
XMP SPECIFICATION PART 3
STORAGE IN FILES

Copyright © 2016 Adobe Systems Incorporated. All rights reserved.

Adobe XMP Specification Part 3: Storage in Files

NOTICE: All information contained herein is the property of Adobe Systems Incorporated. No part of this publication
(whether in hardcopy or electronic form) may be reproduced or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of Adobe Systems Incorporated.

Adobe, the Adobe logo, Acrobat, Acrobat Distiller, Flash, FrameMaker, InDesign, Illustrator, Photoshop, PostScript,
and the XMP logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States
and/or other countries.

MS-DOS, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries. Apple, Macintosh, Mac OS and QuickTime are trademarks of Apple Computer,
Inc., registered in the United States and other countries. UNIX is a trademark in the United States and other countries,
licensed exclusively through X/Open Company, Ltd. All other trademarks are the property of their respective owners.

This publication and the information herein is furnished AS IS, is subject to change without notice, and should not be
construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility
or liability for any errors or inaccuracies, makes no warranty of any kind (express, implied, or statutory) with respect to
this publication, and expressly disclaims any and all warranties of merchantability, fitness for particular purposes, and
noninfringement of third party rights.

©Adobe Systems Incorporated, 2016 3

Contents

1 Embedding XMP metadata in application files .9
1.1 Image formats . 9

1.1.1 DNG (Digital Negative) . 10
1.1.2 GIF (Graphic Interchange Format) . 11
1.1.3 JPEG . 12
1.1.4 JPEG 2000 . 16
1.1.5 PNG (Portable Network Graphics) . 16
1.1.6 TIFF (Tagged Image File Format) . 17
1.1.7 SVG (Scalable Vector Graphics) . 19

1.2 Dynamic media formats . 20
1.2.1 ASF (WMA, WMV) . 21
1.2.2 FLV (Flash® Video) . 23
1.2.3 IFF/RIFF (AVI, WAV, AIFF) . 24
1.2.4 MOV (QuickTime). 25
1.2.5 MP3 . 26
1.2.6 MPEG-2 . 27
1.2.7 MPEG-4 (generic and F4V) . 27
1.2.8 SWF (Flash) . 27

1.3 Video package formats . 28
1.3.1 AVCHD . 29
1.3.2 P2 . 29
1.3.3 Sony HDV (High Definition Video) . 30
1.3.4 XDCAM. 30

1.4 Adobe application formats . 33
1.4.1 AI (Adobe Illustrator®) . 34
1.4.2 INDD, INDT (Adobe InDesign®). 34
1.4.3 PSD (Adobe Photoshop) . 38

1.5 Markup formats . 40
1.5.1 HTML . 40
1.5.2 XML . 41

1.6 Document formats . 41
1.6.1 PDF . 41
1.6.2 PS, EPS (PostScript® and Encapsulated PostScript) . 42
1.6.3 UCF (Universal Container Format). 48

2 Handling native metadata .51
2.1 Reconciling metadata in different formats . 51

2.1.1 Text encodings in import and export . 51
2.1.2 Native metadata export and import . 52
2.1.3 Use of native metadata digests . 53

2.2 Native metadata in PDF files. 53
2.2.1 User-defined keys. 53
2.2.2 Resolving metadata conflicts . 54

2.3 Native metadata in dynamic media formats . 54
2.3.1 Native metadata in ASF (WMA, WMV) formats . 54
2.3.2 Native metadata in IFF/RIFF (AVI, WAV, AIFF) formats . 55
2.3.3 Native metadata in MP3 . 60
2.3.4 Native metadata in MPEG-4. 61

2.4 Native metadata in digital photography formats . 62
2.4.1 Reconciliation issues . 63
2.4.2 Encoding of text in metadata . 64

 4 ©Adobe Systems Incorporated, 2016

3 Digital photography native metadata .65
3.1 Metadata storage in native formats . 65

3.1.1 TIFF metadata . 65
3.1.2 Exif metadata . 65
3.1.3 Photoshop image resources . 66
3.1.4 IPTC (IIM) metadata . 67

3.2 Reconciling metadata properties . 68
3.2.1 Photoshop image resources for metadata . 68
3.2.2 IPTC DataSets for metadata. 69
3.2.3 TIFF and Exif tags for metadata . 71

3.3 Metadata storage . 74
3.3.1 Storage by metadata form . 74
3.3.2 Metadata storage in JPEG files . 75
3.3.3 Metadata storage in Photoshop files . 76
3.3.4 Metadata storage in TIFF files . 76
3.3.5 Metadata storage in Mac OS file resources . 78

©Adobe Systems Incorporated, 2016 5

Preface

This document set provides a complete specification for the Extensible Metadata Platform (XMP), which
provides a standard format for the creation, processing, and interchange of metadata, for a wide variety of
applications.

The specification has three parts:

 Part 1, Data Model, Serialization, and Core Properties, covers the basic metadata representation model
that is the foundation of the XMP standard format. The data model prescribes how XMP metadata can be
organized; it is independent of file format or specific usage. The serialization model prescribes how the
data model is represented in XML, specifically RDF/XML. Core properties are those XMP properties that
have general applicability across a broad range of resources; these include general-purpose namespaces
such as Dublin Core. This document also provides details needed to implement a metadata manipulation
system such as the XMP Toolkit (which is available from Adobe®).

 Part 2, Additional Properties, provides detailed property lists and descriptions for standard XMP metadata
namespaces beyond the core properties; these include special-purpose namespaces for Adobe
applications such as Adobe Photoshop®. It also provides information on extending existing namespaces
and creating new namespaces.

 Part 3, Storage in Files, provides information about how serialized XMP metadata is packaged into XMP
packets and embedded in different file formats. It includes information about how XMP relates to and
incorporates other metadata formats, and how to reconcile values that are represented in multiple
metadata formats.

About this document
This document, Adobe XMP Specification Part 3: Storage in Files, describes how XMP metadata is embedded
within various file formats. This includes information about the reconciliation of XMP metadata with other forms
of metadata, referred to as native (or sometimes legacy) metadata.

The intended audience of this document is developers writing file I/O code, users who need to understand the
relationship between XMP and native metadata, or others requiring detailed knowledge of file content.

How this document is organized
This document has the following sections:

 “Introduction” provides an overview of the issues and problems associated with storing metadata in or with
different file formats. It includes an introduction to the subject of native metadata formats, and a discussion
of external metadata storage.

 1, “Embedding XMP metadata in application files”, provides basic information about how XMP packets are
embedded in various file formats.

 2, “Handling native metadata”, explains general policies of how to reconcile metadata values among XMP
and native metadata formats. It provides details of native metadata for simpler cases, and introduces the
complexities of native metadata for the digital-photography formats (JPEG, TIFF, and PSD).

 3, “Digital photography native metadata”, provides details of metadata formats used in the digital-
photography formats (TIFF/Exif, IPTC, and PSIR), and specifics of how properties in those formats map to
XMP properties.

Document history
This release of this document has changed in these ways since the previous release:

 Added support of SVG (Scalable Vector Graphics) format

 Fixed broken links.

http://www.adobe.com/products/xmp/

 6 ©Adobe Systems Incorporated, 2016

Conventions used in this document
The following type styles are used for specific types of text:

Where to go for more information
See these sites for external specifications mentioned in this document:

 Table 1 — Conventions for type styles

Typeface Style Used for

Monospaced bold XMP property names. For example, xmp:CreateDate

Monospaced Regular XML code and other literal values, such as value types and names
in other languages or formats

 Table 2 — Sources for additional information

XMP Specification http://www.adobe.com/devnet/xmp/

Photoshop SDK http://www.adobe.com/devnet/photoshop/

TIFF Specification http://partners.adobe.com/public/developer/tiff/index.html

JPEG Specification http://www.w3.org/Graphics/JPEG/itu-t81.pdf

JFIF Specification http://www.w3.org/Graphics/JPEG/jfif3.pdf

Exif Specification http://www.cipa.jp/english/hyoujunka/kikaku/pdf/DC-008-2010_E.pdf

IPTC Specification http://www.iptc.org/IPTC4XMP/

Unicode http://www.unicode.org/

Metadata Working
Group (MWG)

http://www.metadataworkinggroup.com/

iXML Specification http://www.ixml.info/

http://www.adobe.com/devnet/xmp/
http://www.adobe.com/devnet/photoshop/
http://partners.adobe.com/public/developer/tiff/index.html
http://www.w3.org/Graphics/JPEG/itu-t81.pdf
http://www.w3.org/Graphics/JPEG/jfif3.pdf
http://www.metadataworkinggroup.com/
http://www.iptc.org/download/download.php?fn=IIMV4.1.pdf
http://www.iptc.org/download/public/IPTCCore-Full.zip
http://www.iptc.org/IPTC4XMP/
http://www.ixml.info/
http://www.unicode.org/
http://www.unicode.org/
http://www.unicode.org/
http://www.cipa.jp/english/hyoujunka/kikaku/pdf/DC-008-2010_E.pdf

©Adobe Systems Incorporated, 2016 7

Introduction

This document discusses how serialized XMP metadata is packaged and stored with the files it describes. It
includes information about how XMP relates to and incorporates other metadata formats, and how to reconcile
values that are represented in multiple metadata formats.

This chapter provides a basic overview of the concepts that are important to XMP storage and retrieval:

 Generally, XMP metadata is embedded in the file which the metadata describes; see “Embedding
metadata in files”. The details of how it is embedded vary according to the file format, and are discussed in
later chapters.

 It is occasionally appropriate to store metadata separately from the file it describes; this is discussed briefly
in “External storage of metadata”.

 Any application that uses or modifies XMP metadata must be aware of native metadata formats, in order to
detect them, preserve them, and reconcile any changes to values among all formats; see “Native
metadata”.

Embedding metadata in files
XMP metadata is serialized into XML, specifically RDF, for storage in files. The serialized data is known as an
XMP packet. The structure of the XMP packet is discussed in “XMP Specification Part 1, Data Model,
Serialization, and Core Properties.”

The XMP packet is completely self-contained and independent of any particular file format. Most file formats
predate XMP, and do not have built-in specifications for how to include it. However, XMP can be placed into a
file of any format that has a well-defined extension mechanism; that is, a way for developers to customize files
for new uses.

File format specifications offer extension mechanisms as a portion of format-specific data that surrounds a
chunk of user-defined custom data. In the case of XMP, the XMP packet is the custom data. The surrounding
data, as defined by the format specification, identifies the extension’s boundaries and type.

The parameters for embedding custom data vary with different file formats. 1, “Embedding XMP metadata in
application files”,” provides embedding details for a variety of file formats.

External storage of metadata
It is recommended that XMP metadata be embedded in the file that the metadata describes. There are cases
where this is not appropriate or possible, such as database storage models, extremes of file size, or format and
access issues. Small content intended to be frequently transmitted over the Internet might not tolerate the
overhead of embedded metadata. Archival systems for video and audio might not have any means to represent
the metadata. Some high-end digital cameras have a proprietary, nonextensible file format for “raw” image data
and typically store Exif metadata as a separate file.

If metadata is stored separately from content, there is a risk that the metadata can be lost. The question arises
of how to associate the metadata with the file containing the content. Applications should:

 Write the external file as a complete, well-formed XML document, including the leading XML declaration.

 Use the file extension .xmp. For Mac OS, optionally set the file’s type to 'TEXT'.

 If a MIME type is needed, use application/rdf+xml.

 Write external metadata as though it were embedded and then had the XMP packets extracted and
catenated by a postprocessor.

 If possible, place the values of the xmpMM:DocumentID, xmpMM:InstanceID, or other appropriate
properties within the file the XMP describes, so that format-aware applications can make sure they have
the right metadata.

For applications that need to find external XMP files, look in the same directory for a file with the same name as
the main document but with an .xmp extension. (This is called a sidecar XMP file.)

 8 ©Adobe Systems Incorporated, 2016

Native metadata
Files in many formats can contain metadata in other, previously-defined or native formats. Still image formats,
for example, frequently contain IPTC and TIFF/Exif metadata. When a file is imported, it can contain metadata
in one or more of these native formats. Similarly, when a file is exported, it may be read by a device or
application that is expecting metadata in native formats, and may or may not support the XMP format. The
information represented overlaps to a great degree, and values that are present in any format should be
reflected in all others.

An application that supports XMP must read metadata values from the native formats, and represent it correctly
in the XMP metadata. When modifying XMP metadata, an application is responsible for correctly reflecting
changes in any other metadata formats that are present. A file that has been manipulated by an application that
supports XMP might later be opened in an application that relies on another metadata format, and any changes
that have been made to the XMP metadata must be properly represented.

Users of the XMP Toolkit, which handles most native metadata reconciliation, should still be aware of the
issues in order to recognize potential problems to look for when testing with legacy application or file versions.

 For general issues and policy on metadata reconciliation, see 2, “Handling native metadata”.

 For an in-depth discussion of complex issues pertaining to still image formats (JPEG, TIFF, and PSD), see
3, “Digital photography native metadata”.

©Adobe Systems Incorporated, 2016 9

1 Embedding XMP metadata in application files

This chapter describes how XMP metadata in XMP packets is embedded in a variety of file formats. Document
interchange is best achieved by applications that understand how XMP is embedded. These descriptions
assume that the reader has a working knowledge of the referenced file formats.

The formats are listed in Table 3 alphabetically within general categories:

1.1 Image formats

 1.1.1, “DNG (Digital Negative)”

 1.1.2, “GIF (Graphic Interchange Format)”

 1.1.3, “JPEG”

 1.1.4, “JPEG 2000”

 1.1.5, “PNG (Portable Network Graphics)”

 1.1.6, “TIFF (Tagged Image File Format)”

 1.1.7, “SVG (Scalable Vector Graphics)”

 Table 3 — File formats using XMP

1.1, “Image formats” DNG (Digital Negative)
GIF (Graphic Interchange Format)
JPEG
JPEG 2000
PNG (Portable Network Graphics)
TIFF (Tagged Image File Format)
SVG (Scalable Vector Graphics)

1.2, “Dynamic media formats” ASF (WMA, WMV)
FLV (Flash® Video)
IFF/RIFF (AVI, WAV, AIFF)
MOV (QuickTime)
MP3
MPEG-2
MPEG-4 (generic and F4V)
SWF (Flash)

1.3, “Video package formats” AVCHD
P2
Sony HDV (High Definition Video)
XDCAM

1.4, “Adobe application formats” AI (Adobe Illustrator®)
INDD, INDT (Adobe InDesign®)
PSD (Adobe Photoshop)

1.5, “Markup formats” HTML
XML

1.6, “Document formats” PDF
PS, EPS (PostScript® and Encapsulated PostScript)
UCF (Universal Container Format)

 10 ©Adobe Systems Incorporated, 2016

1.1.1 DNG (Digital Negative)

DNG is a publicly documented, standardized format created by Adobe for storage of raw image data as
captured by digital cameras. It was created as an alternative to the more than 400 wildly varying formats all
called "camera raw;" see 1.1.1.1, “Camera raw formats”.

DNG files can embed XMP metadata; they are, in fact, well-behaved TIFF. They can be processed by the
Adobe DNG SDK, by the Adobe Camera Raw (ACR) SDK, or by the TIFF handler in the XMP Toolkit. The
primary difference between the Adobe DNG/ACR handlers and the XMP Toolkit TIFF handler is that the TIFF
handler does not interpret the Exif MakerNote tag.

Metadata can be embedded in DNG in the following ways:

 Using TIFF or Exif metadata tags

 Using the IPTC metadata tag (33723)

 Using the XMP metadata tag (700)

Note that TIFF and Exif use nearly the same metadata tag set, but TIFF stores the tags in IFD 0, while Exif
store the tags in a separate IFD. Either location is allowed by DNG, but the Exif location is preferred. See 3.2.3,
“TIFF and Exif tags for metadata”.

For further information on this file format, see http://www.adobe.com/products/dng/

1.1.1.1 Camera raw formats

Many raw formats look like TIFF, but do not behave as expected in various ways. Do not attempt to process
camera raw files with generic TIFF software. Similarly, you should not pass a raw-format file directly to XMP
Toolkit file handlers (XMPFiles), but should use the Adobe Camera Raw (ACR) SDK instead.

When writing your own metadata handler for camera raw files, it can be difficult to distinguish a possible
camera raw file from a generic TIFF file. A pragmatic partial solution is to filter by file extension. Known camera
raw extensions include :

 Table 4 — Camera raw file extensions

File extension Company File extension Company

DNG Adobe TIF Canon, Kodak

CRW Canon CR2 Canon

ERF Epson

X3F Foveon RAF Fujifilm

3FR Hasselblad FFF Hasselblad

KDC Kodak DCR Kodak

MOS Leaf RWL Leica

MFW Mamiya (sample files) MEF Mamiya (sample camera)

MRW Minolta ORF Olympus

NEF Nikon NRW Nikon

RW2 Panasonic RAW Panasonic, Contax

PEF Pentax IIQ Phase One

http://www.adobe.com/products/dng/

©Adobe Systems Incorporated, 2016 11

1.1.2 GIF (Graphic Interchange Format)

In a GIF 89a file, an XMP packet is in an Application Extension (see Figure 1). Its Application Identifier is 'XMP
Data' and the Application Authenticator is 'XMP'. The Application Data consists of the XMP packet, which must
be encoded as UTF-8, followed by a 258-byte “magic” trailer, whose values are 0x01, 0xFF, 0xFE, 0xFD
....0x03, 0x02, 0x01, 0x00, 0x00. The final byte is the Block Terminator.

NOTE The "Application Extension" mechanism used for XMP was added in the 89a revision of GIF; the GIF 87a standard
does not support it. XMP should not be placed into GIF 87a files.

The XMP must be UTF-8-encoded, for the following reasons. GIF actually treats the Application Data as a
series of GIF data sub-blocks. The first byte of each sub-block is the length of the sub-block’s content, not
counting the first byte itself. To consume the Application Data, a length byte is read. If it is non-zero, that many
bytes of data are read, followed by the next length byte. The series ends when a zero-length byte is
encountered.

When XMP is encoded as UTF-8, there are no zero bytes in the XMP packet. Therefore, software that is
unaware of XMP views packet data bytes as sub-block lengths, and follows them through the packet
accordingly, eventually arriving somewhere in the magic trailer. The trailer is arranged so whichever byte is
encountered there will cause a skip to the Block Terminator at the end.

Figure 1 shows how XMP is embedded in the GIF file format:

SRW Samsung ARW Sony

SRF Sony SR2 Sony

 Table 4 — Camera raw file extensions

File extension Company File extension Company

 12 ©Adobe Systems Incorporated, 2016

 Figure 1 — XMP embedded in GIF

For reference information, see the GIF 89a specification at:

 http://www.w3.org/Graphics/GIF/spec-gif89a.txt

1.1.3 JPEG

The JPEG (Joint Photographic Experts Group) specification concerns itself almost entirely with the image
compression algorithm, and has very little to say about the remainder of the file format. It specifies a sequence
of 2-byte markers, interspersed among data. Each marker defines the interpretation of data that follows it.
According to the JPEG standard, any number of marker segments may appear in any order; the Exif standard
built upon JPEG defines some ordering restrictions.

The first byte of each marker is 0xFF, the second byte is a type identifier the range 0x01..0xFE; the marker is
followed by data which extends to the next marker. The pairs 0xFF00 and 0xFFFF are not markers. A marker
can be preceded by any number of 0xFF fill bytes. Restart markers can appear within the compressed image
stream: any 0xFF byte in the compressed image has a 0x00 byte inserted after it so that it does not appear to
be a marker.

The marker types FFE0-FFEF are generally used for application data, named APPn. By convention, an APPn
marker begins with a string identifying the usage, called a namespace or signature string. An APP1 marker
identifies Exif and TIFF metadata; an APP13 marker designates a Photoshop Image Resource (PSIR) that
contains IPTC metadata; another APP1 marker designates the location of the XMP packet.

Figure 2 shows APP markers within JPEG.

0 0x21

1 0xFF

0x0B

2
3

0
1

6
7

4
5

10
11

8
9

‘X’
‘M’
‘P’

‘ ’
‘D’

‘a’
‘t’
‘a’
‘X’

‘P’

‘M’

0x58
0x4D
0x50

0x20
0x44

0x61
0x74
0x61
0x58

0x50

0x4D

0x00

7 6 5 4 3 2 1 0 Field Name Type
Extension Introducer Byte
Extension Label Byte

Block Size Byte

Application Identifier 8 Bytes

Application Authentication 3 Bytes

XMP packet, Byte

Code

must be encoded as UTF-8

0x01
0xFF
0xFE

 0x00

0x01

...

“Magic trailer”

Block Terminator Byte

<XMP packet>

258 Bytes

http://www.w3.org/Graphics/GIF/spec-gif89a.txt

©Adobe Systems Incorporated, 2016 13

 Figure 2 — Layout of JPEG with APP markers

The JFIF standard has been largely abandoned; most importantly, all modern digital cameras follow Exif. Both
JFIF and Exif specify a particular APPn marker segment as immediately following the SOI marker. Neither of
the JFIF and Exif specifications references the other, so there is no declared standard for mixing them.
Readers should be prepared to encounter files that contain an Exif APP1 marker segment following the JFIF
and JFXX APP0 marker segments.

The XMP APP1 and PSIR/IPTC APP13 markers must be placed before the first SOF marker. For maximum
compatibility, readers should tolerate finding them between the first SOF marker and first SOS marker. (Earlier
versions of the XMP Specification were ambiguous about the placement rules.)

After the type, the marker contains a length value and the identifying namespace string. The length value is 2
(the length field itself) plus the length of the namespace field, plus the length of the data in bytes. Metadata
markers share the convention of having NULL-terminated namespace strings:

Table 6 shows the entry format for the XMP section:

 Table 5 — Content and usage of APP markers

Marker Signature, including NULLs Usage

APP1 "Exif\0\0” (2 NULLs) TIFF and Exif metadata

APP1 "http://ns.adobe.com/xap/1.0/\0” XMP

APP13 "Photoshop 3.0\0” Photoshop image resources, including
IPTC metadata, but not including XMP
or Exif metadata

 Table 6 — Entry format for XMP section in JPEG

Byte offset,
length Field value Field name Comments

0, 2 bytes 0xFFE1 APP1 APP1 marker identifies metadata
section.

2, 2 bytes 2 + 29 + length of XMP
packet

Lp Size in bytes of this count plus the
following two portions.

4, 29 bytes Null-terminated ASCII string
without quotation marks

namespace XMP namespace URI, used as unique
ID:
http://ns.adobe.com/xap/1.0/

Markers

Image data

APP1: Exif/TIFF

APP13: PSIR/

APP1: XMP

(other markers)

(other markers)

SOF marker

 14 ©Adobe Systems Incorporated, 2016

The JPEG standard does not prescribe ordering among APPn segments, but some related standards do. For
example, Exif requires that Exif APP1 segment be immediately after the SOI. Also, some applications
improperly assume that the segments are in a particular order. For compatibility, it is best to put the Exif APP1
first, the XMP APP1 next, the PSIR APP13 next, followed by all other marker segments.

NOTE If the size of the Exif APP1 marker or the PSIR APP13 marker exceeds 64KB, the marker is split into multiple blocks
of 64KB size each.

JPEG is inherently a sequential file structure; however, nothing prevents the content of an APPn marker
segment from having its own internal formatting. Exif, for example, embeds the linked TIFF data structure as
the content of an APP1 marker segment.

1.1.3.1 Extended XMP in JPEG

Following the normal rules for JPEG sections, the header plus the following data can be at most 65535 bytes
long. If the XMP packet is not split across multiple APP1 sections, the size of the XMP packet can be at most
65502 bytes. It is unusual for XMP to exceed this size; typically, it is around 2 KB.

If the serialized XMP packet becomes larger than the 64 KB limit, you can divide it into a main portion
(StandardXMP) and an extended portion (ExtendedXMP), and store it in multiple JPEG marker segment. A
reader must check for the existence of ExtendedXMP, and if it is present, integrate the data with the main XMP.
Each portion (standard and extended) is a fully formed XMP metadata tree, although only the standard portion
contains a complete packet wrapper. If the data is more than twice the 64 KB limit, the extended portion can
also be split and stored in multiple marker segments; in this case, the split portions are not fully formed
metadata trees.

When ExtendedXMP is required, the metadata must be split according to some algorithm that assigns more
important data to the main portion, and less important data to the extended portions or portions. The definition
of importance is up to the application; see 1.1.3.2, “Partitioning XMP”.

The main portion of the metadata tree must be serialized and written as the standard XMP packet, in the APP1
marker segment described above, called StandardXMP. The extended portion must be serialized without a
packet wrapper, and written as a series of APP1 marker segments, collectively called the ExtendedXMP.

When written into the JPEG file, the serialized text for the ExtendedXMP can be further split as necessary into
a series of roughly 65400 byte chunks. This number is not fixed; readers must tolerate other sizes. The upper
limit on the ExtendedXMP chunk size is 65458 (65535 less the additional description bytes, 2+35+32+4+4).
This second 64 KB split is a simple separation of the XML text into data chunks, without regard to XML tokens
or even UTF-8 characters.

Each chunk is written into the JPEG file within a separate APP1 marker segment. Each ExtendedXMP marker
segment contains:

 A null-terminated signature string of "http://ns.adobe.com/xmp/extension/".

 A 128-bit GUID stored as a 32-byte ASCII hex string, capital A-F, no null termination. The GUID is a 128-bit
MD5 digest of the full ExtendedXMP serialization.

 The full length of the ExtendedXMP serialization as a 32-bit unsigned integer

 The offset of this portion as a 32-bit unsigned integer.

 The portion of the ExtendedXMP

33, < 65503 XMP packet Must be encoded as UTF-8.

 Table 6 — Entry format for XMP section in JPEG (Continued)

Byte offset,
length Field value Field name Comments

©Adobe Systems Incorporated, 2016 15

The GUID is also stored in the StandardXMP as the value of the xmpNote:HasExtendedXMP property. This
allows detection of mismatched or modified ExtendedXMP. A reader must incorporate only ExtendedXMP
blocks whose GUID matches the value of xmpNote:HasExtendedXMP. The URI for the xmpNote:
namespace is "http://ns.adobe.com/xmp/note/".

When partitioning the XMP and determining the remaining size of the StandardXMP, be sure to first add the
xmpNote:HasExtendedXMP property to the StandardXMP with an initial 32-byte dummy value. This ensures
accurate values for the size of the StandardXMP serialization, which must contain the
xmpNote:HasExtendedXMP property.

A JPEG writer should write the ExtendedXMP marker segments in order, immediately following the
StandardXMP. However, the JPEG standard does not require preservation of marker segment order. A robust
JPEG reader should tolerate the marker segments in any order.

The offset field of the marker segment is the offset of this chunk of the ExtendedXMP serialization within the full
ExtendedXMP serialization. The first chunk has offset 0, the second chunk has an offset equal to the first
chunk’s size, and so on. The offsets allow proper reconstruction of the ExtendedXMP serialization even if the
APP1 marker segments are reordered.

A JPEG reader must recompose the StandardXMP and ExtendedXMP into a single data model tree containing
all of the XMP for the JPEG file, and remove the xmpNote:HasExtendedXMP property.

1.1.3.2 Partitioning XMP

The XMP Specification does not mandate any particular procedure for separating XMP into standard and
extended portions. However, it is a good idea for certain things to be in the first packet, so that older handlers
and implementations that recognize only the first packet will still work. Adobe products follow these
recommendations and guidelines to ensure that the most important data fields go into the first packet:

 To avoid partitioning when possible, the StandardXMP serialization should be as small as possible, making
full use of RDF shorthand and eliminating all formatting whitespace. If the StandardXMP is too large, try to
reduce or eliminate the packet-padding whitespace.

 If it the StandardXMP is still too large, delete any existing xmp:Thumbnails property. (Applications should
avoid use of the xmp:Thumbnails property in JPEG files. The XMP form of the thumbnail is relatively
large, and the Exif form of JPEG has a standard native thumbnail that is already produced by most or all
digital cameras.)

 If the StandardXMP packet is still too large, move these items to the extension portion, in order, until the
remaining StandardXMP is small enough:

— All properties in the Camera Raw namespace.

— The photoshop:History property.

 Other top-level properties in order of estimated serialized size, largest first.

For reference information, see:

 JPEG File Interchange Format (JFIF) Version 1.02.

 The JPEG specification on the W3C JPEG website: http://www.w3.org/Graphics/JPEG/itu-t81.pdf

 ISO/IEC 10918-1 Information technology — Digital Compression and Coding of continuous-tone still
images: requirements and guidelines.

 ISO/IEC 10918-4 Information technology — Digital compression and coding of continuous-tone still
images: Registration of JPEG profiles, SPIFF profiles, SPIFF tags, SPIFF color spaces, APPn markers,
SPIFF compression types and Registration Authorities (REGAUT). This specifies the format of APPn
markers and the file interchange format.

NOTE TIFF, JPEG, and PSD share complex issues of how native metadata formats are stored; see 2.4, “Native metadata
in digital photography formats”.

http://www.w3.org/Graphics/JPEG/itu-t81.pdf

 16 ©Adobe Systems Incorporated, 2016

1.1.4 JPEG 2000

JPEG 2000 uses the ISO Base Media File Format. This is the same basic format as MPEG-4, although some
internal details differ. The JPEG 2000 flavor of the file format is ISO/IEC 15444-12, the MPEG-4 flavor is ISO/
IEC 14496-12. The ISO Base Media File Format is a "chunky" file format, similar to QuickTime or RIFF (AVI
and WAV). In this case the chunks are called boxes.

Each box consists of a header followed by data. The structure of the header is shown in Table 7:

XMP packets are stored in a UUID box, as shown in Table 8:

For reference information, see the JPEG 2000 standard: http://www.jpeg.org/JPEG2000.html

1.1.5 PNG (Portable Network Graphics)

An XMP packet is embedded in a PNG graphic file by adding a chunk of type iTXt. This chunk is semantically
equivalent to the tEXt and zTXt chunks, but the textual data is in the UTF-8 encoding of the Unicode character
set, instead of Latin-1.

The Chunk Data portion is the XMP packet. The packet must be marked as read-only. XMP software that is not
aware of the file format must not be allowed to change the content of the XMP packet because of the CRC
checksum following the chunk data.

There should be no more than one chunk containing XMP in each PNG file. Encoders are encouraged to place
the chunk at the beginning of the file, but this is not required.

 Table 7 — Structure of JPEG box header

Offset, length Description

0, 4 bytes 32-bit, unsigned, big-endian value, the size of the box. The size includes both the
header and data portions of the box.
If the size does not fit into 32 bits, this value is 1, and the size value is in the
extended size field.
Value is 0 if the box extends to the end of the file; in this case, no extended size
value is present.

4, 4 bytes 32-bit, unsigned, big-endian value, the type code. Typically defined as 4 ASCII
characters, shown in file order. The standard extension mechanism is the UUID box.
The data portion of a UUID box must begin with a 16-byte unique ID ("uuid").

8, 8 bytes 64-bit, unsigned, big-endian value, the extended size (if needed).

 Table 8 — Structure of UUID box

Field value Field
name

Length
(bytes) Comments

Entire length in bytes (including the
four used for this field)

Length 4 Big-endian unsigned integer

0x75756964 (‘uuid’) Type 4 Big-endian unsigned integer

BE 7A CF CB
97 A9 42 E8
9C 71 99 94
91 E3 AF AC

UUID 16 16-byte binary UUID as defined by ISO/
IEC 11578:1996

< XMP packet > DATA Must be encoded as UTF-8

http://www.jpeg.org/JPEG2000.html

©Adobe Systems Incorporated, 2016 17

The PNG data format is shown in Table 9.

For reference information, see: http://www.w3.org/TR/REC-png.html

1.1.6 TIFF (Tagged Image File Format)

Tagged Image File Format (abbreviated TIFF or TIF) is a file format for storing images, including photographs
and line art, and also a metadata format. A number of other formats, including DNG for camera raw data and
Exif for metadata, are also well-behaved TIFF. Many camera raw formats, however, look like TIFF but are not
well-behaved and cannot be processed by a TIFF handler.

The overall structure of a TIFF file is relatively simple: an 8-byte header and a chain of Image File Directories
(IFDs). Table 10 shows the content of the file header:

 Table 9 — PNG data format

Field Length Comments

Length 4 An unsigned integer representing the number of bytes in the
chunk’s data field (does not include the chunk type code or
the CRC).

Chunk Type 4 "iTXt"

Chunk Data Standard iTXt chunk header plus the XMP packet

Keyword 17 "XML:com.adobe.xmp"

Null separator 1 value = 0x00

Compression flag 1 value = 0x00, specifies uncompressed data

Compression method 1 value = 0x00

Language tag 0 Not used for XMP metadata

Null separator 1 value = 0x00

Translated keyword 0 Not used for XMP metadata

Null separator 1 value = 0x00

Text length of
packet

The XMP packet, must be encoded as UTF-8

CRC 4 The Cyclic Redundancy Check, calculated on the preceding
bytes in the chunk, including the chunk type code and chunk
data fields, but not including the length field.

 Table 10 — TIFF file header

Offset, length Description

0, 2 bytes Byte order, "II" (0x4949) for little-endian, "MM" (0x4D4D) for big-endian.

2, 2 bytes Identifies file as TIFF with the number 42 in the given byte order: 0x2A00 if little-
endian, 0x002A if big-endian.

http://www.w3.org/TR/REC-png.html

 18 ©Adobe Systems Incorporated, 2016

Each IFD entry starts with a 2-byte identifier, or tag. (The term TIFF field has been used to refer to an IFD entry
or an IFD entry plus the associated value. The term TIFF tag has been used to refer to just the numeric ID or as
a synonym for TIFF field. Here, tag is used for the numeric ID.) The entry then gives the data type for the value,
then either the value itself or a pointer to it.

Table 11 shows the content of each 12-byte IFD entry:

4, 4bytes Offset of the first (0th) IFD. Each IFD begins with a 2-byte count of directory entries,
followed by a sequence of 12-byte directory entries, followed by a 4-byte offset of
the next IFD. The last IFD must have zero as the offset of the next IFD.
The IFDs can be anywhere in the file (after the 8-byte header), in any order. Each
IFD must be on a 2-byte boundary; that is, it must have an even offset.
Within an IFD, entries must be sorted in ascending tag order.
A TIFF file must have at least one IFD and each IFD must have at least one entry.
All offsets are absolute (from the beginning of the file header), not relative offsets
from some other point within the file.

 Table 11 — IFD entry content

Offset, length Description

0, 2 bytes The TIFF tag, a numeric identifier. Tag identifiers for individual properties are listed
in the TIFF and Exif specifications, and in 3, “Digital photography native metadata”.”

2, 2 bytes The value data type. One of:
 1, BYTE, An 8-bit unsigned integer

 2, ASCII, An 8-bit byte with a 7-bit ASCII character

 3, SHORT, A 16-bit unsigned integer

 4, LONG, A 32-bit unsigned integer

 5, RATIONAL, A pair of LONGs, numerator then denominator

 6, SBYTE, An 8-bit signed integer

 7, UNDEFINED, An undefined 8-bit byte

 8, SSHORT, A 16-bit signed integer

 9, SLONG, A 32-bit signed integer

 10, SRATIONAL, A pair of SLONGs, numerator then denominator

 11, FLOAT, A 4-byte IEEE floating point value

 12, DOUBLE, An 8-byte IEEE floating point value

4, 4 bytes The length, which is the number of values; depending on the data type, it is not
necessarily the number of bytes. For the ASCII type, it is the number of characters.
This is the exact number; it does not include any padding for odd lengths.
An ASCII value must have a terminating NULL (0x00) character, which is included in
the count. An ASCII value can have multiple NULL terminated strings; the count is
the total for all of the strings. Individual strings, other than the first, might begin on
odd offsets.

 Table 10 — TIFF file header (Continued)

Offset, length Description

©Adobe Systems Incorporated, 2016 19

Each directory entry represents either an individual metadata property, or a pointer to a block of metadata in
another format. For tags that identify blocks of metadata in other formats, including XMP, the entry provides a
length/offset pair that points to the data block. Table 7 lists these tags:

Table 7 shows the IFD entry for XMP:

NOTE TIFF, JPEG, and PSD share complex issues of how native metadata formats are stored; see 2.4, “Native metadata
in digital photography formats”.

Official documentation for the TIFF file format is available from: http://partners.adobe.com/public/developer/tiff/
index.html

For reference information, see the TIFF 6.0 Specification: http://partners.adobe.com/public/developer/en/tiff/
TIFF6.pdf

1.1.7 SVG (Scalable Vector Graphics)

SVG (Scalable Vector Graphics) is an XML-based vector image format for two-dimensional graphics with
support for interactivity and animation. SVG file must have a ‘svg’ element having namespace https://

8, 4 bytes The value itself or a pointer to it:
 Small values (4 bytes or less) must be placed directly in the IFD entry. If less

than 4 bytes, the value is placed in the lower numbered bytes.

 For larger values, this is the byte offset that points to the data block. The offset
must be even, but may otherwise point anywhere in the file regardless of IFD or
IFD entry order.

 Table 12 — Tags that identify metadata blocks

Tag Hex Usage

700 0x2BC XMP packet

33723 0x83BB IPTC dataset

34377 0x8649 Photoshop Image Resources (PSIR) containing non-metadata resources, and
possibly duplicating the IPTC metadata

34665 0x8769 Exif subsidiary IFD offset

34853 0x8825 GPS subsidiary IFD offset

 Table 13 — IFD entry for XMP

Byte
offset

Field
value

Field
name Comments

0 700 TAG Tag that identifies the field (decimal value).

2 1 Field type The field type should be UNDEFINED (7) or BYTE (1).

4 Count The total byte count of the XMP packet.

8 Value or
Offset

The byte offset of the XMP packet, which must be encoded as UTF-8.

 Table 11 — IFD entry content (Continued)

Offset, length Description

http://partners.adobe.com/public/developer/tiff/index.html
http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf
http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf
https://www.w3.org/2000/svg

 20 ©Adobe Systems Incorporated, 2016

www.w3.org/2000/svg. As SVG is a XML based file format, xmp uses XML Parser for handling SVG files. XMP
Packet is placed inside the ‘metadata’ tag of outer ‘svg’ element. This 'metadata' element could be present
anywhere inside the file. The 'metadata' tags could have other metadata in any form. But XMP will not handle
any such non-xmp metadata.

Sample SVG tag hierarchy (not in any particular order)

<svg> <!-- Start of SVG tag -->
<title/> <!-- title of SVG file (native metadata) -->
<desc/> <!-- description of SVG file (native metadata) -->
<metadata> <!-- all the metadata available in SVG file -->
<x:xmpmeta/> <!-- XMP metadata available in SVG file -->
<...>
<...>
</metadata>
<...> <!-- SVG file content available as XML tags -->
<...>

</svg> <!-- End of SVG tag -->

Only title and description of the whole document are being reconciled with the XMP packet. While reading from
SVG files, native title and description would get higher precedence over XMP information but with a limitation
that reconciliation would be done only with non-markup ‘title’ and ‘desc’ child of outer ‘svg’ element. While
writing back into a file, title and description are being updated into the file.

The recommended order of tags for SVG file is:

<title> …</title>
<desc>…</desc>
<metadata>…</metadata>

In case if the file has different order than as specified above then order of tags would not be changed. New title
and description child would be created under the outer svg element if the outer svg element don't have any
such element.

NOTE Only UTF-8 encoded SVG files are currently supported. Compressed SVG files are not supported.

For reference information, see

SVG standard specifications: https://www.w3.org/TR/SVG/

XML specifications: https://www.w3.org/TR/REC-xml/

1.2 Dynamic media formats

Certain video formats have special considerations and are collected separately; see 1.3, “Video package
formats”. These are presented here alphabetically:

 ASF (WMA, WMV)

 FLV (Flash® Video)

 Table 14 — List of properties for Reconciliation

Property name Tag in SVG XMP namespace XMP name

Title <title>…..</title> dc title

Description <desc>….<desc> dc description

https://www.w3.org/2000/svg
https://www.w3.org/TR/SVG/
https://www.w3.org/TR/REC-xml/

©Adobe Systems Incorporated, 2016 21

 IFF/RIFF (AVI, WAV, AIFF)

— RIFF (AVI, WAV)

— AIFF

 MOV (QuickTime)

 MP3

 MPEG-2

 MPEG-4 (generic and F4V)

 SWF (Flash)

1.2.1 ASF (WMA, WMV)

Advanced Systems Format (formerly Advanced Streaming Format) is Microsoft's proprietary digital audio/digital
video container format, especially meant for streaming media. ASF is part of the Windows Media framework.
The most common filetypes contained within an ASF file are Windows Media Audio (WMA) and Windows
Media Video (WMV). WMA and WMV are very similar.

The file extension of an ASF file indicates what kind of compression is used for the content:

 An ASF file that contains audio content compressed with the WMA codec typically uses the .wma
extension.

 An ASF file that contains audio content, video content, or both, compressed with WMA and WMV codecs
uses the .wmv extension.

 Content that is compressed with any other codec use the generic .asf extension.
NOTE Software developers must carefully read the licensing terms in the ASF specification. Microsoft grants royalty-free

permission to distribute executable and object code products that implement ASF support, but explicitly forbids
distribution of source code.

The ASF specification is available at: http://www.microsoft.com/windows/windowsmedia/forpros/format/
asfspec.aspx

1.2.1.1 ASF format

ASF files are logically composed of three types of top-level objects: Header, Data and Index Objects. A top-
level object can contain other objects in its data section.

 The Header Object is mandatory and must be at the beginning of every ASF file.

 The Data Object is also mandatory and must immediately follow the Header Object.

 The Index Objects are optional, when present they must be the last objects in the ASF file.

 Other objects can appear between the Data Object and the first Index Object. XMP is embedded as one of
these.

Figure 3 shows ASF format.

http://www.microsoft.com/windows/windowsmedia/forpros/format/asfspec.aspx

 22 ©Adobe Systems Incorporated, 2016

 Figure 3 — ASF format

All ASF objects have a similar structure:

 A 16-byte GUID: The GUID identifies the purpose of an object. It is unique as a type identifier, not as an
instance identifier; that is, the same conceptual object in different files has the same GUID. The ASF
specification contains tables of standard GUIDs, and applications can create others. The ASF
specification does not define GUIDs in file byte order. The documentation lists them as though they
contained:

— A 4-byte little-endian integer

— A 2-byte little-endian integer

— A 2-byte little-endian integer

— A 2-byte big-endian integer

— A 6-byte in-order sequence

Thus, if the documented value of a GUID is 00112233-4455-6677-8899-AABBCCDDEEFF, the file contains
33221100 55447766 8899AABB CCDDEEFF.

 An 8-byte little-endian size: The size includes both the GUID and size itself; that is, 24 plus the data size.
The ASF specification does not say whether the size is signed or unsigned. For safety, it should be treated
as unsigned, with a 63-bit range.

 The object's data

Header Object

File Properties Object

Stream Properties Object

Stream Properties Object

<other header objects>

Data Object

Data Packet 1

. . .

<other objects>

Index Object 1

Simple Index Object 1

. . .

. . .

©Adobe Systems Incorporated, 2016 23

There appear to be no uses in ASF of relative offsets between objects, and no uses of absolute offsets of
objects. Index offsets are relative to the appropriate data packet origin. This allows Header and XMP objects to
be inserted, grown, or shrunk with relative ease. Only adjustments to the length of containing objects are
necessary.

The ASF Header Object contains several nested objects that have native metadata fields mapped to XMP: See
details of reconciliation in 2.3.1, “Native metadata in ASF (WMA, WMV) formats”.

1.2.1.2 XMP embedded in ASF

XMP is embedded in ASF as an "Other" top-level object. The GUID in ASF notation is:

BE7ACFCB-97A9-42E8-9C71-999491E3AFAC

The GUID in file byte order is:

CBCF7ABE A997E842 9C719994 91E3AFAC

The data of the XMP object is the XMP packet, using UTF-8 encoding.

1.2.2 FLV (Flash® Video)

FLV is designed to carry synchronized audio and video streams, and is used to deliver video over the Internet
using Adobe Flash Player (in versions later than 6). Flash Video content may also be embedded within SWF
files.

FLV is a fairly simple format, with a strong orientation to streaming use. It consists of a small file header then a
sequence of tags that can contain audio data, video data, or ActionScript data. For FLV version 1, each tag
begins with an 11-byte header:

 UI8 tag type: 8 = audio tag, 9 = video tag, 18 = script data tag

 UI24 content length in bytes

 UI24 time: low-order 3 bytes

 UI8 time: high-order byte

 UI24 stream ID

This is followed by the tag's content, then a UI32 "back pointer" which is the header size plus the content size.
A UI32 zero is placed between the file header and the first tag as a terminator for backward scans. The time in
a tag header is the start of playback for that tag. The tags must be in ascending time order. For a given time it is
preferred that script data tags precede audio and video tags. Each audio or video tag typically contains one
frame of data.

For metadata purposes, only the script data tags are of interest. Script data information becomes accessible to
ActionScript at the playback moment of the script data tag through a call to a registered data handler. The
content of a script data tag contains a string and an ActionScript data value. The string is the name of the
handler to be invoked, the data value is passed as an ActionScript Object parameter to the handler.

A variety of native metadata is contained in a script data tag with the name onMetaData. This contains only
internal information such as duration or width/height, nothing that is user- or author-editable, such as title or
description. Some of these native items are imported into the XMP; none are updated from the XMP.

1.2.2.1 Placement of XMP

XMP is embedded in FLV as a script data tag with the name onXMPData. It must be placed at time 0 and must
have stream ID 0. It should be after any time 0 onMetaData tag, and before any time 0 audio or video tags.

 24 ©Adobe Systems Incorporated, 2016

Software looking for existing XMP must examine all time 0 tags. One cannot presume that all third party
modifiers of FLV files will preserve onMetaData, then onXMPData, then audio/video ordering.

The data value for onXMPData is an ECMA array. Standard serialized XMP is in an array item with the key
liveXML; the data of this item is an ActionScript string containing a normal UTF-8 XMP packet (including
padding). The ActionScript string can be a short or long string as appropriate.

The formal specification for SWF and FLV is Macromedia Flash (SWF) and Flash Video (FLV) File Format
Specification Version 8. This is available at: http://www.adobe.com/licensing/developer

NOTE In the public FLV specification version 8 and earlier, there are errors in the descriptions of SCRIPTDATAOBJECT,
SCRIPTDATAOBJECTEND, SCRIPTDATAVARIABLE, SCRIPTDATASTRING, SCRIPTDATALONGSTRING,
SCRIPTDATADATE, ECMA arrays, and strict arrays.

1.2.3 IFF/RIFF (AVI, WAV, AIFF)

Formats based on IFF include RIFF, on which AVI and WAV are based, and AIFF. RIFF uses little-endian byte
order, while AIFF uses big-endian byte order.

1.2.3.1 RIFF (AVI, WAV)

RIFF is based on IFF, and uses little-endian byte order. AVI and WAV are both based on the RIFF file format,
but are not otherwise similar. RIFF was created in 1991 by Microsoft and IBM, and there seem to be no actively
maintained file-format specifications. RIFF is a chunky format: a chunk has a 4 byte ID, a 4-byte length, and
content. The ID is ASCII text, documented in file order. The length is unsigned, little-endian, and is just the
content length. A zero-pad byte follows the content if the length is odd.

Some RIFF chunks are containers of other chunks. The content of a container (not a formal term) is a 4-byte ID
followed by a sequence of nested chunks.

A normal RIFF file as a whole has an outer container chunk with an outer ID of "RIFF" and an inner ID that
defines the file type. That is, the whole file is one chunk with the ID "RIFF", and that chunk is a container whose
content begins with an ID for the file type followed by the "real" file structure. For AVI the inner ID is "AVI ", for
WAV the inner ID is "WAVE".

Another standard container is the "LIST" chunk. This is the normal grouping mechanism, used to create a tree
structure instead of a single flat sequence of top level chunks.

The XMP in AVI and WAV is in a chunk with the ID "_PMX", encoded as UTF-8. Note that the ID is backwards,
due to a bug in the initial implementation concerning processor byte order. The XMP chunk is immediately
within the outermost "RIFF" chunk. There is no ordering constraint of the XMP relative to other chunks.

Although the RIFF format appears to have a 4 GB overall size limit, larger files are possible for AVI. This is
done by writing a sequence of RIFF chunks. The first has an ID of "AVI ", the others have an ID of "AVIX". In
addition, because of bugs in early AVI implementations, the outer RIFF chunks are commonly limited to 1 GB or
2 GB. The XMP chunk can be placed in any of the outer RIFF chunks, according to local criteria at the time the
file is written.

The Library of Congress Digital Preservation project has general RIFF information at: http://
www.digitalpreservation.gov/formats/fdd/fdd000025.shtml This includes a link to an HTML version of
"Multimedia Programming Interface and Data Specifications 1.0": http://www.tactilemedia.com/info/
MCI_Control_Info.html

1.2.3.1.1 AVI

AVI (Audio-Video Interleaved) is a multimedia container format. AVI files can contain both audio and video data
in a standard container that allows synchronous audio-with-video playback.

http://www.digitalpreservation.gov/formats/fdd/fdd000025.shtml
http://www.digitalpreservation.gov/formats/fdd/fdd000025.shtml
http://www.tactilemedia.com/info/MCI_Control_Info.html
http://www.tactilemedia.com/info/MCI_Control_Info.html
http://www.adobe.com/licensing/developer

©Adobe Systems Incorporated, 2016 25

AVI files can contain native metadata. See detail of how these are reconciled with XMP in 2.3.2, “Native
metadata in IFF/RIFF (AVI, WAV, AIFF) formats”.

The Library of Congress Digital Preservation project has specific AVI information at: http://
www.digitalpreservation.gov/formats/fdd/fdd000059.shtml This includes a link to OpenDML extensions at:
http://www.morgan-multimedia.com/download/odmlff2.pdf

1.2.3.1.2 WAV

WAV (or WAVE), short for Waveform audio format, is a Microsoft and IBM audio file format standard for storing
audio on PCs. It is the main format used on Windows systems for raw audio.

WAV is based on of the RIFF format for storing data in chunks. WAV has a single outer RIFF chunk, with the ID
"WAV" The XMP is part of the RIFF/WAV chunk with the ID "_PMX". WAV files over 4 GB can be stored in the
RF64 file format, developed by the European Broadcast Union (http://tech.ebu.ch/docs/tech/tech3306-
2009.pdf).

WAV files can contain native metadata; see details of reconciliation with XMP in 2.3.2, “Native metadata in IFF/
RIFF (AVI, WAV, AIFF) formats”.

The Library of Congress Digital Preservation project has specific WAV information at: http://
www.digitalpreservation.gov/formats/fdd/fdd000001.shtml

1.2.3.2 AIFF

The Audio Interchange File Format (Audio IFF) provides a standard for storing sampled sounds. AIFF-C adds
the ability to store compressed audio data in a standard manner.

AIFF, like RIFF, is based on IFF. AIFF uses big-endian byte order, while RIFF uses little-endian byte order. The
main container chunk for AIFF is called "FORM" (rather than 'RIFF') with the same format as the 'RIFF'
container; see 1.2.3.1, “RIFF (AVI, WAV)”. The type of AIFF files is always 'AIFF' and AIFF_C files use 'AIFC'
as form identifier.

XMP is stored as an "Application Specific Chunk" with the Application Signature 'XMP ':

 Byte Nr 1234 5678 9...
 APLL size 'XMP ' <?xpacket ...

In order to keep the original ordering of chunks, free space is used to fill the space of a moved XMP chunk (or
text chunk). The free space is defined as "Application Specific Chunks" with the signiture 'FREE' and is filled
with '0'. The minimum size of such a free chunk is 12 bytes (4 bytes ID, 4 bytes size, 4 bytes type). Smaller free
space can be created with ANNO chunks (Annotation Text Chunks) filled with 0. These 'empty' annotation
chunks should be ignored by other software.

AIFF and AIFF-C can contain native metadata; see details of reconciliation with XMP in 2.3.2.3, “Native
metadata in AIFF”.

The AIFF specifications are available at
 http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/AIFF/Docs/AIFF-1.3.pdf
 http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/AIFF/Docs/AIFF-C.9.26.91.pdf

1.2.4 MOV (QuickTime)

The QuickTime MOV file format was developed by Apple as a container for a wide variety of dynamic media
including sound, video, and animation. It functions as a multimedia container file that contains one or more
tracks, each of which stores a particular type of data: audio, video, effects, or text (for subtitles, for example).
Each track either contains a digitally-encoded media stream (using a specific codec) or a data reference to the

http://www.digitalpreservation.gov/formats/fdd/fdd000001.shtml
http://www.digitalpreservation.gov/formats/fdd/fdd000059.shtml
http://www.morgan-multimedia.com/download/odmlff2.pdf
http://tech.ebu.ch/docs/tech/tech3306-2009.pdf
http://tech.ebu.ch/docs/tech/tech3306-2009.pdf
http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/AIFF/Docs/AIFF-1.3.pdf
http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/AIFF/Docs/AIFF-C.9.26.91.pdf

 26 ©Adobe Systems Incorporated, 2016

media stream located in another file. Tracks are maintained in a hierarchal data structure consisting of objects
called atoms.

The basic structure of a QuickTime file is similar to the RIFF format used by AVI and WAV. QuickTime was used
as the basis of the MPEG-4 format, ISO/IEC 14496-14.

The basic unit of a QuickTime file, the atom, is similar to the "chunks" in RIFF. An atom can either be a leaf
atom containing data, or a container atom containing other atoms. There is no structural indication of a leaf or
container atom, this is implicit in the atom's type. Other than nesting rules, there is generally no necessary
ordering among atoms.

All atoms begin with a standard or extended header. The standard header has a 32-bit big-endian unsigned
length followed by a 32-bit type code. The type codes are almost always 4 ASCII characters, but a few special
cases exist (such as 0x00000001). The size field gives the atom's total size, including the 8-byte header. If the
initial size field is set to 1, a 64-bit big-endian size follows the standard header, forming an extended header.

Although QuickTime and MPEG-4 are related formats, older QuickTime files do not contain the top-level 'ftyp'
atom that is compulsory for MPEG-4. Newer QuickTime files might contain an 'ftyp' atom, with "qt " in the
compatible brands. These files should be treated as QuickTime, not generic MPEG-4.

1.2.4.1 Placement of XMP

XMP is stored in QuickTime as an "XMP_" atom, within a "udta" atom, within a top level "moov" atom. The XMP
atom's content is the XMP packet, using UTF-8 encoding.

The formal specification for the QuickTime file format is available at: http://developer.apple.com/reference/
QuickTime/idxFileFormatSpecification-date.html

1.2.5 MP3

MPEG-1 Audio Layer 3, more commonly referred to as MP3, is a popular audio encoding format. MPEG stands
for Moving Picture Experts Group. The formal standard is ISO/IEC IS 11172-3, but this only covers the raw
audio aspects. The metadata in MP3 files uses the ID3v1 or ID3v2 format. When used with XMP, this must be
ID3v1, ID3v2, ID3v2.3 or ID3v2.4. The ID3v2.3 and ID3v2.4 formats are almost identical. The most notable
difference is that ID3v2.4 allows text values to be UTF-8, in addition to ISO 8859-1 (Latin-1) or UTF-16.

The entire ID3 portion of the MP3 file is called the ID3 "tag" (rather confusingly, given other media file and
metadata terminology). The individual metadata items are called ID3 "frames".

1.2.5.1 Placement of XMP

The XMP is placed within the ID3 as a "PRIV" frame with an Owner identifier of "XMP". The content of the XMP
PRIV frame is the XMP packet, encoded as UTF-8.

MP3 files can contain native metadata; see detail of reconciliation with XMP in 2.3.3, “Native metadata in MP3”.

Specifications can be found at:

 http://www.id3.org/id3v1

 http://www.id3.org/id3v2-00

 http://www.id3.org/id3v2.3.0

 http://www.id3.org/id3v2.4.0-structure

http://www.id3.org/id3v1
http://developer.apple.com/reference/QuickTime/idxFileFormatSpecification-date.html
http://www.id3.org/id3v2-00
http://www.id3.org/id3v2.3.0
http://www.id3.org/id3v2.4.0-structure

©Adobe Systems Incorporated, 2016 27

1.2.6 MPEG-2

MPEG-2 is a standard for the generic coding of moving pictures and associated audio information. It describes
a combination of lossy video compression and lossy audio compression (audio data compression) methods
which permit storage and transmission of movies using currently available storage media and transmission
bandwidth. It is not the same as MPEG-1 Audio Layer II (MP2).

MPEG-2 is a common format for standard definition digital video. It is used for DVD discs, by DV camcorders,
for terrestrial (over the air) broadcast, for cable, and direct broadcast satellite. The formal specification for
MPEG-2 is ISO/IEC 13818.

XMP is not directly embedded within MPEG-2 files, but is specified as a sidecar file. This is a separate file
containing just the XMP packet, which is stored at the same location as the MPEG-2 file, and uses the same file
name, with the file extension .xmp replacing the original file extension.

1.2.7 MPEG-4 (generic and F4V)

MPEG-4 is a collection of methods defining compression of audio and visual (AV) digital data. MPEG-4 absorbs
many of the features of MPEG-1 and MPEG-2 and other related standards, adding new features such as
(extended) VRML support for 3D rendering, object-oriented composite files (including audio, video and VRML
objects), support for externally-specified Digital Rights Management and various types of interactivity. AAC
(Advanced Audio Codec) was standardized as an adjunct to MPEG-2 (as Part 7) before MPEG-4 was issued.

The file format is defined by parts 12 and 14 of ISO 14496. Part 12 defines the "ISO Base Media File Format",
which happens to also be used by JPEG 2000 (ISO 15444). Part 14 describes MPEG-4 specific aspects.

An MPEG-4 file can be identified by the very first box being a 'ftyp' one that contains one of the four compatible
brands: 'mp41', 'mp42', 'f4v ', or 'avc1'.

Although MPEG-4 and QuickTime are related formats, older QuickTime files do not contain the top-level 'ftyp'
box that is compulsory for MPEG-4. Newer QuickTime files might contain an 'ftyp' box, with "qt " in the
compatible brands. These files should be treated as QuickTime, not generic MPEG-4.

1.2.7.1 Placement of XMP

XMP is embedded in MPEG-4 files in the same manner as in JPEG 2000, using a top-level UUID box. A well-
formed file contains at most one XMP UUID box, but this is not normally verified. The UUID for both is:

BE7ACFCB 97A942E8 9C719994 91E3AFAC

The remainder of the box is a typical XMP packet, encoded as UTF-8, including packet wrapper and padding.

MPEG-4 files can contain native metadata; see detail of reconciliation with XMP in 2.3.4, “Native metadata in
MPEG-4”.

1.2.8 SWF (Flash)

SWF is a proprietary vector graphics file format produced by the Flash software from Adobe. Intended to be
small enough for publication on the web, SWF files can contain animations or applets of varying degrees of
interactivity and function. SWF is also sometimes used for creating animated display graphics and menus for
DVD movies, and television commercials.

SWF was designed to deliver vector graphics, text, video and sound over the Internet. The SWF file format is
designed to be an efficient delivery format, not a format for exchanging graphics between graphics editors.
SWF is quite different from the Flash Video file format, FLV. FLV is designed to carry synchronized audio and
video streams (see 1.2.2, “FLV (Flash® Video)”).

 28 ©Adobe Systems Incorporated, 2016

An SWF file consists of a file header followed by a sequence of tagged data blocks, called tags. The tags share
a common format, so any program parsing a SWF file can skip blocks it does not understand. Data inside the
block can point to offsets within the block, but can never point to an offset in another block. This enables tags to
be removed, inserted, or modified by tools that process a SWF file.

SWF files always store integers in little-endian byte order. The common tag structure is very simple, a short or
long tag header followed by the data. The short header is a 16-bit little-endian unsigned integer. The upper 10
bits are the tag's type code, the lower 6 bits are the length of the data. If the data is 63 bytes or longer, a long
tag header is used. This is a short header with a length value of 63 (0x3F), followed by a 32-bit little-endian
integer giving the actual data length.

Beginning with SWF 8, a FileAttributes tag is required immediately after the file header.

1.2.8.1 Placement of XMP

XMP is supported beginning with SWF 8. There are two aspects to placing XMP in SWF:

 A flag in the FileAttributes tag denoting whether the file contains XMP.

 A tag containing the XMP.

The FileAttributes tag has a type code of 69. The tag data is 4 bytes containing several variable-length bit
fields. Counting bits from the low-order end, the HasMetadata flag is bit 4 of the first byte; that is, the mask
0x10 selects the HasMetadata flag from the first byte. This flag must be set if and only if the file contains XMP.

The XMP tag (called the Metadata tag) has type code 77. The tag data is the serialized XMP, using UTF-8
encoding. It is best to omit the XMP packet wrapper (including padding) to save space. Similarly, you should
use RDF shorthand and omit formatting whitespace.

The formal specification for SWF and FLV is "Macromedia Flash (SWF) and Flash Video (FLV) File Format
Specification Version 8." This is available at: http://www.adobe.com/licensing/developer

NOTE The SWF specification (not this XMP Specification) is the authority for how XMP is embedded in SWF.

1.3 Video package formats

Certain video formats have special considerations. In these formats a video entity (a movie) consists of a
collection, or package, of related files of various types—audio, video, voice, and so on. In video package
formats, the document unit is a called a clip. Information for an individual clip is stored in multiple files, in a
directory structure defined by the format specification. XMP metadata relates to the clip as a whole, rather than
to individual files, and is stored in its own file for the associated clip.

These folder-oriented formats use shallow trees with specific folder names and highly stylized file names. The
user thinks of the tree as a collection of clips, consisting of multiple files for video, audio, metadata, and so on.
For example, a portion of a P2 folder might look like this:

.../MyMovie
CONTENTS

CLIP
0001AB.XML
0002CD.XML

VIDEO
0001AB.MXF
0002CD.MXF

VOICE
0001AB.WAV
0002CD.WAV

The user thinks of .../MyMovie as the container of P2 video, which in this case contains two clips identified with
a file base name of 0001AB and 0002CD. Each clip is stored as a collection of files, each file holding some

http://www.adobe.com/licensing/developer

©Adobe Systems Incorporated, 2016 29

specific aspect of the clip's data. The exact folder structure and file layout differs, but the basic concepts carry
across all of the folder-oriented video-package formats.

NOTE The folder layout descriptions here are meant to show typical usage and describe where XMP files are found; they
are not meant to be complete or definitive package format descriptions.

 AVCHD

 P2

 Sony HDV (High Definition Video)

 XDCAM (several variations)

1.3.1 AVCHD

AVCHD (Advanced Video Codec High Definition) is a high-definition video recording format for use in digital
tapeless camcorders. The format is comparable to other handheld video camera recording formats, particularly
TOD, HDV and MiniDV.

A typical AVCHD package layout looks like this:

BDMV/
index.bdmv
MovieObject.bdmv
PLAYLIST/

xxxxx.mpls
STREAM/

zzzzz.m2ts
zzzzz.xmp

CLIPINF/
zzzzz.clpi

 BACKUP/

A base name with a numeric sequence distinguishes files belonging to the same clip. The XMP is placed in the
STREAM folder, using the clip base name and the extension XMP. For example if the playlist name (xxxxx) is
00001 and the clip name (zzzzz) is 00002, the files 00002.m2ts and 00002.clpi belong to clip 2 of playlist 1.
The related metadata for the clip is 00002.xmp.

1.3.2 P2

A P2 card is a solid-state memory device that plugs into the PCMCIA slot of a Panasonic P2 video camera,
such as the AG-HVX200. The digital video and audio data from the video camera is recorded onto the card in a
structured, codec-independent format known as MXF (Media eXchange Format). A clip is said to be in the P2
format if its audio and video are contained in Panasonic Op-Atom MXF files, and these files are located in a
specific file structure.

The root of the P2 file structure is a CONTENTS folder. Each essence item (an item of video or audio) is
contained in a separate MXF wrapper file; the video MXF files are in the VIDEO subfolder, and do on. The
relationships between essence files and the metadata associated with them are tracked by XML files in the
CLIP subfolder.

A typical P2 layout looks like this:

.../MyMovie
 CONTENTS/
 CLIP/
 0001AB.XML
 0001AB.XMP
 0002CD.XML
 0002CD.XMP

 30 ©Adobe Systems Incorporated, 2016

 VIDEO/
 0001AB.MXF
 0002CD.MXF
 AUDIO/
 0001AB00.MXF
 0001AB01.MXF
 0002CD00.MXF
 0002CD01.MXF
 ICON/
 0001AB.BMP
 0002CD.BMP
 VOICE/
 0001AB.WAV
 0002CD.WAV
 PROXY/
 0001AB.MP4
 0002CD.MP4

This shows two clips whose file base names are 0001AB and 0002CD.

A base name with a numeric sequence distinguishes files belonging to the same clip. The XMP is placed in the
CLIP folder, beside the.XML file that defines the existence of the clip. The .XML file contains a variety of
information about the clip, including some native metadata.

The XMP is stored using the clip base name and the extension XMP. In the example, the file 0001AB.XMP
contains the metadata associated with the clip defined by 0001AB.XML.

1.3.3 Sony HDV (High Definition Video)

A typical Sony HDV layout looks like this:

.../MyMovie/
 VIDEO/
 HVR/
 00_0001_2007-08-06_165555.IDX
 00_0001_2007-08-06_165555.M2T

00_0001_2007-08-06_165555.XMP
00_0001_2007-08-06_171740.IDX
00_0001_2007-08-06_171740.M2T
00_0001_2007-08-06_171740.XMP
tracks.dat

This shows two clips with the same base name, but different time stamps. The .IDX file defines the existence of
the clip. XMP is stored in a file with the clip base name, the date/time suffix from the associated .IDX file, and
the .XMP extension.

1.3.4 XDCAM

These package formats are used by various models of the Sony XDCAM line of high-definition disc video
camcorders.

NOTE Sony documentation uses mixed-case folder names "General", "Clip", "Sub", and "Edit". The names are shown in
all caps here.

1.3.4.1 XDCAM EX

A typical XDCAM EX package layout looks like this:

.../MyMovie/

©Adobe Systems Incorporated, 2016 31

 BPAV/
 MEDIAPRO.XML
 MEDIAPRO.BUP
 CUEUP.XML
 CUEUP.BUP
 CLPR/
 709_001_01/
// MI_XXXX_YY: MI is MachineID, XXXX is TakeSerial, YY is ClipSuffix
// (a single take can be divided across multiple clips.)
 709_001_01.SMI
 709_001_01.MP4
 709_001_01M01.XML
// last counter from 01-99 based on number of files with the same extension
// that are in this folder
 709_001_01M01.XMP
 709_001_01R01.BIM
 709_001_01I01.PPN
 709_001_02/
 709_002_01/
 709_003_01/
 TAKR/
 709_001/
 709_001.SMI
 709_001U01.SMI
// last counter is 01 to N-1, where N is number of media in this take
// (in this example the take includes 709_001_01 and 709_001_02)
// For Nth (2nd, CLPR/709_001_02), MIXXXX.SMI is used (709_001.SMI)
// U means "unfinished"
 709_001M01.XML
// MI_XXXXMNN counts from 01-99 based on number of clips in this take.

Backup files (.BUP) are optional. No files or directories other than those listed are allowed in the BPAV
directory. The CLPR (clip root) directory may contain only clip directories, which may only contain the clip files
listed.

The CLPR (clip root) folder contains clip subfolders, whose name is the base file name for that clip. Each clip
folder contains a media file (.MP4), a clip information file (.SMI), a real-time native metadata file (.BIM), a non-
real-time native metadata file (.XML), and a picture pointer file (.PPN).

 XMP metadata is stored in the.XMP file within a clip directory, using the same base name as the XML file.
A take directory contains a take info and non-real-time take metadata files.

The TAKR (take root) directory may contain only take directories, which may only contain take files. The take
root directory can be empty.

MEDIPRO.XML contains information on clip and take management.

1.3.4.2 XDCAM SAM

A typical SAM layout looks like this:

.../MyMovie/
 GENERAL/
 unknown files
 PROAV/
 INDEX.XML
 INDEX.BUP
 DISCMETA.XML

 32 ©Adobe Systems Incorporated, 2016

 DISCINFO.XML
 DISCINFO.BUP
 CLPR/
 C0001/
 C0001C01.SMI
 C0001V01.MXF
 C0001A01.MXF
 C0001A02.MXF
 C0001R01.BIM
 C0001I01.PPN
 C0001M01.XML
 C0001M01.XMP
 C0001S01.MXF
 C0002/
 ...
 EDTR/
 E0001/
 E0001E01.SMI
 E0001M01.XML
 E0002/
 ...

The CLPR/ folder contains a subfolder for each clip, which use the base file name. This example shows two
clips, with base names C0001 and C0002. The EDTR/<edit list> folder contains the edit list file (.SMI), which
uses different clips, and a native metadata file (.XML) related to the edit list.

A clip file and its related XMP are kept together in the CLPR/<clip> folder.

 The .XML file defines the existence of the clip. The name uses the base clip name plus additional
identifying characters. It contains a variety of information about the clip, including some native metadata.

 The .XMP file with the same base file name as the XML file contains the XMP for the clip.

1.3.4.3 XDCAM FAM

 A typical FAM layout looks like this:

.../MyMovie/
 INDEX.XML
 DISCMETA.XML
 MEDIAPRO.XML
 General/
 unknown files
 Clip/
 C0001.MXF
 C0001M01.XML
 C0001M01.XMP
 C0002.MXF
 C0002M01.XML
 C0002M01.XMP
 Sub/
 C0001S01.MXF
 C0002S01.MXF
 Edit/
 E0001E01.SMI
 E0001M01.XML
 E0002E01.SMI
 E0002M01.XML
 Local/ // optional

©Adobe Systems Incorporated, 2016 33

 C0001C01.SMI
 C0001C01.PPN

The top-level folder MyMovie/ contains XDCAM data for two clips whose raw names are C0001 and C0002.
The CLIP folder contains at least one .XML file that defines the existence of a clip with that base file name.

A clip file and its related XMP are kept together in the Clip folder. Any related Subclip is present in the Sub
folder. The Edit folder contains the Edit list files. Content related files are optionally present in the Local folder.

 The .XML file defines the existence of the clip. The name uses the base clip name plus additional
identifying characters. It contains a variety of information about the clip, including some native metadata.

 The .XMP file with the same base file name as the XML file contains the XMP for the clip.

1.3.4.4 XDCAM FAM Memory SxS

This package format is used by certain models of the Sony XDCAM line of memory-card-based high-definition
video camcoders. See also 1.3.4.2, “XDCAM SAM”.

 A typical FAM Memory SxS layout looks like this:

 .../MyMovie/
 DISCMETA.XML
 MEDIAPRO.XML
 CUEUP.XML
 General/
 Clip/
 C0001.MXF
 C0001M01.XML
 C0001M01.XMP
 C0001R01.BIM
 C0002.MXF
 C0002M01.XML
 C0002M01.XMP
 C0001R01.BIM
 Sub/
 C0001S01.MXF
 C0002S01.MXF
 Edit/
 Take/
 T0001.SMI
 T0001M01.XML
 UserData/

The top-level folder MyMovie/ contains XDCAM data for two clips whose raw names are C0001 and C0002.

The Clip folder contains at least one non-real time metadata .XML file that defines the existence of a clip with
that base file name. The CLIP folder also contains a related media file .MXF , a real-time native metadata file
.BIM and XMP metadata file .XMP , all of them using the same base name as XML file.

The Sub folder contains the sub-clip files and the 'Take' folder contains the a take-info file (.SMI) and a non-real
time take metadata .XML file, for each take.

MEDIAPRO.XML contains information on the clip and take management.

1.4 Adobe application formats

 1.4.1, “AI (Adobe Illustrator®)”

 34 ©Adobe Systems Incorporated, 2016

 1.4.2, “INDD, INDT (Adobe InDesign®)”

 1.4.3, “PSD (Adobe Photoshop)”

1.4.1 AI (Adobe Illustrator®)

An .ai file generated by Adobe Illustrator® is in the Portable Document Format (PDF). Hence, the format for
embedding XMP metadata is the same as for PDF files.

1.4.2 INDD, INDT (Adobe InDesign®)

InDesign document files (.indd) and InDesign template files (.indt) are primarily paged database files. They
have 4 KB pages with a leading pair of master pages to allow single write commits. The detailed structure of the
database is proprietary.

Externally editable XMP is supported for database files from InDesign 2.0 and later through a "contiguous
object" section at the end of the file. It is possible to modify, even extend, the XMP in the contiguous object
section. It is not possible to add XMP to a database that has none without intimate knowledge of the database.

In brief, the active master page tells how many database pages the file contains. The contiguous object section
begins after the last database page and extends to the end of the file. It contains copies of database objects,
stored in a contiguous (nonpaged) manner.

Figure 4 shows the layout. In the figure:

 The curved arrow represents the fact that the current (active) master page indicates how many database
pages there are, enabling an application to find the beginning of the contiguous object section.

 Main pages: This is the main part of the database file, comprised of 4 KB pages. The first two pages--the
master pages--are used to determine how big this part of the file is (that is, where the contiguous object
copies start). Otherwise, this data can be ignored when scanning for XMP data, and you should never alter
this portion of the file if you are modifying XMP data.

 Contiguous objects: Following the data pages, copies of contiguous objects are written, and each has a
special header and trailer. Here you would find any XMP objects, and you may rewrite this part of the file if
you need to expand the file’s XMP data beyond whatever padding is supplied in the XMP packet.

 Zero padding: The file is zero padded so that the file size is a multiple of 4 KB.

 Figure 4 — InDesign file layout

©Adobe Systems Incorporated, 2016 35

The majority of an InDesign database file consists of the 4 KB pages that comprise the transacted database
storage. You can use the first two pages in the file, called the Master Pages, to determine whether contiguous
objects are present, where they are, and whether they include any XMP metadata objects that contain XMP
packets. InDesign document databases do typically contain XMP metadata, but this is not strictly required.
Other types of InDesign files, such as book files, do not currently contain metadata.

 For details of the Master Page structure, see 1.4.2.3, “Master page structure”.

 For details of the Header and Trailer that enclose each contiguous object, see 1.4.2.4, “Header and trailer
structure”

1.4.2.1 Finding XMP in an InDesign file

To efficiently find XMP data when present in an InDesign database file:

1 Verify that the first 16 bytes of the file are the GUID for an InDesign database file.

2 Read the two Master Page sequence numbers, and decide which master page is the current one, which is
the one with the larger sequence number.

3 Using fFilePages from the current master page, seek to absolute file position fFilePages * 4096.
Remember that a database file may exceed 4 GB in size.

4 Search through the contiguous objects for an XMP packet. When the contiguous object you are examining
is the persistent representation of an object that contains an XMP packet, the stream between the headers
consists of a 4-byte integer specifying the length for the XMP packet, followed by the XMP packet itself.

— The byte-order of the length integer is governed by the fObjectStreamEndian field from the master
page. This is true only of this value; all integer values within the data are in little-endian order.

— The packet header begins like this:

<?xpacket begin="W5M0MpCehiHzreSzNTczkc9d"
The quote characters can be double (") or single (').

1.4.2.2 Rewriting XMP data beyond the packet padding

The length value that precedes the packet header must equal fStreamLength (from the header and trailer)
minus 4 bytes (for the length value itself). You should verify that this is true before attempting to rewrite the
XMP packet, and thus rewrite the length value. If the first four-byte integer in the stream (interpreted using the
Master Page-specified byte order) is not fStreamLength-4, you should not enlarge the packet but simply use
the padding if possible.

If you rewrite a contiguous object that contains an XMP packet, follow these rules:

 While looking for a contiguous object header beyond the paged part of the file (as directed by fFilePages in
the master page), if you find something that is not a header GUID but not zero padding at the end of the
file, assume that the file format has changed and fall back to default behavior.

 InDesign might store other contiguous objects in addition to XMP packets at the end of the file in the same
way. The API that allows this is public, so a third-party developer might also store arbitrary objects there. If
you rewrite an XMP packet, make sure you are changing only the object that contains your XMP packet,
and preserve any other contiguous object copies you find at the end of the file.

 Verify that the XMP object you want to rewrite is marked externally writable in the contiguous object header
(or trailer).

 Verify that the first four-byte integer (variable endian) in the XMP object stream is indeed the length of the
XMP packet immediately following, and that this value is the header's (or trailer's)
fStreamLength - 4.

 When you rewrite the XMP object, rewrite the header and trailer for the XMP object with an fChecksum

 36 ©Adobe Systems Incorporated, 2016

field of 0xffffffff and an updated fStreamLength field.

 The size in bytes of an InDesign database file is required to be a multiple of 4 KB. A file that violates this
constraint is considered corrupt. If you are rewriting contiguous objects at the end of the file to expand an
XMP packet, pad the file with zeros if necessary after the last contiguous object trailer to ensure this
condition is met.

1.4.2.3 Master page structure

The following code shows the parts of the Master Pages of interest with respect to metadata:

struct MasterPage {
// 16 byte GUID identifying this as an InDesign database
// Must be: 0606EDF5-D81D-46e5-BD31-EFE7FE74B71D
char fGUID [16];
// 8 bytes; type of database (for example "DOCUMENT")
char fMagicBytes [8];
// Endian of object streams, 1=little endian, 2=big endian
char fObjectStreamEndian;
// Irrelevant stuff
char fIrrelevant1 [239];
// Master page sequence number. The master page with
// the larger value is the current master page
LittleEndianUnsignedInt64 fSequenceNumber;
// More irrelevant stuff
char fIrrelevant2 [8];
// The number of pages in the file. fFilePages * 4096
// is the absolute file offset in bytes of where any
// contiguous data storage would begin (provided this
// master page is the current master page).
LittleEndianUnsignedInt32 fFilePages;
// More irrelevant stuff
char fIrrelevant3 [3812];
};

Table 15 describes the fields in a master page.

 Table 15 — Master page fields

fGUID The first 16 bytes of each master page (and thus the first 16 bytes of the file)
are set to a GUID that identifies the file as an InDesign database.
The ID value of the master page is:
0606EDF5-D81D-46e5-BD31-EFE7FE74B71D

You must check for this value. If it is not present, something has changed in
an incompatible way in the file format and you can make no further
assumptions. You can search the entire file to find XMP metadata, but you
cannot add additional metadata beyond any padding provided in the packet.

fMagicBytes Contains an 8-byte sequence identifying the type of database file.
This can be useful if you want this information and cannot get it from the file
extension or type and creator. The 8 characters "DOCUMENT" designate a
database that contains an InDesign document and would normally have a
.indd extension.

©Adobe Systems Incorporated, 2016 37

1.4.2.4 Header and trailer structure

The following code shows the parts of the Header and Trailer of a contiguous object that are of interest with
respect to metadata:

struct ContiguousObjectStreamHeaderOrTrailer {
// 16 byte GUID identifying this as either a header or trailer
// Headers are: DE393979-5188-4b6c-8E63-EEF8AEE0DD38
// Trailers are: FDCEDB70-F786-4b4f-A4D3-C728B3417106
uint8 fGUID [16];
// UID of the corresponding object in the database
LittleEndianUnsignedInt32 fObjectUID;
// ClassID of the object. This object is externally
// writable if and only if fObjectClassID & 0x40000000 == 0x40000000.
LittleEndianUnsignedInt32 fObjectClassID;
// Length of the stream of data which is the persistent
// representation of the object. This is the size in
// bytes of the data between the header and trailer.
LittleEndianUnsignedInt32 fStreamLength;
// The ADLER32 checksum (see RFC1950) of the stream of
// data at the time it was last written by InDesign.
// InDesign only propagates externally writable contiguous
// objects back into the database when there is a checksum mismatch.
LittleEndianUnsignedInt32 fChecksum;
};

fObjectStreamEndian The byte order (big-endian or little-endian) in which integers in an object
stream are written, which depends on the creation platform of the database.
You must use this byte-order to interpret the packet-length value if you
enlarge XMP packets and rewrite the file format; see 1.4.2.2, “Rewriting XMP
data beyond the packet padding”.
You do not need it to find or interpret the XMP data; all integer values in the
storage structures themselves are uniformly little-endian.

fSequenceNumber The master page sequence number, a value that is incremented each time a
new master page is written.
To ensure data integrity, the current master page is written in an alternating
fashion to the first two pages in the file. You must discover which master
page of the pair is the current one by finding which has the larger sequence
number. This integer field, like the others in the storage structures, is written
in a standard little-endian form regardless of database creation platform.

fFilePages The number of 4 KB pages (including the master pages) in the transacted
database part of the file. To efficiently search for XMP metadata, seek to and
read from the absolute file position 4096 * fFilePages.

 Table 15 — Master page fields (Continued)

 38 ©Adobe Systems Incorporated, 2016

Table 16 shows the fields in the header and trailer

1.4.3 PSD (Adobe Photoshop)

An Adobe Photoshop® .psd file is divided into five sections. The file header and image resource sections are
important for metadata access. Multibyte integers are stored big-endian on all platforms.

Table 17 shows the file sections relevant to metadata:

 Table 16 — Fields in header and trailer of a contiguous object

fGUID A16-byte GUID identifying the structure as either a contiguous object header or
trailer. This is the only difference between a header and trailer, which otherwise
hold copies of the same information.
 The header ID value is:

DE393979-5188-4b6c-8E63-EEF8AEE0DD38

 The trailer ID value is:

FDCEDB70-F786-4b4f-A4D3-C728B3417106

fObjectUID The unique identifier of the original object in the database, whose persistent
representation has a contiguous copy here at the end of the file.
Because there is a one-to-one correspondence between object copies here at the
end of the file and objects stored in the main database, you are not free to add an
object containing an XMP packet if one does not exist. Also, removing a
contiguous object copy will not result in the deletion of the corresponding database
object when the file is next opened by InDesign; the best you could do to remove
all metadata is rewrite an existing object to contain an XMP packet that is well
formed but devoid of content.

fObjectClassID Information about the object type, a set of bit flags. The second most significant bit
of this field, when set, declares the object as externally writable.
If you find an object containing an XMP packet but this bit is not set, changes to
that object are not allowed and would not be propagated back into the database.
InDesign makes all XMP objects writable.

fStreamLength The number of bytes in the persistent representation of the object, which is also
the number of bytes between the header and the trailer.
If you are writing new headers and trailers because you are enlarging an XMP
object, you need to update this field in the header and trailer. For an XMP object,
this is the size of the XMP packet itself plus a 4-byte integer specifying the length
of the XMP packet; see 1.4.2.2, “Rewriting XMP data beyond the packet padding”.

fChecksum The ADLER32 (see RFC1950) checksum of the object stream (all data between
header and trailer) at the time InDesign wrote it. InDesign uses this when it opens
the database to check whether a contiguous object copy has changed, and the
changes need to be propagated into the primary part of the database.
If you rewrite an object, set the fChecksum field to 0xffffffff to ensure that a
checksum mismatch occurs and InDesign recognizes your changes.

 Table 17 — PSD file sections relevant to metadata

File header A 26-byte block; see Table 18. Only the signature and version fields affect
metadata.

Color mode data Contains a 4-byte length value, followed by the data.

©Adobe Systems Incorporated, 2016 39

TIFF, JPEG, and PSD share complex issues of how native metadata formats are stored; see 2.4, “Native metadata in digital
photography formats”.

Official documentation for the Photoshop file format is part of the Photoshop SDK. Information about the
Photoshop SDK is available from: http://partners.adobe.com/public/developer/photoshop/devcenter.html

Image resources Used to store nonpixel data associated with an image. Begins at file offset 30
(26+4) plus the length of the color mode data. See Table 19,
The section contains a 4-byte length value, followed by the data for all image
resources. The length value is the total length of the image resource section,
which is a sequence of individual image resources.
The internal structure of an image resource is described in 3.2.1, “Photoshop
image resources for metadata”. The TIFF and JPEG file formats can also contain
Photoshop image resources, although the content varies according to what file
format the resource is in.

 Table 18 — PSD file header block

Offset Length Description

0 4 File signature, must be "8BPS"

4 2 Version, 1 for normal files, 2 for "big" files. This distinction is primarily in the
maximum image dimensions. There is no distinction between them for metadata
parsing.

6 6 Reserved, must be zero

12 2 Number of channels

14 4 Image height in pixels

18 4 Image width in pixels

22 2 Number of bits per channel

24 2 Color mode

 Table 19 — PSD image resource blocks

Field Type Description

Type OSType Adobe applications always uses the signature 8BIM. Other values can appear,
and must be tolerated by readers.

ID 2 bytes ID = 1060 for XMP metadata.

Name PString There is no name value in XMP image resources.

Size 4 bytes Actual size of resource data. This does not include the Type, ID, Name, or Size
fields.

Data Variable Resource data, padded to make the size even (that is, an extra zero byte is
appended to the “raw” field value if needed).
This is the XMP packet, which must be encoded as UTF-8.

 Table 17 — PSD file sections relevant to metadata (Continued)

http://partners.adobe.com/public/developer/photoshop/devcenter.html

 40 ©Adobe Systems Incorporated, 2016

1.5 Markup formats

 1.5.1, “HTML”

 1.5.2, “XML”

1.5.1 HTML

XMP embedded in HTML should conform to one of the W3C recommendations for embedding XML in HTML.
For reference information, see the meeting report for the May 1998 W3C meeting: http://www.w3.org/TR/
NOTE-xh

XML can be embedded in a SCRIPT or XML element, placed in any legal location; the suggested location is the
end of the HEAD element. The content of the SCRIPT or XML element is the XMP packet.

The browser must recognize the SCRIPT or XML element so that text representing the value of RDF properties
is not displayed as page content. Using the XML element is preferred unless there are known incompatibilities
with older software; if so, the SCRIPT element is likely to be recognized.

1.5.1.1 Embedding XML in HTML

There are three approaches to embedding XML in HTML, as shown in the examples below. Two use the
SCRIPT element, and the third uses the XML element.

1.5.1.1.1Using the SCRIPT element and LANGUAGE attribute

<html>
<head>

<SCRIPT LANGUAGE="XML">
<?xpacket begin='' id='W5M0MpCehiHzreSzNTczkc9d'?>
<!-- The serialized RDF goes here. It is removed for brevity. -->
<?xpacket end='w'?>
</SCRIPT>

</head>
<body>
</body>

</html>

NOTE Adobe has noticed problems with using the SCRIPT element and LANGUAGE attribute in Microsoft Word 2000
running under Microsoft Windows XP: the body content cannot be displayed.

1.5.1.1.2Using the SCRIPT element and TYPE attribute

<html>
<head>

<SCRIPT TYPE="text/xml">
<?xpacket begin='' id='W5M0MpCehiHzreSzNTczkc9d'?>
<!-- The serialized RDF goes here. It is removed for brevity. -->
<?xpacket end='w'?>
</SCRIPT>

</head>
<body>
</body>

</html>

http://www.w3.org/TR/NOTE-xh

©Adobe Systems Incorporated, 2016 41

1.5.1.1.3Using the XML element

<html>
<head>

<XML>
<?xpacket begin='' id='W5M0MpCehiHzreSzNTczkc9d'?>
<!-- The serialized RDF goes here. It is removed for brevity. -->
<?xpacket end='w'?>
</XML>

</head>
<body>
</body>

</html>

1.5.2 XML

XMP metadata, because it is legal XML, can be directly embedded within an XML document. An XMP packet is
not intended to be a complete standalone XML document; therefore it contains no XML declaration. The XMP
packet can be placed anywhere within the XML document that an element or processing instruction would be
legal.

It is recommended that the file be encoded as Unicode using UTF-8 or UTF-16. This provides compatibility for
software that scans for XMP packets and parses just their content.

For reference information, see the XML specification: http://www.w3.org/TR/REC-xml

1.6 Document formats

 1.6.1, “PDF”

 1.6.2, “PS, EPS (PostScript® and Encapsulated PostScript)”

1.6.1 PDF

For PDF files, the XMP packet is embedded in a metadata stream contained in a PDF object (beginning with
PDF 1.4). The XMP must be encoded as UTF-8.

This is a partial example of XMP metadata embedded as an XMP packet, stored as a metadata stream:

1152 0 obj
<< /Type /Metadata /Subtype /XML /Length 1706 >>

stream
<?xpacket begin='' id='W5M0MpCehiHzreSzNTczkc9d'?>
<!-- The serialized RDF goes here. It has been removed for brevity. -->
<?xpacket end='w'?>

endstream
endobj

PDF files that have been incrementally saved can have multiple packets that all look like the “main” XMP
metadata. During an incremental save, new data (including XMP packets) is written to the end of the file without
removing the old. Top-level PDF dictionaries are also rewritten, so an application that understands PDF can
check the dictionary to find only the new packet.

Full documentation on metadata streams in PDF files is available in the PDF Reference, Version 1.5: http://
www.adobe.com/devnet/pdf/pdf_reference.html

NOTE The PDF specification (not this XMP Specification) is the authority for how XMP is embedded in PDF.

http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.w3.org/TR/REC-xml

 42 ©Adobe Systems Incorporated, 2016

1.6.2 PS, EPS (PostScript® and Encapsulated PostScript)

PostScript is a page description and programming language. Encapsulated PostScript (EPS), is a DSC-
conforming PostScript document with additional restrictions intended to make EPS files usable as a graphics
file format. EPS files are more-or-less self-contained, reasonably predictable PostScript documents that
describe an image or drawing, that can be placed within another PostScript document.

XMP metadata can be placed in PostScript® or EPS files, for use in either PostScript or PDF workflows. This
section describes how to place XMP into PostScript or EPS for both the outer document level (main XMP) and
for internal objects such as an image (object XMP). It also specifically discusses issues involving Acrobat®
Distiller®, since workflows often use Distiller to produce PDF from PostScript and EPS.

NOTE This does not imply that use of Distiller is necessary, or that other application issues do not exist.

There are three important “flavors” of PostScript files that can affect how XMP is written, found, and used. They
are:

 DSC PostScript (or just “PostScript”): PostScript conforming to the DSC conventions defined in Appendix
G of the PostScript Language Reference.

 Raw PostScript: PostScript following no particular structural conventions. The use of raw PostScript is
discouraged. As mentioned in 1.6.2.1.1, “Ordering of content”, a special DSC comment is required to
support fast and reliable location of the main XMP.

 EPS: PostScript conforming to the EPS conventions defined in Appendix H of the PostScript Language
Reference. EPS is a subset of DSC PostScript.

Because of common usage issues, document-level XMP should be written differently for PostScript and EPS.
Object-level XMP is written identically for PostScript and EPS.

The XMP in a PostScript/EPS file must be encoded as UTF-8.

1.6.2.1 Document-level metadata in PostScript

As with any file format, locating contained XMP in PostScript or EPS is most reliably done by fully processing
the file format. For PostScript, this means executing the PostScript interpreter. Packet scanning is not reliable
whenever a file contains multiple XMP packets, or object XMP without main XMP.

It is often worthwhile to find the main XMP and ignore (at least temporarily) object XMP. Interpretation of the
entire PostScript file to locate the main XMP can be very expensive. A hint and careful ordering are used to
allow a combination of XMP packet scanning and PostScript comment scanning to reliably find the main XMP.

To write document-level metadata in PostScript, an application must:

 Write the %ADO_ContainsXMP comment as described under 1.6.2.1.1, “Ordering of content”.

 Write the XMP packet as described under 1.6.2.1.2, “Document-level XMP in PostScript”.

To write document-level metadata in EPS, an application must:

 Write the %ADO_ContainsXMP comment as described under 1.6.2.1.1, “Ordering of content”.

 Write the XMP packet as described under 1.6.2.1.3, “Document-level XMP in EPS”.

Use of raw PostScript is discouraged specifically because it lacks the %ADO_ContainsXMP comment. If raw
PostScript must be used, the XMP must be embedded as described under 1.6.2.1.2, “Document-level XMP in
PostScript”.

©Adobe Systems Incorporated, 2016 43

1.6.2.1.1Ordering of content

Many large publications use PostScript extensively. It is common to have very large layouts with hundreds or
thousands of placed EPS files. Because PostScript is text, locating XMP embedded within PostScript in
general requires parsing the entire PostScript program, or at least scanning all of its text. Placed PostScript
files can be quite large. They can even represent compound documents, and might contain multiple XMP
packets. For PostScript files containing XMP at all, the entire file would have to be searched to make that
simple determination.

All of this presents performance challenges for layout programs that want to process XMP embedded in
PostScript. As a pragmatic partial solution, a special marker comment can be placed in the PostScript header
comments to provide advice about locating the main XMP. This marker must be before the %%EndComments
line.

The purpose of this marker is to tell applications consuming the PostScript whether a main XMP is present at
all, and how to look for the main XMP. The form of the XMP marker is:

%ADO_ContainsXMP: <option> ...

The marker must be at the beginning of a line. An option is a contiguous sequence of characters that does not
include spaces, tabs, linefeeds, or carriage returns; options are case sensitive. There must be no whitespace
before the colon. Applications should ignore options they do not understand.

There are three options defined at present. They are mutually exclusive and provide a hint about how to find
the main XMP. Note that the main XMP is not necessarily the document-level XMP:

 MainFirst: The main XMP is the first XMP packet in the file and is located near the front of the file. The
XMP should be in front of as much PostScript content as possible.

 MainLast: The main XMP is the last XMP packet in the file and is located near the back of the file. The
XMP should be behind as much PostScript content as possible.

 NoMain: There is no main XMP packet for the PostScript file. The file might still contain XMP packets, for
example within embedded EPS sections or attached to internal objects.

NOTE 1 The XMP location option applies to both the location of the main XMP in the file and to its position relative to other
object-level XMP. The main XMP packet must be before all other XMP if MainFirst is used; it must be after all other
XMP if MainLast is used. It is not necessary for the other XMP packets to be adjacent to the main packet.

NOTE 2 When EPS files are concatenated, it is necessary to provide a new set of PostScript header comments for the
aggregate, and optionally new a main XMP packet. Otherwise the XMP marker comment from the first EPS portion
would erroneously be taken to refer to the aggregate.

1.6.2.1.2Document-level XMP in PostScript

This section assumes that PostScript devices are level 2 or newer, and that Distiller version 6.0 or newer is
used. Compatibility issues are discussed in 1.6.2.1.5, “Compatibility with Distiller 5 for PostScript” and
1.6.2.1.6, “LanguageLevel 1 for PostScript and EPS”.

There are three main steps to setting up the document-level XMP:

1 Creating a PostScript stream object to contain the XMP.

2 Placing the XMP into the stream object.

3 Associating the XMP stream object with the document.

XMP metadata must be embedded in a PostScript file in a way that it will be recognized by software that scans
files for metadata, which means embedding the complete XMP packet. However, if that file were sent to a
PostScript output device, the packet data would cause PostScript errors and the job would fail. To be able to

 44 ©Adobe Systems Incorporated, 2016

handle arbitrary data, we need a procedure to read the XMP data from the current file, and discard the data if it
is not intended to be interpreted.

NOTE In what follows, we define some procedures in a private dictionary, such as:

privatedict /metafile_pdfmark {flushfile cleartomark} bind put

The name privatedict is for illustration purpose only. In the real product code, these procedures should be defined in
a unique dictionary so that several EPS files can be used in one document and slightly different versions of these
procedures can co-exist.

Here is an example that shows how to embed document-level XMP in PostScript. This example does not
include the required marker comment.

% ==
% We start with some Postscript prolog. This defines operators and
% procedures that we will use when processing the XMP metadata.
% Define pdfmark to cleartomark, so the data is discarded when consumed
% by a PostScript printer or by Distiller 4.0 or earlier. All following
% references to “privatedict” should be changed to a unique name to
% avoid potential conflicts (see 1.6.2.1.4, “Avoiding name conflicts”).
/currentdistillerparams where
{pop currentdistillerparams /CoreDistVersion get 5000 lt} {true} ifelse
{privatedict /pdfmark /cleartomark load put

privatedict /metafile_pdfmark {flushfile cleartomark} bind put}
{privatedict /metafile_pdfmark {/PUT pdfmark} bind put} ifelse
% ==
% We now create the stream containing the XMP metadata. This must follow
% the prolog shown above, but does not need to be adjacent to it.
% Create a pdfmark named stream object to hold the data. As with the
% privatedict above, use of a unique name is recommended, not literally
% my_metadata_stream_123. The name of this stream is local to the
% Postscript program, it has no outside significance.
% First define the stream object, then read the XMP packet into the
% stream, finally attach the stream as the main XMP.
% The “&&end XMP packet marker&&” comment is significant, it terminates
% the reading of the XMP packet.
% First: Create the XMP metadata stream object and say that it is XMP.
[/_objdef {my_metadata_stream_123} /type /stream /OBJ pdfmark
[{my_metadata_stream_123} 2 dict begin

/Type /Metadata def /Subtype /XML def currentdict end /PUT pdfmark
% Second: Fill the stream with the XMP packet.
[{my_metadata_stream_123}

currentfile 0 (% &&end XMP packet marker&&)
/SubFileDecode filter metafile_pdfmark

... XMP packet goes here ...
% &&end XMP packet marker&&
% Third: Attach the stream as the main XMP metadata stream.
[{Catalog} {my_metadata_stream_123} /Metadata pdfmark

1.6.2.1.3Document-level XMP in EPS

Embedding XMP inside EPS is very similar to PostScript; however, there are issues raised by the common
practice of embedding EPS within other EPS or PostScript. The notion of document-level XMP in EPS really
means outermost XMP in the EPS. This will be document-level XMP in the PDF if the EPS is distilled alone.
This will be appropriate marked content if the EPS is embedded in other EPS or PostScript.

The solution for EPS requires that:

©Adobe Systems Incorporated, 2016 45

 The XMP must be placed before all EPS content (PostScript drawing commands).

 The /BDC and /EMC pdfmarks must be used to bracket the EPS content.

 The third XMP setup step uses different PostScript code.

Here is an abbreviated example, modified from the previous example:

%%EndPageSetup
[/NamespacePush pdfmark
... Do all of the XMP setup as above, up to step 3 ...
% Third: Attach the stream to the Marked Content dictionary.
% All drawing commands must be between the /BDC and /EMC operators.
[/Document 1 dict begin

/Metadata {my_metadata_stream_123} def currentdict end /BDC pdfmark
[/NamespacePop pdfmark
... All drawing commands go here ...
%%PageTrailer
[/EMC pdfmark

1.6.2.1.4Avoiding name conflicts

In the samples, we used the name {my_metadata_stream_123} and suggested that some form of unique name
be used. The recommended approach is to generate a typical UUID and strip out all but the significant
alphanumeric characters. Use this as a suffix to the name.

An alternate solution is to use NamespacePush and NamespacePop pdfmarks. This is also the recommended
solution in the Pdfmark Reference Manual (it is accessible from Distiller’s Help menu.) This is preferable if
possible, but might require large and untenable separation of the push and pop.

It is important to put all pdfmarks using the named objects in the same block bracketed by NamespacePush
and NamespacePop pair; for example, the following PostScript code is bad:

[/NamespacePush pdfmark
[/_objdef {my_metadata_stream_123} /type /stream /OBJ pdfmark
[{my_metadata_stream_123} 2 dict begin

/Type /Metadata def /Subtype /XML def currentdict end /PUT pdfmark
[{my_metadata_stream_123}

currentfile 0 (% &&end XML Packet marker&&)
/SubFileDecode filter metafile_pdfmark

XML Packet goes here ...
% &&end XML Packet marker&&
[/NamespacePop pdfmark
% At this point, the name {my_metadata_stream_123} is no longer usable.
% next line will cause “undefined” error:
[{Catalog} {my_metadata_stream_123} /Metadata pdfmark

1.6.2.1.5Compatibility with Distiller 5 for PostScript

Acrobat Distiller version 5 was the first to include XMP support, but it does not support the /Metadata pdfmark.
There is no easy way to attach document-level XMP with Distiller 5. It will ignore the /Metadata pdfmark,
without signaling a PostScript error.

 46 ©Adobe Systems Incorporated, 2016

1.6.2.1.6LanguageLevel 1 for PostScript and EPS

The SubFileDecode filter became available in PostScript LanguageLevel 2. If the PostScript or EPS containing
XMP must be processed by PostScript LanguageLevel 1 devices, such as older printers, another approach
must be used to read the XMP into the stream object.

With PostScript LanguageLevel 1, there are at least two approaches: using readstring to read in the whole
XMP packet, or readline to read in the XMP packet data line by line until an end marker is found.

We present the readline approach here. The readline approach solves two problems that exist for readstring:

 We do not have to know the exact size of the whole packet, just need to know the maximum length of the
lines.

 The exact length of an XMP packet may change if the PostScript/EPS file is re-saved by a text editor with
different line ending convention, CR, LF, or CRLF.

Here is an example showing how to use the readline approach for PostScript. It is very similar overall to the
earlier example, differing only in step 2 and related prolog:

% ==
% We start with some Postscript prolog. This defines operators and
% procedures that we will use when processing the XMP metadata.
% Define pdfmark to cleartomark, so the data is discarded when consumed
% by a PostScript printer or by Distiller 4.0 or earlier. All following
% references to “privatedict” should be changed to a unique name to
% avoid potential conflicts. This is discussed later in the section
% “Avoiding Name Conflicts”.
/currentdistillerparams where
{pop currentdistillerparams /CoreDistVersion get 5000 lt} {true} ifelse
{privatedict /pdfmark /cleartomark load put} if
% Define another procedure to read line by line from current file until
% marker line is found. The maximum line length is used to create a
% temporary buffer for reading the XMP lines.
% On stack: [{name} maxLineLength MarkerString
privatedict /metastring_pdfmark
{ 2 dict begin
/markerString exch def string /tmpString exch def
{ currentfile tmpString readline pop
markerString anchorsearch
{pop pop cleartomark exit}
{3 copy /PUT pdfmark pop 2 copy (\n) /PUT pdfmark} ifelse
} loop
end
}bind put
% ==
% We now create the stream containing the XMP metadata. This must follow
% the prolog shown above, but does not need to be adjacent to it.
% Create a pdfmark named stream object in PDF to hold the data. As with
% privatedict above, use of a unique name is recommended, not literally
% my_metadata_stream_123. The name of this stream is local to the
% Postscript program, it has no outside significance.
% First define the stream object, then read the XMP packet into the
% stream, finally attach the stream as the main XMP.
% The <LineLength> below must be replaced with a value larger than the
% longest line in the XMP packet. There is no safe and general way to
% exactly determine this, the XMP can be modified in place after the
% Postscript is written and could legally all be on one line.
% The overall length of the packet cannot change though. You should set
% the <LineLength> to the lesser of the packet size and 65500. The upper

©Adobe Systems Incorporated, 2016 47

% limit keeps this within the 64 KB limit of PostScript strings.
% The “&&end XML Packet marker&&” comment is significant, it terminates
% the reading of the XMP packet.
% First: Create the XMP metadata stream object and say that it is XMP.
[/_objdef {my_metadata_stream_123} /type /stream /OBJ pdfmark
[{my_metadata_stream_123} 2 dict begin

/Type /Metadata def /Subtype /XML def currentdict end /PUT pdfmark
% Second: Read the XMP packet into the stream.
[{my_metadata_stream_123} <LineLength>

(% &&end XMP packet marker&&) metastring_pdfmark
... XMP packet goes here ...
% &&end XMP packet marker&&
% Third: Attach the stream as the main XMP metadata stream.
[{Catalog} {my_metadata_stream_123} /Metadata pdfmark

1.6.2.1.7Traditional PDF metadata and XMP

The discussion here is primarily about explicitly embedding XMP in PostScript and EPS to provide metadata.
However, when Distiller is used the document-level metadata in the PDF file can contain information that
comes from other sources than the XMP embedded in the PostScript. This is metadata that traditionally went
into the PDF document information dictionary, and with the advent of XMP is replicated in the PDF’s document-
level XMP.

There are two other methods for putting metadata in a PostScript file so Distiller will put it in the PDF document
info dictionary and also create and embed an XMP packet for that data in the PDF document. You can use:

 DSC (Document Structuring Conventions) comments. The DSC comments are processed only if DSC
parsing is enabled, that is, only if the job file contains the following line:

/ParseDSCCommentsForDocInfo true

 DOCINFO pdfmark command. Information on pdfmark is available from the Distiller application Help menu,
under “pdfmark Guide.”

If more than one of the three possible sources of metadata for the PDF file are present, then a property value in
the document-level XMP is taken from the first of these sources in the PostScript used to create the PDF that
contains the property:

 Explicit document-level XMP.

 Explicit document info dictionary.

 DSC comments.

Because the pdfmark command is more reliable than DSC comments, many applications use it to set DocInfo
properties for a PDF document. The following is an example of PostScript code, created by FrameMaker®,
which illustrates the use of the DOCINFO pdfmark operator:

/Creator (FrameMaker 6.0)
/CreationDate (D:20020214144924)
/ModDate (D:20020215142701)
/Author(John Doe)
/Title (Processing XMP Data in EPS Files)
/Subject (XMP)
/Keywords (XMP, pdfmark)
/DOCINFO pdfmark

Distiller will place these seven properties – plus “Producer” – into the resulting PDF file in two places: the
document information dictionary and document-level Metadata as an XML Packet. The Producer is the product

 48 ©Adobe Systems Incorporated, 2016

name, for example “Acrobat Distiller 5.0 (Windows).” It is possible to add other Key/Value pairs to PDF DocInfo,
but they are not added to the document-level Metadata in Distiller 5.0.

Care must be taken if the file might be sent to a PostScript interpreter instead of to Distiller. Some PostScript
interpreters may not recognize the pdfmark command, for example those in older printers. One way to avoid
problems is to conditionally define the pdfmark operator to the “cleartomark” operator. This is shown in the
earlier examples.

1.6.2.2 Object-level metadata in PostScript

Object-level XMP is written identically for PostScript and EPS.

Metadata streams can be attached to specific objects in a PostScript file using the pdfmark operator. This is
identical to the document-level PostScript method (see 1.6.2.1.2, “Document-level XMP in PostScript”), except
that in step 3 the stream containing the XMP metadata is attached to the object. An example follows showing
this for an image:

% ==
% We assume that the XMP stream has been defined as shown earlier. All
% but the third step, defining the stream as a metadata stream. We also
% assume that the image has been defined as {myImage_123}. Again, a
% unique name should be used.
% The third step is replaced with one that associates the XMP metadata
% with the image. Since this must be located after both the image and
% XMP streams, it might not be adjacent to the other XMP parts. See the
% ordering issues discussed in “Ordering of Content”.
% Third: Attach the XMP metadata stream to the image.
[{myImage_123} <</Metadata {my_metadata_stream_123}>> /PUT pdfmark

The approach shown here is compatible with all PostScript devices. That is, no additional changes are needed
to ensure that level 1 devices will properly ignore the XMP beyond those already mentioned, and Distiller 5 and
later will attach the XMP to the associated object in the PDF file.

Although Distiller 5 will attach the XMP to the associated object in the PDF file, the XMP stream in the PDF will
be Flate-compressed. This makes the object XMP packet in the PDF invisible to external packet scanners. The
XMP will be visible to software processing the PDF format and decompressing the stream. Distiller 6 and later
do not compress the XMP packet stream.

1.6.3 UCF (Universal Container Format)

UCF is a general-purpose container technology. As a general container format, UCF collects a related set of
files into a single-file container. UCF can be used to collect files in various document and data formats and for
classes of applications. The single-file container enables easy transport of, management of, and random
access to, the collection.

UCF defines rules for how to represent an abstract collection of files (the “abstract container”) into physical
representation within a Zip archive (the “physical container”). The rules for Zip containers build upon and are
backward compatible with the Zip technology used by Open Document Format (ODF) 1.0. UCF is designed to
provide a set of lightweight constraints on the use of Zip.

The position of XMP within UCF is defined in part 3.5 of the specification:

3.5 META-INF

All valid UCF Containers MAY include a directory called “META-INF” at the root level of the container file system.
This directory contains the files specified below that describe the contents, metadata, signatures, encryption,
rights and other information about the contained publication.

©Adobe Systems Incorporated, 2016 49

Specifically, the META-INF/metadata.xml file contains XMP metadata:

3.5.3 Metadata – META-INF/metadata.xml (Optional)

A file with the reserved name “metadata.xml” within the “META-INF” directory at the root level of the container file
system may appear in a valid UCF container. This file, if present, MUST be used for container-level metadata. In
version 1.0 of OCF, no such container-level metadata is specified.

If the “META-INF/metadata.xml” file exists, its contents MUST be valid XML with namespace-qualified elements to
avoid collision with future versions of OCF that MAY specify a particular grammar and namespace for elements
and attributes within this file.

Adobe-defined formats based on UCF MUST use XMP to specify metadata.

For further information about UCF, see:
 http://labs.adobe.com/technologies/mars/?tab:details=1#documentation

http://labs.adobe.com/technologies/mars/?tab:details=1#documentation

 50 ©Adobe Systems Incorporated, 2016

©Adobe Systems Incorporated, 2016 51

2 Handling native metadata

There is a generic policy for how XMP handles native metadata, which covers common practices that should
apply to all file formats. However, because application support for XMP long preceded this policy, there are
historic and format-specific cases where the generic policy is not followed.

 The mappings for PDF are discussed in 2.2, “Native metadata in PDF files”.

 The individual mappings for dynamic media formats are discussed in 2.3, “Native metadata in dynamic
media formats”.

 The common still-image formats (JPEG, TIFF, and PSD) have multiple forms of native metadata; those
additional complications are described in 2.4, “Native metadata in digital photography formats”, and
complete details are given in 3, “Digital photography native metadata”.”

2.1 Reconciling metadata in different formats

Key to all native metadata handling is the notion of reconciling the native metadata with the XMP. Native
metadata information can be imported into XMP, and XMP information can be exported to native formats. The
generic policy defines when reconciliation happens and how values are transformed. The intent is to preserve
the most recent and informative metadata, while allowing the use of both old and new applications.

The basic programming model is described as though the XMP is the only active metadata at runtime:

 When a file is opened, all existing metadata is reconciled into XMP. This does not necessarily mean that
data is imported to XMP; an import operation only happens if the native metadata appears to be newer
than the XMP.

 The XMP is modified as appropriate while the file is open.

 When the file is saved, the relevant XMP is exported to native formats, and appropriate forms are written to
the file.

The values for all forms stored in the file must be consistent. Existing forms must be updated or removed when
a value changes. Which forms are appropriate to write varies with the file format, metadata form, and even
specific metadata items. The broadest policy is to write all forms in the interest of maximum compatibility. In
some cases there may be mandates that only specific "authoritative" forms be written.

NOTE This is a conceptual programming model meant to aid discussion of the issues of policy. The XMP specification
does not require applications that support XMP to follow this specific model.

2.1.1 Text encodings in import and export

It is important to understand text encoding issues before getting into the details of import and export.

The XMP is always written using Unicode, generally UTF-8 although which Unicode does not matter. What
does matter is that Unicode is a single text encoding for all languages. The most recent Unicode standard
defines over a million characters.

Native metadata often uses more restricted encodings such as 7-bit ASCII, ISO Latin-1, or JIS. In some cases
it even uses an ill-defined "local" encoding, the default encoding in effect on a user's machine at any particular
moment. There is usually nothing in a file telling what the local encoding was when the file was written, and
there is usually no reliable algorithm to determine the local encoding from arbitrary input.

The use of non-Unicode encoding for native metadata means that information can be lost when exporting XMP
to native formats. The text encoding used by the native format might not support some of the Unicode
characters in the XMP. This typically comes across as question marks in the native format for unsupported
characters. Information would be lost from the Unicode if that native format were then imported back to the
XMP, downgrading the XMP value.

 52 ©Adobe Systems Incorporated, 2016

The XMP metadata can also be corrupted by interactions with locally encoded native metadata. Consider the
case of a file saved in Japan using JIS for the local encoding, that is then sent to the US, where Latin-1 is the
local encoding. Suppose, for example, that the file is first processed in the US by an application that does not
understand XMP and makes the native metadata appear newer than the XMP. If the file is then opened in a
XMP-aware application, the native metadata is imported to the XMP. At this time, the JIS values from Japan are
interpreted as Latin-1, then converted to Unicode and placed in the XMP. The result is complete garbage
(sometimes called “mojibake”) in the XMP, which is then exported back to the native format when the file is
saved.

The native-metadata reconciliation policies are designed to minimize these problems.

2.1.2 Native metadata export and import

NOTE The recommended native metadata import and export policy has been modified from that given in earlier versions
of the XMP specification. The current policy is inspired by the Metadata Working Group image metadata guidelines.

The choice of metadata reconciliation policy involves several factors and tradeoffs. The goal is to maximize
compatibility with a wide variety of software while still being reasonable to implement. One tenet is that XMP-
aware software should be smarter and more robust than presumably older XMP-unaware software.

The fundamental requirement for export is that all forms of a metadata item stored in a file must be
synchronized. If this is not done then later readers cannot distinguish unsynchronized update from later edits to
a subset of forms. This does not mean that values must be fully identical; for example, there can be differences
due to text versus binary representation, text formatting, text encoding, native metadata length limitations, and
so on. The general policy is to export from the XMP to other forms written to the file, with appropriate
conversions as part of the export process. Existing native metadata items must be either updated or deleted
when the value changes.

Deciding which forms of a metadata item to write is largely a matter of balancing software compatibility,
potential for confusion, and metadata expressiveness. Any time more than one form is written, there is a
software burden for reconciliation when reading and synchronization when writing. There may be important
older applications that recognize only native metadata. On the other hand, XMP is often more expressive than
native formats, providing Unicode values without length limits and data modeling features such as language
alternatives.

Two reasonable positions in the metadata form spectrum are:

 Where expressiveness is not an issue and significant native metadata practice is in place, write only the
native form as the one and only authoritative form.

 Where expressiveness is an issue, write the native and XMP forms.

When multiple forms might be written, robust readers must locate all forms and select the most appropriate
form. This is a concession to the existence of non-compliant writers, software that does not ensure all existing
forms are synchronized. The most appropriate form is preferably the most recently written. If this cannot be
conveniently determined, then a preference for the native form ensures compatibility with existing XMP-
unaware software.

There will generally be a bias in favor of one kind of non-compliant software over others. For example, if the
native and XMP values differ, is it because an XMP-unaware application modified the native value, or because
an XMP-only application modified the XMP?

Determining when values differ can also be complicated by representation and encoding issues. There might
be loss of information when exporting XMP values to a native form. To avoid this, a reader should use the XMP
value to predict the native value, then compare that with the actual native value.

©Adobe Systems Incorporated, 2016 53

2.1.3 Use of native metadata digests

A digest may be used as an optimization to detect change in a native metadata block. This works best when the
native metadata is a contiguous block and unlikely to change. Compute the digest when updating a file, after
formatting the updated native metadata. Save the digest in the XMP or in some other convenient manner.
When opening a file, compute a new digest and compare it to the saved one. If they match, the native metadata
is unchanged and can be ignored for reconciliation. If they differ, then something has changed and the per-item
reconciliation must be applied. Items that are stored only in a native form must, of course, be imported even if
the digest matches.

2.2 Native metadata in PDF files

PDF metadata is stored with a document in the Info dictionary. XMP metadata properties are mapped to
defined document Info dictionary keys.

In PDF 1.5, properties are mapped as shown in Table 20:

2.2.1 User-defined keys

In addition to these correspondences, PDF defines an XMP namespace (pdfx:) dedicated to representing any
user-defined keys present in the Info dictionary. The names of such properties can contain arbitrary Unicode
characters; XMP names, however, are constrained to contain only XML Name characters. The following
escape convention applies in mapping between the PDF names and the XMP names:

 Characters that are in the Basic Multilingual plane but are not XML Name characters are represented by
the character U+2182 (roman numeral ten thousand), followed by four characters from among the

 Table 20 — Mapping of PDF keys to XMP properties

PDF Document Info
key

XMP metadata
property Mapping notes

Title dc:title The Title key maps to the first of the alternatives given in
the dc:title property.

Author dc:creator The Author key maps to the first of the creators listed in
the dc:creator field.
Alternatively (available by user action in the Acrobat 7 UI),
maps to a concatenated list of the creators listed in the
dc:creator field separated by a standard separator
character such as semicolon.

Subject dc:description The Subject key maps to the first of the alternatives given
in the dc:description property.

Keywords pdf:Keywords The XMP properties dc:subject and pdf:Keywords have
historically been separate. In Acrobat 7, Adobe allows
user intervention to set them to corresponding values,
where the value in the PDF schema (and in the DocInfo) is
set to a delimiter-separated concatenation of the bag of
values found in the dc:subject value.

Creator xmp:CreatorTool

Producer pdf:Producer

CreationDate
ModDate

xmp:CreateDate
xmp:ModifyDate

Info dictionary dates are in ISO/IEC 8824 format, XMP
dates are in ISO 8601 format.

Trapped pdf:Trapped The Trapped key is Boolean.

 54 ©Adobe Systems Incorporated, 2016

hexadecimal digits; these four characters spell out the Unicode code point of the character being escaped.
The hexadecimal digits are case-insensitive; that is any combination of a-f and A-F is allowed.

 Characters having Unicode code points beyond the Basic Multilingual plane have their high, then low,
surrogate parts spelled out in this fashion by two consecutive five-character sequences.

2.2.2 Resolving metadata conflicts

If a PDF document contains both an Info dictionary and document-level XMP metadata, it is possible for the
representations to get out of synchronization (for example, if Info values are set by software that is unaware of
the XMP representation). In order to reconcile such differences, Adobe Acrobat compares the time given by the
Info ModDate value with the time given by the xmp:MetadataDate value.

 If the Info value is more recent, all the Info dictionary entries supersede their corresponding XMP
properties

 Otherwise, all the XMP values are assumed to be in force.

2.3 Native metadata in dynamic media formats

The following dynamic media formats can contain native metadata which must be reconciled with XMP:

 Native metadata in ASF (WMA, WMV) formats

 Native metadata in IFF/RIFF (AVI, WAV, AIFF) formats

 Native metadata in MP3

 Native metadata in digital photography formats

Native metadata in these formats is generally more straightforward than for still image formats; the formats and
details of individual properties are both discussed here.

2.3.1 Native metadata in ASF (WMA, WMV) formats

The ASF Header Object contains several nested objects that have native metadata fields mapped to XMP:

All native metadata strings are presumed to be little endian UTF-16. The value contains no U+FEFF BOM.
Values written to the native format should have a 16-bit NULL terminator. The terminator should be treated as
optional when importing to XMP, and stripped if present (not propagated to XMP).

 Table 21 — Mapping of ASF objects to XMP properties

ASF XMP

File Properties Object, Creation Date xmp:CreateDate

This property is ignored, neither imported nor exported, if the Broadcast flag is set. The ASF Creation
Date is a UTC time. Recommended policy is to add an appropriate time zone offset in the XMP value,
using the local time zone as a default.

Content Description Object, Title dc:title['x-default']

Content Description Object, Author dc:creator[*]

The native value is read as a single string of semicolon separated values, mapped to the dc:creator
array in XMP.

Content Description Object, Copyright dc:rights['x-default']

Content Description Object, Description dc:description['x-default']

Content Branding Object, Copyright URL xmpRights:WebStatement

©Adobe Systems Incorporated, 2016 55

The ASF specification says that the Copyright and License URL values must be ASCII. They should be taken
as is when importing to XMP, doing a normal UTF-16 to UTF-8 conversion. When exporting from XMP each
byte that is not normal "display" ASCII should be replaced with '?'. The accepted range is 0x21..0x7E.

If an object has to be created to hold a native item, default values (generally 0) should be written for unknown
portions of the object.

An MD5 digest of the native metadata is kept in the XMP as asf:NativeDigest. The asf: namespace URI is
"http://ns.adobe.com/asf/1.0/". Only the MD5 digest value should be used for ASF comparisons.

The MD5 digest is computed using the value of the native items, accumulated in the order listed above. The
digest is written as an optional series of comma-separated small integers, a semicolon, and a 32-character
hexadecimal string for the actual digest value. A leading semicolon is present when the initial small integers are
omitted. (The small integers are C enum values indicating the native items actually present when written. They
are ignored since this is not in keeping with preferred native-metadata policy.)

2.3.2 Native metadata in IFF/RIFF (AVI, WAV, AIFF) formats

Formats based on IFF include RIFF, on which AVI and WAV are based, and AIFF.

2.3.2.1 Native metadata specific to AVI

AVI files can have four pieces of reconciled native metadata in a LIST/Tdat container chunk:

Native metadata in a LIST/INFO container chunk is defined by Multimedia Programming Interface and Data
Specifications 1.0.

This subset of the LIST/INFO container chunk is reconciled with XMP:

 Table 22 — Mapping of AVI medata to XMP properties

AVI XMP

tc_O xmpDM:startTimecode/xmpDM:timeValue

tc_A xmpDM:altTimecode/xmpDM:timeValue

rn_O xmpDM:tapeName

rn_A xmpDM:altTapeName

 Table 23 — Mapping of AVI LIST/INFO to XMP properties

AVI XMP

IART xmpDM:artist

ICMT xmpDM:logComment

ICOP dc:rights["x-default"]

ICRD xmp:CreateDate

IENG xmpDM:engineer

IGNR xmpDM:genre

INAM dc:title["x-default"]

ISFT xmp:CreatorTool

 56 ©Adobe Systems Incorporated, 2016

The native values are all written as UTF-8.

There is currently no digest in AVI to detect changes in the native metadata.

2.3.2.2 Native metadata specific to WAV

The WAV format is covered by the base RIFF specification (Multimedia Programming Interface and Data
Specifications 1.0) and the Exif 2.2 specification, with this exception: WAV files can have a top level DISP
chunk, for which there appears to be no public specification. The DISP chunk's content is a 32-bit little-endian
integer type code, followed by a null terminated string. The only recognized type code is 1. The top-level DISP
chunk is reconciled with dc:title["x-default"].

Metadata in a LIST/INFO container chunk is defined by Multimedia Programming Interface and Data
Specifications 1.0. This information is also contained in the Exif 2.2 specification, in section 5.6 for "Exif audio
files".

Some properties are mapped to the transient namespace "http://ns.adobe.com/riff/info" with the preferred prefix
riffinfo. These property chunks are imported into XMP for runtime access and updated from XMP. The XMP
mappings are not stored in the file.

For WAV files, this subset of the LIST/INFO metadata is reconciled with XMP:

IMED dc:source

ISRF dc:type

 Table 24 — Mapping of WAV LIST/INFO to XMP properties

WAV XMP

IARL riffinfo:archivalLocation

IART xmpDM:artist

ICMS riffinfo:commissioned

ICMT xmpDM:logComment

ICOP dc:rights["x-default"]

ICRD xmp:CreateDate

IENG xmpDM:engineer

IGNR xmpDM:genre

IKEY dc:subject

IMED dc:source

INAM riffinfo:name (language alternative)
NOTE Older versions of this specification wrongly mapped INAM to xmpDM:album and

later specifications changed the mapping to dc:title.

In order to maintain backwards compatibility INAM values should additionally
imported to dc:title, but only if there is no previous value for dc:title in the XMP.

IPRD riffinfo:product

 Table 23 — Mapping of AVI LIST/INFO to XMP properties (Continued)

AVI XMP

©Adobe Systems Incorporated, 2016 57

The BEXT chunk, which comes as part of the BWF specification (http://tech.ebu.ch/docs/tech/tech3285.pdf) is
mapped to XMP using the transient namespace "http://ns.adobe.com/bwf/1.0/". The prefered prefix is "bext".
Values are stored only in the BEXT chunk itself, not in the XMP Packet.

 The BEXT chunk has a fixed length, so empty properties are written as zeros. This shows the XMP mapping:

The iXML metadata chunk (http://www.gallery.co.uk/ixml/) is also imported to XMP. iXML is an open standard
for the inclusion of location sound metadata in Broadcast Wave audio files. iXML uses the XML (eXtensible
Markup Language) standard for communication of tagged metadata. All fields are optional when creating an
iXML. Some properties are duplicated between the iXML and the BWF Bext chunk. In case of a conflict, BWF
bext is given preference.

The XMP Mapping is as follows::

ISBJ dc:description

ISFT xmp:CreatorTool

ISRC riffinfo:source

ISRF dc:type

ITCH riffinfo:technician

 Table 25 — Mapping of BEXT chunk properties to XMP

BEXT chunk property XMP

Description bext:description

Originator bext:originator

Originator Reference bext:originatorReference

OriginationDate bext:originationDate

OriginationTime bext:originationTime

TimeReferenceLow bext:timeReference

TimeReferenceHigh bext:timeReference (adds to prior field <<32 bit)

Version bext:version

UMID bext:umid (encoded as a 128 byte hex string)

CodingHistory bext:codingHistory

 Table 26 — Mapping of iXML chunk properties to XMP

iXML Chunk Property XMP

<TIMECODE_RATE>
<TIMECODE_FLAG>

xmpDM:startTimecode / xmpDM:timeFormat

 Table 24 — Mapping of WAV LIST/INFO to XMP properties (Continued)

WAV XMP

http://tech.ebu.ch/docs/tech/tech3285.pdf

 58 ©Adobe Systems Incorporated, 2016

The AES cart chunk is defined in "AES46-2002 (r2007)". The abstract says it is "a convention for
communicating basic radio traffic and continuity data via a dedicated chunk embedded in broadcast WAVE file
compliant WAVE files.". The specification can be found at http://www.aes.org/publications/standards/
search.cfm?docID=41

Like BEXT, the cart chunk is imported into XMP for run-time access and updated from XMP. The XMP
mappings are not stored in the file. The XMP namespace for the cart chunk is "http://ns.adobe.com/aes/cart"
and the prefered prefix is "AEScart".

The XMP properties are simple, all text except one integer. Although the AES cart specification calls for ASCII
text, local encoding is used to match the behavior for BEXT. All but one of the text fields have fixed length in the
cart chunk. The cart text is null padded as necessary, but may fill the fixed length field with no final null. All of
the text fields are imported into the XMP with only local-to-Unicode conversion; there is no other value
conversion even for things like date/time values. The XMP text is converted to local encoding when updating

<TIMESTAMP_SAMPLES_SINCE
_MIDNIGHT_HI>
<TIMESTAMP_SAMPLES_SINCE
_MIDNIGHT_LO>
<TIMESTAMP_SAMPLE_RATE>

xmpDM:startTimecode / xmpDM:timeValue

<FILE_SAMPLE_RATE> xmpDM:audioSampleRate

<AUDIO_BIT_DEPTH> xmpDM:audioSampleType

<TAPE> xmpDM:tapeName

<SCENE> xmpDM:scene

<TAKE> xmpDM:takeNumber

<NOTE> xmpDM:logComment

<PROJECT> xmpDM:projectName

<CIRCLED> xmpDM:good

<BWF_DESCRIPTION> bext:description

<BWF_ORIGINATOR> bext:originator

<BWF_ORIGINATOR_REFERENC
E>

bext:originatorReference

<BWF_ORIGINATION_DATE> bext:originationDate

<BWF_ORIGINATION_TIME> bext:originationTime

<BWF_TIME_REFERENCE_LOW
>
<BWF_TIME_REFERENCE_HIGH
>

bext:timeReference

<BWF_VERSION> bext:version

<BWF_UMID> bext:umid

<BWF_CODING_HISTORY> bext:codingHistory

 Table 26 — Mapping of iXML chunk properties to XMP

iXML Chunk Property XMP

http://www.aes.org/publications/standards/search.cfm?docID=41
http://www.aes.org/publications/standards/search.cfm?docID=41

©Adobe Systems Incorporated, 2016 59

the cart chunk, and then truncated to fit if needed. The XMP text is otherwise exported as-is; the client
application is responsible for enforcing any formatting (as in the StartDate "YYYY-MM-DD" format).

The XMP properties are runtime-only. Existing AEScart: properties are deleted when reading, and recreated
from a cart chunk if present. The XMP property is not created if the first byte of the cart chunk text field is zero,
or missing entirely in the case of the TagText field. The presence of any AEScart: properties causes the cart
chunk to be updated when the file is updated.The chunk is created if necessary, then removed from the stored
XMP. The written cart chunk has zero bytes for undefined portions, including a singe zero byte for the TagText
variable length field. An existing cart chunk grows if the output TagText value needs more room.

This shows the XMP mapping of cart properties:

Non-XMP metadata values are all written as UTF-8, and win over XMP values in case of a value mismatch.
Older implementations used a 128-bit MD5-formatted digest string to detect changes in some of the non-XMP
metadata properties; modern implementations, however, no longer compute or check digests.

 Table 27 — Mapping of cart chunk properties to XMP

Cart properties XMP

Version AEScart:Version

Title AEScart:Title

Artist AEScart:Artist

CutID AEScart:CutID

ClientID AEScart:ClientID

Category AEScart:Category

Classification AEScart:Classification

OutCue AEScart:OutCue

StartDate AEScart:StartDate

StartTime AEScart:StartTime

EndDate AEScart:EndDate

EndTime AEScart:EndTime

ProducerAppID AEScart:ProducerAppID

ProducerAppVersion AEScart:ProducerAppVersion

UserDef AEScart:UserDef

LevelReference AEScart:LevelReference

PostTimer AEScart:PostTimer This is a sorted array of structs. Every array element is
a struct of AEScart:Usage (a FOURCC String) and AEScart:Value (an
unsigned int32.)

URL AEScart:URL

TagText AEScart:TagText

 60 ©Adobe Systems Incorporated, 2016

2.3.2.3 Native metadata in AIFF

AIFF text chunks are optional and contain metadata information that can be mapped to XMP:

Native values are all written as UTF-8.

2.3.3 Native metadata in MP3

The ID3v1 tag is always written, regardless of whether it existed previously. If xmpDM:trackNumber is set in
the XMP data model, it is written as ID3v1.1; otherwise it is written as ID3v1 (see http://www.id3.org/ID3v1).

An ID3v1 tag is only imported if an ID3v2 tag (which includes the XMP frame) is not present at all. An ID3v1 tag
is assumed to be ASCII. However for interoperability, values above 128 are tolerated and interpreted as Latin-
1.On import, the following ID3v1 frames are mapped to XMP:

ID3v2.2, ID3v2.3 and ID3v2.4 tags are all supported. The tag version in an existing MP3 file is not changed. If
an ID3 tag must be created, it is version 2.3.

In v2.2, frames are identified by 3-character codes. In later versions, frames are identified by 4-character
codes. The following native ID3v2.x frames are mapped to XMP:

 Table 28 — Mapping of AIFF native metadata to XMP properties

AIFF XMP

NAME dc:title("x-default")

AUTH dc:creator[1]

(c) dc:rights("x-default")

ANNO xmpDM:logComment (map the first non-empty ANNO chunk)

 Table 29 — Mapping of MP3 ID3v1 frames to XMP properties

ID3v1 XMP

title dc:title["x-default"]

artist xmpDM:artist

album xmpDM:album

year xmp:CreateDate

comment xmpDM:logComment

genre xmpDM:genre

track-byte xmpDM:trackNumber (Reconciled if the second-to-last byte (offset 124) is 0, in
accordance with the ID3v1.1 standard)

 Table 30 — Mapping of MP3 ID3v2 frames to XMP properties

ID3v2.2 >ID3v2.2 XMP

COM COMM xmpDM:logComment

TAL TALB xmpDM:album

TCP TCMP xmpDM:partOfCompilation

http://www.id3.org/ID3v1

©Adobe Systems Incorporated, 2016 61

 A known genre should be mapped to XMP as the textual genre name, not the raw number string.

For maximum compatibility, text values in the native metadata frames should be written as true Latin-1 or as
little-endian UTF-16 with BOM. For example, some versions of the Windows Media Player ignore the U+FEFF
BOM and presume little endian UTF-16.

2.3.4 Native metadata in MPEG-4

MPEG-4 can contain native metadata, which can require reconciliation with the XMP. Metadata can occur in
several boxes, as defined by ISO 14496-12:

moov/mvhd
moov/udta/cprt
moov/trak/tkhd
moov/trak/udta/cprt

An MPEG-4 file must contain exactly one moov box, which must contain exactly one nested mvhd box; the
mvhd box provides information about the file as a whole, including creation and modification times, duration,
and timescale. The mvhd box is not a container; it is a fixed size record defined in ISO 14496-12 section 8.3.

The moov box can optionally contain at most one udta box, which may optionally contain any number of cprt
boxes. A cprt box contains a copyright for the file as a whole. Each has a language code and copyright string.

The moov box also contains one or more trak boxes, each of which contains exactly one tkhd box, optionally at
most one udta box, and any number of udta/cprt boxes. These boxes contain similar copyright information for
the individual tracks.

Reconciling native metadata with XMP

The XMP is reconciled with native metadata from the moov-level mvhd and udta/cprt boxes. The native values
are always imported, taking precedence over the XMP. Individual native items are either always updated when
the XMP is updated, or are never updated from the XMP, as noted below in each case.

 The mvhd creation_time and modification_time are mapped to xmp:CreateDate and xmp:ModifyDate

TCM TCOM xmpDM:composer

TCO TCON xmpDM:genre

TCR TCOP dc:rights["x-default"]

TDA, TYE,TIM TDAT, TYER,TIME, xmp:CreateDate (for IDV3v2.2 and ID3v2.3)

— TDRC xmp:CreateDate (for ID3v2.4)

TT2 TIT2 dc:title["x-default"]

TP1 TPE1 xmpDM:artist

TP4 TPE4 xmpDM:engineer

TPA TPOS xmpDM:discNumber

TRK TRCK xmpDM:trackNumber

ULT USLT xmpDM:lyrics

WCP WCOP xmpRights:WebStatement

 Table 30 — Mapping of MP3 ID3v2 frames to XMP properties (Continued)

ID3v2.2 >ID3v2.2 XMP

 62 ©Adobe Systems Incorporated, 2016

respectively for both import and export. The native values are not imported if the XMP contains the same
effective time as the native value but with a UTC offset. The native values are always UTC, which is kept in
the XMP if imported.

 The mvhd timescale and duration are always used to compute a value for xmpDM:duration, with enough
fractional digits to cover the time scale; for example, a timescale of 60 (1/60th of a second) corresponds to
two fractional digits (1/100th of a second) in the XMP. The mvhd timescale and duration are never updated
from the XMP.

 The cprt values are mapped to items in the dc:rights array for both import and export. The native values
contain an encoded form of an ISO-639-2 language code. XMP uses RFC 3066 codes, which typically
include an ISO-639-2 language code plus an ISO 3166 country code.

NOTE Digests are no longer used to decide what is imported or exported, as was the case in previous versions of this
specification.

2.4 Native metadata in digital photography formats

Finding and interpreting the metadata embedded in PSD, TIFF, and JPEG files is complicated by the fact that
all three file formats contain the same kinds of metadata (XMP, TIFF, Exif, and IPTC), but store it slightly
differently.

For example, all of the kinds of metadata can be contained in Photoshop Image Resources (PSIRs), and all
three file formats (PSD, TIFF, and JPEG) can contain PSIRs. However, the specific contents of the PSIRs are
different when contained in different image file formats. Each type of metadata is stored inside the PSIR for
some file formats, and separately for others.

Similarly, TIFF contains both TIFF-specific and Exif metadata, which is stored slightly differently in the TIFF
format itself than in the other formats.

This section provides an overview of the storage similarities and differences. The specific details of each native
metadata format, and the specific properties that are present in different formats and need to be reconciled, are
discussed in 3, “Digital photography native metadata”.”

Figure 5 illustrates how metadata is stored in PSD, TIFF, and JPEG files, and what the PSIR section contains in
each case.

 In a TIFF file, the arrows in Figure 5 indicate offsets that point to the data; the data itself resides elsewhere
in the file.

 A Photoshop image resource (PSIR) actually contains the data pointed to by the arrow in Figure 5.

 In JPEG, the APPn sections also contain the data pointed to by the arrow.

©Adobe Systems Incorporated, 2016 63

 Figure 5 — Metadata in PSD, TIFF, and JPEG files

Notice these points:

 A PSD file contains PSIRs, with one image resource for each type of metadata.

— The resource for Exif/TIFF metadata points to a TIFF IFD0. The IFD contains the TIFF metadata tags
and an Exif tag that points to the Exif metadata.

 TIFF, JPEG, and PSIRs all have direct pointers to XMP metadata.

— The PSIR that appears within TIFF and JPEG does not include an XMP resource, since those formats
have direct pointers to the XMP.

 PSD and TIFF point directly to the IPTC metadata, but JPEG contains a PSIR that contains the IPTC.

— TIFF also contains a PSIR, which might contain a duplicate of the IPTC that is pointed to directly by its
own tag.

 TIFF contains a tag that points directly to the Exif metadata; however, JPEG (like PSD) has a marker that
points to a TIFF IFD0. The IFD contains the TIFF metadata tags and an Exif tag that points to the Exif
metadata.

2.4.1 Reconciliation issues

This section clarifies specific issues of reconciling native metadata with XMP for digital photography formats.

The important aspects of reconciliation among TIFF/Exif, IPTC, and XMP metadata in digital photography
formats are well covered in the Metadata Working Group's still-image metadata guidelines.

 64 ©Adobe Systems Incorporated, 2016

Earlier versions of the XMP specification recommended keeping copies of TIFF and Exif technical metadata in
the XMP stored in a file. These are XMP properties in the tiff: and exif: namespaces. In keeping with the
Metadata Working Group guidelines, only the native TIFF and Exif tags should be stored for these items.

In general, properties in the tiff: and exif: namespaces should be ignored for JPEG, TIFF, and PSD files if the
corresponding native tag exists. An exception is exif:ISOSpeedRating, when the native tag has a value of
65535. The Exif tag has a 16-bit unsigned type, but recent cameras support ISO values above 65535. Some
applications extract the actual ISO value from the proprietary MakerNote tag and store it in the XMP property
exif:ISOSpeedRating.

2.4.2 Encoding of text in metadata

The encoding of text strings varies among the metadata formats, and Adobe practice does not always precisely
follow the relevant specifications. The only easy case is XMP, which always uses Unicode; specifically UTF-8
for PSD, TIFF, JPEG, JPEG-2000, GIF, PNG, DNG, and camera raw files.

The Mac OS STR# and TEXT file resources use local OS single-byte encoding, with no indication in the file of
what that is.

Photoshop image resources have one active and two obsolete standalone strings. These all use local OS
single-byte encoding, with no indication in the file of what that is. The active string is image resource 1035,
copyright information URL. The obsolete strings are 1008, old caption, and 1020, old print caption.

The major native standards specify 7-bit ASCII for the most part:

Photoshop takes liberties with the interpretation of ASCII and ISO 646. Through version 7, it uses local OS
single-byte (8-bit) encoding where TIFF/Exif and IPTC specify 7-bit ASCII or ISO 646. There is no indication in
the file of what this encoding is. Photoshop 9 continues to use local OS single-byte (8-bit) encoding for IPTC,
but uses UTF-8 in TIFF/Exif for tags of type ASCII.

Photoshop also ignores the Exif admonition to use the UserComment tag instead of ImageDescription when
the value contains non-ASCII characters. Photoshop always writes ImageDescription, never UserComment.

 Table 31 — Encoding of text strings in metadata

TIFF/
Exif

All but 3 string values have type ASCII, which means 7-bit ASCII. The remaining 3 have
directly indicated encoding:
 UserComment (37510)

 GPSProcessingMethod (27)

 GPSAreaInformation (28).

IPTC All values are written as ISO 646, which is 7-bit ASCII with national variants.

©Adobe Systems Incorporated, 2016 65

3 Digital photography native metadata

This chapter discusses how native metadata is stored in the various still-image formats (3.1, “Metadata storage
in native formats”), and provides details of the properties that are equivalent in different formats, and how they
are mapped to XMP (3.2, “Reconciling metadata properties”).

3.1 Metadata storage in native formats

This section provides details of the native metadata formats used in the common digital photography formats
(PSD, JPEG, and TIFF). Each of these file formats can contain metadata in any of the following formats, in
addition to XMP:

 3.1.1, “TIFF metadata”

 3.1.2, “Exif metadata”

 3.1.3, “Photoshop image resources”

 3.1.4, “IPTC (IIM) metadata”

For details of the specific properties that need to be reconciled among metadata formats, see 3.2, “Reconciling
metadata properties”.

3.1.1 TIFF metadata

Modification of TIFF files must be done with care to preserve the linked structure. The Exif and GPS IFD
pointers (see 3.1.2, “Exif metadata”) illustrate the potential problem of detecting implicit links. These tags have
type LONG and a count of 1, the fact that they are links is not explicit. Nothing prevents new versions of Exif
from adding similar IFD pointers, or applications from adding similar private tags. Updates to TIFF files should
be done in one of these ways:

 Rewrite the entire file, output only those tags that are explicitly understood.

 Use an update by append approach. Append all new or resized IFDs and values to the end of the file and
adjust known offsets to them.

 The TIFF specification does not allow tags to be repeated in an IFD. You should write tags in order, with no
duplicates. A robust TIFF reader, however, should tolerate tags that are out of order. If duplicates do occur,
Adobe practice is to keep the last encountered tag.

For information on specific metadata tags, see 3.2.3, “TIFF and Exif tags for metadata”.

3.1.2 Exif metadata

The Exif image interchange format defines a set of TIFF tags that describe photographic images, and is widely
used by digital cameras. Exif metadata is found in TIFF, JPEG, and PSD files.

According to Exif conventions, the first IFD (IFD0) describes the primary image, the next IFD (IFD1) describes
thumbnails. It allows either uncompressed images based upon TIFF, or compressed images based upon JPEG.
In fact, the IFDs may or may not contain image data, depending on whether they are in a TIFF or a JPEG file.

 66 ©Adobe Systems Incorporated, 2016

The additional information defined by Exif is located through these TIFF tags, regardless of the surrounding file
format:

NOTE Even though JPEG is a big-endian format overall, the TIFF within the Exif APP1 marker segment can be little-
endian. Readers must recognize and honor the 8-byte TIFF header.

For information on specific metadata tags, see 3.2.3, “TIFF and Exif tags for metadata”.

The Exif specification is owned by the Japanese Camera & Imaging Products Association (CIPA). The Exif 2.3
specification can be found at http://www.cipa.jp/english/hyoujunka/kikaku/pdf/DC-008-2010_E.pdf

3.1.3 Photoshop image resources

Photoshop image resources are used in PSD, TIFF, and JPEG files. The contents differ in the different
contexts:

 The image resource section is a native part of the PSD file format, and consists of a 4-byte length value,
followed by a sequence of image resources, which include both non-metadata resources and all of the
metadata (XMP, TIFF/Exif, and IPTC).

 JPEG and TIFF file formats contain just the sequence of image resources; the overall length is part of the
containing file structure.

— In TIFF, the resource pointer is TIFF tag 34377 (0x8649). It points to sequence of image resources
that contain non-metadata resource data, and can contain duplicate IPTC metadata (which also has
its own TIFF tag). The image resources do not contain XMP or TIFF/Exif metadata, which have their
own TIFF tags.

— In JPEG, the resource is contained in an APP13 marker segment with a signature string of "Photoshop
3.0". It contains a sequence of image resources that contain non-metadata resources and IPTC meta-
data. The image resources do not contain XMP or TIFF/Exif metadata, which have their own markers.

Each Photoshop image resource has the following form:

 Table 32 — Additional Exif data

Tag Hex Name

34665 0x8769 Exif IFD pointer In a TIFF file, IFD0 contains tags of this type, which point to
subsidiary IFDs that contain tags that point to the data blocks.

 In PSD files, an image resource contains these IFDs, which
point directly to the data. The data is contained within the
PSIR.

 In JPEG files, an APP1marker contains these IFDs, which
point directly to the data. The data is contained within the
marker.

34853 0x8825 GPS IFD pointer

 Table 33 — Format of Photoshop image resources

Offset Length Description

0 4 Resource type, the 4 ASCII characters "8BIM" for the resources described here.

4 2 Resource ID, a 16-bit big-endian unsigned integer.

6 — Resource name as a Pascal string.

— 4 Length of the resource data, a 32-bit big-endian unsigned integer

— — Resource data

http://www.cipa.jp/english/hyoujunka/kikaku/pdf/DC-008-2010_E.pdf

©Adobe Systems Incorporated, 2016 67

The image resources need not be sorted in any way. The resource name and data are followed as necessary
by a 0x00 pad byte to make the total length be even; that is, to make the following component begin on an even
offset. The explicit length of the name or resource data does not include this pad.

This padding is relative to the image resource section, not necessarily to the overall file. For example, the
image resources in a JPEG file might begin on an odd file offset because JPEG allows marker segments to
begin on any offset. Readers and writers must use care to round local image resource relative offsets, not base
file relative offsets.

The image resource ID and data length must always be written as big-endian, even when the image resources
are embedded within little-endian TIFF.

For information on specific metadata properties in image resources, see 3.2.1, “Photoshop image resources for
metadata”.

3.1.4 IPTC (IIM) metadata

The International Press Telecommunications Council (IPTC) and NAA (Newspaper Association of America)
have together defined the Information Interchange Model (IIM) that has come to be known as "IPTC metadata."

IPTC metadata is stored as a sequence of DataSets. The DataSets are logically grouped into Records. A
DataSet is referenced as record:dataset; for example, DataSet 2:50 is DataSet 50 of Record 2. DataSets
can be stored in a standard or extended form.

The structure of a standard DataSet is shown in Table 34:

The structure of an extended DataSet is shown in Table 35:

 Table 34 — Standard data set structure

Offset Length Description

0 1 Tag marker, 0x1C

1 1 Record number

2 1 DataSet number

3 2 Data length, big-endian, range 0..32767

5 — Data

 Table 35 — Extended data set structure

Offset Length Description

0 1 Tag marker, 0x1C

1 1 Record number

2 1 DataSet number

3 2 “Data length” length, the number of bytes in the variable-length “Data length”
portion at offset 5. Big-endian, ORed with 0x8000

5 — Data length, the number of bytes in the Data portion following. Big-endian,
variable length as specified in preceding length value.

— — Data

 68 ©Adobe Systems Incorporated, 2016

The DataSets must be clustered by Record number, and the clusters written in ascending Record order. The
DataSets within a Record cluster may be in any order.

The 16-bit data length field is always stored big-endian, on all platforms, even when the IPTC is placed within
little-endian TIFF.

For information on specific metadata properties in DataSets, see 3.2.2, “IPTC DataSets for metadata”.

The IIM specification can be found at: http://www.iptc.org/IIM/

The more recent IPTC specification for metadata that is only in XMP, and not in the IIM structure, has no
reconciliation issues and is not relevant to this discussion.

3.2 Reconciling metadata properties

This section provides details about individual native metadata properties in native formats and how they are
mapped to XMP.

 3.2.1, “Photoshop image resources for metadata”

 3.2.2, “IPTC DataSets for metadata”

 3.2.3, “TIFF and Exif tags for metadata”

Collections of metadata (for example, XMP or IPTC) are mentioned only where they are intermingled with
individual properties. For example, the first table below shows this intermingling of individual properties in
Photoshop image resources 1034 and 1035, and collections in 1028, 1058, and 1060.

3.2.1 Photoshop image resources for metadata

There are several Photoshop image resources of interest as metadata:

 Table 36 — Photoshop image resources useful as XMP metadata

ID Hex Description XMP mapping Notes

1028 0x404 IPTC metadata

1034 0x40A Copyright flag as a 0/1
Boolean

xmpRights:Marked When importing, set the XMP to
"True" if 1034 has length 1 and a
non-zero value, otherwise leave
the XMP alone.
When exporting, set 1034 to 0/1
if the XMP is present and True/
False, else do not set 1034.

1035 0x40B Text string for a
copyright information
URL

xmpRights:WebStatement The image resource is treated
as locally encoded text.

1058 0x422 Standard Exif (added in
Photoshop 7)

In the standard TIFF format,
including the initial 8 byte
header. Even though Photoshop
is a big-endian format overall,
the TIFF within image resource
1058 can be little-endian.
Readers must recognize and
honor the 8 byte TIFF header.

http://www.iptc.org/IIM/

©Adobe Systems Incorporated, 2016 69

Some very old versions of Photoshop wrote image resource 1008 (0x3F0) or 1020 (0x3FC), but not both.
These are now considered obsolete; both were dropped prior to Photoshop 6. The current Photoshop SDK
does not even contain type information for 1020. Both of these are captions, rendered as Pascal strings; they
are alternative forms corresponding to the IPTC Caption in DataSet 2:120. They are never exported to XMP.

When the size of the PSIR block exceeds 64KB, Photoshop splits the block into multiple APP13 markers of
64KB each and then embeds the blocks into the JPEG. In such cases, while the PSIR data is imported into
XMP after merging, all these individual APP13 markers to form the complete block. The individual APP13
markers are assumed to be in the original order.

3.2.2 IPTC DataSets for metadata

Unless otherwise noted, the data in all DataSets of interest as metadata are graphic characters plus spaces
from ISO 646. Which is essentially 7-bit ASCII overlain with a variety of national variants. These variants are all
still within the 7-bit range. The national variant in use at any time is not specified and not detectable from the
data. Graphic characters are in the range 0x21..0x7F, space (0x20) is not considered a graphic character
(hence the “plus spaces” above). Alphabetic characters are the English alphabet in ASCII, A..Z (0x41..0x5A)
and a..z (0x61..0x7A).

Unless otherwise noted, a given DataSet of interest as metadata can appear at most once. DataSets that can
be repeated are marked in the following table with an X in the Repeat column. Those that can be repeated
need not be contiguous.

A robust reader should tolerate improper repeats in input. Adobe practice depends on the mapping to XMP:

 A nonrepeatable DataSet is always mapped to a simple XMP property; if there is an improper repeat, the
last value encountered is kept.

 For a repeatable DataSet that is mapped to a simple XMP property, the last value encountered is kept. The
XMP mappings for the repeatable DataSets 2:85 (photoshop:AuthorsPosition) and 2:122
(photoshop:CaptionWriter) are simple XMP properties, not arrays.

— The DataSet 2:80 is repeatable, but is mapped to only the first item in the dc:creator array. It is
treated as if it were mapped to a simple property. On import, only the last value is kept. On export from
XMP, only the first item in the XMP dc:creator array is output as a 2:80 DataSet.

 For a repeatable DataSet that is mapped to an XMP array, all repeated values are both imported and
exported as separate array items. An example is DataSet 2:25 (dc:subject array).

It is also Adobe practice to keep all of a value when importing to XMP, even if the value is larger than allowed
(as shown in the following table). When exporting from XMP, large values are truncated to the allowed size.

The IPTC DataSets of interest as metadata are shown in Table 37:

1060 0x424 XMP (added in
Photoshop 7)

1061 0x425 MD5 digest of the IPTC
(added in Photoshop 7)

The 16-byte binary value is the
MD5 digest of the contents of
PSIR 1028.

 Table 36 — Photoshop image resources useful as XMP metadata (Continued)

 Table 37 — IPTC data sets of use as XMP metadata

ID Hex Name Repeat Description

2:5 0x0205 Object Name (title), maximum 64 bytes

2:10 0x020A Urgency one ASCII digit, '1'..'8'

 70 ©Adobe Systems Incorporated, 2016

The IPTC DataSet mappings to XMP are shown below. The namespace URIs and other details are in the XMP
Specification Part 2, Additional Properties. The notation ns:array["x-default"] means the item in the
ns:array language alternative whose xml:lang qualifier has the value "x-default".

2:15 0x020F Category alphabetic characters, maximum 3 bytes

2:20 0x0214 Supplemental
Category

R maximum 32 bytes each

2:25 0x0219 Keywords R maximum 64 bytes each

2:40 0x0228 Special Instructions maximum 256 bytes

2:55 0x0237 Date Created 8 ASCII digits as CCYYMMDD, 00 for unknown
parts

2:60 0x023C Time Created 11 ASCII characters in the format
HHMMSS±HHMM, following ISO 8601

2:62 0x023E Digital Creation Date 8 ASCII digits as CCYYMMDD, 00 for unknown
parts

2:63 0x0240 Digital Creation Time 11 ASCII characters in the format
HHMMSS±HHMM, following ISO 8601

2:80 0x0250 By-line R maximum 32 bytes each

2:85 0x0255 By-line Title R maximum 32 bytes each

2:90 0x025A City maximum 32 bytes

2:95 0x025F Province/State maximum 32 bytes

2:101 0x0265 Country/Primary
Location Name

maximum 64 bytes

2:103 0x0267 Original Transmission
Reference

maximum 32 bytes

2:105 0x0269 Headline maximum 256 bytes

2:110 0x026E Credit maximum 32 bytes

2:115 0x0273 Source maximum 32 bytes

2:116 0x0274 Copyright Notice maximum 128 bytes

2:120 0x0278 Caption graphic characters, spaces, CR, LF, maximum 2000
bytes

2:122 0x027A Writer R maximum 32 bytes each

 Table 37 — IPTC data sets of use as XMP metadata (Continued)

 Table 38 — Mapping of IPTC data set items to XMP properties

ID XMP mapping

2:4 Iptc4xmpCore:IntellectualGenre

2:5 dc:title["x-default"]

2:10 photoshop:Urgency (incorrectly given as 2:9 in the IPTC Core 1.0 specification)

2:12 iptc4xmpCore:SubjectCode

©Adobe Systems Incorporated, 2016 71

3.2.3 TIFF and Exif tags for metadata

The IFDs used in TIFF and Exif can contain a large number of tags that are of interest as metadata. All but 5 of
these tags are for individual metadata properties. The other 5 are for subsidiary IFDs or blocks of metadata in
another format; these 5 tags must appear in the TIFF first (0th) IFD:

2:15 photoshop:Category

2:20 photoshop:SupplementalCategories (gathered as an unordered array)

2:25 dc:subject (gathered as an unordered array)

2:40 photoshop:Instructions

2:55,
2:60

photoshop:DateCreated
Reformatted as ISO 8601, which has both a date and a time; 2:55 is just a date; 2:60 is
included for the time portion, if present.

2:62,
2:63

xmp:CreateDate
Reformatted as ISO 8601, which has both a date and a time; 2:62 is just a date; 2:63 is
included for the time portion, if present.

2:80 dc:creator (gathered as an ordered array)

2:85 photoshop:AuthorsPosition

2:90 photoshop:City

2:92 iptc4xmpCore:Location

2:95 photoshop:State

2:100 iptc4xmpCore:CountryCode

2:101 photoshop:Country

2:103 photoshop:TransmissionReference

2:105 photoshop:Headline

2:110 photoshop:Credit

2:115 photoshop:Source

2:116 dc:rights["x-default"]

2:120 dc:description["x-default"]

2:122 photoshop:CaptionWriter

 Table 39 — IFD tags

Tag Hex Usage

700 0x2BC XMP

33723 0x83BB IPTC DataSets

34377 0x8649 Photoshop image resources

34665 0x8769 Exif IFD offset

 Table 38 — Mapping of IPTC data set items to XMP properties (Continued)

 72 ©Adobe Systems Incorporated, 2016

3.2.3.1 Text encoding and tags with substructure

Although many Exif tags are of type ASCII and formally restricted to 7-bit ASCII characters, Adobe practice is
to use UTF-8 for all TIFF and Exif tags of type ASCII. This allows all characters to be preserved directly
between the tag and XMP forms.

There are 2 tags that have substructure, Artist and Copyright. The tag details are in the Exif specification.

 For the Artist tag, Exif recommends that multiple names be separated with semicolons; the example given
in the specification are "Camera owner, John Smith; Photographer, Michael Brown; Photographer, Michael
Brown". The XMP mapping is to dc:creator, which is an array. The XMP value should separate names at
the semicolon. The example should result in a 3-item dc:creator array: "Camera owner, John Smith",
"Photographer, Michael Brown", and "Photographer, Michael Brown". When moving XMP to Exif,
concatenate the items using semicolons to create the Artist value.

 For the Copyright tag, Exif recommends individual photographer and editor copyrights, separated by an
internal NULL byte. When moving from the tag to XMP, convert any internal NULLs to linefeeds (U+000A).
Do no conversion when moving from XMP to the tag.

Most TIFF and Exif tags with text values are of type ASCII. A few have an UNDEFINED physical type, but
actually contain generally well defined text with flexible encoding. The value includes a header defining the
encoding of the subsequent text. These tags are shown in Table 40:

The encoding header is the first 8 bytes of the tag value, an ASCII string will NULL padding. The remainder of
the tag value is the encoded text, without NULL termination. (And thus without the concept of multiple internal
strings that ASCII tags have.) The encodings are shown in Table 41:

The Exif specification does not mention whether the UTF-16 form should be big or little-endian. A reasonable
presumption is to follow the ordering given in the TIFF header. The Exif specification says that UserComment
should be used instead of ImageDescription for non-ASCII text. The XMP mapping uses only
ImageDescription; because of the recommendation to use UTF-8, there is no loss of information, and no
benefit to using UserComment.

34853 0x8825 GPS IFD offset

 Table 40 — TIFF and Exif tags with undefined physical types

37510 UserComment

27 GPSProcessingMethod

28 GPSAreaInformation

 Table 41 — TIFF and Exif encoding headers

"ASCII\0\0\0” ISO 646, in essence 7-bit ASCII with national variants

"JIS\0\0\0\0\0” JIS X208-1990

"UNICODE\0” UTF-16 Unicode

"\0\0\0\0\0\0\0\0” Undefined, implication of local OS encoding

 Table 39 — IFD tags (Continued)

©Adobe Systems Incorporated, 2016 73

3.2.3.2 Writeback tags

Most of the TIFF, Exif, and GPS tags that are mapped to XMP are considered read-only in the XMP. Edits to the
XMP value should not be allowed, modified XMP values should not be written back to the native tags. The only
writeback tags are shown in Table 42:

3.2.3.3 Value conversions for TIFF and Exif tag values

The value conversions for TIFF and Exif tags are mostly straightforward. Integer values are converted to
decimal strings in the manner of "%d" in C printf. Rational numbers are converted to a numerator/denominator
form; for example, the pair (123,456) becomes "123/456". Signed rationals are normalized to have only a
leading minus, if any. The pair (123,-456) becomes "-123/456" and (-123/-456) becomes "123/456".

Tags of type ASCII are converted allowing for UTF-8 or local encoding. If a native string contains a valid UTF-8
sequence it is imported to XMP as-is. Otherwise, a local to UTF-8 conversion is performed. It is possible for a
locally encoded value to look like UTF-8 and be erroneously imported as UTF-8, but this is very unlikely.

A date/time value is converted to ISO 8601 notation. The Exif date/time part is a 20-byte ASCII value formatted
as "YYYY:MM:DD HH:MM:SS" with a terminating null. Any of the numeric portions can be blank if unknown.
The fractional seconds are a null-terminated ASCII string with possible space padding. They are literally the
fractional part, the digits that would be to the right of the decimal point.

The Exif date/time does not have a timezone component. Although strict ISO 8601 requires timezone
information, it is optional in XMP usage. Applications must not arbitrarily add timezone values to imported Exif
values.

GPS latitude and longitude values are combined with their "ref" part to produce a single XMP map coordinate.

 The native numeric portion is 3 rational numbers for degrees, minutes, and seconds. If all 3 denominators
are 1, the numeric portion of the XMP is "deg,min,sec". Otherwise, floating-point arithmetic is used to
normalize the coordinate to "deg,min.frac", with enough fractional minute digits to cover the largest of the 3
denominators.

 The ref portion in the native format is an ASCII letter for the English compass directions ('N', 'S', 'E', 'W')
and is appended directly to the numeric portion in the XMP value. Assuming a ref of 'N', for example, the
native format (12/1,34/1,56/1) becomes "12,34,56N" in XMP. The native format (12/1,34/1,56789/1000)
becomes "12,34.946N".

 Table 42 — TIFF, Exif, and GPS writeback tags

270 TIFF ImageDescription

274 TIFF Orientation

282 TIFF XResolution

283 TIFF YResolution

296 TIFF ResolutionUnit

305 TIFF Software

306 TIFF DateTime

315 TIFF Artist

33432 TIFF Copyright

37510 Exif UserComment

40964 Exif RelatedSoundFile

 74 ©Adobe Systems Incorporated, 2016

3.2.3.4 TIFF and Exif digests

Prior versions of the XMP specification recommended the use of digests to detect changes to the TIFF and Exif
tags. This policy has been dropped in compliance with Metadata Working Group image metadata guidelines.
Existing TIFF and Exif digests found in the XMP (tiff:NativeDigest and exif:NativeDigest) should be ignored
when reading and removed when updating.

3.3 Metadata storage

The intersection of file formats and metadata forms has confusing inversions, with portions of metadata being
wrapped and stored in a variety of ways in the file formats. For example, a TIFF file contains a block of
Photoshop image resources as the value of a TIFF tag, while a Photoshop file contains a TIFF header plus
IFDs as the value of an image resource. This section will outline metadata storage organized by file type and by
metadata type.

3.3.1 Storage by metadata form

TIFF tags for individual properties, including TIFF/Exif, can be found in locations shown in Table 43:

NOTE Photoshop 6 split the tags in a TIFF file between proper native tags and “buried” tags in image resource 1058 within
tag 34377. See 3.3.4.1, “Photoshop 6 and TIFF”.

Photoshop image resources for individual properties can be found in the locations shown in Table 44:

IPTC DataSets can be found in the locations shown in Table 45:

 Table 43 — TIFF tags for individual properties

File format Storage location

Photoshop TIFF within image resource 1058

TIFF Native IFDs

JPEG TIFF within Exif APP1 marker segment

 Table 44 — Photoshop image resource locations

File format Storage location

Photoshop Native image resource section

TIFF Tag 34377 in the 0th IFD

JPEG Photoshop APP13 marker segment

 Table 45 — IPTC dataset locations

File format Storage location

Photoshop Photoshop image resource 1028

TIFF Tag 33723 in the 0th IFD; Photoshop image resource 1028

JPEG Photoshop image resource 1028

Any Mac Mac OS file resource 'ANPA' 10000 (prior to Photoshop 9)

©Adobe Systems Incorporated, 2016 75

XMP can be found in the locations shown in Table 46:

Additionally, keywords and description can be found in Mac OS file resources:

Reading and writing of the Mac OS ANPA 10000 resource and the pnot 0 resource’s KeyW and Desc items
was dropped in Photoshop 9.

3.3.2 Metadata storage in JPEG files

JPEG files, including Exif JPEG, use a mixture of native marker segments, TIFF tags, and Photoshop image
resources. Metadata can be found in 3 APPn marker segments:

The TIFF in the Exif APP1 marker segment should not contain tag 700 (XMP), tag 33723 (IPTC), or tag 34377
(Photoshop image resources). There should be only one copy of the IPTC in a JPEG file, in Photoshop image
resource 1028 (ignoring the possible Mac OS ANPA 10000 resource).

The Photoshop image resources for metadata that can be used in JPEG are shown in Table 49. Other non-
metadata image resources might also be present. Image resources 1058 (TIFF) and 1060 (XMP) should not be
used in JPEG files.

 Table 46 — XMP locations

File format Storage location

Photoshop Photoshop image resource 1060

TIFF TIFF tag 700

JPEG XMP APP1 marker segment

 Table 47 — Mac OS file resources

File format Storage location

Any Mac OS Mac OS file resources from 'pnot' 0 items KeyW and Desc

 Table 48 — APPn marker segments containing XMP metadata

Marker Signature, including NULLs Usage

APP1 "Exif\0\0” TIFF and Exif (2 NULLs)

APP1 "http://ns.adobe.com/xap/1.0/\0” XMP

APP13 "Photoshop 3.0\0” Photoshop image resources

 Table 49 — Photoshop resources that can be used in JPEG

ID Hex Description

1028 0x404 IPTC DataSets

1034 0x40A Copyright flag as a 0/1 Boolean

1035 0x40B Text string for a copyright information URL

1061 0x425 MD5 digest of the IPTC data

 76 ©Adobe Systems Incorporated, 2016

3.3.3 Metadata storage in Photoshop files

Photoshop files use Photoshop image resources as the metadata storage mechanism. The metadata image
resources were listed earlier, and are repeated in Table 50. Other non-metadata image resources might also
be present.

The TIFF in image resource 1058 can contain a full set of the TIFF metadata tags for individual properties,
including use of the Exif and GPS subsidiary IFDs. The TIFF in a Photoshop file should not contain XMP or
IPTC (TIFF tags 700 or 33723) or nested copies of image resources (TIFF tag 34377).

Some very old versions of Photoshop wrote image resource 1008 or 1020, but not both. These are now
considered obsolete and both were dropped prior to Photoshop 6. The current Photoshop SDK does not
contain type information for 1020.

3.3.4 Metadata storage in TIFF files

As mentioned earlier, the IFDs used in TIFF and Exif contain a large number of tags that are of interest as
metadata. All but five of these tags are for individual metadata properties. The other five are for contained
blocks of metadata:

The TIFF physical type (BYTE, SHORT, LONG, etc.) must be taken into account when processing the XMP,
IPTC, and image resources. There may be appended 0x00 bytes to make the total size be a multiple of the

 Table 50 — Photoshop image resources

ID Hex Description

1028 0x404 IPTC DataSets

1034 0x40A Copyright flag as a 0/1 Boolean

1035 0x40B Text string for a copyright information URL

1058 0x422 Exif metadata

1060 0x424 XMP

1061 0x425 MD5 digest of the IPTC DataSets

 Table 51 — Obsolete Photoshop image resources

ID Hex Description

1008 0x3F0 Caption as a Pascal string

1020 0x3FC Caption as a plain string

 Table 52 — TIFF and Exif tags for contained metadata blocks

Tag Hex Usage

700 0x2BC XMP

33723 0x83BB IPTC DataSets

34377 0x8649 Photoshop image resources

34665 0x8769 Exif IFD offset

34853 0x8825 GPS IFD offset

©Adobe Systems Incorporated, 2016 77

physical unit. Software loops processing the data must be prepared to terminate 1 to 3 bytes early, depending
on the physical unit.

The Photoshop image resources for metadata that can be used in TIFF are shown in Table 53. A TIFF file
should not contain image resource 1060 (XMP). A TIFF file might contain image resource 1058 (TIFF) because
of the Photoshop 6 feature/bug mentioned below. Other non-metadata image resources might also be present.

NOTE TIFF files contain 2 copies of the IPTC: in the top level TIFF tag 33723, and in image resource 1028 within TIFF tag
34377. Photoshop 6, Photoshop 7, and Photoshop 9 all do this. There is also a possible third copy of the IPTC in the
Mac OS ANPA 10000 resource.

3.3.4.1 Photoshop 6 and TIFF

Photoshop 6 wrote TIFF in an awkward and nonintuitive manner. Photoshop 6 placed most of the TIFF/Exif
information within image resource 1058 instead of natively in the "real" TIFF file IFDs. This includes the Exif
subsidiary IFD, tag 34665 is only written in the 0th IFD within image resource 1058. In addition, tags 259, 270,
282, and 296 were written in both the outer native 0th IFD and in the 0th IFD within image resource 1058.
Several tags are also duplicated between the 0th and 1st IFDs image resource 1058. But since that is
duplication between the main image and thumbnail and the 1st IFD contains a proper subset of the tags in the
0th IFD, those in the 1st IFD can be ignored.

Photoshop 7 and Photoshop CS2 (version 9) and later do not write image resource 1058 in a TIFF file.

Here is a sketch of the content of a TIFF example from various versions of Photoshop:

 Photoshop 6 - big-endian TIFF

— IFD 0 - 256, 257, 258, 259, 262, 270, 282, 283, 284, 296, 33723 (IPTC), 34377 (PSIR)

— Tag 34377 PSIR - 1028 (IPTC), 1034, 1035, 1058 (Exif)

— 1058 - Exif as little-endian TIFF

— IFD 0 - 270, 271, 272, 274, 282, 283, 296, 306, 531, 34665 (Exif)

— IFD 1 - 259, 271, 272, 274, 282, 283, 296, 306

— Exif IFD - 27 typical tags

 Photoshop 7 - big-endian TIFF

— IFD 0 - 256, 257, 258, 259, 262, 270, 271, 272, 282, 283, 284, 296, 305, 306, 315, 700 (XMP), 33723
(IPTC), 34377 (PSIR), 34665 (Exif)

— Exif IFD - 25 typical tags

— Tag 34377 PSIR - 1028 (IPTC), 1034, 1035, 1061

 Photoshop CS2 (version 9) - big-endian TIFF

— IFD 0 - 256, 257, 258, 259, 262, 270, 271, 272, 282, 283, 284, 296, 305, 306, 315, 700 (XMP), 33432,

 Table 53 — Photoshop resources that can be used in TIFF

ID Hex Description

1028 0x404 IPTC DataSets

1034 0x40A A Copyright flag as a 0/1 Boolean

1035 0x40B Text string for a copyright information URL

1061 0x425 MD5 digest of the IPTC DataSets

 78 ©Adobe Systems Incorporated, 2016

33723 (IPTC), 34377 (PSIR), 34665 (Exif)

— Exif IFD - 26 typical tags

— Tag 34377 PSIR - 1028 (IPTC), 1034, 1035, 1061

3.3.5 Metadata storage in Mac OS file resources

Mac OS versions of Photoshop through Photoshop CS (version 8) also wrote some metadata in Mac OS file
resources. These resources are not written by Photoshop CS2 (version 9) or later. The resources are shown in
Table 54:

The value of the ANPA 10000 resource is a sequence of IPTC DataSets, as previously described.

The pnot resource was created by Apple for annotation information as part of QuickTime. Its structure is shown
in Table 55. Only the KeyW and Desc additional items are of interest for metadata.

Each additional item has the structure shown in Table 56. Only the associated resource for the KeyW and Desc
items is of interest for metadata.

The items whose usage is KeyW or Desc are of interest for metadata. The KeyW item should have an
associated STR# resource that contains the keywords. A STR# resource contains a 16-bit big-endian count of

 Table 54 — Mac OS Photoshop resources from older versions

ANPA 10000 IPTC metadata (this takes priority for reconciliation of multiply-defined values; see
2.4.1, “Reconciliation issues”)

pnot 0 Keywords and description

 Table 55 — Structure of Apple pnot resource

Offset Length Description

0 4 Modification timestamp as a 32-bit big-endian Mac OS time

4 2 Version number, 16-bit big-endian integer

6 4 Resource type for preview

10 2 Resource ID for preview, 16-bit big-endian integer

12 2 Number of additional items, 16-bit big-endian integer

14 - Sequence of additional items

 Table 56 — Structure of additional items

Offset Length Description

0 4 Modification timestamp as a 32-bit big-endian Mac OS time

4 4 OSType defining the usage of this item

8 4 Resource type for the associated data

12 2 Resource ID for the associated data, 16-bit big-endian integer

14 2 Region code for this item, 16-bit big-endian integer

16 4 Reserved

©Adobe Systems Incorporated, 2016 79

strings followed by a sequence of Pascal strings. The Desc item should have an associated TEXT resource
that contains the description. A TEXT resource simply contains text.

 80 ©Adobe Systems Incorporated, 2016

	XMP Specification Part 3
	1 Embedding XMP metadata in application files
	1.1 Image formats
	1.1.1 DNG (Digital Negative)
	1.1.1.1 Camera raw formats

	1.1.2 GIF (Graphic Interchange Format)
	1.1.3 JPEG
	1.1.3.1 Extended XMP in JPEG
	1.1.3.2 Partitioning XMP

	1.1.4 JPEG 2000
	1.1.5 PNG (Portable Network Graphics)
	1.1.6 TIFF (Tagged Image File Format)
	1.1.7 SVG (Scalable Vector Graphics)

	1.2 Dynamic media formats
	1.2.1 ASF (WMA, WMV)
	1.2.1.1 ASF format
	1.2.1.2 XMP embedded in ASF

	1.2.2 FLV (Flash® Video)
	1.2.2.1 Placement of XMP

	1.2.3 IFF/RIFF (AVI, WAV, AIFF)
	1.2.3.1 RIFF (AVI, WAV)
	1.2.3.1.1 AVI
	1.2.3.1.2 WAV

	1.2.3.2 AIFF

	1.2.4 MOV (QuickTime)
	1.2.4.1 Placement of XMP

	1.2.5 MP3
	1.2.5.1 Placement of XMP

	1.2.6 MPEG-2
	1.2.7 MPEG-4 (generic and F4V)
	1.2.7.1 Placement of XMP

	1.2.8 SWF (Flash)
	1.2.8.1 Placement of XMP

	1.3 Video package formats
	1.3.1 AVCHD
	1.3.2 P2
	1.3.3 Sony HDV (High Definition Video)
	1.3.4 XDCAM
	1.3.4.1 XDCAM EX
	1.3.4.2 XDCAM SAM
	1.3.4.3 XDCAM FAM
	1.3.4.4 XDCAM FAM Memory SxS

	1.4 Adobe application formats
	1.4.1 AI (Adobe Illustrator®)
	1.4.2 INDD, INDT (Adobe InDesign®)
	1.4.2.1 Finding XMP in an InDesign file
	1.4.2.2 Rewriting XMP data beyond the packet padding
	1.4.2.3 Master page structure
	1.4.2.4 Header and trailer structure

	1.4.3 PSD (Adobe Photoshop)

	1.5 Markup formats
	1.5.1 HTML
	1.5.1.1 Embedding XML in HTML
	1.5.1.1.1 Using the SCRIPT element and LANGUAGE attribute
	1.5.1.1.2 Using the SCRIPT element and TYPE attribute
	1.5.1.1.3 Using the XML element

	1.5.2 XML

	1.6 Document formats
	1.6.1 PDF
	1.6.2 PS, EPS (PostScript® and Encapsulated PostScript)
	1.6.2.1 Document-level metadata in PostScript
	1.6.2.1.1 Ordering of content
	1.6.2.1.2 Document-level XMP in PostScript
	1.6.2.1.3 Document-level XMP in EPS
	1.6.2.1.4 Avoiding name conflicts
	1.6.2.1.5 Compatibility with Distiller 5 for PostScript
	1.6.2.1.6 LanguageLevel 1 for PostScript and EPS
	1.6.2.1.7 Traditional PDF metadata and XMP

	1.6.2.2 Object-level metadata in PostScript

	1.6.3 UCF (Universal Container Format)

	2 Handling native metadata
	2.1 Reconciling metadata in different formats
	2.1.1 Text encodings in import and export
	2.1.2 Native metadata export and import
	2.1.3 Use of native metadata digests

	2.2 Native metadata in PDF files
	2.2.1 User-defined keys
	2.2.2 Resolving metadata conflicts

	2.3 Native metadata in dynamic media formats
	2.3.1 Native metadata in ASF (WMA, WMV) formats
	2.3.2 Native metadata in IFF/RIFF (AVI, WAV, AIFF) formats
	2.3.2.1 Native metadata specific to AVI
	2.3.2.2 Native metadata specific to WAV
	2.3.2.3 Native metadata in AIFF

	2.3.3 Native metadata in MP3
	2.3.4 Native metadata in MPEG-4

	2.4 Native metadata in digital photography formats
	2.4.1 Reconciliation issues
	2.4.2 Encoding of text in metadata

	3 Digital photography native metadata
	3.1 Metadata storage in native formats
	3.1.1 TIFF metadata
	3.1.2 Exif metadata
	3.1.3 Photoshop image resources
	3.1.4 IPTC (IIM) metadata

	3.2 Reconciling metadata properties
	3.2.1 Photoshop image resources for metadata
	3.2.2 IPTC DataSets for metadata
	3.2.3 TIFF and Exif tags for metadata
	3.2.3.1 Text encoding and tags with substructure
	3.2.3.2 Writeback tags
	3.2.3.3 Value conversions for TIFF and Exif tag values
	3.2.3.4 TIFF and Exif digests

	3.3 Metadata storage
	3.3.1 Storage by metadata form
	3.3.2 Metadata storage in JPEG files
	3.3.3 Metadata storage in Photoshop files
	3.3.4 Metadata storage in TIFF files
	3.3.4.1 Photoshop 6 and TIFF

	3.3.5 Metadata storage in Mac OS file resources

