequently, the increased urinary carnitine causes a 

systemic secondary exhaustion of carnitine (Scaglia, 2001).  

Also, lysinuric protein intolerance is a condition associated with an elevated urine 

excretion of lysine, the precursor of carnitine. Patients with lysinuric protein intolerance are 

known to have low ratio of free to total carnitine in their blood, and supplementation with L-

carnitine increases their plasma total carnitine (Laura et al., 2008). 

Acidemia because of increased acidic molecules in the blood, such as isovalerate, 

propionate, or methylmalonate, induces accumulation of acyl-CoA intermediates. 

Subsequently, AC esters accumulate and, thus its execration in urine is increased. As a 

consequence, total plasma and tissue carnitine concentration decrease, causing secondary 

carnitine deficiency in children. Carbamoyl phosphate synthase deficiency hinders urea cycle 

activity and induces carnitine deficiency (Scaglia, 2001). Also, cytochrome c oxidase 

deficiency impairs the mithochondrial electron transport chain functions and decreases rates 

of ATP production. Thus, the energy-requiring uptake of carnitine is hindered, causing 

secondary carnitine deficiency (Scaglia, 2001). 

Carnitine homeostasis is affected by other health conditions. For example, long-

standing renopathy or liver fibrosis may impair carnitine biosynthesis (Evangeliou and 

Vlassopoulos, 2003). Low dietary carnitine intake, intestinal conditions associated 

malabsorption, and health conditions characterized by enhanced catabolism causes secondary 

carnitine deficiency. Also, because their carnitine biosynthesis is inadequate and their renal 

carnitine reabsorption is ill developed, preterm neonates are especially at risk for exhibiting 

carnitine deficiency (Scaglia, 2001). Several medications, such as valporate, emetine, and 
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zidovudine have been implicated with triggering secondary carnitine deficiency as a side 

effect. For instance valproate has been suggested to induce secondary carnitine deficiency by 

several biochemical mechanisms including dissipation of CoA and CoA-related molecules, 

causing suppression of fatty acid oxidation. In vitro, valporate has impaired uptake of 

carnitine through plasma membrane of fibroblasts. It is possible that the impaired carnitine 

uptake via plasma membrane is manifested as lowered serum carnitine and renal reabsorption 

and thus depletion of carnitine in muscle (Scaglia, 2001). Additionally, dietary vitamin and 

mineral deficiencies contribute to secondary carnitine development. Stanley and coworkers 

(1995) have implicated ferrous ion and ascorbic acid deficiencies in causing carnitine 

deficiencies. Iron and vitamin C are cofactors required for carnitine biosynthesis (Wanders et 

al., 2002). Collectively, carnitine deficiency is manifested as muscle atrophy and fatigue, 

cardiac diseases, and neurological disorders. These typical symptoms indicate the biological 

function of carnitine in energy metabolism.  

 

Effect of Carnitine on Health 

Diabetes Type II  

Diabetes type II is characterized by dislipedemia and insulin resistance. This is 

suggestive of impaired β-oxidation (Mingrone et al., 2004) and possible mitochondria 

malfunction. Recently, Amin and Nagy (2009) reported that the carnitine and herbal extract 

act as potential anti obesity agents. Carnitine and herbal supplementation decreased 

hyperglycemia and improved insulin sensitivity when administered to rabbits fed the high fat 

diet for 14 weeks through enhancing mitochondrial functions. 



15 

Similarly, De Gaetano and colleagues (1999) thought that administration of L-

Carnitine would ameliorate the dislipedemia and hyperglycemia by enhancing insulin action. 

Sima et al. (2005) administered groups of subjects known to have either diabetes type I or II 

with three grams of L-Carnitine given orally for twelve months and observed an alleviated 

neuropathic symptoms.  

Cardiovascular and peripheral arterial disease 

Arterial stenosis is a major cause of cardiac ischemia, which is characterized by 

inadequate blood circulation in the extremities (Hiatt et al. (2004). Supplemental propionyl 

L-carnitine given to subjects with impaired leg blood circulation at a daily dose of two grams 

for a whole year significantly improved their endurance to walking (Brevetti et al., 1999). 

Recently, Sayed and coworkers (2010) have shown that carnitine supplementation in the 

form of propionyl L-Carnitine prevents the progression of cardiotoxicity through enhancing 

mitochondrial function Because concentrations of carnitine are low in the failing heart 

muscle, supplemental amounts might be beneficial to that organ by counteracting the toxic 

effects of free fatty acids and improving carbohydrate metabolism (Ferrari et al., 2004).  

Cancer 

Cancer patients are known to be carnitine deficient (Crucuani et al., 2004). Carnitine 

deficiency might be caused by malnutrition, radiation or chemotherapy (Crucuani et al. 

(2004) and cause cancer patients to suffer from fatigue. Daily supplemental carnitine at four 

grms for seven days has been shown to alleviate the fatigue in cancer patients undergoing 

chemotherapy (Graziano et al., 2002). Additionally, AC enhanced the antitumor effect of 

cisplatin in human tumor cell line with functional p53. Pisano et al. (2010) have found that 

AC enhances the stability of p5 and thus sensitivity of the tumor cell lie to the cisplatin 
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causing significant reduction in the tumor metastasis in vivo. Also, dyslipidemia has been 

implicated with cellular toxicity, increased mitochondria decay, and generation of reactive 

oxygen species (ROS) that induce oxidative stress. Chronic inflammatory process because of 

accumulated ROS is involved in the etiology of hepatic carcinoma (Chang et al., 2005). In rat 

model of hepatocarcinoma, supplemental FC preserved the mitochondrial integrity, reduced 

generation of ROS, and prevented the development of chronic liver inflammation that 

initiates the development of hepatic carcinoma (Chang et al., 2005).  

Aging 

Mitochondrial membrane leakage is actively involved in the process of aging. 

Supplementation of rat chow with AC and the antioxidant α-lipoic acid reduced the 

mitochondria leakage by enhancing mitochondrial membrane (Hagen et al., 2002). This was 

strong evidence that age-induced decrease of carnitine might be trigger of the mitochondrial 

membrane instability (Ames et al., 2004). Additionally, Bowman and coworkers (1992) 

hypothesized that aging reduces the uptake of choline and that reduced choline uptake could 

be associated with Alzheimer’s development in elderly people. Further studies by Bowman 

and colleagues (1992) and Montgomery and colleagues (2003) illustrated that AC 

supplementation augments the active uptake of choline and the production of acetylcholine 

and nerve synapses. Subsequently, AC supplementation has improved the Alzheimer’s-

induced mental incapacity in elderly people.   

Human Immunodeficiency Virus (HIV) and Acquired Immunodeficiency Syndrome 
(AIDS) 

HIV-infected individuals are susceptible to impaired lipid metabolism and 

dyslipedemia and insulin resistance. This metabolic syndrome is further exacerbated by the 
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anti-HIV drugs that are known to induce carnitine deficiency and subsequent mitochondrial 

decay (Day et al., 2004). Oral and parenteral administration of carnitine to individuals with 

AIDS has been shown to slow the decrease of CD4+ T helper cells numbers (Moretti et al., 

1998; Mauss and Schmutz, 2001), alleviate the dyslipidemia and slow the advance of the 

AIDS symptoms.  

Liver fibrosis  

A role of carnitine as an anti-hepatitis and liver fibrosis nutrient has been suggested 

(Chang et al., 2005). In agreement with this, supplemental L-carnitine to patients with active 

liver fibrosis significantly ameliorated dyslipidemia (Mariano et al., 2005). Reduced 

dyslipidemia is a prerequisite to preventing oxidative stress that sustains chronic hepatitis and 

fibrous tissue formation.   

Male sterility  

It has been hypothesized that supplemental carnitine could accelerate fatty acids β-

oxidation and thus the capture of ATP by the spermatozoa mitochondria (Ng et al., 2004). In 

congruent, daily supplementation of sterile individuals with two to three grams of carnitine 

has enhanced their sperm production (Costa et al., 1994) and motility (Sigman et al., 2006). 

Additionally, a recent study by Morgante et al. (2010) indicated that treatment with AC and 

I-arginine improved sperm motility and enhanced sexual performance in infertile men. 

Terminal nephropathy 

The kidneys are the main human organs that carry carnitine synthesis (Rigault et al., 

2006). Thus, nephropathy can significantly alter carnitine concentrations and availability 

Calvani et al., 2004) through impaired renal carnitine synthesis and reabsorption. Individuals 

with renal failure are known to acquire carnitine deficiency that initiates an altered lipids 



18 

profile and predisposes affected individuals to developing coronary heart diseases. Hurot and 

colleagues (2002) suggested that effects of carnitine on improving the lipids profile and 

coronary heart symptoms of individuals with nephropathy warrant more investigation to 

establish such effects.  

Carnitine as a treatment of valproic acid-induced toxicity 

Prolonged use of antiepileptic drugs, such as valporic acid might induce toxicity in 

some susceptible individuals. Valporic acid toxicity is characterized by liver toxicity and 

elevated blood ammonia concentration that leads to encephalopathy (Lheureux et al., 2005). 

It has been suggested that L-Carnitine could an effective preventative for the hepatic 

insufficiency because of valporic acid toxicity (Li et al., 1991). L-Carnitine administration 

can enhance valporic acid β-oxidation alleviating its heptotoxic effect (Li et al., 1991). 

The so-called carnitine shuttle or β-oxidation of valporic acid is well characterized 

(Figure 5). Like regular β-oxidation of fatty acids, VPA is activated and conjugated to the 

reduced CoA to form valproyl-CoA. This reaction catalyzed by the ATP-dependent medium-

chain acyl-CoA synthetase. Valproyl-CoA is translocated through the outer mitochondrial 

membrane by the action of the palmitoyl carnitine transferase (PCT; Figure 5). 

Subsequently, valproyl-carnitine is formed in the intermitochondrial. Carnitine translocase 

facilitate the entrance of valporyl-carnitine to the matrix in substitution to a molecule of L-

Carnitine (Lheureux et al., 2005; Figure 5). Eventually, valporyl-carnitine is converted into 

valporyl-CoA in a reaction catalyzed by PCt-2 that can be β-oxidized reducing the 

intracellular valporyl-CoA (Lheureux et al., 2005; Lie et al., 1991).  
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Figure 5. The carnitine shuttle. Acyl-CoA synthetase (ACoAS); coenzyme A (CoA); 
carnitine palmitoyltransferase (CPT); carnitine translocase (CT). Adopted from Lheureux et 
al. (2005).  

 

Summary 

Carnitine (3-hydroxy-4-trimethylaminobutyrate) is dispersed mainly within skeletal 

and cardiac muscles. Recently, the interest in the metabolism and functions of carnitine has 

progressively increased. Carnitine is provided to the body by an endogenous biosynthesis 

from condensation of methionine and lysine and from exogenous dietary sources. 

Carnitine is synthesized by the majority of eukaryotic organisms. Carnitine synthesis 

is initiated by the methylation of lysine. Subsequently, the trimethyllysine formed is 

converted to butyrobetaine in all tissues. Eventually, the butyrobetaine is hydroxylated to 

carnitine mainly in the liver. In some animals, however, butyrobetain can be hydroxylated to 

carnitine in the kidney and brain. The newly synthesized carnitine is usually released from 
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renal and hepatic tissues to blood stream, where it is taken up actively by all other non-renal 

and non-hepatic tissues, such as skeletal and cardiac muscles. The regulation of carnitine 

synthesis is still partly understood.  

The primary function of carnitine is to transport activated fatty acids across the inner 

mitochondrial membrane. Carnitine and carnitine acetyltransferase also are found in the 

peroxisomes. In peroxisomes, carnitine acetyltransferase is important to transfer the acyl 

groups, which are produced by the peroxisomal β-oxidation enzymes to the mitochondria for 

further Β-oxidation. The resultant acetyl-CoA is transported to undergo further oxidation in 

the citric acid cycle.  

Congenital anomalies of carnitine metabolism and function have been elucidated. In 

some patients, the activity of carnitine palmitoyltransferase is decreased, causing muscular 

fatigue and myoglobinurea. Similarly, reduction of the carnitine palmitoyltransferase activity 

impairs the ability of the liver to oxidize fatty acids to ketone bodies. The primary and the 

secondary deficiencies of carnitine in tissues have been shown to impede the ability of tissues 

to concentrate and retain carnitine. Interestingly, carnitine in the form of acetyl and porpionyl 

L-Carnitine has been reported to be potential therapeutic agents for the treatment of several 

diseases that include some neurological, cardiovascular, and metabolic disorders.  

 

Thesis Organization 

This thesis is presented as one complete paper, with an abstract, introduction, 

materials and methods, results, discussion, conclusions, and references, prepared for 

submission to the Journal of Animal Science. The title of the paper is “Variation of Carnitine 

Concentrations in Angus Beef.” This thesis was prepared from a research carried out to fulfill 
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the requirements for a Master of Science degree. The first author was responsible for the 

chemical and data analyses, graphing the data, organizing the results and writing the paper; 

the co-authors helped with mentoring, data organization, editing, and statistical analyses and 

gave scientific advice during the study. Data from this experiment suggest that increased 

carnitine concentration in beef is associated with increase yield grade and marbling score in 

beef from Angus beef cattle. A thorough literature review precedes the paper. The paper is 

followed by general conclusions, including recommendations for future studies, and 

acknowledgments.  
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CHAPTER II: VARIATION OF CARNITINE COCENTRATIONS IN ANGUS B EEF 

A paper to be submitted to the Journal of Animal Science 

Abuzaid, A.A, J.R. Tait, J. Reecy, K. Kizilkaya, and D.C. Beitz 

 
Abstract 

The objective was to quantify the naturally occurring free L-Carnitine (FC), acylated 

(AC), and total carnitine (TC) in skeletal muscle of Angus beef cattle. These data then were 

correlated to the yield grade (YG) and marbling scores (MS) of the same samples of 

longissmus dorsi muscles at 12th rib were collected from 1085 purebred Angus bulls, steers, 

and heifers from Iowa and California and used to quantify different the forms of carnitine. 

The spectrophotometric and enzymatic quantification of the different carnitines demonstrated 

that concentration of FC ranged from 2.12 to 6.32 µmol/g of beef and averaged 3.77 ± 0.80 

µmol/g of beef. Also, the AC concentration ranged from 0.05 to 1.61µmol/g and averaged at 

0.71 ± 0.17 µmol/g of beef. Similarly, the TC ranged from 2.60 to 7.28 µmol/g of beef and 

averaged at 4.48 ± 0.88 µmole/g of beef. Overall beef from male Angus beef contained 

higher FC (P = 0.01) and tended to have higher TC (P = 0.09) than that of beef from female. 

The AC, however, tended to be higher (P = 0.08) in beef from female Angus beef cattle. 

Additionally, the yield grade (YG) was greater in female Angus beef cattle. The marbling 

score (MS), however, tended to greater (P = 0.06) in beef from male Angus beef cattle 

compared with that of beef from the female. These data suggest that increased carnitine 

concentration in beef is associated with increase YG and MS of beef from Angus cattle. 
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Introduction 

L-Carnitine (3-hydroxy-4-N-trimethylaminobutyrate) is an essential metabolite, 

which has an important role in fatty acid catabolism via enhancing transfer of acyl groups 

across the inner mitochondrial membrane (Borum, 1983). Prior to β-oxidation, the fatty acyl-

CoA is esterified with carnitine to form acylcarnitine via reaction catalyzed by acylcarnitine 

transferase 1 and translocated across the inner mitochondrial membrane by carnitine 

acylcarnitine translocase action. Next, acylcarnitine transferase П in mitochondrial matrix 

frees carnitine. Acyl CoA however, undergoes catabolism via β-oxidation to yield acetyl-

CoA as an end product. Eventually, acetyl-CoA undergoes further oxidation via tricarboxylic 

acid (TCA ) cycle (Wachter et al., 2002). Intracellular L-Carnitine is present in an acylated 

and free forms. Although long-chain fatty acid esters of L-Carnitine are transported mainly 

for β-oxidation, short-chain esters help in regulating the acetyl-CoA/CoA ratio (Shimada et 

al., 2004).  

L-Carnitine concentrations differ considerably in different animal species and tissues 

(Bremer, 1983). Additionally, L-Carnitine concentrations are influenced by the age, gender 

birth seasons and feed composition of the diet. It has been shown that the skeletal muscles 

contain significant L-Carnitine concentration in comparison to other tissues in most animal 

species (Shimada et al., 2004). The primary and the secondary deficiencies of carnitine in 

tissues have been shown to impede the ability of tissues to concentrate and retain carnitine 

(Scaglia, 2001). We analyzed longissmus dorsi muscles from different gender and age groups 

of Angus beef cattle for different forms of carnitine. We observed significant variation in 

concentrations of all forms of carnitine longissmus dorsi muscles of Angus beef cattle. In 

agreement with Borum (1978), we found that male Angus beef cattle, contained higher 
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carnitine concentrations in their longissmus dorsi muscles than the same muscular from the 

female cattle. Most important, increased concentrations of carnitine were correlated 

positively with enhanced beef quality.  

 

Materials and Methods 

Animals 

Beef samples were collected from male and female Angus cattle (n = 2,255) and 

used to determined free (FC), acylated (AC), and total carnitine (TC) concentrations. The 

cattle consisted of males and females from the Iowa State University Angus breeding 

project (Ames, Iowa) and males from collaborating beef farms in California. All cattle were 

raised with no implants and no antibiotic growth promoters. Beef cattle were slaughtered 

and tissues were harvested at commercial facilities with an average age of 457 ± 46 days. 

Longissimus dorsi muscle samples were collected, trimmed of external connective and 

adipose tissues, freeze-ground, packed, and stored at -20oC until carnitine concentrations 

were determined. 

Reagents 

The reagents containing 0.5 M HEPES, 10 mM EDTA of the disodium salt), and 

2.7mM of dinitrothiobenzoic acid (DTNB; Sigma-Aldrich catalog number D8130) were 

dissolved in distilled water. By using 1 M sodium hydroxide, the pH was adjusted to about 

7.5. The solution was stored at -20o C until used. Acetyl-CoA solution was prepared by 

dissolving acetyl-CoA (Sigma-Aldrich, catalog number A2056-25MG) in distilled water at 

final concentration of 11.4 mM and stored at -20o C until used. Then, mixture of 2.4 ml of 

DTNB and 0.4 ml of acetyl-CoA was prepared every day prior to conducting the analyses. 
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L-Carnitine standard curve was created by dissolving 12.26 g of L-Carnitine hydrochloride 

(Sigma-Aldrich, catalog number CO283) in 100 ml of distilled water and stored at -20o C 

until used. Subsequently, 20 µl 5mg/mL of carnitine acetyltransferase (CAT ; Sigma-

Aldrich, catalog number C4899-10MG) was added to catalyze the reaction. 

Carnitine analysis 

Quantification of FC in beef tissue is based on the enzymatic conversion of carnitine 

to acetylcarnitine and coenzyme A (CoA) in the presence of excess acetyl-CoA and CAT 

(Marquis and Fritz, 1964; Xia and Folker, 1991), which is highly specific for L-Carnitine. 

For carnitine analysis, ground beef was processed according to a protocol modified from 

Shimada et al. (2004) and Prieto et al. (2006). Briefly, about 1.0 g of ground beef was added 

with 5.0 ml of 0.3 M perchoric acid and homogenized on ice (POLYTRON; Brinkmann 

Instruments, Rexdale, Ontario, Canada). Subsequently, the beef homogenate was centrifuged 

at 8,385g at 4o C for 10 minutes. The homogenate was neutralized with 1.2 M potassium 

carbonate and filtered through glass wool. The filtrate was used to quantify the FC. TC was 

quantified after hydrolyzing the AC. The spectrophotometer (SPECTRA Max PLUS, 

Sunnyvale, CA) was used to determine the optical density at 415 nm before adding CAT to 

establish base line reading and after 10 minutes of incubation at 370 C after adding CAT. The 

concentration of carnitine expressed at µmole/g beef was determined from the line equation 

of the L-Carnitine standard curve.  

Statistical analysis 

The same statistical model was applied to analyze the variables hot carcass weight 

(HCW ), external fat measured at 12th rib (Fat12), rib eye are at the 12th rib (REA12), the 

internal fat (perirenal, pelvic, and pericardia; KPH ), the marbling score (MS), the Warner-
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Bratzler Shear (WBS), and concentration of AC, LC and TC. Factors used in the statistical 

model were: gender, feeding location, birth-season as fixed effects and the harvest age as the 

covariate parameter. The Mixed Procedure of SAS (SAS Institute, 2009) was used to fit a 

general linear model. After normality assumption about residuals was provided using 

numerical (Kolmogorov-Smirnov test) and graphical (normal probability plot) methods in the 

SAS, the Univeriate Procedure of SAS was used to provide reliable and valid statistical 

inference. Subsequently, significant effects were identified in the linear model. Differences 

between least squared means of factor levels were considered significant at probability value 

≤ 0.05 based on the Tukey adjustment type I error rate. The Pearson Correlation Coefficient 

analysis also was used to correlate the traits under study. 

 

Results 

Effects of gender by feeding location interaction on carnitine concentrations 

We observed that the FC measured in µmole/g beef was significantly greater (P = 

0.01; Figure 1A) in longissimus dorsi muscle from males of Angus beef cattle raised in Iowa 

in comparison to that of females raised in the same state. Also, the concentrations of TC 

tended to be greater increase (P = 0.09; Figure 1A) in longissimus dorsi muscle from the 

same males compared with those of females raised in Iowa. In contrast, the AC concentration 

tended to be greater (P = 0.08; Figure 1A) in longissimus dorsi of female Angus beef cattle 

compared with those of the males of the same location. 

Noteworthy, Angus beef cattle born in the spring of 2007 contained significantly more 

FC, AC, and TC (all P = 0.0001; Figure 2C) compared with Angus beef cattle born in the 

spring of 2005 and 2006. In contrast, Angus beef cattle born in spring of 2005 and 2006 had 
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Figure 1. Panel A. Effect of the gender*feeding location interaction on concentrations of 
FC, AC, and TC in µmole/g beef in male (n=572) and female (n=154) beef cattle raised 
in Iowa. Panel B. Effect of feeding location on concentrations of FC, AC, and TC in 
µmole/g in male Angus beef cattle raised in IA (n=572) and CA (n=360). Different letters 
indicate significant difference at P ≤ 0.05 and different letter with (*) indicates tendency at 
0.05 > P < 0.10. 
 

similar (P = 0.41; Figure 2C) FC content. On the other hand, Angus beef cattle born in the 

fall of 2005 had greater (P = 0.0001; Figure 2A and 2B) FC content in their longissimus 

dorsi muscle compared with those Angus beef cattle born in the fall of 2006 in Iowa.  

The content of AC, however, did not differ (P = 0.98; Figure 2A and 2B) between 

Angus beef cattle born in the spring of 2005 and spring of 2006. Similarly, the AC content of 

the longissimus muscle did not differ (P = 0.48; Figure 2A and 2B) between Angus beef 

cattle born in the fall seasons of 2005 and 2006.  

Subsequently, the TC concentration was significantly greater (P = 0.0001; Figure 2C) 

in longissmus dorsi muscle of beef cattle born in spring of 2007 compared with that of Angus 

beef cattle born in the spring of 2005 and spring 2006. But the concentration of TC did not 

differ (P = 0.38; Figure 2A and 2B) between beef cattle born in springs of 2005 and 2006. In 

contrast, cattle that were born in fall of 2005 had higher TC content (P = 0.0001) compared 

with that of those cattle born in fall 2006 (Figure 2A and 2B). However, TC concentration 
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was significantly greater (P = 0.0001; Figure 2A and 2B) in cattle born in fall 2005 compared 

with that of Angus cattle born in spring 2005. TC concentration tended to be greater (P = 

0.07; Figure 2B) in cattle born in the fall of 2006 compared with that of Angus beef cattle 

born in the spring of 2006. FC concentration was significantly greater (P = 0.0001; Figure 

2A) in Angus beef cattle born fall 2005 compared with that of Angus beef cattle born in 

spring 2005. FC concentration did not differ (P = 0.48; Figure 2B) between beef cattle born 
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Figure 2. Effect of birth season on concentration of free (FC), acylated (AC), and total 
carnitine (TC) in µmole/g beef in Angus beef cattle raised in IA and CA. Panel A. Effect 
of birth in fall (n=60) and spring (n=40) of 2005 seasons on carnitine concentrations. 
Panel B. Effect of birth in fall (n=43) and spring (n=63) of 2006 seasons on carnitine 
concentrations. Panel C. Effects of birth in spring 2007 (n=360), 2006 and 2005 on 
carnitine concentrations. Different letters indicate significant difference at P ≤ 0.05 and 
different letter with (*) indicates tendency at 0.05 > P < 0.10.  
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in fall of 2006 compared with that born spring 2006. In addition, AC content was 

significantly greater (P = 0.02 and P = 0.0001, respectively; Figure 2A and 2B) in beef from 

Angus beef cattle born in fall of 2005 and 2006 compared with those beef from Angus beef 

cattle born in springs of 2005 and 2006.  

Noteworthy is that male Angus beef cattle raised in IA demonstrated greater FC, AC, 

and TC concentrations (all P = 0.0001; Figure 1B) compared with the males of the same 

breed raised in CA. Similarly, REA12 and HCW were greater (P = 0.002 and P = 0.0001, 

respectively; Table 1) in Angus male beef cattle raised in IA compared with that of beef from 

Angus males beef cattle raised in CA. In addition, Fat12 tended to be lesser (P = 0.09; Table 

1) in beef from Angus males beef cattle raised in IA compared to those beef from Angus 

males cattle raised in CA. Also, KPH was significantly lower (P = 0.006, Table 1) in Angus 

male beef cattle raised in IA compared with that of beef from Angus males beef cattle raised 

in CA. In contrast, WBS was significantly greater (P = 0.001, Table 1) in Angus male beef 

cattle raised in IA than those of beef from Angus males beef cattle raised in CA.  

 
 
Table 1. Effect of feeding location on different carcass qualities in Angus beef cattle. 
 
Trait  

Feed location Probability 
IA( n=572) CA (n =360) P-value 

HCW, lb  
Fat12, inch  
KPH, rel. score  
REA12, inch2 
WBS, Kg  
FC, µmole/g 

754 ± 5.6 
0.45 ± 0.01 
2.18 ± 0.02 

12.93 ± 0.09 
3.52 ± 0.05 
4.11 ± 0.06 

724 ± 6.02 
0.49 ± 0.01 
2.29 ± 0.02 

12.45 ± 0.1 
2.97 ± 0.05 
3.67 ± 0.06 

0.0001 
0.09 
0.006 
0.002 
0.001 
0.0001 

Note. External fat at rib 12 (Fat12, inch); rib eye are at rib 12 (REA12, inch2); hot carcass 
weight (HCW, lb ); yield grade (YG, rel. score); marbling score (MS, rel. score); Warner-
Bratzler Shear force (WBS, kg). 
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Effects of gender by feeding location interaction on beef quality traits 

In female Angus beef cattle, the concentration of AC tended to be greater (P = 0.08; 

Figure 3A) compared with that of male Angus beef. Simultaneously, Fat 12 thickness was 

lower (P = 0.0001; Figure 3A) in female Angus beef. The KPH was not altered (P = 0.13; 

Figure 3A) with the increase of AC. In addition, REA12 in male Angus beef was 

significantly greater (P = 0.04) compared with that of female Angus beef. Of importance, the 

HCW of female Angus beef was significantly lower (P = 0.0001) than that of the males of 

the same breed. The MS tended to increase (P = 0.06; Figure 3B) in males Angus beef 

compared to that of the females. Similarly, the concentration of the AC tended to increase (P 

= 0.08; Figures 3A and 3B) in female Angus beef compared to that of the males of the same 

breed. The WBS force, however, was not different (P = 0.60) between males and females 

Angus beef cattle (Figure 3B). These results indicate that YG was positively correlated (r = 

0.31, P = .00001, r = 0.12, P = 0.0001, r = 0.3, P = 0.002 respectively; Table 2) with FC, 

AC, and TC. On the other hand, MS was positively correlated (r = 0.2, P = 0.0001, r = 0.18, 
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Figure 3. Panel A. Relationship of AC, µmole/g to beef quality traits external and 
internal fat (Fat 12, inch and KPH, rel. score, respectively), and rib eye area (REA12, 
inch2) in male (n=572) and female (n=154) Angus beef cattle. Panel B. Relationship of 
FC (µmole/g) to marbling (MS, rel. score) and tenderness (WBS, kg) of beef from male 
(n=572) and female (n=154) Angus beef cattle. Different letters indicate significant 
difference at P ≤ 0.05 and different letter with (*) indicates tendency at 0.05 > P < 0.10. 
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Table 2. Correlation between carnitine concentration and carcass qualities in Angus 
beef cattle. 
 Traits 
 HCW Fat12 REA12 KPH WBS FC AC TC 
YG 0.4 0.89 - 0.49 0.16 0.15 0.26 0.08 0.25 
P-value ≤ .0001 ≤ .0001 ≤ .0001 0.0002 ≤0.0001 ≤ .0001 0.03 ≤0001 
MS 0.11 0.28 - 0.14 0.04 - 0.11 0.11 0.04 0.12 
P-value ≤ .001 ≤ .0001 ≤ .0001 0.24 0.002 ≤ .001 0.06 ≤ .001 
Note. Free carnitine (FC, µmole/g); acylated carnitine (AC, µmole/g ); total carnitine (TC, 
µmole/g ); external fat at rib 12 (Fat12, inch ); rib eye are at rib 12 (REA12, inch2 ); hot 
carcass weight (HCW,  lb); yield grade (YG, rel. score ); marbling score (MS, rel. score); 
Warner-Bratzler Shear force (WBS, kg); internal fat (perirenal, pericardial, and pelvic fat; 
KPH, rel. score). 
 

P = 0.0001; Table 2) with FC and TC. MS, however, did not correlate (r = 0.04, P = 0.25; 

Table 2) with AC. 

 

Discussion 

We noticed that the FC was significantly greater (P = 0.01; Figure 1A) whereas TC 

tended to be greater (P = 0.09; Figure 1A) in longissimus dorsi muscle from males of Angus 

beef cattle raised in IA in comparison to those in muscles from females raised in the same 

state. Previously, Borum (1978) reported that gender of animal affects carnitine 

concentration in tissues. For instance TC was greater in plasma and cardiac and skeletal 

muscles of male rats compared with concentration in female rats. In females, carnitine is 

secreted into milk and its concentration in cow’s milk is 0.1-0.5 mM (Erfle et al., 1974). In 

addition, hepatic and urinary TC was higher in female rats that in male rats (Borum, 1978). 

Difference in TC concentration between males and females were apparent with the increase 

of epididymal carnitine concentration in males. Also, it has been suggested that the age and 

gender of the animal must be considered when determining carnitine concentration in tissues 
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(Erfle et al., 1974; Borum, 1978). Generally, the concentration of FC in longissmus dorsi 

muscles of beef cattle is greater than that of dairy cattle. For instance, in Angus × Hereford 

and Japanese Black beef cattle at 32 months of age, FC carnitine concentrations averaged 

3.47 ± 0.04 and 3.57 ± 0.20 µmole/g longissmus dorsi muscle respectively, (Shimada et al., 

2004). But in Holstein steers at ages of 24 and 12 months, the FC concentrations averaged 

2.04 ± 0.15 and 1.86 ± 0.49 µmole/g longissmus dorsi muscle (Shimada et al., 2004). This 

variation of FC in different cattle breeds and ages suggests that FC probably is greater in beef 

cattle over that of dairy cattle. In addition, it seems that FC increase with age. This 

conclusion was supported by the finding that FC in 36 months old Holstein dairy cows did 

not exceed 2.73 µmole/g beef (Shimada et al., 2004), which is slightly lower than that of beef 

cattle at a similar age; by the age of 60 months, FC in beef cattle was only 2.97 µmole/g beef. 

Interestingly, the concentrations of AC tended to be greater (P = 0.08; Figure 1A) in 

longissimus dorsi muscle of females compared with those of males raised in IA. 

Concurrently, external  fat (Fat12) and internal fat (KPH) decreased (P = 0.0001, P = 0.005 

respectively; Figure 3A). In addition YG decreased (P = 0.0001; Figure 3A) compared with 

those Angus beef males. Thus, elevated AC might be associated with increase of leanness 

and improved YG.  

On the other hand, the MS tended to be greater (P = 0.06) in male Angus beef cattle 

in comparison with that of female Angus beef cattle. Because the greater concentration (P = 

0.01) of FC and the tendency (P = 0.09) of TC to be greater were accompanied with a greater 

MS in beef from Angus males (r = 0.11, P ≤ 0.0001 and r = 0.12, P ≤ 0.0001, respectively; 

Table 2) in comparison to that of the females. Thus, it is likely that FC is associated with 

enhanced MS, REA12 and HCW (Table 2). It has been suggested that increased marbling or 
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intramuscular fat could “dilute” the protein in a given portion of meat, thereby, lowering the 

bulk density and resulting in an increased tenderness (Savell et al., 1987). Furthermore, the 

fat deposited within the muscle cells or connective tissues may “thin” the connective tissues 

to decrease the WBS force (Savell et al., 1987). In agreement with this, we observed that 

greater FC and TC in beef from males Angus cattle is associated with greater MS (r = 0.11, P 

= 0.0001 and r = 0.12, P = 0.0001 respectively; Table 2). In support of this observation, 

supplementation of FC to Angus-cross steers fed corn-based diet by Greenwood et al. (2001) 

increases the MS and YG. The increased AC concentration might be associated with 

accelerated ß-oxidation of fatty acids (Hoe et al., 2000) in female Angus beef cattle. 

Additionally, female piglets have greater proportion of red fiber muscles and smaller 

proportion of white fiber muscles than do males (Losel et al., 2009). Red muscles tend to 

have more lipids in mitochondria and contain higher amount of carnitine to facilitate 

adequate ß-oxidation (Losel et al., 2009). We examined the effect of birth season on the 

concentrations of different chemical forms of carnitine in Angus beef cattle. It was evident 

that concentrations of the different types of carnitine are affected by birth season (Figure 2B). 

Concentration of all carnitine forms were greater in beef from Angus cattle born in spring of 

2007 compared with that of beef cattle born in the spring of 2005 and 2006 (both P = 0.0001; 

Figure 2B). In contrast, there was no difference (P = 0.41, P = 0.38 and P =  0.98 

respectively; Figure 2B) between FC, TC and AC of spring 2005 and 2006. In contrast, AC 

was significantly greater (P = 0.0001) and TC tended to be greater (P = 0.07) in beef from 

cattle born in fall of 2006 compared with those born in spring of 2006. On the other hand, FC 

did not differ (P = 0.48) between cattle born in fall and spring of 2006. Interestingly, the 

concentrations of different forms of carnitine in beef from cattle born in fall of 2005 was 
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significantly greater (P ≤ 0.02; Figure 2B) than that of beef from cattle born in spring of 

2005. In agreement, mitochondria from red muscles of rainbow trout acclimatized to cold 

temperature of 10 C had increased carnitine palmitoyltransferase 1 activity compared with 

mitochondria from red muscles of rainbow rout acclimatized to warmer temperature of 16º C 

(Guderley, 2004). Presumably, this adaptation greater rates of fatty acids oxidation, 

additionally, we observed that beef from male Angus beef raised in state of IA contained 

higher concentrations of different forms of carnitine (all P = 0.0001; Figure 1B) in 

comparison with those raised in CA, indicating that carnitine concentrations is likely affected 

by the average ambient temperature. 

We examined the effect of feeding location on different carcass qualities that dictate 

the yield grade, marbling score, and leanness (Table 1). Angus beef cattle raised and fed in 

IA had higher concentration of FC, AC, and TC (Figure 1B). The greater of concentration of 

different carnitine forms tended (P = 0.09) to decrease Fat12 and significantly decreased (P = 

0.006) KPH in beef from female Angus beef. In contrast, the increase of the concentrations 

of different forms of carnitine was associated with increased (P = 0.002) REA12 and HCW 

(P = 0.0001; Table 1), indicating improvement of leanness of beef from Angus cattle raised 

in IA. In agreement with our data, dietary supplementation of carnitine to growing finishing 

pigs increased protein accretion and percentage of leanness and decreased fat deposition 

(Owen et al., 1996; Hoe et al., 2000). Increased protein accretion was expressed as an 

increase in muscles mass. Similarly, carnitine supplementation at 400 mg daily from day 7 to 

day 27 of age to piglet of low birth weight decreased the perirenal fat (part of KPH) and 

increased the total number of myofibrils in semitendinosus muscle by about 13%. 

Additionally, the carnitine supplementation increased the mRNA expression of the gene 
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encoding the embryonic isoform of the myosin heavy chain in the semitendinosus muscle 

(Losel et al., 2009). 

Conclusion 

The data presented here suggest that FC and TC are greater in beef from of male 

Angus beef cattle than in beef from female Angus beef cattle and are closely associated with 

intramuscular fat accretion and, thus, enhance marbling score and tenderness. On the other 

hand, AC is greater in beef from female Angus beef cattle and is associated with less Fat12 

and greater leanness of beef and, thus, improved yield grade. Also, the data suggest that FC, 

AC, and TC concentrations are increased during low ambient environmental temperature 

concurrently with the accelerated β-oxidation of fatty acid intended to generate more heat to 

maintain normal body temperature.  
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CHAPTER III. GENERAL CONCLUSIONS  

Carnitine (3-hydroxy-4-trimethylaminobutyrate) is mainly distributed within cardiac 

and skeletal muscles. Lately, the interest in the metabolism and roles of carnitine has been 

significantly increasing. Carnitine need of the body is sufficed either endogenously by 

synthesis from primary precursors or exogenously from dietary sources  

Endogenously, carnitine synthesis is accomplished by the methylation of lysine and it 

primarily occurs in the liver. Also, synthesis of carnitine has been indicated in kidney and 

brain in some animal species. Synthesized carnitine from liver, kidney, and brain is released 

in the circulation where it is taken up by other tissues. The regulation of carnitine synthesis is 

still poorly understood.  

Congenital carnitine metabolic and functional disorders have been elucidated. These 

disorders are mainly associated with decreased activity of carnitine palmitoyltransferases. 

The primary and the secondary carnitine deficiencies in tissues are known to hinder the 

ability of tissues to obtain enough carnitine. 

The short-chain acylated form of carnitine possesses remedial potential and has been 

successfully used to effectively treat numerous diseases. In this study, we were interested in 

determining concentrations of different forms of carnitine in Angus beef. To attain this 

objective we used enzymatic and spectrophotometric quantification to determine the 

concentration of different carnitine forms. The concentration of FC averaged 3.77 ± 0.80 

µmol/g of beef, AC concentration averaged 0.71 ± 0.17 µmol/g of beef, and the TC 

concentration averaged 4.48 ± 0.88 µmole/g of beef.  

Our data suggest that FC and TC are greater in of male in beef from male Angus beef 

cattle than in beef from female Angus beef cattle, and are closely and positively associated 
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with intramuscular fat accretion. Thus, carnitine concentrations may dictate the marbling 

score (MS) and degree of beef tenderness. On the other hand, AC has been found to be 

greater in beef from female Angus beef cattle, and is intimately associated with less external 

fat deposit (Fat12) and greater leanness of beef and. Thus, elevated AC concentration is 

implicated with improved yield grade (YG). The MS, however, tended to increase (P = 0.06) 

in male Angus beef compared with that of the females. Also, the data suggest that FC, AC, 

and TC concentrations are effected by low ambient environmental temperature that 

accelerates the β-oxidation of fatty acids intended to generate heat energy to preserve normal 

body temperature. 

 

Recommendations for Future Studies 

In this study, we investigated the variation of carnitine concentrations in longissimus 

dorsi muscle of beef cattle. We observed strong association between gender, feeding 

locations, birth season, and carnitine concentrations. It is evident that carnitine concentrations 

correlate with fat deposit, YG, and MS. These novel results ignite the curiosity about what 

genes are associated with this variation and whether these genes can be activated to increase 

these traits that would improve the healthfulness of beef. Therefore, it is highly 

recommended that single polymorphism nucleotides (SNPs) that influence different forms of 

carnitine concentrations and subsequently dictate the YG, MS, and tenderness of beef 

warrant further determination. Additionally, the nature of the fatty acids that predominate in 

the external and intramuscular fat (marbling) and are associated with increased carnitine 

concentrations should be determined and their atherogenic index quantified to gain better 

insight on how carnitine improves the healthfulness of beef. 
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