
Page 1 of 17

SZI format

Overview and Description of file structure

www.pathozoom.com

www.smartinmedia.com

Martin Weihrauch, M. D.

Elsternweg 6

50997 Köln

Germany

V1.0 – 19.10.2017

Page 2 of 17

1. Background / History

Using the Microsoft Deep Zoom format to serve tiles from high-resolution images shows a good

performance for panning and zooming with JavaScript programs like OpenLayers or OpenSeaDragon

in browsers. The tiles lie in folders of each zoom level directly on the hard drive and can be quickly

accessed by the server.

However, if tiled images need to be moved from one server to another, the copy speed is very low.

For instance, if there are 1,000 images of an average resolution of 100,000 x 100,000, approximately

100 million tiles are stored on the hard drive. Moving 100 million files (instead of 1,000 files) is

extremely slow and impracticable. Thus, a single-file format is desirable for serving high-resolution

images.

John Cupitt (Imperial College London) and Martin Weihrauch (Smart In Media, Germany) created the

concept of a single-file format for high-resolution images and named it “Smart Zoom Image format”

or SZI format. In the SZI file format, the Microsoft deep zoom pyramid (folders) is stored in an

uncompressed ZIP file.

Page 3 of 17

2. Concept of the SZI format

High-resolution images, which are served in tiled pieces, can have different tile layouts. The most

used layouts are the “Microsoft Deep Zoom” format, the “Zoomify” format and the “Google Maps”

format. For SZI, the Microsoft Deep Zoom format was chosen (although the szi-server.php by Martin

Weihrauch can also handle Zoomify layout) and will be described below.

However, the high-resolution images on a server should be well „transportable“ in order to, for

example, copy them from one server to another or to use them for image analysis, etc. The best way

to reduce the problems with handling millions of small tiles on server hard drives is putting these

tiles in a container file.

In order to not „reinvent the wheel“ of container formats, John Cupitt and Martin Weihrauch

decided to choose the well-known ZIP-format as the container.

In fact, the SZI format is not a newly invented format, it is just a combination of the techniques

Microsoft Deep Zoom tile layout and a ZIP container. However, for an easier communication, the

term “format” will still be used.

Therefore, the ZIP-file will be renamed to *.szi. The reason for that is that future users will not be

confused, whether a file is a regular ZIP archive on their hard drive or a Smart Zoom image file. We

will still be able to open the files with ZIP, we just have to associate our ZIP-programs like WinRAR,

etc with the “*.szi” format.

For serving the tiles, the server program should not – for each tile request – read the ZIP with a

regular ZIP library, but write a map file once before the first served tile. Reading an entire ZIP

directory for each tile, which has to be served (of a ZIP file with possibly millions of contained tiles) is

too inefficient. Creating a map file, considerably speeds up the process. The design of such a map,

the Smart Zoom Directory file (SZD) will be discussed later and is not important for just outputting SZI

files, e. g. from a scanner.

Page 4 of 17

3. The Microsoft Deep Zoom format

3.1. Overview

First, this is an explanation by Microsoft

(https://msdn.microsoft.com/en-us/library/cc645077(v=vs.95).aspx)

“Single large images in Deep Zoom are represented by a tiled image pyramid. This allows the Deep

Zoom rendering engine to grab only that bit of data that is necessary for a particular view of an

image. If an image is being viewed zoomed out very far, then a small thumbnail is all that’s needed to

show the image on screen.

However, if the user is zoomed in to a specific area of a large image, then only those tiles needed to

show the specific areas are downloaded. This can lead to very large bandwidth savings because often

only some aspects of a large image are interesting to the user. The illustration below shows what the

image pyramid looks like conceptually. An image is stored as a tiled image pyramid. At each level of

the pyramid, the image is scaled down by 4 (a factor of 2 in each dimension). Also, the image is tiled

up into 256x256 tiles.

If, for example, you were zoomed in to see only the highlighted middle part of the image, Deep Zoom

only loads the highlighted tiles, instead of the entire 1024x1024 image.

Each resolution of the pyramid is called a level. Levels are counted from the 1x1 pixel as level 0. Each

level is the size 2(level)x2(level). Each level is stored in a separate folder. All levels are stored in a

folder with the same name as the DZI file with the extension removed and "_files" appended to it. For

example, the pyramid for test.dzi is stored in test_files. Each level may be broken up into several tiles.

The tiles are named as column_row.format, where row is the row number of the tile (starting from 0

at top) and column is the column number of the tile (starting from 0 at left). format is the appropriate

extension for the image format used – either JPEG or PNG.”

Please note, that “sparse images” and “collections” are not supported in the SZI format.

Thus, the Deep Zoom format is a pyramid-like directory structure, where each directory is one zoom

level (and named by the number of the respective zoom level). The lowest number is 0 and contains

the image in the size of 1 pixel. The highest number is the zoom level, which contains the image in

the full resolution, in tiles.

Page 5 of 17

3.2. Folder and file structure of the Deep Zoom pyramid (modified for

SZI)

The Microsoft Deep Zoom pyramid was modified for the SZI format as described below. The whole

pyramid, starting with a “root folder” will be introduced into an uncompressed ZIP file. Thus, when

you open the SZI/ZIP file, you first and only see the root folder. The entire structure is depicted in the

following figure.

Figure. Folder structure of the Deep Zoom format. Note: the first folder in this figure is the root

folder of the Deep Zoom pyramid. The entire folder structure is stored in the .szi file.

The root folder is labeled as the image name (e. g. CMU-1) and contains:

1. The .dzi file, which is is labeled as the image name plus the extension “.dzi”, e. g. CMU-1.dzi,

2. The scan-properties.xml file, which contains the scanning informations.

Page 6 of 17

3. A folder, which is labeled as the image name plus “_files”, so in our example CMU-1_files.

This contains the image pyramid.

4. A folder labeled “vendor” (optional), where all vendor specific files can be stored, which do

not fit into any pattern of the SZI format.

5. A folder labeled “associated_images”

In the “_files” folder, we find further folders, which comprise the image pyramid. They are labeled

“0” to the last and deepest zoom level, e. g. “12”. In the “_files” folder, there may also be the file

scan-properties.xml, which contains scanning informations.

In the root folder, we also find an optional folder labeled “vendor”. Vendors can place any files and

information, which do not fit any structure in the SZI into this folder to not lose any original

information.

The root folder also contains a folder “associated_images” (optional for scanners with this

functionality). In this folder, 3 images are stored:

 overview.jpg: This is an image which contains an overview of the whole glass slide without

the label.

 label.jpg: This is an image of the label.

 preview.jpg: This is an overview image of the scanned region.

By excluding the label from the overview image, the SZI can be anonymized by removing the label

which may contain patient data.

The SZI format can also support the Zoomify and the Google Map format, but not in the current

version. This functionality will be excluded from the current document.

To calculate the deep zoom directory, you have to perform the following:

Calculate the number of zoom levels: take the larger length of width and height and perform a log2,

then ceil, then add +1 for DeepZoom --> these are the number of zoom levels from 0 to n together (e.

g. result is 17, if zoom levels 0 to 16)

To present this functionality, a PHP script can be found in the appendix, which also calculates the

tiles in each zoom level.

Page 7 of 17

3.3. The DZI file

The Deep Zoom format contains a XML file with the extension “.dzi” in the main directory.

It contains informations about

 the XML format

 the tile image format (jpeg recommended), alternatively png

 the overlap (this stems from older times as an overlap of tiles may have given a better

viewing experience. It is not necessary anymore, so always use “0”, so tiles do not overlap)

 tile size (standard is 256, but can also vary. For performance, 256 can but should not be

exceeded)

 height of image in pixels

 width of image in pixels.

An example of the DZI file:

<?xml version="1.0" encoding="UTF-8"?>

<Image xmlns="http://schemas.microsoft.com/deepzoom/2008"

 Format="jpeg"

 Overlap="0"

 TileSize="256"

 >

 <Size

 Height="2967"

 Width="2220"

 />

</Image>

As XSD schema:

<?xml version="1.0" encoding="UTF-8"?>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:element name="Image">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Size">
 <xs:complexType>
 <xs:attribute name="Height" type="xs:int"></xs:attribute>
 <xs:attribute name="Width" type="xs:int"></xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="xmlns" type="xs:string"></xs:attribute>

Page 8 of 17

 <xs:attribute name="Format" type="xs:string"></xs:attribute>
 <xs:attribute name="Overlap" type="xs:int"></xs:attribute>
 <xs:attribute name="TileSize" type="xs:int"></xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:schema>

Page 9 of 17

3.4. The scan-properties.xml file

All scanners output scanning information / metadata like scan date, scan time, the used objective,

µm/pixel, etc. Microscope scanning companies, which write the SZI from their own software, should

create the file “scan-properties.xml”. The information of the layout of that file is provided further

below and in the Appendix.

Of course your scanner will produce more meaningful data. We strongly encourage to add these data

to the scan-properties.xml file. Just add your scanner name before the field name, separated by a dot

“.”, e. g. “vendor.MicronsX” or “ScanCompany.FilterName”, etc.

Please input data into the following fields. The only mandatory fields are “ImageHeight”,

“ImageWidth”, MicronsPerPixelX, MicronsPerPixelY, and “MicronsPerPixel” so that viewers can add

measurement functionality.

Field in scan-
properties.xml Value Format Example

VendorName Name of scanner vendor string Scan Co.

ScannerName Name of scanner model string SuperScanner

ScannerSerialNo Serial number of this scanner string 2354H2kH

SoftwareName
Name of software used for
scanning string ScanView

SoftwareVersion Software version string 2.0.5

UserName Name of operator string Peter

TimeStart Scan time start

yyyy-mm-
ddThh:mm:ss (24
hour format) 2017-06-15T13:45:30

TimeEnd Scan time end

yyyy-mm-
ddThh:mm:ss (24
hour format) 2017-06-15T13:48:44

ElapsedTime Scan time total

string with
numbers in x, y, z:
<x>h<y>m<z>s 0h3m22s

CaseNumber
Case number (dont enter
patient name) string H2017-234

ScanJobName Name of scan job string
 ObjectiveMagnification Objective used int E. g. 4 for 4x, 10 for 10x

CameraName Name of the camera used string Sony

SensorPixelSize Sensor Pixel size in µm float 1.465

ScannedArea Area of scan in mm² float 566.7

ScanWidth Width of scan in mm float 12

ScanHeight Height of scan in mm float 11

 ImageHeight Height in pixel of resulting int 23235

Page 10 of 17

scan

ImageWidth Width in pixel of resulting scan int 39392

MicronsPerPixel

Microns (µm) per pixel
VERY IMPORTANT FIELD TO
ADD A MEASUREMENT TOOL
TO VIEWERS.
If microns per X and Y do not
match, take an average here float 0.4042

MicronsPerPixelX Microns (µm) per pixel on X float 0.4042

MicronsPerPixelY Microns (µm) per pixel on Y float 0.4042

Comments Free text field string

An example of a scan-properties.xml file is in the Appendix.

3.5. Tiles in the Deep Zoom format
We recommend 256 x 256 tiles in jpeg for the SZI format. The tiles can be smaller, but for serving

efficiency, they should not be much bigger than 256 x 256. Regarding the compression level of jpeg,

Q=85 is a good compromise between size and quality.

In zoom levels 0 to 8, there is only one tile present. In zoom level 8, this tile’s largest dimension

(width or height) is between 129 and 256 pixels.

To match the entire image, border tiles (outermost right and bottom of the image) may have a

different size from the standard tile to match the image width/height. E. g., if all tiles are 256 x 256,

the right border tiles could be e. g. width x height: 122 x 256 or the lower right corner tile could be e.

g. 122 x 56. as depicted in the graphic.

Figure. The tile layout could be like this with border tiles, which may have a different size from the

standard tile size due to the image width/height.

Page 11 of 17

4. The ZIP file

ZIP is a standardized file format which was invented by Phil Katz to store and compress files in order

to save time and storage space.

For the SZI format, the entire Deep Zoom folders have to be written into an UNCOMPRESSED ZIP file.

It is mandatory to switch off the compression as the serving of tiles out of the SZI would not work.

The ZIP file should have the extension “.szi” so that viewers will recognize the ZIP files as an image

file.

All folders + .dzi have to be stored in the ZIP file, so when opening the ZIP file, you should only see

the root folder (named with the image name).

You can use any library for writing the ZIP file. There is no need to order the stored files in a certain

way within the ZIP file. As the ZIP file can only store files up to 4 GB, images which are larger than 4

GB have to use ZIP64.

Page 12 of 17

5. Creating an .szi file

5.1. From a scanning software

A scanning software can write the tiles directly into a ZIP file and rename this to .szi in the end. A .dzi

file has to be included as well as a scan-properties.xml file (specifications will be given later about

scan-properties.xml) and preferably the associated_images. Other information and files can be

stored in the “vendor” folder, which is located in the root folder.

5.2. Working with VIPS

You only have to read this section, if you want to create SZI files from other scanner files through the

OpenSlide library with (lib)VIPS. With VIPS you can convert e. g. Hamamatsu, Leica, Aperio, Philipps

and other scanner files into SZI quickly..

VIPS is a very powerful open source library, which supports any kind of image manipulation of huge

images. It was developed and is under continuous improvement by John Cupitt. VIPS has also

integrated the OpenSlide library to work with microscope image formats from different vendors like

Leica/Aperio, Hamamatsu, Mirax, etc.

With VIPS it is possible to convert any of these (OpenSlide supported) microscope images to the SZI

format. Of course, VIPS can also convert all other supported image formats like JPEG, PNG, TIFF,

JPEG2000, etc to SZI.

It is recommended to get familiar with VIPS and to convert some test files into the SZI format. To do

this, VIPS has to be installed (it is mainly developed for Linux, but there are also Windows versions). If

the command line tool / console is not desired, there is a Windows tiling program with a GUI by

Smart In Media, which has integrated VIPS.

The function dzsave converts images into either tiles on the hard drive in the Deep Zoom format or

into the SZI format. The command is:

vips.exe dzsave input.tiff output.szi --overlap=0 --

suffix=.jpg[Q=85] --tile-size=256 --properties --vips-progress

If you do not write any extension in the output-file, the result will be tiles on the hard drive. If you

add “.zip” or “.szi”, it will be written into an SZI file automatically.

Page 13 of 17

6. Appendix

6.1. Calculating the zoom levels in PHP

private function getOverviewCalculation($width, $height, $overlap,

$tilesize, $layout)

 {

 if (!isset($overlap)) $overlap = 0;

 if (!isset($tilesize)) $tilesize = 256;

 $wpixel = $width;

 $hpixel = $height;

 //Number of zoom levels: take the larger length of width and

height and make a log2, then ceil, then add 1 for dz, -7 for

zoomify--> these are the number of zoom levels from 0 to n together

(e. g. result is 17, if zoom levels 0 to 16)

 $maxlength = ($width > $height) ? $width : $height;

 switch ($layout) {

 case 1: //DeepZoom

 $total_zoomlevels = (ceil(log($maxlength, 2)) + 1);

 break;

 case 2: //Zoomify

 $total_zoomlevels = (ceil(log($maxlength, 2)) - 7);

 break;

 case 3: //Google Maps

 $total_zoomlevels = (ceil(log($maxlength, 2)) - 7);

 break;

 }

 $zoomlevel_info = array();

 //echo "
Number of Zoom levels:

".$total_zoomlevels."

";

 for ($i = $total_zoomlevels - 1; $i >= 0; $i--) {

 $zoomlevel_info[$i] = array("number_of_tiles" =>

ceil($wpixel / $tilesize) * ceil($hpixel / $tilesize),

 "width" => $wpixel,

 "height" => $hpixel,

 "zoomlevel_no" => $i,

 "number_tiles_x" => ceil($wpixel / $tilesize),

 "number_tiles_y" => ceil($hpixel / $tilesize)

);

 switch ($layout) {

 case 1:

 $wpixel = ceil($wpixel / 2);

 $hpixel = ceil($hpixel / 2);

 break;

Page 14 of 17

 case 2:

 $wpixel = floor($wpixel / 2);

 $hpixel = floor($hpixel / 2);

 break;

 case 3:

 $wpixel = ceil($wpixel / 2);

 $hpixel = ceil($hpixel / 2);

 break;

 default:

 $this->error2tile('
Layout not correct');

 }

 }

 $cumulative_tiles = 0; //This is to later speed up the

calculation of the order of the tiles

 for ($i = 0; $i < $total_zoomlevels; $i++) {

 $zoomlevel_info[$i]['cumulative_number_tiles_before'] =

$cumulative_tiles;

 $cumulative_tiles +=

$zoomlevel_info[$i]['number_of_tiles'];

 }

 return $zoomlevel_info;

 }

Page 15 of 17

6.2. The scan-properties.xml file

The structure of the scan-properties.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:element name="image">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="properties">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="property"
maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element
name="name" type="xs:string"></xs:element>
 <xs:element
name="value" type="xs:string"></xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="xmlns" type="xs:string"></xs:attribute>
 <xs:attribute name="date" type="xs:date"></xs:attribute>
 <xs:attribute name="version" type="xs:string"></xs:attribute>
 </xs:complexType>
 </xs:element>
</xs:schema>

An example file:

<?xml version="1.0"?>

<image xmlns="http://www.pathozoom.com/szi" date="2017-10-16"

version="1.0">

 <properties>

 <property>

 <name>VendorName</name>

 <value>TestCompany</value>

 </property>

 <property>

 <name>ScannerName</name>

 <value>Super Scan 2</value>

 </property>

Page 16 of 17

 <property>

 <name>ScannerSerialNo</name>

 <value>230.35-i38u3</value>

 </property>

 <property>

 <name>SoftwareName</name>

 <value>Scan it</value>

 </property>

 <property>

 <name>SoftwareVersion</name>

 <value>5.3</value>

 </property>

 <property>

 <name>UserName</name>

 <value>thomas</value>

 </property>

 <property>

 <name>TimeStart</name>

 <value>2017-10-16T15:33:31</value>

 </property>

 <property>

 <name>TimeEnd</name>

 <value>2017-10-16T15:50:53</value>

 </property>

 <property>

 <name>ElapsedTime</name>

 <value>0h17m22s</value>

 </property>

 <property>

 <name>CaseNumber</name>

 <value>H-2017-234</value>

 </property>

 <property>

 <name>ScanJobName</name>

 <value>Test-Scan</value>

 </property>

 <property>

 <name>ObjectiveMagnification</name>

 <value>10</value>

 </property>

 <property>

 <name>CameraName</name>

 <value>Basler</value>

 </property>

 <property>

 <name>SensorPixelSize</name>

 <value>1.453</value>

 </property>

 <property>

 <name>ScannedArea</name>

 <value>556.7</value>

 </property>

 <property>

 <name>ScanWidth</name>

 <value>12</value>

 </property>

Page 17 of 17

 <property>

 <name>ScanHeight</name>

 <value>11</value>

 </property>

 <property>

 <name>ImageHeight</name>

 <value>2967</value>

 </property>

 <property>

 <name>ImageWidth</name>

 <value>2220</value>

 </property>

 <property>

 <name>MicronsPerPixel</name>

 <value>0.402</value>

 </property>

 <property>

 <name>MicronsPerPixelX</name>

 <value>0.402</value>

 </property>

 <property>

 <name>MicronsPerPixelY</name>

 <value>0.402</value>

 </property>

 <property>

 <name>Comments</name>

 <value>This is a test comment!</value>

 </property>

 </properties>

</image>

