MySQL Internals Manual
Table of Contents
	Preface and Legal Notice
	1 A Guided Tour Of The MySQL Source Code
		1.1 Getting the Source Tree
		1.1.1 Getting the Source Tree (Git)

	1.2 The Major Directories
		1.2.1 Major Directories: BUILD
	1.2.2 Major Directories: client
	1.2.3 Major Directories: myisam
	1.2.4 Major Directories: mysys
	1.2.5 Major Directories: sql
	1.2.6 Major Directories: vio

	1.3 The Flow
	1.4 The Open-Source Directories
	1.5 The Internal and External Storage Engine Directories
	1.6 The OS-Specific Directories
	1.7 Odds and Ends
	1.8 A Chunk of Code in /sql/sql_update.cc
	1.9 The Skeleton of the Server Code
	1.10 Recap

	2 Coding Guidelines
		2.1 General Development Guidelines
		2.1.1 C/C++ Coding Guidelines of MySQL Server
	2.1.2 How We Maintain the Server Coding Guidelines
	2.1.3 Indentation and Spacing
	2.1.4 Naming Conventions
	2.1.5 Commenting Code
	2.1.6 Header Files
	2.1.7 Additional Suggestions
	2.1.8 Suggested Mode in emacs
	2.1.9 Basic vim Setup
	2.1.10 Another vim Setup
	2.1.11 Example Setup for ctags

	2.2 C++ Coding Guidelines for the NDB Storage Engine
		2.2.1 Braces
	2.2.2 Assignment
	2.2.3 Use of ndbrequire

	2.3 DBUG Tags

	3 Reusable Classes and Templates
		3.1 Containers
		3.1.1 Array
	3.1.2 I_P_List
	3.1.3 I_List

	3.2 Memory Management
		3.2.1 MEM_ROOT

	3.3 How to Extend This Page

	4 Building MySQL Server with CMake
		4.1 CMake Prerequisites
	4.2 How to Install CMake
	4.3 Quick How-to-Build Instructions
		4.3.1 Release Configuration
	4.3.2 Debug Configuration
	4.3.3 Building Using the Same Options as MySQL Official Releases

	4.4 Detailed How-to-Build Instructions
		4.4.1 Create the Build Directory
	4.4.2 Configure the Build
	4.4.3 Listing Configuration Options
	4.4.4 Changing Configuration Options
	4.4.5 Building Debug Configurations
	4.4.6 Building With CMake
	4.4.7 ./configure Emulation
	4.4.8 For Developers: How to Write Platform Checks
	4.4.9 Troubleshooting CMake Code
	4.4.10 Developer CMake Tips
	4.4.11 MySQL-Specific CMake Macros
	4.4.12 Interface to Third-Party Tools

	4.5 FAQ / Miscellany
		4.5.1 Running mysql-test-run.pl in an Out-of-Source Build
	4.5.2 Running mysql-test-run.pl with Visual Studio or Xcode Projects
	4.5.3 make distclean
	4.5.4 Compiling for Different Hardware Architectures

	4.6 Autotools to CMake Transition Guide
		4.6.1 Command Invocation Syntax
	4.6.2 Installation Layout Options
	4.6.3 Storage Engine Options
	4.6.4 Library Options
	4.6.5 Miscellaneous Options
	4.6.6 Debugging the Configuration Process
	4.6.7 Interface to Third-Party Tools

	5 Plugins
		5.1 CMake Variables to Control Plugin Building (MySQL 5.5 and Later)
	5.2 CMake Macro to Define the Plugin
	5.3 Autotools configure Support (MySQL 5.1)
	5.4 Autotools Plugin Macros
	5.5 Specifying mysqld Variables Within a Plugin
	5.6 Additional Accessors for Plugins
	5.7 MySQL Services for Plugins
		5.7.1 Plugin Services Components
	5.7.2 Writing Services for Use from Within Plugins

	6 Transaction Handling in the Server
		6.1 Historical Note
	6.2 Current Situation
	6.3 Data Layout
	6.4 Transaction Life Cycle
	6.5 Roles and Responsibilities
	6.6 Additional Notes on DDL and the Normal Transaction

	7 The Optimizer
		7.1 Code and Concepts
		7.1.1 Definitions
	7.1.2 The Optimizer Code

	7.2 Primary Optimizations
		7.2.1 Optimizing Constant Relations
	7.2.2 Optimizing Joins
	7.2.3 Transpositions
	7.2.4 ORDER BY Clauses
	7.2.5 GROUP BY and Related Conditions
	7.2.6 Other Optimizations

	8 Tracing the Optimizer
		8.1 Typical Usage
	8.2 System Variables Controlling the Trace
	8.3 The INFORMATION_SCHEMA.OPTIMIZER_TRACE Table
	8.4 Traceable Queries
	8.5 Automatic Trace Purging
	8.6 Tuning Trace Purging
	8.7 Tracing Memory Usage
	8.8 Privilege Checking
	8.9 Interaction with the --debug Option
	8.10 The optimizer_trace System Variable
	8.11 The end_markers_in_json System Variable
	8.12 Selecting Optimizer Features to Trace
	8.13 General Trace Structure
	8.14 Example
	8.15 Nicely Displaying a Trace
	8.16 Preventing Use of Optimizer Trace
	8.17 Testing
	8.18 Implementation

	9 Memory Allocation
		9.1 Memory Allocation in the MySQL Server (sql Directory)
	9.2 Memory Allocation in a Library or Storage Engine

	10 Important Algorithms and Structures
		10.1 The Item Class
	10.2 How MySQL Does Sorting (filesort)
	10.3 Bulk Insert
	10.4 How MySQL Does Caching
	10.5 How MySQL Uses the Join Buffer Cache
	10.6 How MySQL Handles FLUSH TABLES
	10.7 Full-Text Search
	10.8 FLOAT and DOUBLE Data Type Representation
	10.9 Date and Time Data Type Representation
	10.10 Threads
	10.11 Character Sets and Collations
	10.12 Error Flags and Functions
	10.13 Functions in the mysys Library
	10.14 Bitmaps

	11 File Formats
		11.1 MySQL .frm File Format

	12 How MySQL Performs Different Selects
		12.1 Steps of Select Execution
	12.2 select_resultClass
	12.3 SIMPLE or PRIMARY SELECT
	12.4 Structure Of Complex Select
	12.5 Non-Subquery UNION Execution
	12.6 Derived Table Execution
	12.7 Subqueries
	12.8 Single Select Engine
	12.9 Union Engine
	12.10 Special Engines
	12.11 Explain Execution

	13 How MySQL Transforms Subqueries
		13.1 Item_in_subselect::select_transformer
		13.1.1 Scalar IN Subquery
	13.1.2 Row IN Subquery

	13.2 Item_allany_subselect
	13.3 Item_singlerow_subselect

	14 MySQL Client/Server Protocol
		14.1 Overview
		14.1.1 Basic Data Types
	14.1.2 MySQL Packets
	14.1.3 Generic Response Packets
	14.1.4 Character Set
	14.1.5 Connection Lifecycle
	14.1.6 Command Phase

	14.2 Connection Phase
		14.2.1 Initial Handshake
	14.2.2 Auth Phase Fast Path
	14.2.3 Authentication Method Mismatch
	14.2.4 Authentication After COM_CHANGE_USER Command
	14.2.5 Connection Phase Packets
	14.2.6 Capability Flags

	14.3 Authentication Method
		14.3.1 Limitations
	14.3.2 Old Password Authentication
	14.3.3 Secure Password Authentication
	14.3.4 Clear Text Authentication
	14.3.5 Windows Native Authentication
	14.3.6 SHA256

	14.4 Compression
		14.4.1 Compressed Packet
	14.4.2 Compressed Packet Header
	14.4.3 Compressed Payload
	14.4.4 Uncompressed Payload

	14.5 SSL
	14.6 Text Protocol
		14.6.1 COM_SLEEP
	14.6.2 COM_QUIT
	14.6.3 COM_INIT_DB
	14.6.4 COM_QUERY
	14.6.5 COM_FIELD_LIST
	14.6.6 COM_CREATE_DB
	14.6.7 COM_DROP_DB
	14.6.8 COM_REFRESH
	14.6.9 COM_SHUTDOWN
	14.6.10 COM_STATISTICS
	14.6.11 COM_PROCESS_INFO
	14.6.12 COM_CONNECT
	14.6.13 COM_PROCESS_KILL
	14.6.14 COM_DEBUG
	14.6.15 COM_PING
	14.6.16 COM_TIME
	14.6.17 COM_DELAYED_INSERT
	14.6.18 COM_CHANGE_USER
	14.6.19 COM_RESET_CONNECTION
	14.6.20 COM_DAEMON

	14.7 Prepared Statements
		14.7.1 Binary Protocol Resultset
	14.7.2 Binary Protocol Resultset Row
	14.7.3 Binary Protocol Value
	14.7.4 COM_STMT_PREPARE
	14.7.5 COM_STMT_SEND_LONG_DATA
	14.7.6 COM_STMT_EXECUTE
	14.7.7 COM_STMT_CLOSE
	14.7.8 COM_STMT_RESET

	14.8 Stored Procedures
		14.8.1 Multi-Resultset
	14.8.2 Multi-Statement
	14.8.3 COM_SET_OPTION
	14.8.4 COM_STMT_FETCH

	14.9 Replication Protocol
		14.9.1 Binlog File
	14.9.2 Binlog Network Stream
	14.9.3 Binlog Version
	14.9.4 Binlog Event
	14.9.5 COM_BINLOG_DUMP
	14.9.6 COM_BINLOG_DUMP_GTID
	14.9.7 COM_TABLE_DUMP
	14.9.8 COM_CONNECT_OUT
	14.9.9 COM_REGISTER_SLAVE

	14.10 Row-Based Replication
		14.10.1 TABLE_MAP_EVENT
	14.10.2 ROWS_EVENT
	14.10.3 ROWS_QUERY_EVENT

	14.11 Semi-Synchronous Replication
		14.11.1 Semi-Synchronous Binlog Event
	14.11.2 Semi-Synchronous ACK Packet

	14.12 Protocol Examples
		14.12.1 A mysql Client Logs In
	14.12.2 ProtocolText::Resultset
	14.12.3 Auth Method Switch
	14.12.4 SHA256 Example

	14.13 Source Code Locations
		14.13.1 MySQL Server
	14.13.2 Binary Protocol Type Implementation

	15 Stored Programs
		15.1 Overview
	15.2 Persistent Representation
		15.2.1 Stored Procedure and Stored Function Storage
	15.2.2 Table Trigger Storage
	15.2.3 Event Storage
	15.2.4 Derived Attribute Storage

	15.3 Internal Representation
		15.3.1 Instructions
	15.3.2 Parsing Context

	15.4 Stored Program Parser
		15.4.1 Parser Structure
	15.4.2 Single-Pass Code Generation

	15.5 Flow Analysis Optimizations
		15.5.1 Dead Code Removal
	15.5.2 Jump Shortcut Resolution

	15.6 Stored Program Caches
		15.6.1 Stored Procedure Cache
	15.6.2 Stored Function Cache
	15.6.3 Table Trigger Cache
	15.6.4 Events and Caching

	15.7 Stored Program Execution
		15.7.1 Runtime Context
	15.7.2 Executing One Instruction
	15.7.3 Flow Control
	15.7.4 Exception Handling
	15.7.5 Call Nesting

	16 Prepared Statement and Stored Routine Re-Execution
		16.1 Statement Re-Execution Requirements
	16.2 Preparation of a Prepared Statement
	16.3 Execution of a Prepared Statement
	16.4 Execution of a Stored Procedure Statement

	17 Writing a Procedure
		17.1 Extend Class Procedure
		17.1.1 Constructor
	17.1.2 change_columns()
	17.1.3 send_row()
	17.1.4 add()
	17.1.5 end_group()
	17.1.6 end_of_records()

	17.2 Initialization Callback
	17.3 Calling Sequence
	17.4 Required Server Code Patches

	18 Replication
		18.1 Chapter Organization
	18.2 Source Code Files
	18.3 Principles
		18.3.1 Binlog Formats
	18.3.2 Differences Between Master and Slave
	18.3.3 Crashes
	18.3.4 Binlog Files and Indexes

	18.4 Rules
		18.4.1 Determining the Logging Format
	18.4.2 Unsafe Statements
	18.4.3 Logging Transactions
	18.4.4 Logging Updates to auto_increment Columns
	18.4.5 Logging Access to Variables and Functions
	18.4.6 Other Unsafe Statements
	18.4.7 binlog_row_image
	18.4.8 Replication Locks

	19 The Binary Log
		19.1 Binary Log Overview
	19.2 High-Level Binary Log Structure and Contents
	19.3 Source Files Related to the Binary Log
		19.3.1 Source File Archaeological Notes

	19.4 Generating Browsable Binary Log Information
	19.5 Event Classes and Types
		19.5.1 Event Class Archaeological Notes

	19.6 Event Meanings
	19.7 Event Structure
		19.7.1 Event Content-Writing Conventions
	19.7.2 Event Header Fields
	19.7.3 Event Data Fields (Event-Specific Information)

	19.8 Binary Log Versions
		19.8.1 Determining the Binary Log Version
	19.8.2 Ensuring Compatibility of Future Binary Log Versions

	19.9 Event Data for Specific Event Types
		19.9.1 LOAD DATA INFILE Events

	19.10 Row-Based Binary Logging
	19.11 Additional Resources

	20 MyISAM Storage Engine
		20.1 MyISAM Record Structure
		20.1.1 Introduction
	20.1.2 Physical Attributes of Columns
	20.1.3 Where to Look For More Information

	20.2 The .MYI File
		20.2.1 MyISAM Files

	20.3 MyISAM Dynamic Data File Layout
		20.3.1 Layout of the Record Storage Frame (Record Part, Record Block)
	20.3.2 Record Contents
	20.3.3 Packed Record Layout
	20.3.4 In-memory Record Layout

	20.4 MyISAM Compressed Data File Layout
		20.4.1 Huffman Compression
	20.4.2 The myisampack Program
	20.4.3 Record and Blob Length Encoding
	20.4.4 Code Tree Representation
	20.4.5 Usage of the Index File
	20.4.6 myisampackTricks
	20.4.7 Detailed Specification of the Decoding

	20.5 MyISAM Key Cache
		20.5.1 MyISAM Concurrent Insert

	21 InnoDB Storage Engine
		21.1 InnoDB Record Structure
		21.1.1 High-Altitude Picture
	21.1.2 Where to Look for More Information

	21.2 InnoDB Page Structure
		21.2.1 High-Altitude View
	21.2.2 Example
	21.2.3 Where to Look For More Information

	22 Writing a Custom Storage Engine
		22.1 Additional Resources
	22.2 Overview
	22.3 Creating Storage Engine Source Files
	22.4 Adding Engine Specific Variables and Parameters
	22.5 Creating the handlerton
	22.6 Handling Handler Instantiation
	22.7 Defining Filename Extensions
	22.8 Creating Tables
	22.9 Opening a Table
	22.10 Implementing Basic Table Scanning
		22.10.1 Implementing the store_lock() Method
	22.10.2 Implementing the external_lock() Method
	22.10.3 Implementing the rnd_init() Method
	22.10.4 Implementing the info(uinf flag) Method
	22.10.5 Implementing the extra() Method
	22.10.6 Implementing the rnd_next() Method

	22.11 Closing a Table
	22.12 Adding Support for INSERT to a Storage Engine
	22.13 Adding Support for UPDATE to a Storage Engine
	22.14 Adding Support for DELETE to a Storage Engine
	22.15 Supporting Non-Sequential Reads
		22.15.1 Implementing the position() Method
	22.15.2 Implementing the rnd_pos() Method

	22.16 Supporting Indexing
		22.16.1 Indexing Overview
	22.16.2 Getting Index Information During CREATE TABLE Operations
	22.16.3 Creating Index Keys
	22.16.4 Parsing Key Information
	22.16.5 Providing Index Information to the Optimizer
	22.16.6 Preparing for Index Use with index_init()
	22.16.7 Cleaning up with index_end()
	22.16.8 Implementing the index_read() Method
	22.16.9 Implementing the index_read_idx() Method
	22.16.10 Implementing the index_read_last() Method
	22.16.11 Implementing the index_next() Method
	22.16.12 Implementing the index_prev() Method
	22.16.13 Implementing the index_first() Method
	22.16.14 Implementing the index_last() Method

	22.17 Supporting Transactions
		22.17.1 Transaction Overview
	22.17.2 Starting a Transaction
	22.17.3 Implementing ROLLBACK
	22.17.4 Implementing COMMIT
	22.17.5 Adding Support for Savepoints

	22.18 API Reference
		22.18.1 bas_ext
	22.18.2 close
	22.18.3 create
	22.18.4 delete_row
	22.18.5 delete_table
	22.18.6 external_lock
	22.18.7 extra
	22.18.8 index_end
	22.18.9 index_first
	22.18.10 index_init
	22.18.11 index_last
	22.18.12 index_next
	22.18.13 index_prev
	22.18.14 index_read
	22.18.15 index_read_idx
	22.18.16 index_read_last
	22.18.17 info
	22.18.18 open
	22.18.19 position
	22.18.20 records_in_range
	22.18.21 rnd_init
	22.18.22 rnd_next
	22.18.23 rnd_pos
	22.18.24 start_stmt
	22.18.25 store_lock
	22.18.26 update_row
	22.18.27 write_row

	22.19 FAQ

	23 Test Synchronization
		23.1 Sleep
	23.2 Wait Condition
	23.3 Dbug Sleep
	23.4 Error Injection
	23.5 User-Level Locks
	23.6 Debug Sync Facility
		23.6.1 Formal Syntax for DEBUG_SYNC Values
	23.6.2 Debug Sync Activation/Deactivation
	23.6.3 Debug Sync Implementation
	23.6.4 A Typical Synchronization Pattern
	23.6.5 Co-work With the DBUG Facility
	23.6.6 Debug Sync Further Reading

	23.7 Debug Sync Point (Obsolete)
		23.7.1 Backup Breakpoint

	24 Injecting Test Faults
		24.1 Test Fault Macros
	24.2 Test Fault Macro Usage

	25 How to Create Good Test Cases
		25.1 Formal Stuff
		25.1.1 Coding Style
	25.1.2 SQL Statement Example
	25.1.3 Please Avoid too Dense Code
	25.1.4 Header of Scripts
	25.1.5 Header Example
	25.1.6 Comments Within Boxes

	25.2 Comments Everywhere
		25.2.1 Complicated test Architecture or Tricky Code
	25.2.2 A Subtest Case is Able to Reveal a Bug
	25.2.3 Subtests
	25.2.4 Make Test Protocols More Understandable
	25.2.5 Better Protocol Example

	25.3 Some Rules Outside of the Formal Stuff
		25.3.1 Error Masking
	25.3.2 Use of the Option --disable_abort_on_error
	25.3.3 Perfect Cleanup at the End of a Test
	25.3.4 Use of OS-Specific Commands

	25.4 Negative Tests
	25.5 Tests with Several Variants
		25.5.1 Variation of the Storage Engine
	25.5.2 Variation of the Protocol Option

	25.6 Miscellaneous Tips
		25.6.1 Stability Checks for Random Timing Problems
	25.6.2 Stability Checks for Hostname-Related Problems
	25.6.3 Stability Checks for Unexpected Problems
	25.6.4 Row Order Within Result Sets
	25.6.5 Test Case Behavior Should Depend on the Result of a SHOW
	25.6.6 Does a Test Execution Hang?
	25.6.7 If Your Test is Complicated, Support Debugging
	25.6.8 You Need to Know Some Syntax, an Option, Etc., but Hate Reading Manuals

	25.7 Notes on MTR2
	25.8 Examples of Suspicious Tests and Scripts
		25.8.1 Probably Mismatch of Focus of Test and Code Sequence
	25.8.2 Too Greedy Test
	25.8.3 Risky Handling Around Additional Sessions

	26 Error Messages
		26.1 Adding New Error Messages to MySQL
		26.1.1 Adding an Error Message to Multiple MySQL Versions
	26.1.2 Adding Error Messages to MySQL 5.0.3 or Higher
	26.1.3 Adding Error Messages to Old (< MySQL 5.0) Versions

	26.2 Adding Storage Engine Error Messages

	A MySQL Source Code Distribution
		A.1 Directory Listing
		A.1.1 The BUILD Directory
	A.1.2 The client Directory
	A.1.3 The config Directory
	A.1.4 The cmd-line-utils Directory
	A.1.5 The dbug Directory
	A.1.6 The Docs Directory
	A.1.7 The extra Directory
	A.1.8 The heap Directory
	A.1.9 The include Directory
	A.1.10 The innobase Directory
	A.1.11 The libmysql Directory
	A.1.12 The libmysql_r Directory
	A.1.13 The libmysqld Directory
	A.1.14 The man Directory
	A.1.15 The myisam Directory
	A.1.16 The myisammrg Directory
	A.1.17 The mysql-test Directory
	A.1.18 The mysys Directory
	A.1.19 The ndb Directory
	A.1.20 The netware Directory
	A.1.21 The NEW-RPMS Directory
	A.1.22 The os2 Directory
	A.1.23 The pstack Directory
	A.1.24 The regex Directory
	A.1.25 The SCCS Directory
	A.1.26 The scripts Directory
	A.1.27 The server-tools Directory
	A.1.28 The sql Directory
	A.1.29 The sql-bench Directory
	A.1.30 The sql-common Directory
	A.1.31 The SSL Directory
	A.1.32 The strings Directory
	A.1.33 The support-files Directory
	A.1.34 The tests Directory
	A.1.35 The tools Directory
	A.1.36 The VC++Files Directory
	A.1.37 The vio Directory
	A.1.38 The zlib Directory

	B InnoDB Source Code Distribution
	Index

MySQL Internals Manual

Abstract

 This is the MySQL Internals Manual.

 For legal information, see the Legal
 Notice.

 For help with using MySQL, please visit either the
 MySQL Forums or
 MySQL Mailing Lists,
 where you can discuss your issues with other MySQL users.

 For additional documentation on MySQL products, including
 translations of the documentation into other languages, and
 downloadable versions in variety of formats, including HTML and PDF
 formats, see the MySQL
 Documentation Library.

 Document generated on:

 2016-03-23

 (revision: 431)

Preface and Legal Notice

 This is a manual about MySQL internals. MySQL development personnel
 change it on an occasional basis. We make no guarantee that it is
 fully up to date. We do hope it illustrates how MySQL programmers
 work, and how MySQL Server works as a result.

Legal Notices

 Copyright © 1997, 2014, Oracle and/or its affiliates. All
 rights reserved.

 This software and related documentation are provided under a license
 agreement containing restrictions on use and disclosure and are
 protected by intellectual property laws. Except as expressly
 permitted in your license agreement or allowed by law, you may not
 use, copy, reproduce, translate, broadcast, modify, license,
 transmit, distribute, exhibit, perform, publish, or display any
 part, in any form, or by any means. Reverse engineering,
 disassembly, or decompilation of this software, unless required by
 law for interoperability, is prohibited.

 The information contained herein is subject to change without notice
 and is not warranted to be error-free. If you find any errors,
 please report them to us in writing.

 If this is software or related documentation that is delivered to
 the U.S. Government or anyone licensing it on behalf of the U.S.
 Government, then the following notice is applicable:

 U.S. GOVERNMENT END USERS: Oracle programs, including any operating
 system, integrated software, any programs installed on the hardware,
 and/or documentation, delivered to U.S. Government end users are
 "commercial computer software" pursuant to the applicable Federal
 Acquisition Regulation and agency-specific supplemental regulations.
 As such, use, duplication, disclosure, modification, and adaptation
 of the programs, including any operating system, integrated
 software, any programs installed on the hardware, and/or
 documentation, shall be subject to license terms and license
 restrictions applicable to the programs. No other rights are granted
 to the U.S. Government.

 This software or hardware is developed for general use in a variety
 of information management applications. It is not developed or
 intended for use in any inherently dangerous applications, including
 applications that may create a risk of personal injury. If you use
 this software or hardware in dangerous applications, then you shall
 be responsible to take all appropriate fail-safe, backup,
 redundancy, and other measures to ensure its safe use. Oracle
 Corporation and its affiliates disclaim any liability for any
 damages caused by use of this software or hardware in dangerous
 applications.

 Oracle and Java are registered trademarks of Oracle and/or its
 affiliates. Other names may be trademarks of their respective
 owners.

 Intel and Intel Xeon are trademarks or registered trademarks of
 Intel Corporation. All SPARC trademarks are used under license and
 are trademarks or registered trademarks of SPARC International, Inc.
 AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks
 or registered trademarks of Advanced Micro Devices. UNIX is a
 registered trademark of The Open Group.

 This software or hardware and documentation may provide access to or
 information about content, products, and services from third
 parties. Oracle Corporation and its affiliates are not responsible
 for and expressly disclaim all warranties of any kind with respect
 to third-party content, products, and services unless otherwise set
 forth in an applicable agreement between you and Oracle. Oracle
 Corporation and its affiliates will not be responsible for any loss,
 costs, or damages incurred due to your access to or use of
 third-party content, products, or services, except as set forth in
 an applicable agreement between you and Oracle.

Documentation Accessibility

 For information about Oracle's commitment to accessibility, visit
 the Oracle Accessibility Program website at

 http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

 Oracle customers that have purchased support have access to
 electronic support through My Oracle Support. For information,
 visit

 http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
 or visit
 http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
 if you are hearing impaired.

 This documentation is NOT distributed under a GPL license. Use of
 this documentation is subject to the following terms:

 You may create a printed copy of this documentation solely for your
 own personal use. Conversion to other formats is allowed as long as
 the actual content is not altered or edited in any way. You shall
 not publish or distribute this documentation in any form or on any
 media, except if you distribute the documentation in a manner
 similar to how Oracle disseminates it (that is, electronically for
 download on a Web site with the software) or on a CD-ROM or similar
 medium, provided however that the documentation is disseminated
 together with the software on the same medium. Any other use, such
 as any dissemination of printed copies or use of this documentation,
 in whole or in part, in another publication, requires the prior
 written consent from an authorized representative of Oracle. Oracle
 and/or its affiliates reserve any and all rights to this
 documentation not expressly granted above.

Chapter 1 A Guided Tour Of The MySQL Source Code

Table of Contents
	1.1 Getting the Source Tree
		1.1.1 Getting the Source Tree (Git)

	1.2 The Major Directories
		1.2.1 Major Directories: BUILD
	1.2.2 Major Directories: client
	1.2.3 Major Directories: myisam
	1.2.4 Major Directories: mysys
	1.2.5 Major Directories: sql
	1.2.6 Major Directories: vio

	1.3 The Flow
	1.4 The Open-Source Directories
	1.5 The Internal and External Storage Engine Directories
	1.6 The OS-Specific Directories
	1.7 Odds and Ends
	1.8 A Chunk of Code in /sql/sql_update.cc
	1.9 The Skeleton of the Server Code
	1.10 Recap

 What we're about to do in this section is pick up the latest copy of
 the MySQL source code off the Internet. Then we'll get a list of the
 directories and comment on why they're there. Next we'll open up
 some of the files that are vital to MySQL's working, and comment on
 specific lines in the source code. We'll close off with a few
 pictures of file formats.

1.1 Getting the Source Tree

 This section describes how to obtain the MySQL source tree, which
 is currently available on GitHub.

1.1.1 Getting the Source Tree (Git)

 MySQL officially joined GitHub in September, 2014. For more
 information about MySQL's move to GitHub, refer to the
 announcement on the MySQL Release Engineering blog:
 MySQL
 on GitHub

 To obtain the MySQL source tree from GitHub, perform the
 following steps:

	
 Clone the MySQL Git repository to your machine. The
 following command clones the MySQL Git repository to a
 directory named mysql-server. The
 download size is approximately 437 MB.

me@mymachine:~$ git clone https://github.com/mysql/mysql-server.git
Cloning into 'mysql-server'...
remote: Counting objects: 1035465, done.
remote: Total 1035465 (delta 0), reused 0 (delta 0)
Receiving objects: 100% (1035465/1035465), 437.48 MiB | 5.10 MiB/s, done.
Resolving deltas: 100% (855607/855607), done.
Checking connectivity... done.
Checking out files: 100% (21902/21902), done.

	
 When the clone operation completes, the contents of your
 local MySQL Git repository appear as shown:

me@mymachine:~$ cd mysql-server

me@mymachine:~/mysql-server$ ls
BUILD COPYING libmysqld regex tests
BUILD-CMAKE dbug libservices scripts unittest
client Docs man sql VERSION
cmake extra mysql-test sql-bench vio
CMakeLists.txt include mysys sql-common win
cmd-line-utils INSTALL-SOURCE packaging storage zlib
config.h.cmake INSTALL-WIN-SOURCE plugin strings
configure.cmake libmysql README support-files

	
 Your MySQL Git repository contains MySQL 5.5, 5.6, and 5.7
 branches. Run the git branch -r command
 to view the “remote-tracking” branches:

~/mysql-server$ git branch -r
 origin/5.5
 origin/5.6
 origin/5.7
 origin/HEAD -> origin/5.7

	
 Run the git branch command to view
 branches that are currently checked out locally. When you
 cloned the MySQL Git repository, the MySQL 5.7 branch was
 checked out automatically. The asterisk identifies the 5.7
 branch as the active branch.

~/mysql-server$ git branch
* 5.7

	
 To check out the other MySQL branches, run the git
 checkout command, specifying the branch name:

~/mysql-server$ git checkout 5.6
Branch 5.6 set up to track remote branch 5.6 from origin.
Switched to a new branch '5.6'

me@mymachine:~/mysql-server$ git checkout 5.5
Branch 5.5 set up to track remote branch 5.5 from origin.
Switched to a new branch '5.5'

	
 Run git branch again to verify that all
 three branches are present. MySQL 5.5, which is the last
 branch you checked out, is marked by an asterisk indicating
 that it is the current branch.

~/mysql-server$ git branch
* 5.5
 5.6
 5.7

 To switch branches, run git checkout
 again. For example, to make MySQL 5.6 the active branch, run
 git checkout 5.6.

 For more information about working with and maintaining Git
 repositories, refer to
 GitHub Help.

1.2 The Major Directories

	
 BUILD

	
 client

	
 Docs

	
 myisam

	
 mysys

	
 sql

	
 vio

 The orderly approach is to look first at the most important
 directories, then we'll look at the whole list in our second pass.
 So, first, let's look at what you'll find in just seven of the
 directories: BUILD, client, Docs, myisam, mysys, sql, and vio.

1.2.1 Major Directories: BUILD

 The first major directory we'll look at is BUILD. It actually
 has very little in it, but it's useful, because one of the first
 things you might want to do with the source code is: compile and
 link it.

 The example command line that we could use is

shell> ./BUILD/compile-pentium-debug --prefix=$HOME/mysql-bin

 It invokes a batch file in the BUILD
 directory. When it's done, you'll have an executable MySQL
 server and client.

 Or, um, well, maybe you won't. Sometimes people have trouble
 with this step because there's something missing in their
 operating system version, or whatever. Don't worry, it really
 does work, and there are people around who might help you if you
 have trouble with this step. Search for "build" in the archives
 of lists.mysql.com.

 We, when we're done building, tend to install it with the
 following sequence:

shell> make
shell> make install
shell> $HOME/mysql-bin/scripts/mysql_install_db \
 --basedir=$HOME/mysql-bin \
 --datadir=$HOME/mysql-bin/var

 This puts the new MySQL installation files on

shell> $HOME/mysql-bin/bin -- for the server
shell> $HOME/mysql-bin/bin -- for the mysql client
shell> $HOME/mysql-bin/var -- for the databases

 Before MySQL 5.5, mysql_install_db is located
 in the bin directory and the server is
 located in the libexec directory.

1.2.1.1 GNU Debugger

 Once you've got something that runs, you can put a debugger on
 it. We recommend use of the GNU debugger

http://www.gnu.org/software/gdb/documentation/

 And many developers use the graphical debugger tool DDD - Data
 Display Debugger

http://www.gnu.org/software/ddd/manual/

 These are free and common, they're probably on your Linux
 system already.

 There are debuggers for Windows and other operating systems,
 of course don't feel left out just because we're mentioning a
 Linux tool name! But it happens that we do a lot of things
 with Linux ourselves, so we happen to know what to say. To
 debug the mysqld server, say:

shell> ddd --gdb --args \
 $HOME/mysql-bin/libexec/mysqld \
 --basedir=$HOME/mysql-bin \
 --datadir=$HOME/mysql-bin/var\
 --skip-networking

 From this point on, it may be tempting to follow along through
 the rest of the "guided tour" by setting breakpoints,
 displaying the contents of variables, and watching what
 happens after starting a client from another shell. That would
 be more fun. But it would require a detour, to discuss how to
 use the debugger. So we'll plow forward, the dull way, noting
 what's in the directories and using a text editor to note
 what's in the individual files.

1.2.1.2 Running a Test with the Debugger

 To run a test named some.test with the
 debugger in embedded mode you could do this:

	
 Run libmysqld/examples/test_run --gdb
 some.test. This creates a
 libmysqld/examples/test-gdbinit file
 which contains the required parameters for
 mysqltest.

	
 Make a copy of the test-gdbinit file
 (call it, for example, some-gdbinit).
 The test-gdbinit file will be removed
 after test-run --gdb has finished.

	
 Load
 libmysqld/examples/mysqltest_embedded
 into your favorite debugger, for example: gdb
 mysqltest_embedded.

	
 In the debugger, for example in gdb,
 do: --sou some-gdbinit

 Now some.test is running, and you can see
 if it's passing or not.

 If you just want to debug some queries with the embedded
 server (not the test), it's easier to just run
 libmysqld/examples/mysql. It's the embedded
 server-based clone of the usual
 mysql tool, and works fine
 under gdb or whatever your
 favorite debugger is.

1.2.2 Major Directories: client

 The next major directory is mysql-5.0/client.

size name comment
---- ---- -------
100034 mysql.cc "The MySQL command tool"
 36913 mysqladmin.c maintenance of MYSQL databases
 22829 mysqlshow.c show databases, tables, or columns
+ 12 more .c and .cc programs

 It has the source code of many of your familiar favorites, like
 mysql, which everybody has used to connect to the MySQL server
 at one time or another. There are other utilities too in fact,
 you'll find the source of most client-side programs here. There
 are also programs for checking the password, and for testing
 that basic functions such as threading or access via SSL are
 possible.

 You'll notice, by the way, that we're concentrating on the files
 that have extension of ".c" or ".cc". By now it's obvious that C
 is our principal language although there are some utilities
 written in Perl as well.

1.2.3 Major Directories: myisam

 The next major directory is labelled myisam. We will begin by
 mentioning that myisam is one of what we call the MySQL storage
 engine directories.

The MySQL storage engine directories:
heap -- also known as 'memory'
innodb -- maintained by Innobase Oy
myisam -- see next section!
ndb -- ndb cluster

 For example the heap directory contains the source files for the
 heap storage engine and the ndb directory contains the source
 files for the ndb storage engine.

 But the files in those directories are mostly analogues of
 what's in the myisam directory, and the myisam directory is sort
 of a 'template'.

 On the myisam directory, you'll find the programs that do file
 I/O. Notice that the file names begin with the letters mi, by
 the way. That stands for MyISAM, and most of the important files
 in this directory start with mi.

 File handling programs on mysql-5.0/myisam:

size name comment
---- ---- -------
 40301 mi_open.c for opening
 3593 mi_close.c for closing
 1951 mi_rename.c for renaming
+ more mi_*.c programs

 Row handling programs on mysql-5.0/myisam:

size name comment
---- ---- -------
 29064 mi_delete.c for deleting
 2562 mi_delete_all.c for deleting all
 6797 mi_update.c for updating
 32613 mi_write.c for inserting
+ more mi_*.c programs

 Drilling down a bit, you'll also find programs in the myisam
 directory that handle deleting, updating, and inserting of rows.
 The only one that's a little hard to find is the program for
 inserting rows, which we've called mi_write.c instead of
 mi_insert.c.

 Key handling programs on mysql-5.0/myisam:

size name comment
---- ---- -------
 4668 mi_rkey.c for random key searches
 3646 mi_rnext.c for next-key searches
 15440 mi_key.c for managing keys
+ more mi_*.c programs

 The final notable group of files in the myisam directory is the
 group that handles keys in indexes.

 To sum up: (1) The myisam directory is where you'll find
 programs for handling files, rows, and keys. You won't find
 programs for handling columns we'll get to them a bit later. (2)
 The myisam directory is just one of the handler directories. The
 programs in the other storage engine directories fulfill about
 the same functions.

1.2.4 Major Directories: mysys

 The next major directory is labelled mysys, which stands for
 MySQL System Library. This is the toolbox directory, for example
 it has low level routines for file access. The .c files in mysys
 have procedures and functions that are handy for calling by main
 programs, for example by the programs in the myisam directory.
 There are 115 .c files in mysys, so we only can note a sampling.

 Sampling of programs on mysql-5.0/mysys

size name comment
---- ---- -------
 17684 charset.c character sets
 6165 mf_qsort.c quicksort
 5609 mf__tempfile.c temporary files
+ 112 more *.c programs

 Example one: with charset.c routines, you can change the
 character set.

 Example two: mf_qsort.c contains our quicksort package.

 Example three: mf_tempfile.c has what's needed for maintaining
 MySQL's temporary files.

 You can see from these examples that mysys is a hodgepodge.
 That's why we went to the trouble of producing extra
 documentation in this document to help you analyze mysys's
 contents.

1.2.5 Major Directories: sql

 The next major directory is mysql-5.0/sql. If you remember your
 manual, you know that you must pronounce this: ess queue ell.

 The "parser" programs on mysql-5.0/sql:

size name comment
---- ---- -------
 51326 sql_lex.cc lexer
230026 sql_yacc.yy parser
+ many more *.cc programs

 This is where we keep the parser. In other words, programs like
 sql_lex.cc and sql_yacc.yy are responsible for figuring out
 what's in an SQL command, and deciding what to do about it.

 The "handler" programs on mysql-5.0/sql:

size name comment
---- ---- -------
 79798 ha_berkeley.cc bdb
 56687 ha_federated.cc federated (sql/med)
 61033 ha_heap.cc heap (memory)
214046 ha_innodb.cc innodb
 47361 ha_myisam.cc myisam
 14727 ha_myisammrg.cc merge
215091 ha_ndbcluster.cc ndb

 This is also where we keep the handler programs. Now, you'll
 recall that the storage engine itself, for example myisam, is a
 separate directory. But here in the sql directory, we have
 programs which are responsible for determining which handler to
 call, formatting appropriate arguments, and checking results. In
 other words, the programs that begin with the letters ha are the
 handler interface programs, and there's one for each storage
 engine.

 The "statement" routines in mysql-5.0/sql:

size name comment
---- ---- -------
 24212 sql_delete.cc 'delete ...' statement
 1217 sql_do.cc 'do ...'
 22362 sql_help.cc 'help ...'
 75331 sql_insert.cc 'insert ...'
430486 sql_select.cc 'select ...'
130861 sql_show.cc 'show ...'
 42346 sql_update.cc 'update ...'
+ many more sql_*.cc programs

 Also in the sql directory, you'll find individual programs for
 handling each of the syntactical components of an SQL statement.
 These programs tend to have names beginning with sql_. So for
 the SELECT statement, check out sql_select.cc.

 Thus, there are "statement" routines like sql_delete.c,
 sql_load.c, and sql_help.c, which take care of the DELETE, LOAD
 DATA, and HELP statements. The file names are hints about the
 SQL statements involved.

 The "statement function" routines in mysql-5.0/sql:

size name comment
---- ---- -------
 19906 sql_string.cc strings
 6152 sql_olap.cc olap (rollup)
 14241 sql_udf.cc user-defined functions
 17669 sql_union.cc unions

 Then there are the routines for components of statements, such
 as strings, or online analytical processing which at this moment
 just means ROLLUP, or user-defined functions, or the UNION
 operator.

1.2.6 Major Directories: vio

 The final major directory that we'll highlight is labelled vio,
 for "virtual I/O".

 The vio routines are wrappers for the various network I/O calls
 that happen with different protocols. The idea is that in the
 main modules one won't have to write separate bits of code for
 each protocol. Thus vio's purpose is somewhat like the purpose
 of Microsoft's winsock library.

 That wraps up our quick look at the seven major directories.
 Just one summary chart remains to do.

1.3 The Flow

 This is a diagram of the flow.

 User enters "INSERT" statement /* client */
 |
 |
 Message goes over TCP/IP line /* vio, various */
 |
 |
 Server parses statement /* sql */
 |
 |
 Server calls low-level functions /* myisam */
 |
 |
 Handler stores in file /* mysys */

 The diagram is very simplified — it's a caricature that
 distorts important things, but remember that we've only discussed
 seven major directories so far: Docs, BUILD, and the five that you
 see here.

 The flow works like this:

 First, the client routines get an SQL statement from a user,
 allowing edit, performing initial checks, and so on.

 Then, via the vio routines, the somewhat-massaged statement goes
 off to the server.

 Next, the sql routines handle the parsing and call what's
 necessary for each individual part of the statement. Along the
 way, the sql routines will be calling the low level mysys routines
 frequently.

 Finally, one of the ha (handler) programs in the sql directory
 will dispatch to an appropriate handler for storage. In this case
 we've assumed, as before, that the handler is myisam — so a
 myisam-directory program is involved. Specifically, that program
 is mi_write.c, as we mentioned earlier.

 Simple, eh?

1.4 The Open-Source Directories

 We're now getting into the directories which aren't
 “major.” Starting with:

dbug
pstack
regex
strings
zlib

 Now it's time to reveal a startling fact, which is we didn't write
 all of the source code in all of the source code directories all
 by ourselves. This list is, in a sense, a tribute to the idea of
 open source.

 There's dbug, which is Fred Fish's debug library.

 There's pstack, which displays the process stack.

 There's regex, which is what we use for our regular expressions
 function.

 There's strings, the meaning of which is obvious.

 There's zlib, which is for Lempel-Ziv compression.

 All of the programs in these directories were supplied by others,
 as open source code. We didn't just take them, of course. MySQL
 has checked and changed what's in these directories. But we
 acknowledge with thanks that they're the products of other
 projects, and other people's labor, and we only regret that we
 won't have time to note all the contributed or publicly available
 components of MySQL, in this manual.

1.5 The Internal and External Storage Engine Directories

 Continuing with our extract from the directory list ...

bdb /* external */
heap
innobase /* external */
myisam
myisammrg
ndb

 Let's go through the idea of storage engines once more, this time
 with a list of all the storage engines, both the ones that we
 produce, and the ones that others produce. We've already mentioned
 the internal ones so now we'll remark on the directories of the
 two common external storage engines BDB and innobase.

 The BDB, or Berkeley Database, handler, is strictly the product of
 Sleepycat software. Sleepycat has a web page at sleepycat.com,
 which contains, among other things, documentation for their
 product. So you can download Sleepycat's own documentation of the
 source code in the BDB directory.

 As for the innobase handler, which many of you probably use,
 you'll be happy to know that the comments in the files are
 reasonably clear (the InnoBase Oy people are pretty strict about
 comments). There are two chapters about it in this document.

1.6 The OS-Specific Directories

netware
NEW-RPMS
os2
VC++Files

 A few words are in order about the directories that contain files
 which relate to a particular environment that MySQL can run in.

 The netware directory contains a set of files for interfacing with
 netware, and anyone who has an involvement with NetWare knows that
 we're allied with them, and so this is one of the directories that
 represents the joint enterprise.

 The NEW-RPMS directory (empty at time of writing) is for Linux,
 and the os2 directory is for OS/2.

 Finally, the VC++Files directory is for Windows. We've found that
 the majority of Windows programmers who download and build MySQL
 from source use Microsoft Visual C. In the VC++Files directory you
 will find a nearly complete replication of what's in all the other
 directories that we've discussed, except that the .c files are
 modified to account for the quirks of Microsoft tools.

 Without endorsing by particular names, we should note that other
 compilers from other manufacturers also work.

1.7 Odds and Ends

 Finally, for the sake of completeness, we'll put up a list of the
 rest of the directories those that we haven't had occasion to
 mention till now.

Source Code Administration Directories:
SCCS

Common .h Files:
include

GNU Readline library and related:
cmd-line-utils

Stand-alone Utility & Test Programs:
extra
mysql-test
repl-tests
support-files
tests
tools

 You don't have to worry about the administration directories since
 they're not part of what you build.

 You probably won't have to worry about the stand-alone programs
 either, since you just use them, you don't need to remake them.

 There's an include directory that you SHOULD have a look at,
 because the common header files for programs from several
 directories are in here.

 Finally, there are stand-alone utility and test programs. Strictly
 speaking they're not part of the "source code". But it's probably
 reassuring to know that there's a test suite, for instance. Part
 of the quality-assurance process is to run the scripts in the test
 suite before releasing.

 And those are the last. We've now traipsed through every
 significant directory created during your download of the MySQL
 source package.

1.8 A Chunk of Code in /sql/sql_update.cc

 Now, having finished with our bird's eye view of the source code
 from the air, let's take the perspective of the worms on the
 ground (which is another name for MySQL's developer staff -- turn
 on laugh track here).

int mysql_update(THD *thd, ...)
{
 ...
 if ((lock_tables(thd, table_list)))
 DBUG_RETURN(1); ...
 ...
 init_read_record(&info,thd,table,select,0,1); ...
 while (!(error=info.read_record(&info)) && !thd->killed)
 {
 ...
 if (!(error=table->file->update_row((byte*) table->record[1]),
 (byte*) table->record[0])))
 updated++;
 ...
 if (table->triggers)
 table->triggers->process_triggers(thd, TRG_EVENT_UPDATE, TRG_ACTION_AFTER);
 ...
 }
 ...
 if (updated && (error <= 0 || !transactional_table))
 {
 mysql_bin_log.write(&qinfo) && transactional_table);
 ...
}

 Here's a snippet of code from a .c file in the sql directory,
 specifically from sql_update.cc, which as we mentioned earlier --
 is invoked when there's an UPDATE statement to process.

 The entire routine has many error checks with handlers for
 improbable conditions, and showing multiple screens would be
 tedious, so we've truncated the code a lot. Where you see an
 ellipsis (three dots in a row), that means "and so on".

 So, what do we learn from this snippet of code? In the first
 place, we see that it's fairly conventional C code. A brace causes
 an indentation, instructions tend to be compact with few
 unnecessary spaces, and comments are sparse.

 Abbreviations are common, for example thd stands for thread, you
 just have to get used to them. Typically a structure will be
 defined in a separate .h file.

 Routine names are sometimes long enough that they explain
 themselves. For example, you can probably guess that this routine
 is opening and locking, allocating memory in a cache, initializing
 a process for reading records, reading records in a loop until the
 thread is killed or there are no more to read, storing a modified
 record for the table, and — after the loop is through
 — possibly writing to the log. Incidentally, a transactional
 table is usually a BDB or an InnoDB table.

 Obviously we've picked out what's easy to follow, and we're not
 pretending it's all smooth sailing. But this is actual code and
 you can check it out yourself.

1.9 The Skeleton of the Server Code

 And now we're going to walk through something harder, namely the
 server.

 WARNING WARNING WARNING: code changes constantly, so names and
 parameters may have changed by the time you read this.

 Important files we'll be walking through:

/sql/mysqld.cc
/sql/sql_parse.cc
/sql/sql_prepare.cc
/sql/sql_insert.cc
/sql/ha_myisam.cc
/myisam/mi_write.c

 This is not as simple as what we've just done. In fact we'll need
 multiple pages to walk through this one, and that's despite our
 use of truncation and condensation again. But the server is
 important, and if you can grasp what we're doing with it, you'll
 have grasped the essence of what the MySQL source code is all
 about.

 We'll mostly be looking at programs in the sql directory, which is
 where mysqld and most of the programs for the SQL engine code are
 stored.

 Our objective is to follow the server from the time it starts up,
 through a single INSERT statement that it receives from a client,
 to the point where it finally performs the low level write in the
 MyISAM file.

 Walking Through The Server Code: /sql/mysqld.cc

 int main(int argc, char **argv)
 {
 _cust_check_startup();
 (void) thr_setconcurrency(concurrency);
 init_ssl();
 server_init(); // 'bind' + 'listen'
 init_server_components();
 start_signal_handler();
 acl_init((THD *)0, opt_noacl);
 init_slave();
 create_shutdown_thread();
 create_maintenance_thread();
 handle_connections_sockets(0); // !
 DBUG_PRINT("quit",("Exiting main thread"));
 exit(0);
 }

 Here is where it all starts, in the main function of mysqld.cc.

 Notice that we show a directory name and program name just above
 this snippet. We will do the same for all the snippets in this
 series.

 By glancing at this snippet for a few seconds, you will probably
 see that the main function is doing some initial checks on
 startup, is initializing some components, is calling a function
 named handle_connections_sockets, and then is exiting. It's
 possible that acl stands for "access control" and it's interesting
 that DBUG_PRINT is something from Fred Fish's debug library, which
 we've mentioned before. But we must not digress.

 In fact there are 150 code lines in the main function, and we're
 only showing 13 code lines. That will give you an idea of how much
 we are shaving and pruning. We threw away the error checks, the
 side paths, the optional code, and the variables. But we did not
 change what was left. You will be able to find these lines if you
 take an editor to the mysqld.cc program, and the same applies for
 all the other routines in the snippets in this series.

 The one thing you won't see in the actual source code is the
 little marker "// !". This marker will always be on the line of
 the function that will be the subject of the next snippet. In this
 case, it means that the next snippet will show the
 handle_connection_sockets function. To prove that, let's go to the
 next snippet.

 Walking Through The Server Code: /sql/mysqld.cc

 handle_connections_sockets (arg __attribute__((unused))
 {
 if (ip_sock != INVALID_SOCKET)
 {
 FD_SET(ip_sock,&clientFDs);
 DBUG_PRINT("general",("Waiting for connections."));
 while (!abort_loop)
 {
 new_sock = accept(sock, my_reinterpret_cast(struct sockaddr*)
 (&cAddr), &length);
 thd= new THD;
 if (sock == unix_sock)
 thd->host=(char*) localhost;
 create_new_thread(thd); // !
 }

 Inside handle_connections_sockets you'll see the hallmarks of a
 classic client/server architecture. In a classic client/server,
 the server has a main thread which is always listening for
 incoming requests from new clients. Once it receives such a
 request, it assigns resources which will be exclusive to that
 client. In particular, the main thread will spawn a new thread
 just to handle the connection. Then the main server will loop and
 listen for new connections — but we will leave it and follow
 the new thread.

 As well as the sockets code that we chose to display here, there
 are several variants of this thread loop, because clients can
 choose to connect in other ways, for example with named pipes or
 with shared memory. But the important item to note from this
 section is that the server is spawning new threads.

 Walking Through The Server Code: /sql/mysqld.cc

 create_new_thread(THD *thd)
 {
 pthread_mutex_lock(&LOCK_thread_count);
 pthread_create(&thd->real_id,&connection_attrib,
 handle_one_connection, // !
 (void*) thd));
 pthread_mutex_unlock(&LOCK_thread_count);
 }

 Here is a close look at the routine that spawns the new thread.
 The noticeable detail is that, as you can see, it uses a mutex or
 mutual exclusion object. MySQL has a great variety of mutexes that
 it uses to keep actions of all the threads from conflicting with
 each other.

 Walking Through The Server Code: /sql/sql_parse.cc

handle_one_connection(THD *thd)
 {
 init_sql_alloc(&thd->mem_root, MEM_ROOT_BLOCK_SIZE, MEM_ROOT_PREALLOC);
 while (!net->error && net->vio != 0 && !thd->killed)
 {
 if (do_command(thd)) // !
 break;
 }
 close_connection(net);
 end_thread(thd,1);
 packet=(char*) net->read_pos;

 With this snippet, we've wandered out of mysqld.cc. Now, we're in
 the sql_parse file, still in the sql directory. This is where the
 session's big loop is.

 The loop repeatedly gets and does commands. When it ends, the
 connection closes. At that point, the thread will end and the
 resources for it will be deallocated.

 But we're more interested in what happens inside the loop, when we
 call the do_command function.

Graphic:

 client <===== MESSAGE ====> server <======PACKETS ====>

 Example:
 INSERT INTO Table1 VALUES (1);

 To put it graphically, at this point there is a long-lasting
 connection between the client and one server thread. Message
 packets will go back and forth between them through this
 connection. For today's tour, let's assume that the client passes
 the INSERT statement shown on the Graphic, for the server to
 process.

 Walking Through The Server Code: /sql/sql_parse.cc

bool do_command(THD *thd)
{
 net_new_transaction(net);
 packet_length=my_net_read(net);
 packet=(char*) net->read_pos;
 command = (enum enum_server_command) (uchar) packet[0];
 dispatch_command(command,thd, packet+1, (uint) packet_length);
// !
}

 You've probably noticed by now that whenever we call a lower-level
 routine, we pass an argument named thd, which is an abbreviation
 for the word thread (we think). This is the essential context
 which we must never lose.

 The my_net_read function is in another file called net_serv.cc.
 The function gets a packet from the client, uncompresses it, and
 strips the header.

 Once that's done, we've got a multi-byte variable named packet
 which contains what the client has sent. The first byte is
 important because it contains a code identifying the type of
 message.

 We'll pass that and the rest of the packet on to the
 dispatch_command function.

 Walking Through The Server Code: /sql/sql_parse.cc

bool dispatch_command(enum enum_server_command command, THD *thd,
 char* packet, uint packet_length)
{
 switch (command) {
 case COM_INIT_DB: ...
 case COM_REGISTER_SLAVE: ...
 case COM_TABLE_DUMP: ...
 case COM_CHANGE_USER: ...
 case COM_EXECUTE:
 mysql_stmt_execute(thd,packet);
 case COM_LONG_DATA: ...
 case COM_PREPARE:
 mysql_stmt_prepare(thd, packet, packet_length); // !
 /* and so on for 18 other cases */
 default:
 send_error(thd, ER_UNKNOWN_COM_ERROR);
 break;
 }

 And here's just part of a very large switch statement in
 sql_parse.cc. The snippet doesn't have room to show the rest, but
 you'll see when you look at the dispatch_command function that
 there are more case statements after the ones that you see here.

 There will be — we're going into list mode now and just
 reciting the rest of the items in the switch statement —
 code for prepare, close statement, query, quit, create database,
 drop database, dump binary log, refresh, statistics, get process
 info, kill process, sleep, connect, and several minor commands.
 This is the big junction.

 We have cut out the code for all of the cases except for two,
 COM_EXECUTE and COM_PREPARE.

 Walking Through The Server Code: /sql/sql_prepare.cc

 We are not going to follow what happens with COM_PREPARE. Instead,
 we are going to follow the code after COM_EXECUTE. But we'll have
 to digress from our main line for a moment and explain what the
 prepare does.

"Prepare:
Parse the query
Allocate a new statement, keep it in 'thd->prepared statements' pool
Return to client the total number of parameters and result-set
metadata information (if any)"

 The prepare is the step that must happen before execute happens.
 It consists of checking for syntax errors, looking up any tables
 and columns referenced in the statement, and setting up tables for
 the execute to use. Once a prepare is done, an execute can be done
 multiple times without having to go through the syntax checking
 and table lookups again.

 Since we're not going to walk through the COM_PREPARE code, we
 decided not to show its code at this point. Instead, we have cut
 and pasted some code comments that describe prepare. All we're
 illustrating here is that there are comments in the code, so you
 will have aid when you look harder at the prepare code.

 Walking Through The Server Code: /sql/sql_parse.cc

 bool dispatch_command(enum enum_server_command command, THD *thd,
 char* packet, uint packet_length)
 {
 switch (command) {
 case COM_INIT_DB: ...
 case COM_REGISTER_SLAVE: ...
 case COM_TABLE_DUMP: ...
 case COM_CHANGE_USER: ...
 case COM_EXECUTE:
 mysql_stmt_execute(thd,packet); // !
 case COM_LONG_DATA: ...
 case COM_PREPARE:
 mysql_stmt_prepare(thd, packet, packet_length);
 /* and so on for 18 other cases */
 default:
 send_error(thd, ER_UNKNOWN_COM_ERROR);
 break;
 }

 Let's return to the grand central junction again in sql_parse.cc
 for a moment. The thing to note on this snippet is that the line
 which we're really going to follow is what happens for
 COM_EXECUTE.

 Walking Through The Server Code: /sql/sql_prepare.cc

 void mysql_stmt_execute(THD *thd, char *packet)
 {
 if (!(stmt=find_prepared_statement(thd, stmt_id, "execute")))
 {
 send_error(thd);
 DBUG_VOID_RETURN;
 }
 init_stmt_execute(stmt);
 mysql_execute_command(thd); // !
 }

 In this case, the line that we're following is the line that
 executes a statement.

 Notice how we keep carrying the THD thread and the packet along
 with us, and notice that we expect to find a prepared statement
 waiting for us, since this is the execute phase. Notice as well
 that we continue to sprinkle error-related functions that begin
 with the letters DBUG, for use by the debug library. Finally,
 notice that the identifier "stmt" is the same name that ODBC uses
 for the equivalent object. We try to use standard names when they
 fit.

 Walking Through The Server Code: /sql/sql_parse.cc

 void mysql_execute_command(THD *thd)
 switch (lex->sql_command) {
 case SQLCOM_SELECT: ...
 case SQLCOM_SHOW_ERRORS: ...
 case SQLCOM_CREATE_TABLE: ...
 case SQLCOM_UPDATE: ...
 case SQLCOM_INSERT: ... // !
 case SQLCOM_DELETE: ...
 case SQLCOM_DROP_TABLE: ...
 }

 In the mysql_execute_command function. we encounter another
 junction. One of the items in the switch statement is named
 SQLCOM_INSERT.

 Walking Through The Server Code: /sql/sql_parse.cc

case SQLCOM_INSERT:
{
 my_bool update=(lex->value_list.elements ? UPDATE_ACL : 0);
 ulong privilege= (lex->duplicates == DUP_REPLACE ?
 INSERT_ACL | DELETE_ACL : INSERT_ACL | update);
 if (check_access(thd,privilege,tables->db,&tables->grant.privilege))
 goto error;
 if (grant_option && check_grant(thd,privilege,tables))
 goto error;
 if (select_lex->item_list.elements != lex->value_list.elements)
 {
 send_error(thd,ER_WRONG_VALUE_COUNT);
 DBUG_VOID_RETURN;
 }
 res = mysql_insert(thd,tables,lex->field_list,lex->many_values,
 select_lex->item_list, lex->value_list,
 (update ? DUP_UPDATE : lex->duplicates));
// !
 if (thd->net.report_error)
 res= -1;
 break;
}

 For this snippet, we've blown up the code around the SQLCOM_INSERT
 case in the mysql_execute_command function. The first thing to do
 is check whether the user has the appropriate privileges for doing
 an INSERT into the table, and this is the place where the server
 checks for that, by calling the check_access and check_grant
 functions. It would be tempting to follow those functions, but
 those are side paths. Instead, we'll follow the path where the
 work is going on.

 Walking Through The Server Code: Navigation Aid

 Some program names in the /sql directory:

Program Name SQL statement type
------------ ------------------
sql_delete.cc DELETE
sql_do.cc DO
sql_handler.cc HANDLER
sql_help.cc HELP
sql_insert.cc INSERT // !
sql_load.cc LOAD
sql_rename.cc RENAME
sql_select.cc SELECT
sql_show.cc SHOW
sql_update.cc UPDATE

 Question: Where will mysql_insert() be?

 The line that we're following will take us next to a routine named
 mysql_insert. Sometimes it's difficult to guess what program a
 routine will be in, because MySQL has no consistent naming
 convention. However, here is one aid to navigation that works for
 some statement types. In the sql directory, the names of some
 programs correspond to statement types. This happens to be the
 case for INSERT, for instance. So the mysql_insert program will be
 in the program sql_insert.cc. But there's no reliable rule.

 (Let's add here a few sentences about the tags 'ctags' program.
 When an editor supports ctags (and the list is long, but vi and
 emacs of course are there), the function definition is one key
 press away - no guessing involved. In the above case, a vim user
 could press ^] on mysql_insert name and vim would open
 sql_insert.cc and position the curson on the first line of the
 mysql_insert() function. The tags help can be indispensable in
 everyday work.)

 Walking Through The Server Code: /sql/sql_insert.cc

 int mysql_insert(THD *thd,TABLE_LIST *table_list, List<Item> &fields,
 List<List_item> &values_list,enum_duplicates duplic)
 {
 table = open_ltable(thd,table_list,lock_type);
 if (check_insert_fields(thd,table,fields,*values,1) ||
 setup_tables(table_list) ||
 setup_fields(thd,table_list,*values,0,0,0))
 goto abort;
 fill_record(table->field,*values);
 error=write_record(table,&info); // !
 query_cache_invalidate3(thd, table_list, 1);
 if (transactional_table)
 error=ha_autocommit_or_rollback(thd,error);
 query_cache_invalidate3(thd, table_list, 1);
 mysql_unlock_tables(thd, thd->lock);
 }

 For the mysql_insert routine, we're just going to read what's in
 the snippet. What we're trying to do here is highlight the fact
 that the function names and variable names are nearly English.

 Okay, we start by opening a table. Then, if a check of the fields
 in the INSERT fails, or if an attempt to set up the tables fails,
 or if an attempt to set up the fields fails, we'll abort.

 Next, we'll fill the record buffer with values. Then we'll write
 the record. Then we'll invalidate the query cache. Remember, by
 the way, that MySQL stores frequently-used select statements and
 result sets in memory as an optimization, but once the insert
 succeeds the stored sets are invalid. Finally, we'll unlock the
 tables.

 Walking Through The Server Code: /sql/sql_insert.cc

 int write_record(TABLE *table,COPY_INFO *info)
 {
 table->file->write_row(table->record[0]; // !
 }

 You can see from our marker that we're going to follow the line
 that contains the words 'write row'. But this is not an ordinary
 function call, so people who are just reading the code without the
 aid of a debugger can easily miss what the next point is in the
 line of execution here. The fact is, 'write_row' can take us to
 one of several different places.

 Walking Through The Server Code: /sql/handler.h

 /* The handler for a table type.
 Will be included in the TABLE structure */

 handler(TABLE *table_arg) :
table(table_arg),active_index(MAX_REF_PARTS),
 ref(0),ref_length(sizeof(my_off_t)),
block_size(0),records(0),deleted(0),
 data_file_length(0), max_data_file_length(0),
index_file_length(0),
 delete_length(0), auto_increment_value(0), raid_type(0),
 key_used_on_scan(MAX_KEY),
 create_time(0), check_time(0), update_time(0), mean_rec_length(0),
 ft_handler(0)
 {}
 ...
 virtual int write_row(byte * buf)=0;

 To see what the write_row statement is doing, we'll have to look
 at one of the include files. In handler.h on the sql directory, we
 find that write_row is associated with a handler for a table. This
 definition is telling us that the address in write_row will vary
 it gets filled in at run time. In fact, there are several possible
 addresses.

 There is one address for each handler. In our case, since we're
 using the default values, the value at this point will be the
 address of write_row in the MyISAM handler program.

 Walking Through The Server Code: /sql/ha_myisam.cc

int ha_myisam::write_row(byte * buf)
{
 statistic_increment(ha_write_count,&LOCK_status);
 /* If we have a timestamp column, update it to the current time */
 if (table->time_stamp)
 update_timestamp(buf+table->time_stamp-1);
 /*
 If we have an auto_increment column and we are writing a changed row
 or a new row, then update the auto_increment value in the record.
 */
 if (table->next_number_field && buf == table->record[0])
 update_auto_increment();
 return mi_write(file,buf); // !
}

 And that brings us to write_row in the ha_myisam.cc program.
 Remember we told you that these programs beginning with the
 letters ha are interfaces to handlers, and this one is the
 interface to the myisam handler. We have at last reached the point
 where we're ready to call something in the handler package.

 Walking Through The Server Code: /myisam/mi_write.c

int mi_write(MI_INFO *info, byte *record)
{
 _mi_readinfo(info,F_WRLCK,1);
 _mi_mark_file_changed(info);
 /* Calculate and check all unique constraints */
 for (i=0 ; i < share->state.header.uniques ; i++)
 {
 mi_check_unique(info,share->uniqueinfo+i,record,
 mi_unique_hash(share->uniqueinfo+i,record),
 HA_OFFSET_ERROR);
 }

 ... to be continued in next snippet

 Notice that at this point there is no more referencing of tables,
 the comments are about files and index keys. We have reached the
 bottom level at last. Notice as well that we are now in a C
 program, not a C++ program.

 In this first half of the mi_write function, we see a call which
 is clearly commented. This is where checking happens for
 uniqueness (not the UNIQUE constraint, but an internal matter).

 Walking Through The Server Code: /myisam/mi_write.c

 ... continued from previous snippet

 /* Write all keys to indextree */
 for (i=0 ; i < share->base.keys ; i++)
 {
 share->keyinfo[i].ck_insert(info,i,buff,
 _mi_make_key(info,i,buff,record,filepos)
 }
 (*share->write_record)(info,record);
 if (share->base.auto_key)
 update_auto_increment(info,record);
}

 In this second half of the mi_write function, we see another clear
 comment, to the effect that this is where the new keys are made
 for any indexed columns. Then we see the culmination of all that
 the last 20 snippets have been preparing, the moment we've all
 been waiting for, the writing of the record.

 And, since the object of the INSERT statement is ultimately to
 cause a write to a record in a file, that's that. The server has
 done the job.

 Walking Through The Server Code: Stack Trace

main in /sql/mysqld.cc
handle_connections_sockets in /sql/mysqld.cc
create_new_thread in /sql/mysqld.cc
handle_one_connection in /sql/sql_parse.cc
do_command in /sql/sql_parse.cc
dispatch_command in /sql/sql_parse.cc
mysql_stmt_execute in /sql/sql_prepare.cc
mysql_execute_command in /sql/sql_parse.cc
mysql_insert in /sql/mysql_insert.cc
write_record in /sql/mysql_insert.cc
ha_myisam::write_row in /sql/ha_myisam.cc
mi_write in /myisam/mi_write.c

 And now here's a look at what's above us on the stack, or at least
 an idea of how we got here. We started with the main program in
 mysqld.cc. We proceeded through the creation of a thread for the
 client, the several junction processes that determined where we're
 heading, the parsing and initial execution of an SQL statement,
 the decision to invoke the MyISAM handler, and the writing of the
 row. We ended in a low level place, where we're calling the
 routines that write to the file. That's about as low as we should
 go today.

 The server program would, of course, continue by returning several
 times in a row, sending a packet to the client saying "Okay", and
 ending up back in the loop inside the handle_one_connection
 function.

 We, instead, will pause for a moment in awe at the amount of code
 we've just flitted past. And that will end our walk through the
 server code.

Graphic: A Chunk of MyISAM File

CREATE TABLE Table1 (
 column1 CHAR(1),
 column2 CHAR(1),
 column3 CHAR(1));

INSERT INTO Table1 VALUES ('a', 'b', 'c');

INSERT INTO Table1 VALUES ('d', NULL, 'e');

F1 61 62 63 00 F5 64 00 66 00abc..d e.

 Continuing with our worm's-eye view, let's glance at the structure
 of a record in a MyISAM file.

 The SQL statements on this graphic show a table definition and
 some insert statements that we used to populate the table.

 The final line on the graphic is a hexadecimal dump display of the
 two records that we ended up with, as taken from the MyISAM file
 for Table1.

 The thing to notice here is that the records are stored compactly.
 There is one byte at the start of each record F1 for the first
 record and F5 for the second record which contains a bit list.

 When a bit is on, that means its corresponding field is NULL.
 That's why the second row, which has a NULL in the second column,
 or field, has a different header byte from the first row.

 Complications are possible, but a simple record really does look
 this simple.

Graphic: A Chunk of InnoDB File

19 17 15 13 0C 06 Field Start Offsets /* First Row */
00 00 78 0D 02 BF Extra Bytes
00 00 00 00 04 21 System Column #1
00 00 00 00 09 2A System Column #2
80 00 00 00 2D 00 84 System Column #3
50 50 Field1 'PP'
50 50 Field2 'PP'
50 50 Field3 'PP'

 If, on the other hand, you look at an InnoDB file, you'll find
 that it's got more complexities in the storage. The details are
 elsewhere in this document. But here's an introductory look.

 The header here begins with offsets unlike MyISAM, which has no
 offsets. So you'd have to go through column 1 before getting to
 column 2.

 Then there is a fixed header the extra bytes.

 Then comes the record proper. The first fields of a typical record
 contain information that the user won't see, such as a row ID, a
 transaction ID, and a rollback pointer. This part would look
 different if the user had defined a primary key during the CREATE
 TABLE statement.

 And finally there are the column contents the string of Ps at the
 end of the snippet here. You can see that InnoDB does more
 administrating.

 There's been a recent change for InnoDB; what you see above is
 from a database made before version 5.0.

Graphic: A Packet

Header
Number Of Rows
ID
Status
Length
Message Content

 Our final worm's-eye look at a physical structure will be a look
 at packets.

 By packet, we mean: what's the format of a message that the client
 sends over the tcp/ip line to the server and what does the server
 send back?

 Here we're not displaying a dump. If you want to see hexadecimal
 dumps of the contents of packets, this document is full of them.
 We're just going to note that a typical message will have a
 header, an identifier, and a length, followed by the message
 contents.

 Admittedly this isn't following a standard like ISO's RDA or IBM's
 DRDA, but it's documented so if you want to go out and write your
 own type 4 JDBC driver, you've got what you need here. (Subject to
 license restrictions, of course.) But a word of advice on that
 last point: it's already been done. Mark Matthews wrote it
 originally, it's all in "MySQL Connector/J".

1.10 Recap

 Okay, let's back up and restate. In this walkthrough, we've told
 you four main things.

 One: How to get the MySQL source.

 Two: What's in each directory in the source.

 Three: The main sequence, as one walks through the server code.

 Four: What physical structures look like.

 We worked hard to make a description of the MySQL source that is
 simple, without distorting. If you were able to follow all that
 we've said, then that's wonderful, congratulations. If you ended
 up thinking that MySQL is really simple, well that's not what we
 wanted to convey, but we think you'll be disabused of that notion
 when you have a look at the code yourself.

Chapter 2 Coding Guidelines

Table of Contents
	2.1 General Development Guidelines
		2.1.1 C/C++ Coding Guidelines of MySQL Server
	2.1.2 How We Maintain the Server Coding Guidelines
	2.1.3 Indentation and Spacing
	2.1.4 Naming Conventions
	2.1.5 Commenting Code
	2.1.6 Header Files
	2.1.7 Additional Suggestions
	2.1.8 Suggested Mode in emacs
	2.1.9 Basic vim Setup
	2.1.10 Another vim Setup
	2.1.11 Example Setup for ctags

	2.2 C++ Coding Guidelines for the NDB Storage Engine
		2.2.1 Braces
	2.2.2 Assignment
	2.2.3 Use of ndbrequire

	2.3 DBUG Tags

 This section shows the guidelines that MySQL's developers follow
 when writing new code. Consistent style is important for us, because
 everyone must know what to expect. For example, after we become
 accustomed to seeing that everything inside an
 if is indented two spaces, we can glance at a
 listing and understand what's nested within what. Writing
 non-conforming code can be bad. For example, if we want to find
 where assignments are made to variable
 mutex_count, we might search for
 mutex_count with an editor and miss assignments
 that look like mutex_count = with a space
 before the equal sign (which is non-conforming). Knowing our rules,
 you'll find it easier to read our code, and when you decide to
 contribute (which we hope you'll consider!) we'll find it easier to
 read and review your code.

2.1 General Development Guidelines

 We use Git for source management.

 You should use the TRUNK source tree (currently called
 "mysql-trunk") for all new developments. To download and set up
 the public development branch, use these commands:

shell> git clone https://github.com/mysql/mysql-server.git mysql-trunk
shell> cd mysql-trunk
shell> git branch mysql-trunk

 Before making big design decisions, please begin by posting a
 summary of what you want to do, why you want to do it, and how you
 plan to do it. This way we can easily provide you with feedback
 and also discuss it thoroughly. Perhaps another developer can
 assist you.

2.1.1 C/C++ Coding Guidelines of MySQL Server

 This section covers guidelines for C/C++ code for the MySQL
 server. The guidelines do not necessarily apply for other
 projects such as MySQL Connector/J or Connector/ODBC.

2.1.2 How We Maintain the Server Coding Guidelines

 We are committed to have a single coding style for core MySQL
 server. Storage engines, however, may have an own coding style:
 Falcon and NDB styles are documented later in this manual.

 The server coding style is governed by a group of
 representatives from each technical team: Optimizer, Runtime,
 Replication, Backup Engines and the "general" team.

 Currently these representatives are:

	
 Runtime: Alexander Nozdrin

	
 Replication: Mats Kindahl

	
 Backup: Chuck Bell

	
 Optimizer: Tor Didriksen

	
 General: Sergey Vojtovich

 The group accepts and considers change proposals. Each proposal
 must include an implementation strategy, and is first published
 on Internals mailing list for a public discussion. When the
 discussion is over, the group of representatives holds a vote,
 and the change is accepted if it's approved by a simple majority
 of the ballots. The submitter of the change request then carries
 out its implementation.

 Now to the coding style itself.

2.1.3 Indentation and Spacing

	
 For indentation use space; do not use the tab (\t)
 character. See the editor configuration tips at the end of
 this section for instructions on configuring a vim or emacs
 editor to use spaces instead of tabs.

	
 Avoid trailing whitespace, in code and comments.

 Correct:

if (a)

 Incorrect:

if (a)<SP><SP><TAB><SP>

 Remove trailing spaces if you are already changing a line,
 otherwise leave existing code intact.

	
 Use line feed (\n) for line breaks. Do not use carriage
 return + line feed (\r\n); that can cause problems for other
 users and for builds. This rule is particularly important if
 you use a Windows editor.

	
 To begin indenting, add two spaces. To end indenting,
 subtract two spaces. For example:

{
 code, code, code
 {
 code, code, code
 }
}

	
 An exception to the rule above: namespaces (named or
 unnamed) do not introduce a new level of indentation.
 Example:

namespace foo
{
class Bar
{
 Bar();
};
} // namespace foo

	
 The maximum line width is 80 characters. If you are writing
 a longer line, try to break it at a logical point and
 continue on the next line with the same indenting. Use of
 backslash is okay; however, multi-line literals might cause
 less confusion if they are defined before the function
 start.

	
 You may use empty lines (two line breaks in a row) wherever
 it seems helpful for readability. But never use two or more
 empty lines in a row. The only exception is after a function
 definition (see below).

	
 To separate two functions, use three line breaks (two empty
 lines). To separate a list of variable declarations from
 executable statements, use two line breaks (one empty line).
 For example:

int function_1()
{
 int i;
 int j;

 function0();
}

int function2()
{
 return;
}

	
 Matching '{}' (left and right braces)
 should be in the same column, that is, the closing '}'
 should be directly below the opening '{'. Do not put any
 non-space characters on the same line as a brace, not even a
 comment. Indent within braces. Exception: if there is
 nothing between two braces, that is, '{}', they should
 appear together. For example:

if (code, code, code)
{
 code, code, code;
}
for (code, code, code)
{}

	
 Indent switch like this:

switch (condition)
{
case XXX:
 statements;
case YYY:
 {
 statements;
 }
}

	
 You may align variable declarations like this:

Type value;
int var2;
ulonglong var3;

	
 When assigning to a variable, put zero spaces after the
 target variable name, then the assignment operator ('=''+='
 etc.), then space(s). For single assignments, there should
 be only one space after the equal sign. For multiple
 assignments, add additional spaces so that the source values
 line up. For example:

a/= b;
return_value= my_function(arg1);
...
int x= 27;
int new_var= 18;

 Align assignments from one structure to another, like this:

foo->member= bar->member;
foo->name= bar->name;
foo->name_length= bar->name_length;

	
 Put separate statements on separate lines. This applies for
 both variable declarations and executable statements. For
 example, this is wrong:

int x= 11; int y= 12;

z= x; y+= x;

 This is right:

int x= 11;
int y= 12;

z= x;
y+= x;

	
 Put spaces both before and after binary comparison operators
 ('>', '==', '>=', etc.), binary arithmetic operators
 ('+' etc.), and binary Boolean operators ('||' etc.). Do not
 put spaces around unary operators like '!' or '++'. Do not
 put spaces around [de-]referencing operators like '->' or
 '[]'. Do not put space after '*' when '*' introduces a
 pointer. Do not put spaces after '('. Put one space after
 ')' if it ends a condition, but not if it ends a list of
 function arguments. For example:

int *var;

if ((x == y + 2) && !param->is_signed)
 function_call();

	
 When a function has multiple arguments separated by commas
 (','), put one space after each comma.
 For example:

ln= mysql_bin_log.generate_name(opt_bin_logname, "-bin", 1, buf);
	
 Put one space after a keyword which introduces a condition,
 such as if or for or
 while.

	
 After if or else or
 while, when there is only one instruction
 after the condition, braces are not necessary and the
 instruction goes on the next line, indented.

if (sig != MYSQL_KILL_SIGNAL && sig != 0)
 unireg_abort(1);
else
 unireg_end();
while (*val && my_isspace(mysqld_charset, *val))
 *val++;

	
 In function declarations and invocations: there is no space
 between function name and '('; there is no space or line
 break between '(' and the first argument; if the arguments
 do not fit on one line then align them. Examples:

Return_value_type *Class_name::method_name(const char *arg1,
 size_t arg2, Type *arg3)
return_value= function_name(argument1, argument2, long_argument3,
 argument4,
 function_name2(long_argument5,
 long_argument6));
return_value=
 long_long_function_name(long_long_argument1, long_long_argument2,
 long_long_long_argument3,
 long_long_argument4,
 long_function_name2(long_long_argument5,
 long_long_argument6));
Long_long_return_value_type *
Long_long_class_name::
long_long_method_name(const char *long_long_arg1, size_t long_long_arg2,
 Long_long_type *arg3)

 (You may but don't have to split
 Class_name::method_name into two lines.) When
 arguments do not fit on one line, consider renaming them.

	
 Format constructors in the following way:

Item::Item(int a_arg, int b_arg, int c_arg)
 :a(a_arg), b(b_arg), c(c_arg)
{}

 But keep lines short to make them more readable:

Item::Item(int longer_arg, int more_longer_arg)
 :longer(longer_arg),
 more_longer(more_longer_arg)
{}

 If a constructor can fit into one line:

Item::Item(int a_arg) :a(a_arg) {}

2.1.4 Naming Conventions

	
 For identifiers formed from multiple words, separate each
 component with underscore rather than capitalization. Thus,
 use my_var instead of
 myVar or MyVar.

	
 Avoid capitalization except for class names; class names
 should begin with a capital letter.

class Item;
class Query_arena;
class Log_event;

	
 Avoid function names, structure elements, or variables that
 begin or end with '_'.

	
 Use long function and variable names in English. This will
 make your code easier to read for all developers.

	
 We used to have the rule: "Structure types are
 typedef'ed to an all-upper-case
 identifier." This has been deprecated for C++ code. Do not
 add typedefs for structs/classes in C++

	
 All #define declarations should be in
 upper case.

#define MY_CONSTANT 15
	
 Enumeration names should begin with
 enum_.

	
 Function declarations (forward declarations) have parameter
 names in addition to parameter types.

2.1.5 Commenting Code

	
 Comment your code when you do something that someone else
 may think is not trivial.

	
 Comments for pure virtual functions, documentation for API
 usage should be placed in front of (member, or non-member)
 function declarations. Description of implementation
 details, algorithms, anything that does not impact usage,
 should be put in front of implementation. Please try to not
 duplicate information. Make a reference to the declaration
 from the implementation if necessary. If the implementation
 and usage are too interleaved, put a reference from the
 interface to the implementation, and keep the entire comment
 in a single place.

	
 Class comments should be put in front of class declaration.

	
 When writing multi-line comments please put the '/*' and
 '*/' on their own lines, put the '*/' below the '/*', put a
 line break and a two-space indent after the '/*', do not use
 additional asterisks on the left of the comment.

/*
 This is how a multi-line comment in the middle of code
 should look. Note it not Doxygen-style if it's not at the
 beginning of a code enclosure (function or class).
*/

 /* ********* This comment is bad. It's indented incorrectly, it has
 * additional asterisks. Don't write this way.
 * *********/

	
 When writing single-line comments, the '/*' and '*/" are on
 the same line. For example:

 /* We must check if stack_size = Solaris 2.9 can return 0 here. */
	
 Single-line comments like this are OK in C++

 // We must check if stack_size = Solaris 2.9 can return 0 here.
	
 For a short comment at the end of a line, you may use either
 /* ... */ or a // double slash. In C
 files or in header files used by C files, avoid
 // comments.

	
 Align short side // or /* ... */ comments
 by 48 column (start the comment in column 49).

 { qc*= 2; /* double the estimation */ }
	
 When commenting members of a structure or a class, align
 comments by 48th column. If a comment doesn't fit into one
 line, move it to a separate line. Do not create multiline
 comments aligned by 48th column.

struct st_mysql_stmt
{
...
 MYSQL_ROWS *data_cursor; /**< current row in cached result */
 /* copy of mysql->affected_rows after statement execution */
 my_ulonglong affected_rows;
 my_ulonglong insert_id; /**< copy of mysql->insert_id */
 /*
 mysql_stmt_fetch() calls this function to fetch one row (it's different
 for buffered, unbuffered and cursor fetch).
 */
 int (*read_row_func)(struct st_mysql_stmt *stmt,
...
};

	
 All comments should be in English.

	
 Each standalone comment must start with a Capital letter.

	
 There is a '.' at the end of each statement in a comment
 paragraph (for the last one as well).

/*
 This is a standalone comment. The comment is aligned to fit 79
 characters per line. There is a dot at the end of each sentence.
 Including the last one.
*/

	
 Every structure, class, method or function should have a
 description unless it is very short and its purpose is
 obvious.

	
 Use the below example as a template for function or method
 comments.

	
 Please refer to the
 Doxygen
 Manual for additional information.

	
 Note the IN and OUT parameters. IN is implicit, but can
 (but usually shouldn't) be specified with tag
 @param[in]. For OUT and INOUT parameters you should use
 tags @param[out] and @param[in,out] respectively.

	
 Parameter specifications in @param section start with
 lowercase and are not terminated
 with a full stop/period.

	
 Section headers are aligned at 2 spaces. This must be a
 sentence with a full stop/period at the end. Iff the
 sentence must express a subject that contains a full
 stop such that Doxygen would be fooled into stopping
 early, then use the @brief and
 @details to explicitly mark them.

	
 Align @retval specifications at 4
 spaces if they follow a @return
 description. Else, align at two spaces.

	
 Separate sections with an empty line.

	
 All function comments should be no longer than 79
 characters per line.

	
 Put two line breaks (one empty line) between a function
 comment and its description.

/**
 Initialize SHA1Context.

 Set initial values in preparation for computing a new SHA1 message digest.

 @param[in,out] context the context to reset

 @return Operation status
 @retval SHA_SUCCESS OK
 @retval != SHA_SUCCESS sha error Code
*/

int sha1_reset(SHA1_CONTEXT *context)
{
 ...

2.1.6 Header Files

	
 Use headers guards. Put the header guard in the first line
 of the header, before the copyright. Use all-uppercase name
 for the header guard. Derive the header guard name from the
 file name, and append _INCLUDED to create a macro name.
 Example: sql_base.h -> SQL_BASE_INCLUDED.

	
 Include directives shall be first in the file. In class
 implementation, include the header file with class
 declaration before all other header files, to make sure that
 the header is self-sufficient.

	
 Every header file should be self-sufficient in the sense
 that for a header file my_header.h, the following should
 compile without errors:

 #include "my_header.h"

 An exception is made for generated files, for example, those
 generated by Yacc and Lex, since it is not possible to re-write
 the generators to produce "correct" files.

2.1.7 Additional Suggestions

	
 Try to write code in a lot of black boxes that can be reused
 or at least use a clean, easy to change interface.

	
 Reuse code; There are already many algorithms in MySQL that
 can be reused for list handling, queues, dynamic and hashed
 arrays, sorting, etc.

	
 Use the my_* functions like
 my_read()/my_write()/
 my_malloc() that you can find in the
 mysys library, instead of the direct
 system calls; This will make your code easier to debug and
 more portable.

	
 Use libstring functions (in the
 strings directory, declared in
 include/m_string.h) instead of standard
 libc string functions whenever possible.

	
 Try to always write optimized code, so that you don't have
 to go back and rewrite it a couple of months later. It's
 better to spend 3 times as much time designing and writing
 an optimal function than having to do it all over again
 later on.

	
 Avoid CPU wasteful code, even when its use is trivial, to
 avoid developing sloppy coding habits.

	
 If you can do something in fewer lines, please do so (as
 long as the code will not be slower or much harder to read).

	
 Do not check the same pointer for NULL
 more than once.

	
 Never use a macro when an (inline) function would work as
 well.

	
 Do not make a function inline if you don't have a very good
 reason for it. In many cases, the extra code that is
 generated is more likely to slow down the resulting code
 than give a speed increase because the bigger code will
 cause more data fetches and instruction misses in the
 processor cache.

 It is okay to use inline functions are which satisfy most of the
 following requirements:

	

	
 The function is very short (just a few lines).

	
 The function is used in a speed critical place and is
 executed over and over again.

	
 The function is handling the normal case, not some
 extra functionality that most users will not use.

	
 The function is rarely called. (This restriction must
 be followed unless the function translates to fewer
 than 16 assembler instructions.)

	
 The compiler can do additional optimizations with
 inlining and the resulting function will be only a
 fraction of size of the original one.

	
 Think assembly - make it easier for the compiler to optimize
 your code.

	
 Avoid using malloc(), which is very slow.
 For memory allocations that only need to live for the
 lifetime of one thread, use sql_alloc()
 instead.

	
 All functions that can report an error (usually an
 allocation error), should return
 0/FALSE/false on success,
 1/TRUE/true on failure. Other return
 values should go in an output argument. If you have a
 predicate function which returns bool,
 and cannot fail, document that fact clearly (in the header
 file). Recommendation when writing new code: use return type
 int, to distinguish from predicate functions. Returning
 true on error, allows us to write:

if (a() || b() || c())
 error("something went wrong");

 However, short-circuit evaluation like that above is not the
 best method for evaluating options.

	
 Beware of truncation when returning
 TRUE/true to indicate an error:

my_bool foo(int val) { return val; } /* Bad. */
int foo(longlong val) { return val; } /* Bad. */

my_bool foo(int val) { return test(val); } /* Good. */
int foo(longlong val) { return test(val); } /* Good. */

	
 Using goto is okay if not abused.

	
 If you have an 'if' statement that ends with a 'goto' or
 'return' you should NOT have an else statement:

if (a == b)
 return 5;
else return 6;

->

if (a == b)
 return 5;
return 6;

	
 Avoid default variable initializations. Use
 LINT_INIT() if the compiler complains
 after making sure that there is really no way the variable
 can be used uninitialized.

	
 In C code, use TRUE and
 FALSE rather than 1/0

	
 In C++ code, it is OK to use true and
 false (do not use
 1/0). You can use C++
 bool/true/false when calling C functions
 (values will be safely promoted to my_bool).

	
 bool exists only in C++. In C, you have
 to use my_bool (which is
 char); it has different cast rules than
 bool:

int c= 256*2;
bool a= c; /* a gets 'true' */
my_bool b= c; /* b gets zero, that is, 'false': BAD */
my_bool b= test(c); /* b gets 'true': GOOD */

	
 Do not instantiate a class if you do not have to.

	
 Use pointers rather than array indexing when operating on
 strings.

	
 Never pass parameters with the
 &variable_name construct in C++.
 Always use a pointer instead!

 The reason is that the above makes it much harder for the one
 reading the caller function code to know what is happening and
 what kind of code the compiler is generating for the call.

	
 Do not use the %p marker of
 printf() (fprintf(),
 vprintf(), etc) because it leads to
 different outputs (for example on some Linux and Mac OS X
 the output starts with 0x while it does
 not on some Solaris). In MySQL 5.5 and later, use
 my_vsnprint,
 DBUG_PRINT with %p for pointer
 formatting consistent across different platforms. In earlier
 versions, use printf-family functions with
 0x%lx, but beware it truncates pointers
 on 64-bit Windows. Being sure that there is always
 0x enables us to quickly identify pointer
 values in the DBUG trace.

	
 Relying on loop counter variables being local to the loop
 body if declared in the for statement is
 not portable. Some compilers still don't implement this ANSI
 C++ specification. The symptom of such use is an error like
 this:

c-1101 CC: ERROR File = listener.cc, Line = 187
 "i" has already been declared in the current scope.

 for (int i= 0; i < num_sockets; i++)

2.1.8 Suggested Mode in emacs

(require 'font-lock)
(require 'cc-mode)
(setq global-font-lock-mode t) ;;colors in all buffers that support it
(setq font-lock-maximum-decoration t) ;;maximum color
(c-add-style "MY"
 '("K&R"
 (c-basic-offset . 2)
 (c-comment-only-line-offset . 0)
 (c-offsets-alist . ((statement-block-intro . +)
 (knr-argdecl-intro . 0)
 (substatement-open . 0)
 (label . -)
 (statement-cont . +)
 (arglist-intro . c-lineup-arglist-intro-after-paren)
 (arglist-close . c-lineup-arglist)
 (innamespace . 0)
 (inline-open . 0)
 (statement-case-open . +)
))
))

(defun mysql-c-mode-hook ()
 (interactive)
 (require 'cc-mode)
 (c-set-style "MY")
 (setq indent-tabs-mode nil)
 (setq comment-column 48))

(add-hook 'c-mode-common-hook 'mysql-c-mode-hook)

2.1.9 Basic vim Setup

set tabstop=8
set shiftwidth=2
set backspace=2
set softtabstop
set smartindent
set cindent
set cinoptions=g0:0t0c2C1(0f0l1
set expandtab

2.1.10 Another vim Setup

set tabstop=8
set shiftwidth=2
set bs=2
set et
set sts=2
set tw=78
set formatoptions=cqroa1
set cinoptions=g0:0t0c2C1(0f0l1
set cindent

function InsertShiftTabWrapper()
 let num_spaces = 48 - virtcol('.')
 let line = ' '
 while (num_spaces > 0)
 let line = line . ' '
 let num_spaces = num_spaces - 1
 endwhile
 return line
endfunction
" jump to 48th column by Shift-Tab - to place a comment there
inoremap <S-tab> <c-r>=InsertShiftTabWrapper()<cr>
" highlight trailing spaces as errors
let c_space_errors=1

2.1.11 Example Setup for ctags

 Put this configuration into your ~/.ctags file:

--c++-kinds=+p
--fields=+iaS
--extra=+q
--langdef=errmsg
--regex-errmsg=/^(ER_[A-Z0-9_]+)/\1/
--langmap=errmsg:(errmsg*.txt),c:+.ic,yacc:+.yy

2.2 C++ Coding Guidelines for the NDB Storage Engine

 The mysqld handler part of NDB
 (ha_ndbcluster.cc,
 ha_ndbcluster_binlog.cc, etc.) uses the same
 coding style as the rest of the mysqld code.

 The non-mysqld part of NDB code has a long history, and use a
 multitude of coding styles. When modifying and extending existing
 source files or modules, the coding style already used in that
 code should be followed in terms of indentations, naming
 conventions, etc. For completely new code, the mysqld conventions
 (with exceptions below) should probably be followed.

 Do not do any change to NDB code purely for
 the sake of changing from one formatting style to another. It just
 causes merge annoyances and makes patches harder to read, and we
 do not expect the style to ever become 100% consistent across all
 of the source code. It is however ok to fix inconsistent style in
 lines that are changed for other reasons.

 One convention that should be followed for all new or modified
 code, in both mysqld and non-mysqld parts of the code, is that
 class member variables should be named with lowercase words
 separated by underscores '_', and pre-fixed
 with 'm_'. Like this:

 const char *m_my_class_member;
2.2.1 Braces

 if, while, etc *must* always have braces.

 eg. Good

if (a == b)
 {
 dosomething();
 }

 Braces should be on separate line like above.

 e.g BAD

if (a == b) {
 dosomething();
 }

 Inline methods inside class(struct) is ok to write like below,
 (i.e opening brace is on same line as function declaration)

struct A
 {
 A() {
 }
 }

2.2.2 Assignment

a = 3; // ok
a= 3; // not ok

2.2.3 Use of ndbrequire

 In the NDB kernel code, the ndbrequire() facility has
 historically been widely used. However, most of this is now
 considered misuse, and use of ndbrequire should generally be
 avoided. Over time, we want to remove most or all ndbrequires.

 There are three different classes of ndbrequire() usage, with
 corresponding replacement as follows:

	
 Verification of code logic, hitting this is a real bug, and
 the error message should be accordingly. For this one option
 is ndbassert() (only enabled in debug builds), or we might
 need to add ndbchecklogic() or similar.

	
 Hitting a configurable limit, which cannot be handled
 gracefully. For this one should use ndbrequireErr(). The
 error message should suggest config change to correct the
 problem, or refer to a section in the manual to read more.

	
 Hitting hardcoded limits; we should really try to avoid
 this, but if it is unavoidable, or if it is a limit we think
 we will never hit, use ndbrequireErr() and add appropriate
 error message.

2.3 DBUG Tags

 The full documentation of the DBUG library is in files
 dbug/user.* in the MySQL source tree. Here are
 some of the DBUG tags we now use:

	
 enter

 Arguments to the function.

	
 exit

 Results from the function.

	
 info

 Something that may be interesting.

	
 warning

 When something doesn't go the usual route or may be wrong.

	
 error

 When something went wrong.

	
 loop

 Write in a loop, that is probably only useful when debugging the
 loop. These should normally be deleted when you are satisfied with
 the code and it has been in real use for a while.

 Some tags specific to mysqld, because we want
 to watch these carefully:

	
 trans

 Starting/stopping transactions.

	
 quit

 info when mysqld is
 preparing to die.

	
 query

 Print query.

Chapter 3 Reusable Classes and Templates

Table of Contents
	3.1 Containers
		3.1.1 Array
	3.1.2 I_P_List
	3.1.3 I_List

	3.2 Memory Management
		3.2.1 MEM_ROOT

	3.3 How to Extend This Page

3.1 Containers

 This section is yet to be written.

3.1.1 Array

 This section is yet to be written.

3.1.2 I_P_List

 This section is yet to be written.

3.1.3 I_List

 This section is yet to be written.

3.2 Memory Management

 This section is yet to be written.

3.2.1 MEM_ROOT

 This section is yet to be written.

3.3 How to Extend This Page

 For each new data structure, please make sure you add:

	
 the important trade-offs, such as speed vs. space, etc.

	
 best practices for use

Chapter 4 Building MySQL Server with CMake

Table of Contents
	4.1 CMake Prerequisites
	4.2 How to Install CMake
	4.3 Quick How-to-Build Instructions
		4.3.1 Release Configuration
	4.3.2 Debug Configuration
	4.3.3 Building Using the Same Options as MySQL Official Releases

	4.4 Detailed How-to-Build Instructions
		4.4.1 Create the Build Directory
	4.4.2 Configure the Build
	4.4.3 Listing Configuration Options
	4.4.4 Changing Configuration Options
	4.4.5 Building Debug Configurations
	4.4.6 Building With CMake
	4.4.7 ./configure Emulation
	4.4.8 For Developers: How to Write Platform Checks
	4.4.9 Troubleshooting CMake Code
	4.4.10 Developer CMake Tips
	4.4.11 MySQL-Specific CMake Macros
	4.4.12 Interface to Third-Party Tools

	4.5 FAQ / Miscellany
		4.5.1 Running mysql-test-run.pl in an Out-of-Source Build
	4.5.2 Running mysql-test-run.pl with Visual Studio or Xcode Projects
	4.5.3 make distclean
	4.5.4 Compiling for Different Hardware Architectures

	4.6 Autotools to CMake Transition Guide
		4.6.1 Command Invocation Syntax
	4.6.2 Installation Layout Options
	4.6.3 Storage Engine Options
	4.6.4 Library Options
	4.6.5 Miscellaneous Options
	4.6.6 Debugging the Configuration Process
	4.6.7 Interface to Third-Party Tools

 This chapter describes how to build MySQL from source with CMake.
 You might also find these resources useful:

	
 Section 4.6, “Autotools to CMake Transition Guide”: If you have previously
 built MySQL using the GNU Autotools, this guide shows how to map
 common Autotools options to CMake.

	
 CMake
 documentation at
 cmake.org

	
 CMake
 Useful Variables

4.1 CMake Prerequisites

 To build MySQL from source with CMake, these prerequisites must be
 satisfied:

	
 CMake version 2.6.3 or later

	
 Unix: Compiler and make utility,
 curses dev package on Linux

	
 Windows: Visual Studio (Express version is okay)

	
 Mac OS X: Xcode tools

	
 All platforms: bison, unless you build from
 a source package where bison output is
 already provided. On OpenSolaris/Solaris Express, you must
 install m4 in addition to
 bison. On Windows, install
 bison into a directory whose path name does
 not contain spaces, not into the default location. (Reason:
 this
 bug in bison 2.4.1.)

4.2 How to Install CMake

 In the following instructions, the CMake download page is
 http://www.cmake.org/cmake/resources/software.html.

	
 Debian/Ubuntu Linux

sudo apt-get install cmake cmake-gui

	
 Fedora Linux

sudo yum install cmake cmake-gui

	
 openSUSE Linux

sudo zypper install cmake cmake-gui

	
 Gentoo Linux

sudo emerge cmake

	
 OpenSolaris

pfexec pkgadd install SUNWcmake

	
 Windows

 To download and install the latest distribution from the CMake
 download page, download the installer
 .exe file and run it.

	
 Mac OS X

 To download and install the latest distribution from the CMake
 download page, download the .dmg image
 and open it. Alternatively, if you have Darwinports installed,
 you can install the CMake port:

port install cmake +gui

 The +gui variant causes
 cmake-gui to be installed as well. Omit
 +gui if you do not want to install
 cmake-gui.

	
 Other Unix systems

 Precompiled packages for other Unix flavors (HPUX, AIX) are
 available from the CMake download page.

 Alternatively, you can build CMake from source. A source
 package is available from the download page.

4.3 Quick How-to-Build Instructions

 This section briefly describes how to build MySQL in a release or
 debug configuration. It also describes how to build using the same
 options as used for MySQL official releases. The following
 discussion assumes that your initial current working directory is
 the top-level MySQL source directory.

 For more details about the build process, see
 Section 4.4, “Detailed How-to-Build Instructions”.

4.3.1 Release Configuration

	
 Unix (Makefiles)

 To control which compiler is chosen, set the
 CC and CXX environment
 variables to name the desired C and C++ compilers. (This is
 optional, but if you have different versions of the
 compilers, it gives better control.)

mkdir bld
cd bld
cmake ..
make

	
 Windows (Visual Studio, from the command line)

mkdir bld
cd bld
cmake ..
devenv mysql.sln /build relwithdebinfo

 To create a file containing a log of the compilation, modify
 the last command as follows:

devenv mysql.sln /build relwithdebinfo /out logfile.txt

4.3.2 Debug Configuration

	
 Unix (Makefiles)

mkdir bld_debug
cd bld_debug
cmake .. -DCMAKE_BUILD_TYPE=Debug
make

	
 Windows (Visual Studio, from command line)

mkdir bld_debug
cd bld_debug
cmake ..
devenv mysql.sln /build debug

4.3.3 Building Using the Same Options as MySQL Official Releases

 Official MySQL releases add some compiler options. Also, some
 storage engines are linked statically into
 mysqld (for example,
 ARCHIVE). These build options for official
 releases are stored in
 cmake/build_configurations/mysql_release.cmake.
 To use them, use the
 -DBUILD_CONFIG=mysql_release CMake
 option:

	
 Unix (Makefiles)

mkdir bld
cd bld
cmake .. -DBUILD_CONFIG=mysql_release
make

	
 Visual Studio (from the command line)

mkdir bld
cd bld
cmake .. -DBUILD_CONFIG=mysql_release
devenv mysql.sln /build relwithdebinfo

 On Linux, the offical release requires libaio
 to be installed on the build machine. For example:

	
 RedHat/Fedora

sudo yum install libaio-devel

	
 Debian/Ubuntu

sudo apt-get install libaio-dev

4.4 Detailed How-to-Build Instructions

 Ensure that your compiler and cmake are in your
 PATH setting. The following discussion assumes
 that your initial current working directory is the top-level MySQL
 source directory.

4.4.1 Create the Build Directory

 One nice CMake feature is “out-of-source” build
 support, which means not building in the source tree, but in a
 dedicated build directory. The build directory can actually be a
 subdirectory of the source tree rather than a directory located
 outside it; the point is that files generated during the build
 process (such as .o files) are created
 under the build directory, not in the original source
 directories.

 Building out of source keeps the source tree clean and allows
 for more than a single build tree from the same source tree (for
 example, debug and release, 32-bit and 64-bit). We'll create a
 subdirectory bld in the source tree for
 this purpose:

mkdir bld
cd bld

Note

 Commands for the remainder of this procedure assume that
 bld is the build directory and that
 .. is the path to the source tree root
 directory.

4.4.2 Configure the Build

 In the bld directory, run
 cmake to configure the build:

	
 On Unix machine:

cmake ..

	
 On Windows machine, to build with VS2010 and x64:

cmake .. -G "Visual Studio 10 2010 Win64"

	
 On OS X, to use the Xcode IDE:

cmake .. -G Xcode

 You can add configuration options to the
 cmake command line (for option descriptions,
 see MySQL Source-Configuration Options). For
 example:

cmake .. -DWITH_EMBEDDED_SERVER=1

 When invoked, CMake runs system checks and generates Makefiles.
 CMake permits the configuration process to be iterative, so you
 can add more options after the initial configuration has been
 performed. For example, running the following command after the
 initial configuration step adds ARCHIVE to
 the list of statically compiled storage engines:

cmake .. -DWITH_ARCHIVE_STORAGE_ENGINE=1

 System checks do not rerun after the initial configuration
 completes.

4.4.3 Listing Configuration Options

 After the initial configuration step completes, you can examine
 the configuration options.

	
 Short form:

cmake . -L

	
 Short form plus description:

cmake . -LH

	
 Long form (lists lots of options, including internal and
 advanced ones):

cmake . -LA

 If you have cmake-gui installed, you can do
 this to see or change options:

cmake-gui .

 On Unix, some people like to use ccmake
 (Curses based GUI for cmake):

ccmake .

4.4.4 Changing Configuration Options

 The preceding procedure builds with the default configuration,
 which may not be suitable for your needs. For example, the
 embedded library is not produced. Assume that you want to change
 the configuration options and compile the embedded library.

	
 You can provide options on the command line:

cmake .. -DWITH_EMBEDDED_SERVER=1

 This can be done during the initial configuration or any
 time later. Options are “sticky;” that is, they
 are remembered in the CMake cache (the
 CMakeCache.txt file in the build
 directory).

	
 Configuration using cmake-gui (Windows,
 Mac OS X, or Linux with cmake-gui
 installed)

 From the build directory, issue this command:

cmake-gui .

	
 Check the WITH_EMBEDDED_SERVER
 checkbox

	
 Click the Configure button

	
 Click the Generate button

	
 Close cmake-gui

4.4.5 Building Debug Configurations

 Using Makefiles, a debug build is done with
 -DCMAKE_BUILD_TYPE=Debug (an alias
 for this is -DWITH_DEBUG=1). This
 includes DBUG instrumentation, plus wrappers around
 pthread mutexes known as
 SAFE_MUTEX on Unix systems.

 If Visual Studio or Xcode generators are used (you invoked
 cmake with -G "Visual Studio
 ..." or -G Xcode), switching to
 release or debug configuration is done within the IDE, or at the
 build time using command line switches. For example:

devenv MySQL.sln /build debug

 To compile in the Valgrind headers and expose the Valgrind API
 to MySQL code, enable the
 WITH_VALGRIND option. Combine this
 with WITH_DEBUG to generate a debug build that
 is Valgrind-aware:

cmake .. -DWITH_DEBUG=1 -DWITH_VALGRIND=1

 For MySQL 5.5 and 5.6, also enable Purify flags explicitly (this
 is unnecessary in 5.7 and up):

cmake .. -DWITH_DEBUG=1 -DWITH_VALGRIND=1 \
 -DCMAKE_C_FLAGS=-DHAVE_purify -DCMAKE_CXX_FLAGS=-DHAVE_purify

4.4.6 Building With CMake

	
 Unix

make

 By default, a cmake build is less verbose
 than an Autotools build. To see what commands are executed
 during the compile stage, use this command:

make VERBOSE=1

	
 Windows (using "Visual Studio 10 2010"
 generator)

devenv MySQL.sln /build RelWithDebInfo

 Alternatively, open MySQL.sln and build
 using the IDE.

	
 Mac OS X build with Xcode

xcodebuild -configuration RelWithDebInfo

 Alternatively, open MySQL.xcodeproj and
 build using the IDE.

	
 Command-line build with CMake 2.8

 After creating the project with cmake as
 just indicated, issue this command:

cmake --build .

 This works with any CMake generator.

 For Visual Studio and Xcode, you might want to add extra
 configuration options, to avoid building all configurations.

cmake --build . --config RelWithDebInfo

4.4.6.1 CMake Build Types

 CMake has a CMAKE_BUILD_TYPE
 option for predefined build types. The build type affects
 optimization and whether the result of the build is
 debuggable. Those used by MySQL are
 RelWithDebInfo or Debug.

	
 RelWithDebInfo (optimizations are on,
 debug info is generated) is used in MySQL by default.

	
 Debug (optimizations are off, debug
 info is generated) is used if the
 WITH_DEBUG option is set.

	
 CMAKE_BUILD_TYPE is not set
 when custom compile flags are used (see
 Section 4.4.6.2, “How to Specify Compilers and Compiler Flags”).

4.4.6.2 How to Specify Compilers and Compiler Flags

 To define which C and C++ compilers to use, you can define the
 CC and CXX environment
 variables. For example:

shell> CC=gcc
shell> CXX=g++
shell> export CC CXX

 To specify your own C and C++ compiler flags, for flags that
 do not affect optimization, use the
 CMAKE_C_FLAGS and
 CMAKE_CXX_FLAGS CMake options:

cmake .. -DCMAKE_C_FLAGS=your_c_flags \
 -DCMAKE_CXX_FLAGS=your_c++_flags

 When providing your own compiler flags, you might want to
 specify CMAKE_BUILD_TYPE as
 well.

 For example, to create a 32-bit release build on a 64-bit
 Linux machine, do this:

cmake .. -DCMAKE_C_FLAGS=-m32 \
 -DCMAKE_CXX_FLAGS=-m32 \
 -DCMAKE_BUILD_TYPE=RelWithDebInfo

 If you set flags that affect optimization
 (-Onumber), you
 must set the
 CMAKE_C_FLAGS_build_type
 and/or
 CMAKE_CXX_FLAGS_build_type
 options, where build_type
 corresponds to the
 CMAKE_BUILD_TYPE value. To
 specify a different optimization for the default build type
 (RelWithDebInfo) set the
 CMAKE_C_FLAGS_RELWITHDEBINFO and
 CMAKE_CXX_FLAGS_RELWITHDEBINFO options. For
 example, to compile on Linux with -O3 and
 with debug symbols, do this:

cmake .. -DCMAKE_C_FLAGS_RELWITHDEBINFO="-O3 -g" \
 -DCMAKE_CXX_FLAGS_RELWITHDEBINFO="-O3 -g"

4.4.6.3 Predefined Option and Compiler Flag Sets

 It might be handy to specify a predefined set of options and
 do some compiler flag adjustments by passing just a single
 option to cmake. For MySQL, this is done
 using cmake
 -DBUILD_CONFIG=some_config.
 With BUILD_CONFIG defined,
 cmake executes the script in
 cmake/build_configurations/some_config.cmake.
 Assuming that we want to include the embedded library and
 exclude the ARCHIVE storage engine from the
 build, this script could look like this:

SET(WITH_EMBEDDED_SERVER 1 CACHE BOOL "")
SET(WITHOUT_ARCHIVE_STORAGE_ENGINE 1 CACHE BOOL "")

 Currently, there is just a single predefined configuration,
 mysql_release. It reflects configuration
 options and compiler flags used by MySQL releases.

4.4.6.4 Creating Binary Packages

 A package can be created in the form of a
 .tar.gz archive or
 .zip file.

	
 Using “generic” Unix build with Makefiles:

make package

	
 On Windows, using Visual Studio
 generator:

devenv mysql.sln /build relwithdebinfo /project package

 On Windows, CMake 2.8 and later needs no external tools to
 generate Zip files. However, with CMake 2.6, 7Zip or
 Winzip must be installed in a directory listed in your
 PATH setting.

 Another way to build packages is by calling the
 cpack executable directly:

cpack -G TGZ --config CPackConfig.cmake

 Use -G TGZ to produce a
 .tar.gz archive, -GZIP
 for a .zip file.

4.4.6.5 make install, make test

 An install target is provided for
 Makefile-based generators. The installation directory can be
 controlled using the
 CMAKE_INSTALL_PREFIX option at
 configuration time (default is /usr). It
 is also possible to install to non-configured directory at
 installation time:

make install DESTDIR="/some/absolute/path"

	
 make test runs unit tests (uses CTest
 for it).

	
 make test-force runs
 mysql-test-run.pl tests with the
 --test-force option.

4.4.6.6 Fine-Tuning Installation Paths

 If you come from an Autotools background, you are familiar
 with options such as --bindir,
 --libdir, and --sbindir
 that, when passed to the configure script,
 enable fine tuning the installation layout. A similar
 functionality is available with CMake:

	
 CMAKE_INSTALL_PREFIX:
 Specifies the root directory of the installation (same as
 Autotools --prefix).

	
 INSTALL_BINDIR,
 INSTALL_LIBDIR,
 INSTALL_SBINDIR: These
 correspond to the Autotools --bindir,
 --libdir, and --sbindir
 options. A subtle difference is that
 INSTALL_XXXDIR
 values should be paths relative to
 CMAKE_INSTALL_PREFIX. For
 example, INSTALL_BINDIR
 should be bin, not
 /usr/bin.

	
 The INSTALL_LAYOUT option
 enables choosing one of several predefined installation
 layouts:

	
 STANDALONE layout is the same as in
 .tar.gz/.zip
 packages. This is the default.

	
 RPM layout is similar to RPM
 packages. For example, mysqld is in
 the sbin subdirectory.

	
 SVR4 is Solaris package layout.

	
 DEB layout is as in DEB packages.
 (experimental)

 Here is an example how to modify STANDLONE
 layout slightly and install libraries into the
 lib64 subdirectory instead of the default
 lib:

cmake .. -DINSTALL_LAYOUT=STANDALONE -DINSTALL_LIBDIR=lib64

4.4.6.7 Packager-Friendly Build Options (Unix)

 MySQL source distribution contains sources for zlib
 (compression library), yaSSL (ssl library), libedit, and (in
 MySQL 5.5 only) readline. MySQL can be compiled using either
 libraries available on the system or, to minimize external
 dependencies, with bundled sources. For Unix/Linux packagers,
 using system libraries is a more natural option and CMake has
 support for that, using the following options:

	
 -DWITH_ZLIB=system (link
 with system libz.so)

	
 -DWITH_SSL=system (link with
 system libssl.so,
 libcrypto.so)

	
 -DWITH_EDITLINE=system (link
 with system libedit.so)

	
 -DWITH_READLINE=system (link with system
 libreadline.so; MySQL 5.5 only)

 On Linux, --Wl,--as-needed link options can
 also be used to remove unused dependencies. Although the CMake
 build tries to avoid unneeded dependencies,
 --as-needed produces better results. For
 example, it removes unused dependencies on
 libgcc_s.so.

 --Wl,--no-undefined
 cannot be used at the moment if plugins
 are built because plugins have direct dependency (use symbols)
 exported by MySQL server.

4.4.7 ./configure Emulation

 The legacy (Autotools) way to build MySQL on Unix was to run
 this command:

BUILD/autorun.sh; ./configure lots of options; make

 That may still work. However, ./configure
 created by ./BUILD/autorun.sh is just a
 wrapper that translates old-style Autotools options to new-style
 cmake options. The script is neither perfect
 nor supported. It is meant to be a temporary solution for those
 who need time to rewrite ./configure based
 scripts to native CMake.

 Instead of running BUILD/autorun.sh, you can
 invoke ./cmake/configure.pl directly.

4.4.8 For Developers: How to Write Platform Checks

 If you modify MySQL source and want to add a new platform check,
 please read
 http://www.vtk.org/Wiki/CMake_HowToDoPlatformChecks
 first. In MySQL, most of the platform tests are implemented in
 configure.cmake and the template header
 file, config.h.cmake.

 Bigger chunks of functionality, for example, non-trivial macros,
 are implemented in files in the cmake
 subdirectory.

 For people with an Autotools background, it is important to
 remember that CMake does not provide autoheader functionality.
 For example, if you add this check to
 config.cmake:

CHECK_FUNCTION_EXISTS(foo HAVE_FOO)

 Then you must also need to add the following line to
 config.h.cmake:

#cmakedefine HAVE_FOO 1

 Useful bits:

	
 Check for existence of C/C++ compiler flags with
 CHECK_C_COMPILER_FLAG and
 CHECK_CXX_COMPILER_FLAG.

 Here is an example that checks for (hypothetical)
 -foo flag support in the C compiler, and adding
 it to C flags if the flag is supported:

INCLUDE(CheckCCompilerFlag)
CHECK_C_COMPILER_FLAG("-foo" HAVE_C_COMPILER_FOO)
IF(HAVE_COMPILER_FOO)
 SET(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -foo")
ENDIF()

4.4.8.1 Debug-Only Options

 Sometimes, it is handy to add an option that is active only in
 Debug builds. When doing this, keep in mind that tests like
 IF(WITH_DEBUG) or
 IF(CMAKE_BUILD_TYPE MATCHES "Debug") do not
 work as expected:

	
 First, although WITH_DEBUG
 is an alias for
 CMAKE_BUILD_TYPE=Debug, the
 converse is not true.

	
 Second, checking for
 CMAKE_BUILD_TYPE will not
 work everywhere. More precisely, it will
 not work with multi-configuration
 CMake generators (that is, neither on Windows with Visual
 Studio nor on Mac OS X with Xcode).

 So, when adding debug-only options, consider extending
 CMAKE_C_FLAGS_DEBUG and
 CMAKE_CXX_FLAGS_DEBUG. For example:

Works always
SET(CMAKE_C_FLAGS_DEBUG "${CMAKE_C_FLAGS_DEBUG} -DUNIV_DEBUG")

 Do not do it like this:

IF(WITH_DEBUG)
 # Does NOT work with CMAKE_BUILD_TYPE=Debug, Visual Studio or Xcode
 ADD_DEFINITIONS(-DUNIV_DEBUG)
ENDIF()

4.4.8.2 Adding Platform Checks/Compiler Flags for a Specific OS

 If you add a platform check for a specific OS or want to
 modify compiler flags, rather then introducing
 IF(CMAKE_SYSTEM_NAME MATCHES...) in
 configure.cmake, add them to the
 apropriate section in
 cmake/os/my_platform.cmake.
 For example, Solaris-specific adjustments are made in
 cmake/os/SunOS.cmake. This file is
 included when you compile on Solaris.

4.4.8.3 Troubleshooting Platform Checks or Configuration Errors

 If you suspect that a platform check returned wrong result,
 examine CMakeFiles/CMakeError.log and
 CMakeFiles/CMakeOutput.log under the
 build directory. These files contain compiler command lines
 and exact error messages.

4.4.9 Troubleshooting CMake Code

 Although there are advanced flags for cmake
 such as -debug-trycompile and
 --trace, a simple and efficient way to debug is
 to add MESSAGE("interesting
 variable=${variable_name}") to the interesting places
 in CMakeLists.txt.

4.4.10 Developer CMake Tips

	
 How to find out which compiler/linker flags are used

 When using a Makefile generator, it is
 easy to examine which compiler flags are used to build. For
 example, compiler flags for mysqld are in
 sql/CMakeFiles/mysqld.dir/flags.make
 under the build directory and the linker command line is in
 sql/CMakeFiles/mysqld.dir/ulink.txt.

	
 What is CMakeCache.txt?

 CMake caches results of platform checks in
 CMakeCache.txt. It is a nice feature
 because such tests then need not be rerun when reconfiguring
 (for example, after a new test is added).The downside of
 caching is that when a platform test was wrong and was later
 corrected, the cached result is still used. If you encounter
 this situation (which should be rare), you must either
 remove the offending entry from
 CMakeCache.txt (if test was for
 HAVE_FOO, remove lines containing
 HAVE_FOO) or just remove the cache file.

4.4.11 MySQL-Specific CMake Macros

	
 MYSQL_ADD_EXECUTABLE

 Almost the same as
 ADD_EXECUTABLE.
 Supports optional DESTINATION option
 which indicates where to install the executable (if not
 specified, it goes to the
 INSTALL_BINDIR directory). For
 executables not intended to be installed, use
 ADD_EXECUTABLE instead. On Windows, signs
 the executable if the SIGNCODE option is
 set to TRUE.

 Example usage:

MYSQL_ADD_EXECUTABLE(mysqld ${MYSQLD_SOURCE} \
DESTINATION ${INSTALL_SBINDIR})

	
 MYSQL_ADD_PLUGIN: Build MySQL Plugin

MYSQL_ADD_PLUGIN(plugin_name source1...sourceN
[STORAGE_ENGINE]
[MANDATORY|DEFAULT]
[STATIC_ONLY|MODULE_ONLY]
[MODULE_OUTPUT_NAME module_name]
[STATIC_OUTPUT_NAME static_name]
[RECOMPILE_FOR_EMBEDDED]
[LINK_LIBRARIES lib1...libN]
[DEPENDENCIES target1...targetN])

 Parameters:

	
 STORAGE_ENGINE

 Define for storage engines. Causes the shared library to
 be built with ha_ prefix.

	
 MANDATORY

 Define for mandatory plugins (such as myisam). Causes
 the plugin to be always built.

	
 DEFAULT

 Default plugin. Built unless
 WITHOUT_plugin_name
 option is defined. The InnoDB storage engine has this
 option starting with MySQL 5.5.5.

	
 STATIC_ONLY

 Can be built only as a static library.

	
 MODULE_ONLY

 Can be built only as a shared module.

	
 MODULE_OUTPUT_NAME
 module_name

 Defines the plugin library name when it is built as a
 shared module.

	
 STATIC_OUTPUT_NAME

 Defines the library name when it is built as a static
 library.

	
 RECOMPILE_FOR_EMBEDDED

 Must be recompiled with the
 -DEMBEDDED_SERVER preprocessor flag for
 use with the embedded server. Few plugins need this,
 typically mandatory storage engines that depend on
 internal structures and on the
 EMBEDDED_SERVER flag.

	
 LINK_LIBRARIES

 Libraries to link with plugin.

	
 DEPENDENCIES

 Plugin dependencies.

 Example 1: Simple plugin that is only built as shared module

MYSQL_ADD_PLUGIN(daemon_example daemon_example.cc MODULE_ONLY)

 Example 2: InnoDB plugin. Storage engine, redefines output
 name of shared library to be ha_innodb
 rather than ha_innobase, depends on the
 zlib library.

MYSQL_ADD_PLUGIN(innobase ${INNOBASE_SOURCES}
 STORAGE_ENGINE MODULE_OUTPUT_NAME
 ha_innodb LINK_LIBRARIES ${ZLIB_LIBRARY})

4.4.12 Interface to Third-Party Tools

 Third-party tools that must determine the MySQL version from the
 MySQL source can read the VERSION file in
 the top-level source directory. The file lists the components of
 the version separately. For example, if the version is MySQL
 5.7.4-m14, the file looks like this:

MYSQL_VERSION_MAJOR=5
MYSQL_VERSION_MINOR=7
MYSQL_VERSION_PATCH=4
MYSQL_VERSION_EXTRA=-m14

 If the source is not for a General Availablility (GA) release,
 the MYSQL_VERSION_EXTRA value will be
 nonempty. For the example, the value corresponds to Milestone
 14.

 To construct a five-digit number from the version components,
 use this formula:

MYSQL_VERSION_MAJOR*10000 + MYSQL_VERSION_MINOR*100 + MYSQL_VERSION_PATCH

4.5 FAQ / Miscellany

4.5.1 Running mysql-test-run.pl in an Out-of-Source Build

 When building out of source (see
 Section 4.4.1, “Create the Build Directory”), use
 mysql-test-run.pl in the
 mysql-test directory under the build
 directory. It is a wrapper script that calls
 mysql-test-run.pl in the source directory and
 tells it where to look for the binaries, via the
 MTR_BINDIR environment variable. Attempts to
 run mysql-test-run.pl directly from the
 source directory will fail.

4.5.2 Running mysql-test-run.pl with Visual Studio or Xcode Projects

 If you build with Xcode and you build more than a single
 configuration (for example, Debug and
 RelWithDebInfo), set the
 MTR_VS_CONFIG=cmake_configuration_name
 environment variable to run tests for a specific configuration.
 The name of the variable (specifially, the VS
 part in it) reflects the fact that it was implemented for Visual
 Studio originally. When many configurations are built, MTR
 prefers Release or
 RelWithDebInfo. To run a debug configuration,
 change locaton to the mysql-test directory
 under your build directory and run
 mysql-test-run.pl:

	
 Mac OS X

cd mysql-test
MTR_VS_CONFIG=Debug perl mysql-test-run.pl options

	
 Windows

cd mysql-test
set MTR_VS_CONFIG=Debug
perl mysql-test-run.pl options

4.5.3 make distclean

 Unlike Autotools, CMake
 does
 not provide a "distclean" target natively, nor should
 there be a need to use it, if you build out-of-source. If you
 build in-source, use git clean. To add new
 files to the tree, be sure to use git add
 prior to git clean.

4.5.4 Compiling for Different Hardware Architectures

	
 GCC (on Linux) or Sun Studio

 Use compile option -m32 (force 32-bit
 build), -m64 (force 64-bit build)

	
 Windows, Visual Studio generator

 Use cmake
 path_to_source_dir -G "Visual
 Studio 10 2010 Win64" to compile 64-bit (x64)

	
 Mac OS X

 Use the CMAKE_OSX_ARCHITECTURES CMake
 option. You can set more than a single architecture to
 create a universal binary. For example, this command
 configures a universal binary with 32-bit intel / 32-bit
 powerpc:

cmake path_to_source -DCMAKE_OSX_ARCHITECTURES="i386;pcc"

 This command configures an x86_64 binary:

cmake path_to_source -DCMAKE_OSX_ARCHITECTURES="x86_64"

4.6 Autotools to CMake Transition Guide

 This section shows some common GNU Autotools configuration options
 and how they map to CMake equivalents.

4.6.1 Command Invocation Syntax

 The following table shows some common configure invocation syntax
 and the equivalent CMake commands. The . in the
 commands represents your current working directory. If
 . is not your current working directory,
 replace it with the path to the top-level directory of the source
 tree.

	
 configure Command

	
 CMake Command

	
 ./configure

	
 cmake .

	
 ./configure --help

	
 cmake . -LH or ccmake
 .

 To clean out old object files and cached information before
 reconfiguring and rebuilding:

 Autotools:

make clean
rm config.cache

 CMake (Unix):

make clean
rm CMakeCache.txt

 CMake (Windows):

devenv MySQL.sln /clean
del CMakeCache.txt

4.6.2 Installation Layout Options

 These options control where to install various MySQL components.

 In the following table, the
 CMAKE_INSTALL_PREFIX value is the
 installation base directory. Many other CMake layout options are
 interpreted relative to the prefix and their values are relative
 pathnames. Their values should not include the prefix.

	
 Parameter

	
 configure Option

	
 CMake Option

	
 Installation base directory

	
 --prefix=/usr

	
 -DCMAKE_INSTALL_PREFIX=/usr

	
 mysqld directory

	
 --libexecdir=/usr/sbin

	
 -DINSTALL_SBINDIR=sbin
 (interpreted relative to prefix)

	
 Data directory

	
 --localstatedir=/var/lib/mysql

	
 -DMYSQL_DATADIR=/var/lib/mysql

	
 Config directory (for my.cnf)

	
 --sysconfdir=/etc/mysql

	
 -DSYSCONFDIR=/etc/mysql

	
 Plugin directory

	
 --with-plugindir=/usr/lib64/mysql/plugin

	
 -DINSTALL_PLUGINDIR=lib64/mysql/plugin
 (interpreted relative to prefix)

	
 Man page directory

	
 --mandir=/usr/share/man

	
 -DINSTALL_MANDIR=share/man
 (interpreted relative to prefix)

	
 Shared-data directory

	
 --sharedstatedir=/usr/share/mysql

	
 -DINSTALL_SHAREDIR=share
 (this is where aclocal/mysql.m4
 should be installed)

	
 Library installation directory

	
 --libdir=/usr/lib64/mysql

	
 -DINSTALL_LIBDIR=lib64/mysql
 (interpreted relative to prefix)

	
 Header installation directory

	
 --includedir=/usr/include/mysql

	
 -DINSTALL_INCLUDEDIR=include/mysql
 (interpreted relative to prefix)

	
 Info doc directory

	
 --infodir=/usr/share/info

	
 -DINSTALL_INFODIR=share/info
 (interpreted relative to prefix)

4.6.3 Storage Engine Options

 Storage engines are plugins, so the options that control plugin
 building specify which storage engines to build.

 The --with-plugins configure
 option accepts two constructs that have no direct equivalent in
 CMake:

	
 --with-plugins accepts a comma-separated list
 of engine names

	
 --with-plugins accepts a “group
 name” value that is shorthand for a set of engines

 With CMake, engines are controlled with individual options.

 Suppose that the configure option is:

--with-plugins=csv,myisam,myisammrg,heap,innobase,archive,blackhole

 This builds the named engines as static plugins that are compiled
 into the server and need not be installed explicitly.

 To convert this for CMake, omit these engine names because they
 are mandatory (always compiled in):

csv myisam myisammrg heap

 Then use these options to enable the InnoDB,
 ARCHIVE, and BLACKHOLE
 engines:

-DWITH_INNOBASE_STORAGE_ENGINE=1
-DWITH_ARCHIVE_STORAGE_ENGINE=1
-DWITH_BLACKHOLE_STORAGE_ENGINE=1

 You can also use ON rather than 1 as the option
 value.

 If you used
 --without-plugin-engine
 in configure to exclude a storage engine from
 the build, use
 -DWITHOUT_ENGINE_STORAGE_ENGINE
 in CMake.

 Examples:

-DWITHOUT_EXAMPLE_STORAGE_ENGINE=1
-DWITHOUT_FEDERATED_STORAGE_ENGINE=1
-DWITHOUT_PARTITION_STORAGE_ENGINE=1

 If neither
 -DWITH_ENGINE_STORAGE_ENGINE
 nor
 -DWITHOUT_ENGINE_STORAGE_ENGINE
 is specified for a given storage engine, the engine is built as a
 shared module, or excluded if it cannot be built as a shared
 module. A shared module must be installed using the
 INSTALL PLUGIN statement or the
 --plugin-load option before it can be used.

 For additional information about CMake options for plugins, see
 Chapter 5, Plugins.

4.6.4 Library Options

 The following table shows options that indicate which libraries to
 use.

	
 Parameter

	
 configure Option

	
 CMake Option

	
 readline library

	
 --with-readline

	
 -DWITH_EDITLINE=1

	
 SSL library

	
 --with-ssl=/usr

	
 -DWITH_SSL=system

	
 zlib library

	
 --with-zlib-dir=/usr

	
 -DWITH_ZLIB=system

	
 libwrap library

	
 --without-libwrap

	
 -DWITH_LIBWRAP=0

4.6.5 Miscellaneous Options

 For Autotools MySQL build options that have CMake equivalents, the
 normal mapping from an Autotools option to the CMake option is to
 convert uppercase, remove leading dashes, replace dashes with
 underscores, and add a leading -D.

 Examples:

--with-debug => -DWITH_DEBUG=1
--with-embedded-server => -DWITH_EMBEDDED_SERVER

	
 Parameter

	
 configure Option

	
 CMake Option

	
 TCP/IP port number

	
 --with-tcp-port-=3306

	
 -DMYSQL_TCP_PORT=3306

	
 Unix socket file

	
 --with-unix-socket-path=/tmp/mysqld.sock

	
 -DMYSQL_UNIX_ADDR=/tmp/mysqld.sock

	
 Enable LOCAL for
 LOAD DATA

	
 --enable-local-infile

	
 -DENABLED_LOCAL_INFILE=1

	
 Extra charsets

	
 --with-extra-charsets=all

	
 -DWITH_EXTRA_CHARSETS=all
 (default is all)

	
 Default charset

	
 --with-charset=utf8

	
 -DDEFAULT_CHARSET=utf8

	
 Default collation

	
 --with-collation=utf8_general_ci

	
 -DDEFAULT_COLLATION=utf8_general_ci

	
 Build the server

	
 --with-server

	
 none

	
 Build the embedded server

	
 --with-embedded-server

	
 -DWITH_EMBEDDED_SERVER=1

	
 libmysqld privilege control

	
 --with-embedded-privilege-control

	
 none

	
 Install the documentation

	
 --without-docs

	
 none

	
 Big tables

	
 --with-big-tables,
 --without-big-tables

	
 none (tables are big by default)

	
 mysqld user

	
 --with-mysqld-user=mysql

	
 none

	
 Debugging

	
 --without-debug

	
 -DWITH_DEBUG=0 (default is
 debugging disabled)

	
 GIS support

	
 --with-geometry

	
 none (always enabled?)

	
 Community features

	
 --enable-community-features

	
 none (always enabled)

	
 Profiling

	
 --disable-profiling

	
 -DENABLED_PROFILING=0
 (enabled by default)

	
 pstack

	
 --without-pstack

	
 none (pstack is removed)

	
 Assembler string functions

	
 --enable-assembler

	
 none

	
 Build type

	
 --build=x86_64-pc-linux-gnu

	
 no equivalent (unneeded?)

	
 Cross-compile host

	
 --host=x86_64-pc-linux-gnu

	
 no equivalent (unneeded?)

	
 Client flag

	
 --with-client-ldflags=-lstdc++

	
 none (unneeded)

	
 Client flag

	
 --enable-thread-safe-client

	
 none (unneeded, clients are always thread safe)

	
 Comment

	
 --with-comment="string"

	
 -DCOMPILATION_COMMENT="string"

	
 Shared/static binaries

	
 --enable-shared,
 --enable-static

	
 none (there is only DISABLE_SHARED)

	
 Memory use

	
 --with-low-memory

	
 none (unneeded)

4.6.6 Debugging the Configuration Process

 Configuration with Autotools produces
 config.log and
 config.status files.

 Configuration with CMake produces files under the
 CMakeFiles directory:
 CMakeFiles/CMakeError.log and
 CMakeFiles/CMakeOutput.log

4.6.7 Interface to Third-Party Tools

 Previously, third-party tools that need to determine the MySQL
 version from the MySQL source read the configure.in file in the
 top-level source directory. For example, the
 AC_INIT line for MySQL 5.5.7-rc looked like
 this:

AC_INIT([MySQL Server], [5.5.7-rc], [], [mysql])

 Such tools now can read the VERSION file. For example, if the
 version is MySQL 5.7.4-m14, the file looks like this:

MYSQL_VERSION_MAJOR=5
MYSQL_VERSION_MINOR=7
MYSQL_VERSION_PATCH=4
MYSQL_VERSION_EXTRA=-m14

 If the source is not for a General Availablility (GA) release, the
 MYSQL_VERSION_EXTRA value will be nonempty. For the example, the value corresponds to Milestone 14.

 To construct a five-digit number from the version components, use
 this formula:

MYSQL_VERSION_MAJOR*10000 + MYSQL_VERSION_MINOR*100 + MYSQL_VERSION_PATCH

Chapter 5 Plugins

Table of Contents
	5.1 CMake Variables to Control Plugin Building (MySQL 5.5 and Later)
	5.2 CMake Macro to Define the Plugin
	5.3 Autotools configure Support (MySQL 5.1)
	5.4 Autotools Plugin Macros
	5.5 Specifying mysqld Variables Within a Plugin
	5.6 Additional Accessors for Plugins
	5.7 MySQL Services for Plugins
		5.7.1 Plugin Services Components
	5.7.2 Writing Services for Use from Within Plugins

 Beginning with MySQL 5.1, the server supports a plugin architecture
 for loading plugins. For example, several storage engines have been
 converted to plugins, and they can be selected or disabled at
 configuration time. You can build a plugin as static (compiled into
 the server) or dynamic (built as a dynamic library that must be
 installed using the INSTALL PLUGIN statement or
 the --plugin-load option before it can be used).
 Some plugins might not support static or dynamic build.

 This section describes the command-line options that are used to
 control which plugins get built, and the CMake/autotools macros that
 enable plugin configuration support to be described. The support for
 building plugins is different in MySQL 5.5 and MySQL 5.1 (the build
 tools are CMake in 5.5, autotools in 5.1).

5.1 CMake Variables to Control Plugin Building (MySQL 5.5 and Later)

	
 To build a plugin that is statically compiled into the server
 (assuming that the plugin supports static build), add
 -DWITH_<PLUGIN>=1 to the CMake command line.

	
 To exclude a plugin from the build, use
 -DWITHOUT_<PLUGIN>=1

	
 If neither WITH_<PLUGIN> nor WITHOUT_<PLUGIN> are
 defined, the plugin will be built as a shared module, if
 plugin supports it. If the plugin does not support build as a
 shared module, it won't be built.

	
 WITH_PLUGIN_<PLUGIN> and
 WITH_<PLUGIN>_STORAGE_ENGINE are also supported.

5.2 CMake Macro to Define the Plugin

 To define a plugin, you need to add the MYSQL_ADD_PLUGIN() macro
 into CMakeList.txt. Unlike in 5.1, there is no special plug.in
 script. If you need to perform system checks, use standard CMake
 techniques like CHECK_FUNCTION_EXISTS or CHECK_INCLUDE_FILE etc.

 Note: There is NO autoheader-functionality. For example,
 CHECK_FUNCTION_EXISTS(epoll_wait HAVE_EPOLL_WAIT) will not
 automagically add "#define HAVE_EPOLL_WAIT 1" in config.h.
 Different plugins might chose different strategies to add
 plugin-specific defines

	
 Strategy 1 - use ADD_DEFINITIONS

 This is similar to what InnoDB does in 5.5. An example

CHECK_FUNCTION_EXISTS(epoll_wait HAVE_EPOLL_WAIT)
IF(HAVE_EPOLL_WAIT)
 ADD_DEFINITIONS(-DHAVE_EPOLL_WAIT=1)
ENDIF()

	
 Strategy 2 - use own header template

 It is more work than in Strategy 1 but result is a cleaner
 solution:

 1) You need to have plugin specific <plugin>_config.h.in
 with content similar to

 #cmakedefine HAVE_EPOLL_WAIT
#cmakedefine HAVE_EPOLL_CTL

 2) In CMakeLists.txt, add system checks

CHECK_FUNCTION_EXISTS(epoll_wait HAVE_EPOLL_WAIT)
CHECK_FUNCTION_EXISTS(epoll_ctl HAVE_EPOLL_CTL)

 After all system checks, add

CONFIGURE_FILE(plugin_config.h.in plugin_config.h)

 3) use #include "plugin_config.h" in your source files

5.3 Autotools configure Support (MySQL 5.1)

 Several configure options apply
 to plugin selection and building.

 configure --help shows the
 following information pertaining to plugins:

	
 The plugin-related options

	
 The names of all available plugins

	
 For each plugin, a description of its purpose, which build
 types it supports (static or dynamic), and which plugin groups
 it is a part of.

 The following configure options
 are used to select or disable plugins:

--with-plugins=PLUGIN[,PLUGIN]...
--with-plugins=GROUP
--with-plugin-PLUGIN
--without-plugin-PLUGIN

 PLUGIN is an individual plugin name such as
 csv or archive.

 As shorthand, GROUP is a configuration group
 name such as none (select no plugins),
 all (select all plugins), or
 max (select all plugins used in a
 mysqld-max server).

 --with-plugins can take a list of one or more
 plugin names separated by commas, or a plugin group name. The
 named plugins are configured to be built as static plugins.

 --with-plugin-PLUGIN configures the given
 plugin to be built as a static plugin.

 --without-plugin-PLUGIN disables the given
 plugin from being built.

 If a plugin is named both with a --with and
 --without option, the result is undefined.

 For any plugin that is not explicitly or implicitly (as a member
 of a selected group) selected or disabled, it is selected to be
 built dynamically if it supports dynamic build, and is disabled if
 it does not support dynamic build. If no plugin options are given,
 default group is selected.

5.4 Autotools Plugin Macros

 The following macros enable plugin support in the autotools
 configuration files.

	
 Declaring a plugin:

MYSQL_PLUGIN(name, long-name, description [,configlist])

 Each plugin is required to have MYSQL_PLUGIN()
 declared first. configlist
 is an optional argument that is a comma-separated list of
 configurations of which the module is a member. Example:

MYSQL_PLUGIN(ftexample, [Simple Parser], [Simple full-text parser plugin])
	
 Declaring a storage engine plugin:

MYSQL_STORAGE_ENGINE(name, legacy-opt, long-name, description
[,configlist])

 This is a simple utility macro that calls
 MYSQL_PLUGIN. It performs the bare basics
 required to declare a storage engine plugin and provides support
 for handling the legacy configure
 command-line options. If
 legacy-opt is not
 specified, it will default to
 --with-name-storage-engine. Set the
 legacy-opt value to no if
 you do not want to handle any legacy option. This macro is roughly
 equivalent to:

MYSQL_PLUGIN(name, 'long-name, description)
MYSQL_PLUGIN_DEFINE(name, WITH_NAME_STORAGE_ENGINE)

 Example:

MYSQL_STORAGE_ENGINE(berkeley, berkeley-db, [BerkeleyDB Storage Engine],
[Transactional Tables using BerkeleyDB], [max,max-no-ndb])
	
 Declaring a C preprocessor variable:

MYSQL_PLUGIN_DEFINE(name, define-name)

 When a plugin will be included in a static build, this will set a
 preprocessor variable to 1. These preprocessor variables are
 defined in config.h. Example:

MYSQL_PLUGIN_DEFINE(innobase, WITH_INNOBASE_STORAGE_ENGINE)
	
 Declaring a source directory for a plugin:

MYSQL_PLUGIN_DIRECTORY(name, dir-name)

 Includes the specified directory into the build. If a file named
 configure is detected in the directory, it will
 be executed as part of the
 configure build otherwise it is
 assumed that there is a Makefile to be built in
 that directory. Currently, there is only support for plugin
 directories to be specified in the storage/ and
 plugin/ subdirectories. Example:

MYSQL_PLUGIN_DIRECTORY(archive, [storage/archive])
	
 Declaring a static library name for a plugin:

MYSQL_PLUGIN_STATIC(name, dir-name)

 Sets the configure substitution
 @plugin_name_static_target@ to the supplied
 library name if the plugin is a static build. It also adds the
 library to the list of libraries to be linked into
 mysqld. It may either be just the
 name of the library (where, if there is a directory specified, the
 directory will be prepended for the link) or another
 make variable or substitution (in
 which case, it will be passed through as is). Example:

MYSQL_PLUGIN_STATIC(archive, [libarchive.a]) MYSQL_PLUGIN_STATIC(berkeley, [[\$(bdb_libs_with_path)]])
	
 Declaring a dynamic library name for a plugin:

MYSQL_PLUGIN_DYNAMIC(name, dso-name)

 Sets the configure substitution
 @plugin_name_shared_target@ to the supplied
 dynamic shared object library name if the module is a dynamic
 build. Example:

MYSQL_PLUGIN_DYNAMIC(archive, [ha_archive.la])
	
 Declaring a plugin as a mandatory module:

MYSQL_PLUGIN_MANDATORY(name)

 Mandatory plugins cannot be disabled. Example:

MYSQL_PLUGIN_MANDATORY(myisam)
	
 Declaring a plugin as disabled:

MYSQL_PLUGIN_DISABLED(name)

 A disabled plugin will not be included in any build. If the plugin
 has been marked as MANDATORY, it will result in
 an autoconf error.

	
 Declaring additional plugin
 configure actions:

MYSQL_PLUGIN_ACTIONS(name, configure-actions)

 This is useful if there are additional
 configure actions required for a
 plugin. The
 configure-actions argument
 may either be the name of an
 autoconf macro or more
 autoconf script. Example:

MYSQL_PLUGIN_ACTIONS(ndbcluster,[MYSQL_SETUP_NDBCLUSTER])
	
 Declaring plugin dependencies:

MYSQL_PLUGIN_DEPENDS(name, dependencies)

 Declares all plugins, in a comma-separated list, that are required
 for the named plugin to be built. If the named plugin is selected,
 it will in turn enable all its dependencies. All plugins listed as
 a dependency must already have been declared with
 MYSQL_PLUGIN(). Example:

MYSQL_PLUGIN_DEPENDS(ndbcluster, [partition])
	
 Performing the magic:

MYSQL_CONFIGURE_PLUGINS(default-names)

 Actually performs the task of generating the shell scripts for
 configure based upon the
 declarations made previously. It emits the shell code necessary to
 check the options and sets the variables accordingly. Example:

MYSQL_CONFIGURE_PLUGINS([none])

 Plugin-related configure errors:

	
 When any plugin macro is called before
 MYSQL_PLUGIN() is declared for that plugin,
 configure aborts with an
 error.

	
 When any of the plugins specified in the dependency list don't
 exist, configure aborts with
 an error.

	
 When a mandatory plugin is specified in
 --without-plugin-PLUGIN,
 configure aborts with an
 error.

	
 When a disabled plugin is specified in
 --with-modules=... or
 --with-plugin=PLUGIN,
 configure reports an error.

	
 When an optional plugin that may only be built dynamically is
 specified in --with-plugins=... or
 --with-plugin-PLUGIN,
 configure emits a warning and
 continues to configure the plugin for dynamic build.

	
 When an optional plugin that may only be built statically is
 specified neither in --with-plugins=... nor
 --without-plugin-PLUGIN,
 configure emits a warning but
 should proceed anyway.

 Avoiding configure.in changes:

	
 If a plugin source (which is located in a subdirectory of the
 storage/ or plugin/
 directory) contains a plug.in file (for
 example, storage/example/plug.in), this
 file will be included as a part of
 configure.in. This way,
 configure.in does not need to be modified
 to add a new plugin to the build.

	
 A plug.in file may contain everything,
 particularly all MYSQL_PLUGIN_xxx macros as
 just described. The plug.in file does not
 need to specify MYSQL_PLUGIN_DIRECTORY; it
 is set automatically to the directory of the
 plug.in file.

5.5 Specifying mysqld Variables Within a Plugin

 A plugin can implement status and system variables. Information
 about this is in the
 Server Plugin Status and System Variables section of the
 MySQL Reference Manual.

5.6 Additional Accessors for Plugins

 Starting with MySQL 5.1.21 the following additional accessors are
 made available to all plug-ins:

	
 Full definition of MYSQL_LEX_STRING (identical to LEX_STRING
 from m_string.h)

	
 Full definition of MYSQL_XID (binary compatible with XID from
 handler.h)

	
 mysql_tmpfile(), creates a temporary file in mysqld's tmpdir

	
 thd_killed(), to check killed state of connection

	
 thd_alloc() and similar allocation functions

	
 thd_get_xid(), to get XID of connection's transaction

	
 mysql_query_cache_invalidate4(), to invalidate a table's query
 cache entries

5.7 MySQL Services for Plugins

 As of MySQL 5.5, plugins have access to server “services.” The
 services interface exposes server functionality that plugins can
 call. It complements the plugin API and has these characteristics:

	
 Services enable plugins to access code inside the server using
 ordinary function calls. Services are also available to
 user-defined functions (UDFs).

	
 Services are portable and work on multiple platforms.

	
 The interface includes a versioning mechanism so that plugin
 versions can be checked at load time against service versions
 supported by the server. Versioning protects against
 incompatibilities between the version of a service that the
 server provides and the version of the service expected or
 required by a plugin.

	
 For information about plugins for testing plugin services, see
 Plugins for Testing Plugin Services, in
 The MySQL Test Framework, Version 2.0.

5.7.1 Plugin Services Components

 On the plugin side of the services interface, the relevant
 information is provided in a set of header files. A plugin
 accesses this information by including the
 plugin.h file (which plugins must include
 anyway):

#include <mysql/plugin.h>

 plugin.h includes the
 services.h file, which acts as an
 “umbrella” file that includes the service-specific headers
 with names of the form service_xxx.h. Within
 a MySQL source distribution, the header files are located in the
 include/mysql directory and have an inclusion
 hierarchy like this:

	
 plugin.h includes
 services.h.

	
 services.h is the “umbrella” header
 that includes all available service-specific header files.

	
 Service-specific headers have names like
 service_my_snprintf.h or
 service_thd_alloc.h.

 The server side of the services interface uses the header files
 just listed, but also involves other files. Within a MySQL
 source distribution, these files are located in the
 libservices and sql
 directories:

 The libservices directory contains the source
 files from which the libmysqlservices library
 is built. Files in this directory include:

	
 HOWTO : Instructions for writing plugin
 services.

	
 xxx_services.h : Service-specific
 interface files.

 During the MySQL build and install process, the
 libmysqlservices library is compiled and
 installed in a directory where plugins can access it. All
 plugins should link in this library using the
 -lmysqlservices flag when they are built.

 The sql directory contains
 sql_plugin.cc, which implements plugin
 functionality. This file includes
 sql_plugin_services.h, where each available
 service is registered.

5.7.2 Writing Services for Use from Within Plugins

 Services are implemented by modifying server code in the
 sql directory to register the service in the
 plugin code, and by providing interface files in the
 libservices directory and under the
 include directory.

 For complete instructions on writing a service, see the
 HOWTO file in the
 libservices directory within a MySQL source
 distribution. As you read the HOWTO file, you
 might find it useful to examine the files that implement
 existing services.

 When you write a service, be sure to provide complete
 instructions on how to use it. A service named
 xxx will have a file named
 service_xxx.h in the
 include/mysql directory. For the benefit of
 plugin developers who use your service, this file should include
 comments that fully document the service interface:

	
 Its purpose

	
 Any applicable guidelines, including limitations or
 restrictions

	
 For each function, a description of what it does, its
 calling sequence, and return value

 The goal for documentation in this file is that plugin
 developers should be able to look at the file and completely
 understand how to use the service.

Chapter 6 Transaction Handling in the Server

Table of Contents
	6.1 Historical Note
	6.2 Current Situation
	6.3 Data Layout
	6.4 Transaction Life Cycle
	6.5 Roles and Responsibilities
	6.6 Additional Notes on DDL and the Normal Transaction

 In each client connection, MySQL maintains two transactional states:

	
 A statement transaction

	
 A standard transaction, also called a normal transaction

6.1 Historical Note

 "Statement transaction" is a non-standard term that comes from the
 days when MySQL supported the BerkeleyDB storage engine.

 First, observe that in BerkeleyDB the "auto-commit" mode causes
 automatic commit of operations that are atomic from the storage
 engine's perspective, such as a write of a record, but are too
 fine-grained to be atomic from the application's (MySQL's)
 perspective. One SQL statement could involve many BerkeleyDB
 auto-committed operations. So BerkeleyDB auto-commit was of little
 use to MySQL.

 Second, observe that BerkeleyDB provided the concept of "nested
 transactions" instead of SQL standard savepoints. In a nutshell:
 transactions could be arbitrarily nested, but when the parent
 transaction was committed or aborted, all its child (nested)
 transactions were committed or aborted as well. Commit of a nested
 transaction, in turn, made its changes visible, but not durable:
 it destroyed the nested transaction, so all the nested
 transaction's changes would become visible to the parent and to
 other currently active nested transactions of the same parent.

 So MySQL employed the mechanism of nested transactions to provide
 the "all or nothing" guarantee for SQL statements that the
 standard requires. MySQL would create a nested transaction at the
 start of each SQL statement, and destroy (commit or abort) the
 nested transaction at statement end. MySQL people internally
 called such a nested transaction a a "statement transaction". And
 that's what gave birth to the term "statement transaction".

6.2 Current Situation

 Nowadays a statement transaction is started for each statement
 that accesses transactional tables or uses the binary log. If the
 statement succeeds, the statement transaction is committed. If the
 statement fails, the transaction is rolled back. Commits of
 statement transactions are not durable -- each statement
 transaction is nested in the normal transaction, and if the normal
 transaction is rolled back, the effects of all enclosed statement
 transactions are undone as well. Technically, a statement
 transaction can be viewed as a transaction which starts with a
 savepoint which MySQL maintains automatically, in order to make
 the effects of one statement atomic.

 The normal transaction is started by the user and is usually
 completed by a user request as well. The normal transaction
 encloses all statement transactions that are issued between its
 beginning and its end. In autocommit mode, the normal transaction
 is equivalent to the statement transaction.

 Since MySQL supports pluggable storage engine architecture (PSEA),
 more than one transactional engine may be active at a time. So
 from the server point of view, transactions are always
 distributed. In particular, MySQL maintains transactional state is
 independently for each engine. To commit a transaction, MySQL
 employs a two-phase commit protocol.

 Not all statements are executed in the context of a transaction.
 Administrative and status-information statements don't modify
 engine data, so they don't start a statement transaction and they
 don't affect a normal transaction. Examples of such statements are
 SHOW STATUS and RESET SLAVE.

 Similarly, DDL statements are not transactional, and therefore a
 transaction is (almost) never started for a DDL statement. But
 there's a difference between a DDL statement and an administrative
 statement: the DDL statement always commits the current
 transaction (if any) before proceeding; the administrative
 statement doesn't.

 Finally, SQL statements that work with nontransactional engines
 also have no effect on the transaction state of the connection.
 Even though they cause writes to the binary log, (and the binary
 log is by and large transactional), they write in "write-through"
 mode directly to the binlog file, then they do an OS cache sync --
 in other words, they bypass the binlog undo log (translog). They
 do not commit the current normal transaction. A failure of a
 statement that uses nontransactional tables would cause a rollback
 of the statement transaction, but that's irrelevant if no
 nontransactional tables are used, because no statement transaction
 was started.

6.3 Data Layout

 The server stores its transaction-related data in
 thd->transaction. This structure has two members of type
 THD_TRANS. These members correspond to the statement and normal
 transactions respectively:

	
 thd->transaction.stmt contains a list of engines that are
 participating in the given statement

	
 thd->transaction.all contains a list of engines that have
 participated in any of the statement transactions started
 within the context of the normal transaction. Each element of
 the list contains a pointer to the storage engine,
 engine-specific transactional data, and engine-specific
 transaction flags.

 In autocommit mode, thd->transaction.all is empty. In that
 case, data of thd->transaction.stmt is used to commit/roll back
 the normal transaction.

 The list of registered engines has a few important properties:

	
 No engine is registered in the list twice.

	
 Engines are present in the list in reverse temporal order --
 new participants are always added to the beginning of the
 list.

6.4 Transaction Life Cycle

 When a new connection is established, thd->transaction members
 are initialized to an empty state. If a statement uses any tables,
 all affected engines are registered in the statement engine list.
 In non-autocommit mode, the same engines are registered in the
 normal transaction list. At the end of the statement, the server
 issues a commit or a rollback for all engines in the statement
 list. At this point the transaction flags of an engine, if any,
 are propagated from the statement list to the list of the normal
 transaction. When commit/rollback is finished, the statement list
 is cleared. It will be filled in again by the next statement, and
 emptied again at the next statement's end.

 The normal transaction is committed in a similar way (by going
 over all engines in thd->transaction.all list) but at different
 times:

	
 When the user issues an SQL COMMIT statement

	
 Implicitly, when the server begins handling a DDL statement or
 SET AUTOCOMMIT={0|1} statement

 The normal transaction can be rolled back as well:

	
 When the user isues an SQL ROLLBACK statement

	
 When one of the storage engines requests a rollback by setting
 thd->transaction_rollback_request

 For example, the latter condition may occur when the transaction
 in the engine was chosen as a victim of the internal deadlock
 resolution algorithm and rolled back internally. In such
 situations there is little the server can do and the only option
 is to roll back transactions in all other participating engines,
 and send an error to the user.

 From the use cases above, it follows that a normal transaction is
 never committed when there is an outstanding statement
 transaction. In most cases there is no conflict, because commits
 of a normal transaction are issued by a stand-alone administrative
 or DDL statement, and therefore no outstanding statement
 transaction of the previous statement can exist. Besides, all
 statements that operate via a normal transaction are prohibited in
 stored functions and triggers, therefore no conflicting situation
 can occur in a sub-statement either. The remaining rare cases,
 when the server explicitly must commit a statement transaction
 prior to committing a normal transaction, are error-handling cases
 (see for example SQLCOM_LOCK_TABLES).

 When committing a statement or a normal transaction, the server
 either uses the two-phase commit protocol, or issues a commit in
 each engine independently. The server uses the two-phase commit
 protocol only if:

	
 All participating engines support two-phase commit (by
 providing a handlerton::prepare PSEA API call), and

	
 Transactions in at least two engines modify data (that is, are
 not read-only)

 Note that the two-phase commit is used for statement transactions,
 even though statement transactions are not durable anyway. This
 ensures logical consistency of data in a multiple- engine
 transaction. For example, imagine that some day MySQL supports
 unique constraint checks deferred until the end of the statement.
 In such a case, a commit in one of the engines could yield
 ER_DUP_KEY, and MySQL should be able to gracefully abort the
 statement transactions of other participants.

 After the normal transaction has been committed, the
 thd->transaction.all list is cleared.

 When a connection is closed, the current normal transaction, if
 any, is rolled back.

6.5 Roles and Responsibilities

 The server has only one way to know that an engine participates in
 the statement and a transaction has been started in an engine: the
 engine says so. So, in order to be a part of a transaction, an
 engine must "register" itself. This is done by invoking the
 trans_register_ha() server call. Normally the engine registers
 itself whenever handler::external_lock() is called. Although
 trans_register_ha() can be invoked many times, it does nothing if
 the engine is already registered. If autocommit is not set, the
 engine must register itself twice -- both in the statement list
 and in the normal transaction list. A parameter of
 trans_register_ha() specifies which list to register.

 Note: Although the registration interface in itself is fairly
 clear, the current usage practice often leads to undesired
 effects. For example, since a call to trans_register_ha() in most
 engines is embedded into an implementation of
 handler::external_lock(), some DDL statements start a transaction
 (at least from the server point of view) even though they are not
 expected to. For example CREATE TABLE does not start a
 transaction, since handler::external_lock() is never called during
 CREATE TABLE. But CREATE TABLE ... SELECT does, since
 handler::external_lock() is called for the table that is being
 selected from. This has no practical effects currently, but we
 must keep it in mind nevertheless.

 Once an engine is registered, the server will do the rest of the
 work.

 During statement execution, whenever any data-modifying PSEA API
 methods are used (for example, handler::write_row() or
 handler::update_row()), the read-write flag is raised in the
 statement transaction for the relevant engine. Currently All PSEA
 calls are "traced", and the only way to change data is to issue a
 PSEA call. Important: Unless this invariant is preserved, the
 server will not know that a transaction in a given engine is
 read-write and will not involve the two-phase commit protocol!

 The end of a statement causes invocation of the
 ha_autocommit_or_rollback() server call, which in turn invokes
 handlerton::prepare() for every involved engine. After
 handlerton::prepare(), there's a call to
 handlerton::commit_one_phase(). If a one-phase commit will
 suffice, handlerton::prepare() is not invoked and the server only
 calls handlerton::commit_one_phase(). At statement commit, the
 statement-related read-write engine flag is propagated to the
 corresponding flag in the normal transaction. When the commit is
 complete, the list of registered engines is cleared.

 Rollback is handled in a similar way.

6.6 Additional Notes on DDL and the Normal Transaction

 DDL statements and operations with nontransactional engines do not
 "register" in thd->transaction lists, and thus do not modify
 the transaction state. Besides, each DDL statement in MySQL begins
 with an implicit normal transaction commit (a call to
 end_active_trans()), and thus leaves nothing to modify. However,
 as noted above for CREATE TABLE .. SELECT, some DDL statements can
 start a *new* transaction.

 Behavior of the server in this case is currently badly defined.
 DDL statements use a form of "semantic" logging to maintain
 atomicity: If CREATE TABLE t .. SELECT fails, table t is deleted.
 In addition, some DDL statements issue interim transaction
 commits: for example, ALTER TABLE issues a commit after data is
 copied from the original table to the internal temporary table.
 Other statements, for example, CREATE TABLE ... SELECT, do not
 always commit after themselves. And finally there is a group of
 DDL statements such as RENAME/DROP TABLE, which don't start new
 transactions and don't commit.

 This diversity makes it hard to say what will happen if by chance
 a stored function is invoked during a DDL statement -- it's not
 clear whether any modifications it makes will be committed or not.
 Fortunately, SQL grammar allows only a few DDL statements to
 invoke stored functions. Perhaps, for consistency, MySQL should
 always commit a normal transaction after a DDL statement, just as
 it commits a statement transaction at the end of a statement.

Chapter 7 The Optimizer

Table of Contents
	7.1 Code and Concepts
		7.1.1 Definitions
	7.1.2 The Optimizer Code

	7.2 Primary Optimizations
		7.2.1 Optimizing Constant Relations
	7.2.2 Optimizing Joins
	7.2.3 Transpositions
	7.2.4 ORDER BY Clauses
	7.2.5 GROUP BY and Related Conditions
	7.2.6 Other Optimizations

 This chapter describes the operation of the MySQL Query optimizer,
 which is used to determine the most efficient means for executing
 queries.

7.1 Code and Concepts

 This section discusses key optimizer concepts, terminology, and
 how these are reflected in the MySQL server source code.

7.1.1 Definitions

 This description uses a narrow definition: The
 optimizer is the set of routines which
 decide what execution path the DBMS should take for queries.

 MySQL changes these routines frequently, so you should compare
 what is said here with what's in the current source code. To
 make that easy, this description includes notes referring to the
 relevant file and routine, such as
 “See:
 /sql/select_cc,
 optimize_cond()”.

 A transformation occurs when one query is
 changed into another query which delivers the same result. For
 example, a query could be changed from

SELECT ... WHERE 5 = a

 to

SELECT ...WHERE a = 5

 Most transformations are less obvious. Some transformations
 result in faster execution.

7.1.2 The Optimizer Code

 This diagram shows the structure of the function
 handle_select() in
 /sql/sql_select.cc (the server code that
 handles a query):

handle_select()
 mysql_select()
 JOIN::prepare()
 setup_fields()
 JOIN::optimize() /* optimizer is from here ... */
 optimize_cond()
 opt_sum_query()
 make_join_statistics()
 get_quick_record_count()
 choose_plan()
 /* Find the best way to access tables */
 /* as specified by the user. */
 optimize_straight_join()
 best_access_path()
 /* Find a (sub-)optimal plan among all or subset */
 /* of all possible query plans where the user */
 /* controls the exhaustiveness of the search. */
 greedy_search()
 best_extension_by_limited_search()
 best_access_path()
 /* Perform an exhaustive search for an optimal plan */
 find_best()
 make_join_select() /* ... to here */
 JOIN::exec()

 The indentation in the diagram shows what calls what. Thus you
 can see that handle_select() calls
 mysql_select() which calls
 JOIN::prepare() which calls
 setup_fields(), and so on. The first part of
 mysql_select() is
 JOIN::prepare() which is for context
 analysis, metadata setup, and some subquery transformations. The
 optimizer is JOIN::optimize() and all its
 subordinate routines. When the optimizer finishes,
 JOIN::exec() takes over and does the job that
 JOIN::optimize() decides upon.

 Although the word “JOIN” appears, these optimizer
 routines are applicable to all query types.

 The optimize_cond() and
 opt_sum_query() routines perform
 transformations. The make_join_statistics()
 routine puts together all the information it can find about
 indexes that might be useful for accessing the query's tables.

7.2 Primary Optimizations

 This section discusses the most important optimizations performed
 by the server.

7.2.1 Optimizing Constant Relations

7.2.1.1 Constant Propagation

 A transformation takes place for expressions like this:

WHERE column1 = column2 AND column2 = 'x'

 For such expressions, since it is known that, if A=B
 and B=C then A=C (the Transitivity Law), the
 transformed condition becomes:

WHERE column1='x' AND column2='x'

 This transformation occurs for column1
 <operator> column2 conditions if and only if
 <operator> is one of these operators:

=, <, >, <=, >=, <>, <=>, LIKE

 That is, transitive transformations don't apply for
 BETWEEN. Probably they should not apply for
 LIKE either, but that's a story for another
 day.

 Constant propagation happens in a loop, so the output from one
 propagation step can be input for the
 next step.

 See:
 /sql/sql_select.cc,
 change_cond_ref_to_const(). Or
 See:
 /sql/sql_select.cc,
 propagate_cond_constants().

7.2.1.2 Eliminating Dead Code

 A transformation takes place for conditions that are always
 true, for example:

WHERE 0=0 AND column1='y'

 In this case, the first condition is removed, leaving

WHERE column1='y'

 See:
 /sql/sql_select.cc,
 remove_eq_conds().

 A transformation also takes place for conditions that are
 always false. For example, consider this
 WHERE clause:

WHERE (0 = 1 AND s1 = 5) OR s1 = 7

 Since the parenthesized part is always false, it is removed,
 reducing this expression to

WHERE s1 = 7

 In some cases, where the WHERE clause
 represents an impossible condition, the optimizer might
 eliminate it completely. Consider the following:

WHERE (0 = 1 AND s1 = 5)

 Because it is never possible for this condition to be true,
 the EXPLAIN statement will show the words
 Impossible WHERE. Informally, we at MySQL
 say that the WHERE has been optimized away.

 If a column cannot be NULL, the optimizer
 removes any non-relevant IS NULL
 conditions. Thus,

WHERE not_null_column IS NULL

 is an always-false situation, and

WHERE not_null_column IS NOT NULL

 is an always-true situation so such columns are also
 eliminated from the conditional expression. This can be
 tricky. For example, in an OUTER JOIN, a
 column which is defined as NOT NULL might
 still contain a NULL. The optimizer leaves
 IS NULL conditions alone in such
 exceptional situations.

 The optimizer will not detect all Impossible
 WHERE situations — there are too many
 possibilities in this regard. For example:

CREATE TABLE Table1 (column1 CHAR(1));
...
SELECT * FROM Table1 WHERE column1 = 'Canada';

 The optimizer will not eliminate the condition in the query,
 even though the CREATE TABLE definition
 makes it an impossible condition.

7.2.1.3 Folding of Constants

 A transformation takes place for this expression:

WHERE column1 = 1 + 2

 which becomes:

WHERE column1 = 3

 Before you say, “but I never would write 1 + 2 in the
 first place”, remember what was said earlier about
 constant propagation. It is quite easy for the optimizer to
 put such expressions together. This process simplifies the
 result.

7.2.1.4 Constants and Constant Tables

 A MySQL constant is something more than
 a mere literal in the query. It can also be the contents of a
 constant table, which is defined as
 follows:

	
 A table with zero rows, or with only one row

	
 A table expression that is restricted with a
 WHERE condition, containing expressions
 of the form column =
 constant, for all the
 columns of the table's primary key, or for all the columns
 of any of the table's unique keys (provided that the
 unique columns are also defined as NOT
 NULL).

 For example, if the table definition for
 Table0 contains

... PRIMARY KEY (column1,column2)

 then this expression

FROM Table0 ... WHERE column1=5 AND column2=7 ...

 returns a constant table. More simply, if the table definition
 for Table1 contains

... unique_not_null_column INT NOT NULL UNIQUE

 then this expression

FROM Table1 ... WHERE unique_not_null_column=5

 returns a constant table.

 These rules mean that a constant table has at most one row
 value. MySQL will evaluate a constant table in advance, to
 find out what that value is. Then MySQL will plug that value
 into the query. Here's an example:

SELECT Table1.unique_not_null_column, Table2.any_column
 FROM Table1, Table2
 WHERE Table1.unique_not_null_column = Table2.any_column
 AND Table1.unique_not_null_column = 5;

 When evaluating this query, MySQL first finds that table
 Table1 after restriction with
 Table1.unique_not_null_column is a constant
 table according to the second definition above. So it
 retrieves that value.

 If the retrieval fails (there is no row in the table with
 unique_not_null_column =
 EXPLAIN for the statement:

Impossible WHERE noticed after reading const tables

 Alternatively, if the retrieval succeeds (there is exactly one
 row in the table with
 unique_not_null_column = MySQL transforms
 the query to this:

SELECT 5, Table2.any_column
 FROM Table1, Table2
 WHERE 5 = Table2.any_column
 AND 5 = 5;

 Actually this is a grand-combination example. The optimizer
 does some of the transformation because of constant
 propagation, which we described earlier. By the way, we
 described constant propagation first because it happens
 happens before MySQL figures out what the
 constant tables are. The sequence of optimizer steps sometimes
 makes a difference.

 Although many queries have no constant-table references, it
 should be kept in mind that whenever the word
 constant is mentioned hereafter, it
 refers either to a literal or to the contents of a constant
 table.

 See:
 /sql/sql_select.cc,
 make_join_statistics().

7.2.2 Optimizing Joins

 This section discusses the various methods used to optimize
 joins.

7.2.2.1 Determining the Join Type

 When evaluating a conditional expression, MySQL decides what
 join type the expression has. (Again:
 despite the word join, this applies for all conditional
 expressions, not just join expressions. A term like access
 type would be clearer.) These are the documented join types,
 in order from best to worst:

	
 system : a system table which is a
 constant table

	
 const : a constant table

	
 eq_ref : a unique or primary index with
 an equality relation

	
 ref : an index with an equality
 relation, where the index value cannot be
 NULL

	
 ref_or_null : an index with an equality
 relation, where it is possible for the index value to be
 NULL

	
 range : an index with a relation such
 as BETWEEN, IN,
 >=, LIKE, and so
 on.

	
 index : a sequential scan on an index

	
 ALL : a sequential scan of the entire
 table

 See:
 /sql/sql_select.h, enum
 join_type{}. Notice that there are a few other
 (undocumented) join types too, for subqueries.

 The optimizer can use the join type to pick a driver
 expression. For example, consider this query:

SELECT *
FROM Table1
WHERE indexed_column = 5 AND unindexed_column = 6

 Since indexed_column has a better join
 type, it is more likely to be the driver. You'll see various
 exceptions as this description proceeds, but this is a simple
 first rule.

 What is significant about a driver? Consider that there are
 two execution paths for the query:

 The Bad Execution Plan: Read every row in
 the table. (This is called a sequential
 scan of Table1 or simply
 table scan.) For each row, examine the
 values in indexed_column and in
 unindexed_column, to see if they meet the
 conditions.

 The Good Execution Plan: Via the index,
 look up the rows which have indexed_column
 = This is called an indexed search.) For
 each row, examine the value in unindexed_column to see if it
 meets the condition.

 An indexed search generally involves fewer accesses than a
 sequential scan, and far fewer accesses if the table is large
 but the index is unique. That is why it is better to access
 with the good execution plan, and why it is often good to
 choose indexed_column as the driver.

7.2.2.2 Joins and Access Methods

 Bad join choices can cause more damage than bad choices in
 single-table searches, so MySQL developers have spent
 proportionally more time making sure that the tables in a
 query are joined in an optimal order and that optimal access
 methods (often called access paths) are
 chosen to retrieve table data. A combination of a fixed order
 in which tables are joined and the corresponding table access
 methods for each table is called query execution
 plan (QEP). The goal of the query optimizer is to
 find an optimal QEP among all such possible plans. There are
 several general ideas behind join optimization.

 Each plan (or part of plan) is assigned a
 cost. The cost of a plan reflects roughly
 the resources needed to compute a query according to the plan,
 where the main factor is the number of rows that will be
 accessed while computing a query. Once we have a way to assign
 costs to different QEPs we have a way to compare them. Thus,
 the goal of the optimizer is to find a QEP with minimal cost
 among all possible plans.

 In MySQL, the search for an optimal QEP is performed in a
 bottom-up manner. The optimizer first considers all plans for
 one table, then all plans for two tables, and so on, until it
 builds a complete optimal QEP. Query plans that consist of
 only some of the tables (and predicates) in a query are called
 partial plans. The optimizer relies on
 the fact that the more tables that are added to a partial
 plan, the greater its cost. This allows the optimizer to
 expand with more tables only the partial plans with lower cost
 than the current best complete plan.

 The key routine that performs the search for an optimal QEP is
 sql/sql_select.cc,
 find_best(). It performs an exhaustive
 search of all possible plans and thus guarantees it will find
 an optimal one.

 Below we represent find_best() in an
 extremely free translation to pseudocode. It is recursive, so
 some input variables are labeled so far to indicate that they
 come from a previous iteration.

remaining_tables = {t1, ..., tn}; /* all tables referenced in a query */

procedure find_best(
 partial_plan in, /* in, partial plan of tables-joined-so-far */
 partial_plan_cost, /* in, cost of partial_plan */
 remaining_tables, /* in, set of tables not referenced in partial_plan */
 best_plan_so_far, /* in/out, best plan found so far */
 best_plan_so_far_cost)/* in/out, cost of best_plan_so_far */
{
 for each table T from remaining_tables
 {
 /* Calculate the cost of using table T. Factors that the
 optimizer takes into account may include:
 Many rows in table (bad)
 Many key parts in common with tables so far (very good)
 Restriction mentioned in the WHERE clause (good)
 Long key (good)
 Unique or primary key (good)
 Full-text key (bad)
 Other factors that may at some time be worth considering:
 Many columns in key
 Short average/maximum key length
 Small table file
 Few levels in index
 All ORDER BY / GROUP columns come from this table */
 cost = complex-series-of-calculations;
 /* Add the cost to the cost so far. */
 partial_plan_cost+= cost;

 if (partial_plan_cost >= best_plan_so_far_cost)
 /* partial_plan_cost already too great, stop search */
 continue;

 partial_plan= expand partial_plan by best_access_method;
 remaining_tables= remaining_tables - table T;
 if (remaining_tables is not an empty set)
 {
 find_best(partial_plan, partial_plan_cost,
 remaining_tables,
 best_plan_so_far, best_plan_so_far_cost);
 }
 else
 {
 best_plan_so_far_cost= partial_plan_cost;
 best_plan_so_far= partial_plan;
 }
 }
}

 Here the optimizer applies a depth-first search
 algorithm. It performs estimates for every table
 in the FROM clause. It will stop a search
 early if the estimate becomes worse than the best estimate so
 far. The order of scanning will depend on the order that the
 tables appear in the FROM clause.

 See: /sql/table.h,
 struct st_table.

 ANALYZE TABLE may affect some of the
 factors that the optimizer considers.

 See also: /sql/sql_sqlect.cc,
 make_join_statistics().

 The straightforward use of find_best() and
 greedy_search() will not apply for
 LEFT JOIN or RIGHT JOIN.
 For example, starting with MySQL 4.0.14, the optimizer may
 change a left join to a straight join and swap the table order
 in some cases. See also
 LEFT JOIN and RIGHT JOIN Optimization.

7.2.2.3 The range Join Type

 Some conditions can work with indexes, but over a (possibly
 wide) range of keys. These are known as
 range conditions, and are most often
 encountered with expressions involving these operators:
 >, >=, <, <=, IN, LIKE, BETWEEN

 To the optimizer, this expression:

column1 IN (1,2,3)

 is the same as this one:

column1 = 1 OR column1 = 2 OR column1 = 3

 and MySQL treats them the same — there is no need to
 change IN to OR for a query, or vice versa.

 The optimizer will use an index (range search) for

column1 LIKE 'x%'

 but not for

column1 LIKE '%x'

 That is, there is no range search if the first character in
 the pattern is a wildcard.

 To the optimizer,

column1 BETWEEN 5 AND 7

 is the same as this expression

column1 >= 5 AND column1 <= 7

 and again, MySQL treats both expressions the same.

 The optimizer may change a Range to an
 ALL join type if a condition would examine
 too many index keys. Such a change is particularly likely for
 < and > conditions
 and multiple-level secondary indexes.
 See: (for MyISAM
 indexes) /myisam/mi_range.c,
 mi_records_in_range().

7.2.2.4 The index Join Type

 Consider this query:

SELECT column1 FROM Table1;

 If column1 is indexed, then the optimizer
 may choose to retrieve the values from the index rather than
 from the table. An index which is used this way is called a
 covering index in most texts. MySQL
 simply uses the word “index” in
 EXPLAIN descriptions.

 For this query:

SELECT column1, column2 FROM Table1;

 the optimizer will use join type = index
 only if the index has this definition:

CREATE INDEX ... ON Table1 (column1, column2);

 In other words, all columns in the select list must be in the
 index. (The order of the columns in the index does not
 matter.) Thus it might make sense to define a multiple-column
 index strictly for use as a covering index, regardless of
 search considerations.

7.2.2.5 The Index Merge Join Type

7.2.2.5.1 Overview

 Index Merge is used when table condition
 can be converted to form:

cond_1 OR cond_2 ... OR cond_N

 The conditions for conversion are that each
 cond_i can be used for a range scan, and
 no pair (cond_i,
 cond_j) uses the same index. (If
 cond_i and cond_j use
 the same index, then cond_i OR cond_j can
 be combined into a single range scan and no merging is
 necessary.)

 For example, Index Merge can be used for
 the following queries:

SELECT * FROM t WHERE key1=c1 OR key2<c2 OR key3 IN (c3,c4);

SELECT * FROM t WHERE (key1=c1 OR key2<c2) AND nonkey=c3;

 Index Merge is implemented as a
 “container” for range key scans constructed
 from cond_i conditions. When doing
 Index Merge, MySQL retrieves rows for
 each of the keyscans and then runs them through a duplicate
 elimination procedure. Currently the
 Unique class is used for duplicate
 elimination.

7.2.2.5.2 Index Merge Optimizer

 A single SEL_TREE object cannot be
 constructed for conditions that have different members of
 keys in the OR clause, like in condition:

key1 < c1 OR key2 < c2

 Beginning with MySQL 5.0, these conditions are handled with
 the Index Merge method, and its range
 optimizer structure, class SEL_IMERGE.
 SEL_IMERGE represents a disjunction of
 several SEL_TREE objects, which can be
 expressed as:

sel_imerge_cond = (t_1 OR t_1 OR ... OR t_n)

 where each of t_i stands for a
 SEL_TREE object, and no pair
 (t_i, t_j) of distinct
 SEL_TREE objects can be combined into
 single SEL_TREE object.

 The current implementation builds
 SEL_IMERGE only if no single
 SEL_TREE object can be built for the part
 of the query condition it has analyzed, and discards
 SEL_TREE immediately if it discovers that
 a single SEL_TREE object can be
 constructed. This is actually a limitation, and can cause
 worse row retrieval strategy to be used. E.g. for query:

SELECT * FROM t WHERE (goodkey1=c1 OR goodkey1=c2) AND badkey=c3

 scan on badkey will be chosen even if
 Index Merge on
 (goodkey1, goodkey)
 would be faster.

 The Index Merge optimizer collects a list
 of possible ways to access rows with Index
 Merge. This list of SEL_IMERGE
 structures represents the following condition:

 (t_11 OR t_12 OR ... OR t_1k) AND
 (t_21 OR t_22 OR ... OR t_2l) AND
 ... AND
 (t_M1 OR t_M2 OR ... OR t_mp)

 where t_ij is one
 SEL_TREE and one line is for one
 SEL_IMERGE object.

 The SEL_IMERGE object with
 minimal cost is used for row retrieval.

 In sql/opt_range.cc, see
 imerge_list_and_list(),
 imerge_list_or_list(), and
 SEL_IMERGE class member functions for
 more details of Index Merge construction.

 See the get_index_merge_params function
 in the same file for Index Merge cost
 calculation algorithm.

7.2.2.5.3 The range Optimizer

 For range queries, the MySQL optimizer
 builds a SEL_TREE object which represents
 a condition in this form:

range_cond = (cond_key_1 AND cond_key_2 AND ... AND cond_key_N)

 Each of cond_key_i is a condition that
 refers to components of one key. MySQL creates a
 cond_key_i condition for each of the
 usable keys. Then the cheapest condition
 cond_key_i is used for doing range scan.

 A single cond_key_i condition is
 represented by a pointer-linked network of
 SEL_ARG objects. Each
 SEL_ARG object refers to particular part
 of the key and represents the following condition:

 sel_arg_cond= (inf_val < key_part_n AND key_part_n < sup_val) (1)
 AND next_key_part_sel_arg_cond (2)
 OR left_sel_arg_cond (3)
 OR right_sel_arg_cond (4)

	
 is for an interval, possibly without upper or lower
 bound, either including or not including boundary
 values.

	
 is for a SEL_ARG object with
 condition on next key component.

	
 is for a SEL_ARG object with an
 interval on the same field as this
 SEL_ARG object. Intervals between the
 current and left objects are disjoint and
 left_sel_arg_cond.sup_val <=
 inf_val.

	
 is for a SEL_ARG object with an
 interval on the same field as this
 SEL_ARG object. Intervals between the
 current and right objects are disjoint and
 left_sel_arg_cond.min_val >=
 max_val.

 MySQL is able to convert arbitrary-depth nested AND-OR
 conditions to the above conjunctive form.

7.2.2.5.4 Row Retrieval Algorithm

 Index Merge works in two steps:

 Preparation step:

activate 'index only';
foreach key_i in (key_scans \ clustered_pk_scan)
{
 while (retrieve next (key, rowid) pair from key_i)
 {
 if (no clustered PK scan ||
 row doesn't match clustered PK scan condition)
 put rowid into Unique;
 }
}
deactivate 'index only';

 Row retrieval step:

for each rowid in Unique
{
 retrieve row and pass it to output;
}
if (clustered_pk_scan)
{
 while (retrieve next row for clustered_pk_scan)
 pass row to output;
}

 See:
 sql/opt_range.cc,
 QUICK_INDEX_MERGE_SELECT class members
 for Index Merge row retrieval code.

7.2.3 Transpositions

 MySQL supports transpositions (reversing
 the order of operands around a relational operator) for simple
 expressions only. In other words:

WHERE - 5 = column1

 becomes:

WHERE column1 = -5

 However, MySQL does not support transpositions where arithmetic
 exists. Thus:

WHERE 5 = -column1

 is not treated the same as:

WHERE column1 = -5

 Transpositions to expressions of the form column =
 constant are ideal for index lookups. If an expression
 of this form refers to an indexed column, then MySQL always uses
 the index, regardless of the table size.
 (Exception: If the table has
 only zero rows or only one row, it is a constant table and
 receives special treatment. See
 Section 7.2.1.4, “Constants and Constant Tables”.)

7.2.3.1 AND Relations

 An ANDed search has the form
 condition1 AND
 condition2, as in this example:

WHERE column1 = 'x' AND column2 = 'y'

 Here, the optimizer's decision process can be described as
 follows:

	
 If (neither condition is indexed) use sequential scan.

	
 Otherwise, if (one condition has better join type) then
 pick a driver based on join type (see
 Section 7.2.2.1, “Determining the Join Type”).

	
 Otherwise, since (both conditions are indexed and have
 equal join type) pick a driver based on the first index
 that was created.

 The optimizer can also choose to perform an
 index_merge index intersection, as
 described in
 Section 7.2.2.5.2, “Index Merge Optimizer”.

 Here's an example:

CREATE TABLE Table1 (s1 INT, s2 INT);
CREATE INDEX Index1 ON Table1 (s2);
CREATE INDEX Index2 ON Table1 (s1);
...
SELECT * FROM Table1 WHERE s1 = 5 AND s2 = 5;

 When choosing a strategy to solve this query, the optimizer
 picks s2 = 5 as the driver because the index for s2 was
 created first. Regard this as an accidental effect rather than
 a rule, it could change at any moment.

7.2.3.2 OR Relations

 An ORed search has the form "condition1" OR "condition2", as
 in this example:

WHERE column1 = 'x' OR column2 = 'y'

 Here the optimizer's decision is to use a sequential scan.

 There is also an option to use index merge under such
 circumstances. For more information, see
 Section 7.2.2.5.1, “Overview” and
 Index Merge Optimization.

 The above warning does not apply if the same column is used in
 both conditions. For example:

WHERE column1 = 'x' OR column1 = 'y'

 In such a case, the search is indexed because the expression
 is a range search. This subject will be revisited during the
 discussion of the IN predicate.

7.2.3.3 UNION Queries

 All SELECT statements within a
 UNION are optimized separately. Therefore,
 for this query:

SELECT * FROM Table1 WHERE column1 = 'x'
UNION ALL
SELECT * FROM TABLE1 WHERE column2 = 'y'

 if both column1 and
 column2 are indexed, then each
 SELECT is done using an indexed search, and
 the result sets are merged. Notice that this query might
 produce the same results as the query used in the
 OR example, which uses a sequential scan.

7.2.3.4 NOT (<>) Relations

 It is a logical rule that

column1 <> 5

 is the same as

column1 < 5 OR column1 > 5

 However, MySQL does not transform in this circumstance. If you
 think that a range search would be better, then you should do
 your own transforming in such cases.

 It is also a logical rule that

WHERE NOT (column1 != 5)

 is the same as

WHERE column1 = 5

 However, MySQL does not transform in this circumstance either.

 We expect to add optimizations for both the previous cases.

7.2.4 ORDER BY Clauses

 In general, the optimizer will skip the sort procedure for the
 ORDER BY clause if it sees that the rows will
 be in order anyway. But let's examine some exceptional
 situations.

 For the query:

SELECT column1 FROM Table1 ORDER BY 'x';

 the optimizer will throw out the ORDER BY
 clause. This is another example of dead code elimination.

 For the query:

SELECT column1 FROM Table1 ORDER BY column1;

 the optimizer will use an index on column1,
 if it exists.

 For the query:

SELECT column1 FROM Table1 ORDER BY column1+1;

 the optimizer will use an index on column1,
 if it exists. But don't let that fool you! The index is only for
 finding the values. (It's cheaper to do a sequential scan of the
 index than a sequential scan of the table, that's why
 index is a better join type than
 ALL see
 [optimizer.html#optimizer-index-join-type Section??3.2.2.4, The
 index Join Type].) There will still be a full
 sort of the results.

 For the query:

SELECT * FROM Table1 WHERE column1 > 'x' AND column2 > 'x' ORDER BY column2;

 if both column1 and
 column2 are indexed, the optimizer will
 choose an index on ... column1. The fact that
 ordering takes place by column2 values does
 not affect the choice of driver in this case.

 See:
 /sql/sql_select.cc,
 test_if_order_by_key(), and
 /sql/sql_select.cc,
 test_if_skip_sort_order().

 ORDER BY Optimization, provides a description
 of the internal sort procedure which we will not repeat here,
 but urge you to read, because it describes how the buffering and
 the quicksort mechanisms operate.

 See:
 /sql/sql_select.cc,
 create_sort_index().

7.2.5 GROUP BY and Related Conditions

 These are the main optimizations that take place for
 GROUP BY and related items
 (HAVING, COUNT(),
 MAX(), MIN(),
 SUM(), AVG(),
 DISTINCT()).

	
 GROUP BY will use an index, if one
 exists.

	
 GROUP BY will use sorting, if there is no
 index. The optimizer may choose to use a hash table.

	
 For the case GROUP BY x ORDER BY x, the
 optimizer will realize that the ORDER BY
 is unnecessary, because the GROUP BY
 comes out in order by x.

	
 The optimizer contains code for shifting certain
 HAVING conditions to the
 WHERE clause; however, this code is not
 operative at time of writing. See:
 /sql/sql_select.cc,
 JOIN::optimize(), after #ifdef
 HAVE_REF_TO_FIELDS.

	
 If the table handler has a quick row-count available, then
 the query

SELECT COUNT(*) FROM Table1;

 gets the count without going through all the rows. This is
 true for MyISAM tables, but not for
 InnoDB tables. Note that the query

SELECT COUNT(column1) FROM Table1;

 is not subject to the same optimization, unless
 column1 is defined as NOT
 NULL.

	
 New optimizations exist for MAX() and
 MIN(). For example, consider the query

SELECT MAX(column1)
 FROM Table1
 WHERE column1 < 'a';

 If column1 is indexed, then it's easy to
 find the highest value by looking for 'a' in the index and
 going back to the key before that.

	
 The optimizer transforms queries of the form

SELECT DISTINCT column1 FROM Table1;

 to

SELECT column1 FROM Table1 GROUP BY column1;

 if and only if both of these conditions are true:

	
 The GROUP BY can be done with an
 index. (This implies that there is only one table in
 the FROM clause, and no
 WHERE clause.)

	
 There is no LIMIT clause.

 Because DISTINCT is not always transformed to
 GROUP BY, do not expect that queries with
 DISTINCT will always cause ordered result
 sets. (You can, however, rely on that rule with GROUP
 BY, unless the query includes ORDER BY
 NULL.)

 See: /sql/sql_select.cc,
 opt_sum_query(), and
 /sql/sql_select.cc,
 remove_duplicates().

7.2.6 Other Optimizations

 In this section, we discuss other, more specialized
 optimizations performed in the MySQL server.

7.2.6.1 NULLs Filtering for ref and eq_ref Access

 This section discusses the NULLs filtering
 optimization used for ref and
 eq_ref joins.

7.2.6.1.1 Early NULLs Filtering

 Suppose we have a join order such as this one:

..., tblX, ..., tblY, ...

 Suppose further that table tblY is
 accessed via ref or
 eq_ref access on

tblY.key_column = tblX.column

 or, in the case of ref access using
 multiple key parts, via

... AND tblY.key_partN = tblX.column AND ...

 where tblX.column can be
 NULL. Here the early
 NULLs filtering for
 ref (or eq_ref) access
 is applied. We make the following inference:

(tblY.key_partN = tblX.column) => (tblX.column IS NOT NULL)

 The original equality can be checked only after we've read
 the current rows of both tables tblX and
 tblY. The IS NOT NULL
 predicate can be checked after we've read the current row of
 table tblX. If there are any tables in
 the join order between tblX and
 tblY, the added IS NOT
 NULL check will allow us to skip accessing those
 tables.

 This feature is implemented in these places in the server
 code:

	
 The ref analyzer (contained in such
 functions as update_ref_and_keys())
 detects and marks equalities like that shown above by
 setting
 KEY_FIELD::null_rejecting=TRUE.

	
 After the join order has been chosen,
 add_not_null_conds() adds appropriate
 IS NOT NULL predicates to the
 conditions of the appropriate tables.

 It is possible to add IS NOT NULL
 predicates for all equalities that could be used for
 ref access (and not for those that are
 actually used). However, this is currently not done.

7.2.6.1.2 Late NULLs Filtering

 Suppose we have a query plan with table
 tblX being accessed via the
 ref access method:

tblX.key_part1 = expr1 AND tblX.key_part2 = expr2 AND ...

 Before performing an index lookup, we determine whether any
 of the expri values is
 NULL. If it is, we don't perform the
 lookup, but rather immediately return that the matching
 tuple is not found.

 This optimization reuses the
 null_rejecting attribute produced by the
 early NULLs filtering code (see
 Section 7.2.6.1.1, “Early NULLs Filtering”). The
 check itself is located in the function
 join_read_always_key().

7.2.6.2 Partitioning-Related Optimizations

 This section discussions optimizations relating to MySQL
 Partitioning. See Partitioning, for general
 information about the partitioning implementation in MySQL 5.1
 and later.

7.2.6.2.1 Partition Pruning

 The operation of partition pruning is
 defined as follows:

 Given a query over partitioned table, match the table DDL
 against any WHERE or
 ON clauses, and find the minimal set of
 partitions that must be accessed to resolve the query.

 The set of partitions thus obtained (hereafter referred to
 as used) can be smaller then the set of all table
 partitions. Partitions that did not get into this set (that
 is, those that were pruned away) will not be accessed at
 all: this is how query execution is made faster.

Non-Transactional Table Engines.
 With nontransactional tables such as
 MyISAM, locks are placed on entire
 partitioned table. It is theoretically possible to use
 partition pruning to improve concurrency by placing locks
 only on partitions that are actually used, but this is
 currently not implemented.

 Partition pruning doesn't depend on what table engine is
 used. Therefore its implementation is a part of the MySQL
 Query Optimizer. The next few sections provide a detailed
 description of partition pruning.

7.2.6.2.1.1 Partition Pruning Overview

 Partition pruning is performed using the following steps:

	
 Analyze the WHERE clause and
 construct an interval graph
 describing the results of this analysis.

	
 Walk the graph, and find sets of partitions (or
 subpartitions, if necessary) to be used for each
 interval in the graph.

	
 Construct a set of partitions used for the entire
 query.

 The description represented by the interval graph is
 structured in a bottom-up fashion. In the discussion that
 follows, we first define the term partitioning
 interval, then describe how partitioning
 interval are combined to make an interval graph, and then
 describe the graph walking process.

7.2.6.2.1.2 Partitioning Intervals

7.2.6.2.1.2.1 Single-Point Intervals

 Let's start from simplest cases. Suppose that we have a
 partitioned table with N columns, using partitioning
 type p_type and the partitioning function p_func,
 represented like this:

CREATE TABLE t (columns)
PARTITION BY p_type(p_func(col1, col2,... colN)...);

 Suppose also that we have a WHERE
 clause of the form

WHERE t.col1=const1 AND t.col2=const2 AND ... t.colN=constN

 We can calculate p_func(const1, const2 ...
 constN) and discover which partition can
 contain records matching the WHERE
 clause. Note that this process works for all
 partitioning types and all partitioning functions.

 Note: This process
 works only if the WHERE clause is
 of the exact form given above — that is, each
 column in the table must be tested for equality with
 some arbitrary constant (not necessarily the same
 constant for each column). For example, if
 col1=const1 were missing from the
 example WHERE clause, then we would
 not be able to calculate the partitioning function
 value and so would be unable to restrict the set of
 partitions to those actually used.

7.2.6.2.1.2.2 Interval Walking

 Let a partitioned table t be defined
 with a set of column definitions columns, a partitioning
 type p_type using a partitioning function p_func taking
 an integer column int_col, as shown here:

CREATE TABLE t (columns)
PARTITION BY
p_type(p_func(int_col))
...

 Now suppose that we have a query whose
 WHERE clause is of the form

WHERE const1 <= int_col <= const2

 We can reduce this case to a number of cases of
 single-point intervals by converting the
 WHERE clause into the following
 relation:

int_field=const1 OR int_field=const1 + 1 OR int_field=const1 + 2 OR ... OR int_field=const2

 In the source code this conversion is referred to as
 interval walking. Walking over
 short intervals is not very expensive, since we can
 reduce the number of partitions to scan to a small
 number. However, walking over long intervals may not be
 very efficient there will be lots of numbers to examine,
 and we are very likely to out that all partitions need
 to be scanned.

 The threshold for interval walking is determined by

 #define MAX_RANGE_TO_WALK=10
Note

 The logic of the previous example also applies for a
 relation such as this one:

const1 >= int_col >= const2

7.2.6.2.1.2.3 Interval Mapping

 Let a partitioned table t be defined
 as follows:

CREATE TABLE t (columns)
PARTITION BY RANGE|LIST(unary_ascending_function(column))

 Suppose we have a query on table t
 whose WHERE clause is of one of the
 forms shown here:

	
 const1 <= t.column <=
 const2

	
 t.column <= const2

	
 const1 <= t.column

 Since the partitioning function is ascending, the
 following relationship holds:

const1 <= t.col <= const2

 => p_func(const1) <=

p_func(t.column) <= p_func(const2)

 Using A and B to denote the leftmost and rightmost parts
 of this relation, we can rewrite it like this:

A <= p_func(t.column) <= B

 Note: In this
 instance, the interval is closed and has two bounds.
 However, similar inferences can be performed for other
 kinds of intervals.

 For RANGE partitioning, each
 partition occupies one interval on the partition
 function value axis, and the intervals are disjoint, as
 shown here:

 p0 p1 p2
 table partitions ------x------x--------x-------->

 search interval ----x==============x----------->
 A B

 A partition needs to be accessed if and only if its
 interval has a non-empty intersection with the search
 interval [A ,
 B].

 For LIST partitioning, each partition
 covers a set of points on the partition function value
 axis. Points produced by various partitions may be
 interleaved, as shown here:

 p0 p1 p2 p1 p1 p0
table partitions --+---+----+----+----+----+---->

search interval ----x===================x------> A B

 A partition needs to be accessed if it has at least one
 point in the interval [A, B]. The set
 of partitions used can be determined by running from A
 to B and collecting partitions that have their points
 within this range.

7.2.6.2.1.3 Subpartitioning Intervals

 In the previous sections we've described ways to infer the
 set of used partitions from "elementary" WHERE clauses.
 Everything said there about partitions also applies to
 subpartitions (with exception that subpartitioning by
 RANGE or LIST is currently not possible).

 Since each partition is subpartitioned in the same way,
 we'll find which subpartitions should be accessed within
 each partition.

7.2.6.2.1.4 From WHERE Clauses to Intervals

 Previous sections deal with inferring the set of
 partitions used from WHERE clauses that
 represent partitioning or subpartitioning intervals. Now
 we look at how MySQL extracts intervals from arbitrary
 WHERE clauses.

 The extraction process uses the Range
 Analyzer a part of the MySQL optimizer that
 produces plans for the range access method. This is
 because the tasks are similar. In both cases we have a
 WHERE clause as input: the range access
 method needs index ranges (that is, intervals) to scan;
 partition pruning module needs partitioning intervals so
 that it can determine which partitions should be used.

 For range access, the Range Analyzer is invoked with the
 WHERE clause and descriptions of table
 indexes. Each index is described by an ordered list of the
 columns which it covers:

(keypart1, keypart2, ..., keypartN)

 For partition pruning, Range Analyzer is invoked with the
 WHERE clause and a list of table
 columns used by the partitioning and subpartitioning
 functions:

(part_col1, part_col2, ... part_colN,
subpart_col1, subpart_col2, ... subpart_colM)

 The result of the Range Analyzer's work is known as a
 SEL_ARG</code> graph. This is a complex
 (and not yet fully documented) structure, which we will
 not attempt to describe here. What's important for the
 current discussion is that we can walk over it and collect
 partitioning and subpartitioning intervals.

 The following example illustrates the structure and the
 walking process. Suppose a table t is
 partitioned as follows:

CREATE TABLE t (..., pf INT, sp1 CHAR(5), sp2 INT, ...)
 PARTITION BY LIST (pf)
 SUBPARTITION BY HASH(sp1, sp2) (
 PARTITION p0 VALUES IN (1),
 PARTITION p1 VALUES IN (2),
 PARTITION p2 VALUES IN (3),
 PARTITION p3 VALUES IN (4),
 PARTITION p4 VALUES IN (5),
);

 Now suppose that a query on table t has
 a highly complex WHERE clause, such as
 this one:

pf=1 AND (sp1='foo' AND sp2 IN (40,50))

OR

(pf1=3 OR pf1=4) AND sp1='bar' AND sp2=33

OR

((pf=3 OR pf=4) AND sp1=5)

OR

p=8

 The SEL_ARG graph for this is shown
 here:

(root)
 | :
 | Partitioning : Sub-partitioning
 | :
 | :
 | :
 | +------+ : +-----------+ +--------+
 \---| pf=1 |----:-----| sp1='foo' |---| sp2=40 |
 +------+ : +-----------+ +--------+
 | : |
 | : +--------+
 | : | sp2=50 |
 | : +--------+
 | :
 | :
 +------+ : +-----------+ +--------+
 | pf=3 |----:--+--| sp1='bar' |---| sp2=33 |
 +------+ : | +-----------+ +--------+
 | : |
 +------+ : |
 | pf=4 |----:--+
 +------+ :
 | :
 | :
 +------+ : +-----------+
 | pf=8 |----:-----| sp1='baz' |
 +------+ : +-----------+

 In the previous diagram, vertical edges
 (|) represent OR and
 the horizontal ones (-) represent
 AND (the line with both horizontal and
 vertical segments also represents AND).

 The partition-pruning code walks the graph top to bottom
 and from left to right, making these inferences:

	
 Start with an empty set of used partitions at the
 topmost and leftmost interval.

	
 Perform interval analysis for
 pf=1; find a corresponding set
 of partitions P0; move right.

	
 Move right again, to sp2=40.

	
 Analyze the interval sp1='foo' AND
 sp2=40 interval; find that it covers
 rows in some subpartition SP1. Make first
 inference: within each partition making up set P0,
 mark subpartition SP1 as used.

	
 Move down to sp2=50.

	
 Analyze the interval sp1='foo' AND
 sp2=50, finding that it covers rows in
 some subpartition SP2. Make another inference:
 within each partition of set P0, mark subpartition
 SP2 as used.

	
 Move back to pf=1, and then
 down to pf=3.

	
 Perform interval analysis for
 pf=3; find a corresponding set
 of partitions P1; move right.

	
 Move right again, to sp2=33.

	
 Analyze the interval sp1='foo' AND
 sp2=33, find that it covers rows in a
 subpartition SP3. Make another inference: within
 each partition from set P1, mark subpartition SP3
 as used.

	
 Move back to pf=3, then down to
 pf=4.

	
 Perform interval analysis for
 pf=4; find a corresponding set
 of partitions P2; move right.

	
 Perform moves and inferences analogous to what we
 did to the right of pf=3. There
 is some potential inefficiency due to the fact
 that that we will analyze the interval for
 sp1='foo' AND sp2=33 again, but
 this should not have much impact on overall
 performance.

	
 Move back to pf=3, then down to
 pf=8.

	
 Perform interval analysis for
 pf=8; find a corresponding set
 of partitions P3, move right.

	
 Now we've arrived at sp1='baz',
 and find that we can't move any further to the
 right and can't construct a subpartitioning
 interval. We remember this, and move back to
 pf=8.

	
 In the previous step we could not limit the set of
 subpartitions, so we make this inference: for
 every partition in set P3, assume that all
 subpartitions are active, and mark them as such.

	
 Try to move down from pf=8; find
 that there is nothing there; this completes the graph
 analysis.

 Note: In certain cases
 the result of the RANGE optimizer will
 be several SEL_ARG graphs that are to
 be combined using OR or
 AND operators. This happens for
 WHERE clauses which either are very
 complicated or do not allow for the construction of a
 single list of intervals. In such cases, the partition
 pruning code takes apprpriate action, an example being
 this query:

SELECT * FROM t1 WHERE partition_id=10 OR subpartition_id=20

 No single list of intervals can be constructed in this
 instance, but the partition pruning code correctly infers
 that the set of partitions used is a union of:

	
 All subpartitions within the partition containing rows
 with partition_id=10; and

 subpartition_id=20 within each
 partition.

7.2.6.2.1.5 Partition Pruning in the Source Code

 Here is a short walkthrough of what is where in the code:

	
 sql/opt_range.cc :

 This file contains the implementation of what is
 described in
 Section 7.2.6.2.1.4, “From WHERE Clauses to Intervals”.
 The entry point is the function
 prune_partitions(). There are also
 detailed code-level comments about partition pruning;
 search for PartitionPruningModule
 to find the starting point.

	
 sql/partition_info.h :

class partition_info {
 ...
 /*
 Bitmap of used (i.e. not pruned away) partitions. This is where result
 of partition pruning is stored.
 */
 MY_BITMAP used_partitions;

 /*
 "virtual function" pointers to functions that perform interval analysis
 on this partitioned table (used by the code in opt_range.cc)
 */
 get_partitions_in_range_iter get_part_iter_for_interval;
 get_partitions_in_range_iter get_subpart_iter_for_interval;
 };

	
 sql/sql_partition.cc :

 This file contains the functions implementing all types of
 partitioning interval analysis.

7.2.6.2.2 Partition Selection

 If a partitioned table is accessed in a series of index
 lookups (that is, using the ref,
 eq_ref, or ref_or_null
 access methods), MySQL checks to see whether it needs to
 make index lookups in all partitions or that it can limit
 access to a particular partition. This is performed for each
 index lookup.

 Consider this example:

CREATE TABLE t1 (a INT, b INT);

INSERT INTO t1 VALUES (1,1),(2,2),(3,3);

CREATE TABLE t2 (
 keypart1 INT,
 keypart2 INT,
 KEY(keypart1, keypart2)
)
PARTITION BY HASH(keypart2);

INSERT INTO t2 VALUES (1,1),(2,2),(3,3);

 The query

SELECT * FROM t1, t2
 WHERE t2.keypart1=t1.a
 AND t2.keypart2=t1.b;

 is executed using this algorithm:

(for each record in t1:)
{
 t2->index_read({current-value-of(t1.a), current-value-of(t1.b)});
 while(t2->index_next_same())
 pass row combination to query output;
 }

 In the index_read() call, the partitioned
 table handler will discover that the value of all
 partitioning columns (in this case, the single column
 b) is fixed, and find a single partition
 to access. If this partition was pruned away, then no
 partitions will be accessed at all.

Chapter 8 Tracing the Optimizer

Table of Contents
	8.1 Typical Usage
	8.2 System Variables Controlling the Trace
	8.3 The INFORMATION_SCHEMA.OPTIMIZER_TRACE Table
	8.4 Traceable Queries
	8.5 Automatic Trace Purging
	8.6 Tuning Trace Purging
	8.7 Tracing Memory Usage
	8.8 Privilege Checking
	8.9 Interaction with the --debug Option
	8.10 The optimizer_trace System Variable
	8.11 The end_markers_in_json System Variable
	8.12 Selecting Optimizer Features to Trace
	8.13 General Trace Structure
	8.14 Example
	8.15 Nicely Displaying a Trace
	8.16 Preventing Use of Optimizer Trace
	8.17 Testing
	8.18 Implementation

 Since milestone version 5.6.3, a new tracing capability has been
 added to the MySQL optimizer. The interface is provided by a set of
 optimizer_trace_xxx system variables and the
 INFORMATION_SCHEMA.OPTIMIZER_TRACE table, but is subject to change.

8.1 Typical Usage

Turn tracing on (it's off by default):
SET optimizer_trace="enabled=on";
SELECT ...; # your query here
SELECT * FROM INFORMATION_SCHEMA.OPTIMIZER_TRACE;
possibly more queries...
When done with tracing, disable it:
SET optimizer_trace="enabled=off";

 A session can trace only statements which it executes; it cannot
 see a trace of another session.

8.2 System Variables Controlling the Trace

 A brief overview from "mysqld --verbose --help":

--optimizer-trace=name
 Controls tracing of the Optimizer:
 --optimizer-trace-features=name
 Enables/disables tracing of selected features of the
 Optimizer:
 optimizer_trace_features=option=val[,option=val...],
 where option is one of {greedy_search, range_optimizer,
 dynamic_range, repeated_subselect} and val is one of {on,
 off, default}
 --optimizer-trace-limit=#
 Maximum number of shown optimizer traces
 --optimizer-trace-max-mem-size=#
 Maximum allowed cumulated size of stored optimizer traces
 --optimizer-trace-offset=#
 Offset of first optimizer trace to show; see manual
 --end-markers-in-json=#
 In JSON output ("EXPLAIN FORMAT=JSON" and optimizer
 trace), if set to 1, repeats the structure's key (if it
 has one) near the closing bracket

 Those options are described in more detail later in this section.

8.3 The INFORMATION_SCHEMA.OPTIMIZER_TRACE Table

 The OPTIMIZER_TRACE table contains information about traced
 statements. The table has these columns:

	
 QUERY: The statement text.

	
 TRACE: The trace, in JSON format (see
 json.org: basically it has scalars (number, string, bool) and
 structures (either arrays or associative arrays)).

	
 MISSING_BYTES_BEYOND_MAX_MEM_SIZE:
 Explained further below.

	
 INSUFFICIENT_PRIVILEGES: Explained further
 below.

8.4 Traceable Queries

 They are: SELECT; INSERT or REPLACE (with VALUES or SELECT);
 UPDATE/DELETE and their multi-table variants; all the previous
 ones prefixed by EXPLAIN; SET (unless it manipulates the
 optimizer_trace system variable); DO; DECLARE/CASE/IF/RETURN
 (stored routines language elements); CALL. If one of those
 statements is prepared and executed in separate steps, preparation
 and execution are separately traced.

8.5 Automatic Trace Purging

 By default, each new trace overwrites the previous trace. Thus, if
 a statement contains substatements (example: invokes stored
 procedures, stored functions, triggers), the top statement and
 substatements each generate one trace, but at the execution's end
 only the last substatement's trace is visible. A user who wants to
 see the trace of another substatement, can enable/disable tracing
 around the desired substatement, but this requires editing the
 routine's code, which may not be possible. Another solution is to
 tune trace purging.

8.6 Tuning Trace Purging

 This is done with

 SET optimizer_trace_offset=<OFFSET>, optimizer_trace_limit=<LIMIT>

 where OFFSET is a signed integer, and LIMIT is a positive integer.
 The default for optimizer_trace_offset is -1; the default for
 optimizer_trace_limit is 1. The SET statement has the following
 effects:

	
 All remembered traces are cleared

	
 A later SELECT on the OPTIMIZER_TRACE table returns the first
 LIMIT traces of the OFFSET oldest remembered traces (if OFFSET
 ≥ 0), or the first LIMIT

 traces of the (-OFFSET) newest remembered traces (if OFFSET <
 0).

 For example, a combination of OFFSET=-1 and LIMIT=1 will make the
 last trace be shown (as is default), OFFSET=-2 and LIMIT=1 will
 make the next-to-last be shown, OFFSET=-5 and LIMIT=5 will make
 the last five traces be shown. Such negative OFFSET can be useful
 when one knows that the interesting substatements are the few last
 ones of a stored routine, like this:

SET optimizer_trace_offset=-5, optimizer_trace_limit=5;
CALL stored_routine(); # more than 5 substatements in this routine
SELECT * FROM information_schema.OPTIMIZER_TRACE; # see only last 5 traces

 On the opposite, a positive OFFSET can be useful when one knows
 that the interesting substatements are the few first ones of a
 stored routine.

 The more accurately those two variables are adjusted, the less
 memory is used. For example, OFFSET=0 and LIMIT=5 will use memory
 to remember 5 traces, so if only the three first are needed,
 OFFSET=0 and LIMIT=3 is better (tracing stops after LIMIT traces,
 so the 4th and 5th trace are not created and take up no memory). A
 stored routine may have a loop which executes many substatements
 and thus generates many traces, which would use a lot of memory;
 proper OFFSET and LIMIT can restrict tracing to one iteration of
 the loop for example. This also gains speed, as tracing a
 substatement impacts performance.

 If OFFSET≥0, only LIMIT traces are kept in memory. If
 OFFSET<0, that is not true: instead, (-OFFSET) traces are kept
 in memory; indeed even if LIMIT is smaller than (-OFFSET), so
 excludes the last statement, the last statement must still be
 traced because it will be inside LIMIT after executing one more
 statement (remember than OFFSET<0 is counted from the end: the
 "window" slides as more statements execute).

 Such memory and speed gains are the reason why
 optimizer_trace_offset and optimizer_trace_limit, which are
 restrictions at the trace producer level, are offered. They are
 better than using

 SELECT * FROM OPTIMIZER_TRACE LIMIT <LIMIT> OFFSET <OFFSET>;

 which is a restriction on the trace consumer level and saves
 almost nothing.

8.7 Tracing Memory Usage

 Each remembered trace is a String. It is extended (with realloc())
 as optimization progresses and appends data to it. The
 optimizer_trace_max_mem_size variable sets a limit on the total
 amount of memory used by all currently remembered traces: If this
 limit is reached, the current trace isn't extended (so it will be
 incomplete), and the MISSING_BYTES_BEYOND_MAX_MEM_SIZE column will
 show the number of bytes missing from this trace. The
 optimizer_trace_max_mem_size variable has a small default (16kB)
 to protect the innocent, it's often necessary to grow it for
 real-life traces.

8.8 Privilege Checking

 In complex scenarios where the query uses SQL SECURITY DEFINER
 views or stored routines, it may be that a user is denied from
 seeing the trace of its query because it lacks some extra
 privileges on those objects. In that case, the trace will be shown
 as empty and the INSUFFICIENT_PRIVILEGES column will show "1".

8.9 Interaction with the --debug Option

 Anything written to the trace is automatically writte to the
 --debug file.

8.10 The optimizer_trace System Variable

 The optimizer_trace system variable has these on/off switches:

	
 enabled: allows to enable/disable tracing

	
 one_line: if on, the trace will have no whitespace; it's
 unreadable for humans but readable for JSON parsers (they
 ignore whitespace); the only advantage is a saving on space.

8.11 The end_markers_in_json System Variable

 If a JSON structure is large, it's difficult to pair its closing
 bracket with its opening bracket; to help the reader (but this is
 not JSON-compliant), setting @@end_markers_in_json=on repeats the
 structure's key (if it has one) near the closing bracket. It also
 affects 'EXPLAIN FORMAT=JSON' in the same way. Note that before
 MySQL 5.6.6, this variable didn't exist and was rather a switch in
 the @@optimizer_trace variable (it was set with 'set
 optimizer_trace="end_marker=on";').

8.12 Selecting Optimizer Features to Trace

 Some features in the optimizer can be invoked many times during
 statement optimization and execution, and thus can make the trace
 grow beyond reason. They are:

	
 Greedy search: with a N-table join, this could explore
 factorial(N) plans

	
 Range optimizer

	
 Dynamic range optimization (known as "range checked for each
 record" in EXPLAIN output: each outer row causes a re-run of
 the range optimizer)

	
 Subqueries: a subquery in WHERE clause may be executed once
 per row.

 Those features can be excluded from tracing using the
 optimizer_trace_features system variable, which has these on/off
 switches:

	
 greedy_search: if off, greedy search is not traced

	
 range_optimizer: if off, range optimizer is not traced

	
 dynamic_range: if off, only the first call to the range
 optimizer on this JOIN_TAB::SQL_SELECT is traced

	
 repeated_subselect: if off, only the first execution of this
 Item_subselect is traced.

8.13 General Trace Structure

 A trace follows closely the actual execution path: there is a
 join-preparation object, a join-optimization object, a
 join-execution object, for each JOIN. Query transformations
 (IN->EXISTS, outer join to inner join...), simplifications
 (elimination of clauses), equality propagation are shown in
 subobjects. Calls to the range optimizer, cost evaluations,
 reasons why an access path is chosen over another one, or why a
 sorting method is chosen over another one, are shown too. It is
 far from showing everything happening in the optimizer, but we
 plan to show more information in the future.

8.14 Example

 Here we take an example from the test suite.

#
Tracing of ORDER BY & GROUP BY simplification.
#
SET OPTIMIZER_TRACE="enabled=on",END_MARKERS_IN_JSON=on; # be readable
SET OPTIMIZER_TRACE_MAX_MEM_SIZE=1000000; # avoid small default
CREATE TABLE t1 (
pk INT, col_int_key INT,
col_varchar_key VARCHAR(1), col_varchar_nokey VARCHAR(1)
);
INSERT INTO t1 VALUES
(10,7,'v','v'),(11,0,'s','s'),(12,9,'l','l'),(13,3,'y','y'),(14,4,'c','c'),
(15,2,'i','i'),(16,5,'h','h'),(17,3,'q','q'),(18,1,'a','a'),(19,3,'v','v'),
(20,6,'u','u'),(21,7,'s','s'),(22,5,'y','y'),(23,1,'z','z'),(24,204,'h','h'),
(25,224,'p','p'),(26,9,'e','e'),(27,5,'i','i'),(28,0,'y','y'),(29,3,'w','w');
CREATE TABLE t2 (
pk INT, col_int_key INT,
col_varchar_key VARCHAR(1), col_varchar_nokey VARCHAR(1),
PRIMARY KEY (pk)
);
INSERT INTO t2 VALUES
(1,4,'b','b'),(2,8,'y','y'),(3,0,'p','p'),(4,0,'f','f'),(5,0,'p','p'),
(6,7,'d','d'),(7,7,'f','f'),(8,5,'j','j'),(9,3,'e','e'),(10,188,'u','u'),
(11,4,'v','v'),(12,9,'u','u'),(13,6,'i','i'),(14,1,'x','x'),(15,5,'l','l'),
(16,6,'q','q'),(17,2,'n','n'),(18,4,'r','r'),(19,231,'c','c'),(20,4,'h','h'),
(21,3,'k','k'),(22,3,'t','t'),(23,7,'t','t'),(24,6,'k','k'),(25,7,'g','g'),
(26,9,'z','z'),(27,4,'n','n'),(28,4,'j','j'),(29,2,'l','l'),(30,1,'d','d'),
(31,2,'t','t'),(32,194,'y','y'),(33,2,'i','i'),(34,3,'j','j'),(35,8,'r','r'),
(36,4,'b','b'),(37,9,'o','o'),(38,4,'k','k'),(39,5,'a','a'),(40,5,'f','f'),
(41,9,'t','t'),(42,3,'c','c'),(43,8,'c','c'),(44,0,'r','r'),(45,98,'k','k'),
(46,3,'l','l'),(47,1,'o','o'),(48,0,'t','t'),(49,189,'v','v'),(50,8,'x','x'),
(51,3,'j','j'),(52,3,'x','x'),(53,9,'k','k'),(54,6,'o','o'),(55,8,'z','z'),
(56,3,'n','n'),(57,9,'c','c'),(58,5,'d','d'),(59,9,'s','s'),(60,2,'j','j'),
(61,2,'w','w'),(62,5,'f','f'),(63,8,'p','p'),(64,6,'o','o'),(65,9,'f','f'),
(66,0,'x','x'),(67,3,'q','q'),(68,6,'g','g'),(69,5,'x','x'),(70,8,'p','p'),
(71,2,'q','q'),(72,120,'q','q'),(73,25,'v','v'),(74,1,'g','g'),(75,3,'l','l'),
(76,1,'w','w'),(77,3,'h','h'),(78,153,'c','c'),(79,5,'o','o'),(80,9,'o','o'),
(81,1,'v','v'),(82,8,'y','y'),(83,7,'d','d'),(84,6,'p','p'),(85,2,'z','z'),
(86,4,'t','t'),(87,7,'b','b'),(88,3,'y','y'),(89,8,'k','k'),(90,4,'c','c'),
(91,6,'z','z'),(92,1,'t','t'),(93,7,'o','o'),(94,1,'u','u'),(95,0,'t','t'),
(96,2,'k','k'),(97,7,'u','u'),(98,2,'b','b'),(99,1,'m','m'),(100,5,'o','o');
SELECT SUM(alias2.col_varchar_nokey) , alias2.pk AS field2 FROM t1 AS alias1
STRAIGHT_JOIN t2 AS alias2 ON alias2.pk = alias1.col_int_key WHERE alias1.pk
GROUP BY field2 ORDER BY alias1.col_int_key,alias2.pk ;
SUM(alias2.col_varchar_nokey)	field2
0	1
0	2
0	3
0	4
0	5
0	6
0	7
0	9

 Now we look at the trace:

SELECT * FROM INFORMATION_SCHEMA.OPTIMIZER_TRACE;
QUERY	TRACE	MISSING_BYTES_BEYOND_MAX_MEM_SIZE	INSUFFICIENT_PRIVILEGES
SELECT SUM(alias2.col_varchar_nokey) , alias2.pk AS field2 FROM t1 AS alias1
STRAIGHT_JOIN t2 AS alias2 ON alias2.pk = alias1.col_int_key WHERE alias1.pk
GROUP BY field2 ORDER BY alias1.col_int_key,alias2.pk	{

 This was the first column: it repeats the query (this is a useful
 mark when several traces are remembered thanks to
 optimizer_trace_offset and optimizer_trace_limit). Now the trace.
 The statement's execution is naturally made of "steps":

"steps": [
 {
 "join_preparation": {

 This is a join's preparation

 "select#": 1,

 for the first SELECT of the statement (which has only one, here).
 Here are steps of the join's preparation:

"steps": [
 {
 "expanded_query": "/* select#1 */ select \
 sum(`test`.`alias2`.`col_varchar_nokey`) AS \
 `SUM(alias2.col_varchar_nokey)`,`test`.`alias2`.`pk` AS `field2` \
 from (`test`.`t1` `alias1` straight_join `test`.`t2` `alias2` \
 on((`test`.`alias2`.`pk` = `test`.`alias1`.`col_int_key`))) \
 where `test`.`alias1`.`pk` \
 group by `test`.`alias2`.`pk` \
 order by `test`.`alias1`.`col_int_key`,`test`.`alias2`.`pk`"
 }

 Above is the query as it is in the join's preparation: fields have
 been resolved to their database and table, and each SELECT is
 annotated with its number (useful with subqueries).

] /* steps */
 } /* join_preparation */
 },
 {

 Off to optimization:

"join_optimization": {
 "select#": 1,
 "steps": [
 {
 "condition_processing": {
 "condition": "WHERE",
 "original_condition": "(`test`.`alias1`.`pk` and \
 (`test`.`alias2`.`pk` = `test`.`alias1`.`col_int_key`))",
 "steps": [
 {
 "transformation": "equality_propagation",
 "resulting_condition": "(`test`.`alias1`.`pk` and \
 multiple equal(`test`.`alias2`.`pk`, \
 `test`.`alias1`.`col_int_key`))"
 },
 {
 "transformation": "constant_propagation",
 "resulting_condition": "(`test`.`alias1`.`pk` and \
 multiple equal(`test`.`alias2`.`pk`, \
 `test`.`alias1`.`col_int_key`))"
 },
 {
 "transformation": "trivial_condition_removal",
 "resulting_condition": "(`test`.`alias1`.`pk` and \
 multiple equal(`test`.`alias2`.`pk`, \
 `test`.`alias1`.`col_int_key`))"

 Not much happened in equality propagation above.

 }
] /* steps */
 } /* condition_processing */
 },
 {
 "ref_optimizer_key_uses": [
 {
 "database": "test",
 "table": "alias2",
 "field": "pk",
 "equals": "`test`.`alias1`.`col_int_key`",
 "null_rejecting": true

 A possible ref access has been identified, and it is
 NULL-rejecting: any NULL value in `test`.`alias1`.`col_int_key`
 cannot have a match (it could have a match if the operator were
 <=>).

 }
] /* ref_optimizer_key_uses */
 },
 {

 Now for every table in the query we estimate the cost of, and
 number of records returned by, a table scan, a range access,

"records_estimation": [
 {
 "database": "test",
 "table": "alias1",
 "const_keys_added": {
 "keys": [
] /* keys */,
 "cause": "group_by"
 } /* const_keys_added */,
 "range_analysis": {
 "table_scan": {
 "records": 20,
 "cost": 8.1977
 } /* table_scan */
 } /* range_analysis */
 },
 {
 "database": "test",
 "table": "alias2",
 "const_keys_added": {
 "keys": [
 "PRIMARY"
] /* keys */,
 "cause": "group_by"
 } /* const_keys_added */,
 "range_analysis": {
 "table_scan": {
 "records": 100,
 "cost": 24.588
 } /* table_scan */,
 "potential_range_indices": [
 {
 "index": "PRIMARY",
 "usable": true,
 "key_parts": [
 "pk"
] /* key_parts */
 }
] /* potential_range_indices */,
 "setup_range_conditions": [
] /* setup_range_conditions */,
 "group_index_range": {
 "chosen": false,

 Not possible to use GROUP_MIN_MAX because it can handle only one
 table, and we have two in the join:

 "cause": "not_single_table"
 } /* group_index_range */

 No range access is possible.

} /* range_analysis */
 }
] /* records_estimation */
 },
 {

 Finding an optimal order for tables (greedy search); actually as
 this is STRAIGHT_JOIN only the requested order is explored, and
 access methods are selected:

"considered_execution_plans": [
 {
 "database": "test",
 "table": "alias1",
 "best_access_path": {
 "considered_access_paths": [
 {
 "access_type": "scan",
 "records": 20,
 "cost": 2.0977,
 "chosen": true

 Table scan be chosen!

 }
] /* considered_access_paths */
 } /* best_access_path */,
 "cost_for_plan": 6.0977,
 "records_for_plan": 20,

 We estimate that reading the first table, and applying any
 conditions to it, will yield 20 rows.

 "rest_of_plan": [
 {
 "database": "test",
 "table": "alias2",
 "best_access_path": {
 "considered_access_paths": [
 {
 "access_type": "ref",
 "index": "PRIMARY",
 "records": 1,
 "cost": 20.2,
 "chosen": true

 We choose ref access on the primary key of alias2.

 },
 {
 "access_type": "scan",
 "using_join_cache": true,
 "records": 75,
 "cost": 7.4917,
 "chosen": false

 But not table scan, because its amount of records (75) is far
 greater than that of ref access (1).

 }
] /* considered_access_paths */
 } /* best_access_path */,
 "cost_for_plan": 30.098,
 "records_for_plan": 20,
 "chosen": true
 }
] /* rest_of_plan */
 }
] /* considered_execution_plans */
 },
 {

 Now that the order of tables is fixed, we can split the WHERE
 condition in chunks which can be tested early ("push down of
 conditions down the join tree"):

"attaching_conditions_to_tables": {
 "original_condition": "((`test`.`alias2`.`pk` = \
 `test`.`alias1`.`col_int_key`) and `test`.`alias1`.`pk`)",
 "attached_conditions_computation": [
] /* attached_conditions_computation */,
 "attached_conditions_summary": [
 {
 "database": "test",
 "table": "alias1",
 "attached": "(`test`.`alias1`.`pk` and \
 (`test`.`alias1`.`col_int_key` is not null))"

 This condition above can be tested on rows of alias1 without even
 reading rows of alias2.

 },
 {
 "database": "test",
 "table": "alias2",
 "attached": null
 }
] /* attached_conditions_summary */
 } /* attaching_conditions_to_tables */
 },
 {

 Now we try to simplify ORDER BY:

 "clause_processing": {
 "clause": "ORDER BY",
 "original_clause": "`test`.`alias1`.`col_int_key`,`test`.`alias2`.`pk`",
 "items": [
 {
 "item": "`test`.`alias1`.`col_int_key`"
 },
 {
 "item": "`test`.`alias2`.`pk`",
 "eq_ref_to_preceding_items": true

 Because the WHERE clause contains
 `alias2`.`pk`=`alias1`.`col_int_key`, ordering by both columns is
 a waste: can just order by the first column, the second will
 always be equal to it.

 }
] /* items */,
 "resulting_clause_is_simple": true,
 "resulting_clause": "`test`.`alias1`.`col_int_key`"

 So we get a shorter ORDER BY clause - and this is not visible in
 EXPLAIN or EXPLAIN EXTENDED!! This simplification can be worth it:
 this shorter clause, being single-column and single-table, could
 be implemented by an index scan...

 } /* clause_processing */
 },
 {
 "clause_processing": {
 "clause": "GROUP BY",
 "original_clause": "`test`.`alias2`.`pk`",
 "items": [
 {
 "item": "`test`.`alias2`.`pk`"
 }
] /* items */,
 "resulting_clause_is_simple": false,
 "resulting_clause": "`test`.`alias2`.`pk`"
 } /* clause_processing */
 },
 {
 "refine_plan": [
 {
 "database": "test",
 "table": "alias1",
 "scan_type": "table"
 },
 {
 "database": "test",
 "table": "alias2"
 }
] /* refine_plan */
 }
] /* steps */
 } /* join_optimization */
 },
 {

 Now we execute the join, and nothing interesting happens here:

 "join_execution": {
 "select#": 1,
 "steps": [
] /* steps */
 } /* join_execution */
 }
] /* steps */
 }	0	0

 This was just an example. All traces have the same basic
 structure, but if a statement uses subqueries, there are several
 join preparations/optimizations/executions, subquery-specific
 transformations not shown here...

8.15 Nicely Displaying a Trace

 Looking at a trace in the mysql command-line
 client can be cumbersome (though the pager less
 command makes it better). An alternative can be to send the trace
 to a file:

SELECT TRACE INTO DUMPFILE <filename>
FROM INFORMATION_SCHEMA.OPTIMIZER_TRACE;

 Then pass this file to some JSON viewer. For example, the JsonView
 Firefox add-on shows objects in colours and allows object
 collapsing/expanding. Use INTO DUMPFILE and not
 INTO OUTFILE because the latter escapes
 newlines. Also, have the @@end_markers_in_json
 variable off: when it's on, the trace is more human readable but
 not JSON compliant.

8.16 Preventing Use of Optimizer Trace

 If for some reason, as DBA of a MySQL Server, you wish to prevent
 all users from seeing traces of their queries, start the server
 with these options:

--maximum-optimizer-trace-max-mem-size=0 --optimizer-trace-max-mem-size=0

 This sets the maximum size to 0 and prevents users from changing
 this limit, thus truncating all traces to 0 bytes.

8.17 Testing

 This feature is tested in mysql-test/suite/opt_trace and
 unittest/gunit/opt_trace-t.

8.18 Implementation

 See files sql/opt_trace* , starting from sql/opt_trace.h. A trace
 is started by creating an instance of Opt_trace_start; information
 is added to this trace by creating instances of Opt_trace_object
 and Opt_trace_array, and by using the add() functions of those
 classes...

Chapter 9 Memory Allocation

Table of Contents
	9.1 Memory Allocation in the MySQL Server (sql Directory)
	9.2 Memory Allocation in a Library or Storage Engine

9.1 Memory Allocation in the MySQL Server (sql Directory)

 The basic logic to use:

 All things that are used only for the duration of a query are
 allocated in THD::mem_root through sql_alloc() or thd->alloc()
 except:

	
 Things that may grow, like string buffers of type String. See
 sql/sql_string.cc.

	
 Large blocks of memory used in one state of the query that can
 be released early. These are things like sort buffers, range
 trees, etc.

	
 Things in libraries that are outside of MySQL's control (like
 hash tables).

 Things that are needed a longer time should be alllocated with
 my_malloc() or through another MEMROOT.

 Some objects have their own MEMROOT:

	
 TABLE

	
 TABLE_SHARE

	
 Query_arena

	
 st_transactions

9.2 Memory Allocation in a Library or Storage Engine

 For the simple case, use the functions in mysys/my_malloc.c:

	
 void *my_malloc(size_t size, myf my_flags);

	
 void *my_memdup(const void *from, size_t length, myf
 my_flags);

	
 char *my_strdup(const char *from, myf my_flags);

	
 char *my_strndup(const char *from, size_t length, myf
 my_flags);

	
 void my_free(void *ptr, myf my_flags);

 Alternatively, if you want to allocate many pieces at once, use
 my_multi_malloc() from mysys/mulalloc.c

	
 void *my_multi_malloc(myf myFlags, ...)

 For the complex case where you want to allocate a lot and free
 things at once, use the MEM_ROOT object defined in
 mysys/my_alloc.c

 Functions to use:

	
 void init_alloc_root(MEM_ROOT *mem_root, size_t block_size,
 size_t pre_alloc_size);

	
 void *alloc_root(MEM_ROOT *mem_root, size_t length);

	
 void *multi_alloc_root(MEM_ROOT *root, ...);

	
 void free_root(MEM_ROOT *root, myf MyFlags);

Chapter 10 Important Algorithms and Structures

Table of Contents
	10.1 The Item Class
	10.2 How MySQL Does Sorting (filesort)
	10.3 Bulk Insert
	10.4 How MySQL Does Caching
	10.5 How MySQL Uses the Join Buffer Cache
	10.6 How MySQL Handles FLUSH TABLES
	10.7 Full-Text Search
	10.8 FLOAT and DOUBLE Data Type Representation
	10.9 Date and Time Data Type Representation
	10.10 Threads
	10.11 Character Sets and Collations
	10.12 Error Flags and Functions
	10.13 Functions in the mysys Library
	10.14 Bitmaps

 MySQL uses many different algorithms and structures. This chapter
 tries to describe some of them.

10.1 The Item Class

 To us, the word Item means more than just
 “thingamabob”; it is a technical term with a precise
 definition in the context of our source code.
 Item is a class. Each instance of the
 Item class has:

	
 an analogue in the SQL language

	
 a value

	
 a data type descriptor

 All of the following SQL “thingamabobs” are modeled
 in the Item class:

	
 literals

	
 column references

	
 session or global variables

	
 procedure variables

	
 parameters

	
 SQL functions (not a surprise since SQL functions have data
 types and return values).

 In the function category we include operators
 such as + and ||, because
 operators are merely functions that return values. We also include
 operators such as = and
 LIKE, which are operators that return boolean
 values. Consider the following statement:

SELECT UPPER(column1) FROM t WHERE column2 = @x;

 For this statement, MySQL will need to store a list of items for
 the select list ('column1' column reference and UPPER function),
 and a list of items for the WHERE clause ('column2' column
 reference and '@x' variable and '=' operator).

 Terminology: an Item instance in a MySQL program roughly
 corresponds to a "site", which according to the standard_SQL
 definition is "a place that holds an instance of a value of a
 specified data type", Another word that you'll see often in MySQL
 code is "field", which means column reference, and the Item_field
 subclass is generally for column values that occur for the
 intersection of a row and column in a table.

 MySQL's Item class is defined in .../sql/item.h, and its
 subclasses are defined in .../sql/item*.h (that is, in item.h,
 item_cmpfunc.h, item_func.h, item_geofunc.h, item_row.h,
 item_strfunc.h, item_subselect.h, item_sum.h, item_timefunc.h).
 Page-width limitations prevent us from displaying the whole tree,
 but these are the main Item subclasses, and the subclasses of the
 subclasses:

Item_ident (Item_field, Item_ref)
Item_null
Item_num (Item_int, Item_real)
Item_param
Item_string (Item_static_string_func, Item_datetime, Item_empty_string)
Item_hex_string (Item_bin_string)
Item_result_field (all "item_func.h" "item_subselect.h" "item_sub.h" classes)
Item_copy_string
Item_cache (Item_cache_int, Item_cache_real, Item_cache_str, Item_cache_row)
Item_type_holder
Item_row

 There's no formal classification of subclasses, but the main
 distinctions are by use (field, parameter, function) and by data
 type (num, string).

 So, how does MySQL use items? You'll find that nearly every .cc
 program in the /sql directory makes some use of the Item class and
 its subclasses, so this list of programs is only partial and very
 general:

sql_parse.cc: Makes new items in add_field_to_list()
item_sum.cc: Uses item_func subclasses for COUNT, AVG, SUM
item_buff.cc: Where buffers for item values can be stored
item_cmpfunc.cc: Comparison functions with item_func subclasses
item_create.cch: For creating items that the lex might use
item_subselect.cc: Subqueries are another type of function
mysqld.cc: When main() ends, it uses clean_up() for items
opt_range.cc: Uses field, compare-condition, and value subclasses
procedure.cc: Notice Procedure * has a pointer to an item list
protocol.cc: Uses send_fields() to pass item values back to users
sys_var.cc: System variables have Item associations too
sql_base.cc: Thread-specific Item searchers like find_field_in_table()
sql_class.cc: Look at cleanup_after_query()
sql_delete.cc: This (like sql_insert.cc etc.) has field references
sql_error.cc: Has one of many examples of SHOW's use of items
sql_lex.cc: Notice "add...to_list" functions
sql_select.cc: The largest program that uses items, apparently
udf_example.cc: The comments in this program are extensive

 Whenever there's a need for an SQL operation that assigns,
 compares, aggregates, accepts, sends, or validates a site, you'll
 find a MySQL use of Item and its subclasses.

10.2 How MySQL Does Sorting (filesort)

 This algorithm is described in the MySQL Reference manual; see
 ORDER BY Optimization.

10.3 Bulk Insert

 The logic behind bulk insert optimization is simple.

 Instead of writing each key value to B-tree (that is, to the key
 cache, although the bulk insert code doesn't know about the key
 cache), we store keys in a balanced binary (red-black) tree, in
 memory. When this tree reaches its memory limit, we write all keys
 to disk (to key cache, that is). But since the key stream coming
 from the binary tree is already sorted, inserting goes much
 faster, all the necessary pages are already in cache, disk access
 is minimized, and so forth.

10.4 How MySQL Does Caching

 MySQL has the following caches. (Note that the some of the
 filenames contain an incorrect spelling of the word
 “cache.”)

	
 Key Cache

 A shared cache for all B-tree index blocks in the different NISAM
 files. Uses hashing and reverse linked lists for quick caching of
 the most recently used blocks and quick flushing of changed
 entries for a specific table.
 (mysys/mf_keycash.c)

	
 Record Cache

 This is used for quick scanning of all records in a table.
 (mysys/mf_iocash.c and
 isam/_cash.c)

	
 Table Cache

 This holds the most recently used tables.
 (sql/sql_base.cc)

	
 Hostname Cache

 For quick lookup (with reverse name resolving). This is a must
 when you have a slow DNS. (sql/hostname.cc)

	
 Privilege Cache

 To allow quick change between databases, the last used privileges
 are cached for each user/database combination.
 (sql/sql_acl.cc)

	
 Heap Table Cache

 Many uses of GROUP BY or
 DISTINCT cache all found rows in a
 HEAP table. (This is a very quick in-memory
 table with hash index.)

	
 Join Buffer Cache

 For every “full join” in a
 SELECT statement the rows found are cached
 in a join cache. (A “full join” here means there
 were no keys that could be used to find rows for the next
 table in the list.) In the worst case, one
 SELECT query can use many join caches.

10.5 How MySQL Uses the Join Buffer Cache

 Basic information about the join buffer cache:

	
 The size of each join buffer is determined by the value of the
 join_buffer_size system variable.

	
 This buffer is used only when the join is of type
 ALL or index (in other
 words, when no possible keys can be used).

	
 A join buffer is never allocated for the first non-const
 table, even if it would be of type ALL or
 index.

	
 The buffer is allocated when we need to do a full join between
 two tables, and freed after the query is done.

	
 Accepted row combinations of tables before the
 ALL/index are stored in
 the cache and are used to compare against each read row in the
 ALL table.

	
 We only store the used columns in the join buffer, not the
 whole rows.

 Assume you have the following join:

Table name Type
t1 range
t2 ref
t3 ALL

 The join is then done as follows:

- While rows in t1 matching range
 - Read through all rows in t2 according to reference key
 - Store used fields from t1, t2 in cache
 - If cache is full
 - Read through all rows in t3
 - Compare t3 row against all t1, t2 combinations in cache
 - If row satisfies join condition, send it to client
 - Empty cache

- Read through all rows in t3
 - Compare t3 row against all stored t1, t2 combinations in cache
 - If row satisfies join condition, send it to client

 The preceding description means that the number of times table
 t3 is scanned is determined as follows:

S = size-of-stored-row(t1,t2)
C = accepted-row-combinations(t1,t2)
scans = (S * C)/join_buffer_size + 1

 Some conclusions:

	
 The larger the value of join_buffer_size,
 the fewer the scans of t3. If
 join_buffer_size is already large enough to
 hold all previous row combinations, there is no speed to be
 gained by making it larger.

	
 If there are several tables of join type
 ALL or index, then we
 allocate one buffer of size
 join_buffer_size for each of them and use
 the same algorithm described above to handle it. (In other
 words, we store the same row combination several times into
 different buffers.)

10.6 How MySQL Handles FLUSH TABLES

	
 FLUSH TABLES is handled in
 sql/sql_base.cc::close_cached_tables().

	
 The idea of FLUSH TABLES is to force all
 tables to be closed. This is mainly to ensure that if someone
 adds a new table outside of MySQL (for example, by copying
 files into a database directory with cp),
 all threads will start using the new table. This will also
 ensure that all table changes are flushed to disk (but of
 course not as optimally as simply calling a sync for all
 tables)!

	
 When you do a FLUSH TABLES, the variable
 refresh_version is incremented. Every time
 a thread releases a table, it checks if the refresh version of
 the table (updated at open) is the same as the current
 refresh_version. If not, it will close it
 and broadcast a signal on COND_refresh (to
 await any thread that is waiting for all instances of a table
 to be closed).

	
 The current refresh_version is also
 compared to the open refresh_version after
 a thread gets a lock on a table. If the refresh version is
 different, the thread will free all locks, reopen the table
 and try to get the locks again. This is just to quickly get
 all tables to use the newest version. This is handled by
 sql/lock.cc::mysql_lock_tables() and
 sql/sql_base.cc::wait_for_tables().

	
 When all tables have been closed, FLUSH
 TABLES returns an okay to the client.

	
 If the thread that is doing FLUSH TABLES
 has a lock on some tables, it will first close the locked
 tables, then wait until all other threads have also closed
 them, and then reopen them and get the locks. After this it
 will give other threads a chance to open the same tables.

10.7 Full-Text Search

 MySQL uses Ranking with Vector Spaces for ordinary full-text
 queries.

 Rank, also known as relevance rank, also known as relevance
 measure, is a number that tells us how good a match is.

 Vector Space, which MySQL sometimes calls "natural language", is a
 well-known system based on a metaphor of lines that stretch in
 different dimensions (one dimension per term) for varying
 distances (one distance unit per occurrence of term). The value of
 thinking of it this way is: once you realize that term occurrences
 are lines in a multi-dimensional space, you can apply basic
 trigonometry to calculate "distances", and those distances are
 equatable with similarity measurements. A comprehensible
 discussion of vector space technology is here:
 https://en.wikipedia.org/wiki/Vector_space_model.
 And a text which partly inspired our original developer is here:
 ftp://ftp.cs.cornell.edu/pub/smart/smart.11.0.tar.Z
 ("SMART").

 But let's try to describe the classic formula:

w = tf * idf

 This means "weight equals term frequency times inverse of document
 frequency", or "increase weight for number of times term appears
 in one document, decrease weight for number of documents the term
 appears in". (For historical reasons we're using the word "weight"
 instead of "distance", and we're using the information-retrieval
 word "document" throughout; when you see it, think of "the indexed
 part of the row".)

 For example: if "rain" appears three times in row #5, weight goes
 up; but if "rain" also appears in 1000 other documents, weight
 goes down.

 MySQL uses a variant of the classic formula, and adds on some
 calculations for "the normalization factor". In the end, MySQL's
 formula looks something like:

w = (log(dtf)+1)/sumdtf * U/(1+0.0115*U) * log((N-nf)/nf)

 Where:

dtf is the number of times the term appears in the document
sumdtf is the sum of (log(dtf)+1)'s for all terms in the same document
U is the number of Unique terms in the document
N is the total number of documents
nf is the number of documents that contain the term

 The formula has three parts: base part, normalization factor,
 global multiplier.

 The base part is the left of the formula, "(log(dtf)+1)/sumdtf".

 The normalization factor is the middle part of the formula. The
 idea of normalization is: if a document is shorter than average
 length then weight goes up, if it's average length then weight
 stays the same, if it's longer than average length then weight
 goes down. We're using a pivoted unique normalization factor. For
 the theory and justification, see the paper "Pivoted Document
 Length Normalization" by Amit Singhal and Chris Buckley and Mandar
 Mitra ACM SIGIR'96, 21-29, 1996:
 http://ir.iit.edu/~dagr/cs529/files/handouts/singhal96pivoted.pdf.
 The word "unique" here means that our measure of document length
 is based on the unique terms in the document. We chose 0.0115 as
 the pivot value, it's PIVOT_VAL in the MySQL source code header
 file myisam/ftdefs.h.

 If we multiply the base part times the normalization factor, we
 have the term weight. The term weight is what MySQL stores in the
 index.

 The global multiplier is the final part of the formula. In the
 classic Vector Space formula, the final part would be the inverse
 document frequency, or simply

log(N/nf)

 We have replaced it with

log((N-nf)/nf)

 This variant is more often used in "probabilistic" formulas. Such
 formulas try to make a better guess of the probability that a term
 will be relevant. To go back to the old system, look in
 myisam/ftdefs.h for "#define GWS_IN_USE GWS_PROB" (that is, global
 weights by probability) and change it to "#define GWS_IN_USE
 GWS_IDF" (that is, global weights by inverse document frequency).

 Then, when retrieving, the rank is the product of the weight and
 the frequency of the word in the query:

R = w * qf;

 Where:

w is the weight (as always)
qf is the number of times the term appears in the query

 In vector-space speak, the similarity is the product of the
 vectors.

 And R is the floating-point number that you see if you say: SELECT
 MATCH(...) AGAINST (...) FROM t.

 To sum it up, w, which stands for weight, goes up if the term
 occurs more often in a row, goes down if the term occurs in many
 rows, goes up / down depending whether the number of unique words
 in a row is fewer / more than average. Then R, which stands for
 either Rank or Relevance, is w times the frequency of the term in
 the AGAINST expression.

 The Simplest Possible Example

 First, make a fulltext index. Follow the instructions in the
 "MySQL Full-Text Functions" section of the MySQL Reference Manual.
 Succinctly, the statements are:

CREATE TABLE articles (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 title VARCHAR(200),
 body TEXT,
 FULLTEXT (title,body));
INSERT INTO articles (title,body) VALUES
 ('MySQL Tutorial','DBMS stands for DataBase ...'),
 ('How To Use MySQL Well','After you went through a ...'),
 ('Optimizing MySQL','In this tutorial we will show ...'),
 ('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),
 ('MySQL vs. YourSQL','In the following database comparison ...'),
 ('MySQL Security','When configured properly, MySQL ...');

 Now, let's look at the index.

 There's a utility for looking at the fulltext index keys and their
 weights. The source code is myisam/myisam_ftdump.c, and the
 executable comes with the binary distribution. So, if exedir is
 where the executable is, and datadir is the directory name that
 you get with "SHOW VARIABLES LIKE 'datadir%'", and dbname is the
 name of the database that contains the articles table, then this
 works:

>/exedir/myisam_ftdump /datadir/dbname/articles 1 -d
 b8 0.9456265 1001
 f8 0.9560229 comparison
 140 0.8148246 configured
 0 0.9456265 database
 f8 0.9560229 database
 0 0.9456265 dbms
 0 0.9456265 mysql
 38 0.9886308 mysql
 78 0.9560229 mysql
 b8 0.9456265 mysql
 f8 0.9560229 mysql
 140 1.3796179 mysql
 b8 0.9456265 mysqld
 78 0.9560229 optimizing
 140 0.8148246 properly
 b8 0.9456265 root
 140 0.8148246 security
 78 0.9560229 show
 0 0.9456265 stands
 b8 0.9456265 tricks
 0 0.9456265 tutorial
 78 0.9560229 tutorial
 f8 0.9560229 yoursql

 Let's see how one of these numbers relates to the formula.

 The term 'tutorial' appears in document 0. The full document is
 "MySQL Tutorial / DBMS stands for DataBase ...". The word
 "tutorial" appears once in the document, so dtf = The word "for"
 is a stopword, so there are only 5 unique terms in the document
 ("mysql", "tutorial", "dbms", "stands", "database"), so U = Each
 of these terms appears once in the document, so sumdtf is the sum
 of log(1)+1, five times. So, taking the first two parts of the
 formula (the term weight), we have:

(log(dtf)+1)/sumdtf * U/(1+0.0115*U)

 which is

(log(1)+1)/((log(1)+1)*5) * 5/(1+0.0115*5)

 which is

0.9456265

 which is what myisam_ftdump says. So the term weight looks good.

 Now, what about the global multiplier? Well, myisam_ftdump could
 calculate it, but you'll see it with the mysql client. The total
 number of rows in the articles table is 6, so N = And "tutorial"
 occurs in two rows, in row 0 and in row 78, so nf = So, taking the
 final (global multiplier) part of the formula, we have:

log((N-nf)/nf)

 which is

log((6-2)/2)

 which is

0.6931472

 So what would we get for row 0 with a search for 'tutorial'? Well,
 first we want w, so: Multiply the term weight of tutorial (which
 is 0.9456265) times the global multiplier (which is 0.6931472).
 Then we want R, so: Multiply w times the number of times that the
 word 'tutorial' appears in the search (which is 1). In other
 words, R = 0.9456265 * 0.6931472 * 1. Here's the proof:

mysql> select round(0.9456265 * 0.6931472 * 1, 7) as R;
+-----------+
| R |
+-----------+
| 0.6554583 |
+-----------+
1 row in set (0.00 sec)

mysql> select round(match(title,body) against ('tutorial'), 7) as R
 -> from articles limit 1;
+-----------+
| R |
+-----------+
| 0.6554583 |
+-----------+
1 row in set (0.00 sec)

 You'll need memory

 The MySQL experience is that many users appreciate the full-text
 precision or recall, that is, the rows that MySQL returns are
 relevant and the rows that MySQL misses are rare, in the judgment
 of some real people. That means that the weighting formula is
 probably justifiable for most occasions. Since it's the product of
 lengthy academic research, that's understandable.

 On the other hand, there are occasional complaints about speed.
 Here, the tricky part is that the formula depends on global
 factors -- specifically N (the number of documents) and nf (the
 number of documents that contain the term). Every time that
 insert/update/delete occurs for any row in the table, these global
 weight factors change for all rows in the table.

 If MySQL was a search engine and there was no need to update in
 real time, this tricky part wouldn't matter. With occasional batch
 runs that redo the whole index, the global factors can be stored
 in the index. Search speed declines as the number of rows
 increases, but search engines work.

 However, MySQL is a DBMS. So when updates happen, users expect the
 results to be visible immediately. It would take too long to
 replace the weights for all keys in the fulltext index, for every
 single update/insert/delete. So MySQL only stores the local
 factors in the index. The global factors are more dynamic. So
 MySQL stores an in-memory binary tree of the keys. Using this
 tree, MySQL can calculate the count of matching rows with
 reasonable speed. But speed declines logarithmically as the number
 of terms increases.

 Weighting in boolean mode

 The basic idea is as follows: In an expression of the form
 A or B or (C and D and E), either
 A or B alone is enough to
 match the whole expression, whereas C,
 D, and E should
 all match. So it's reasonable to
 assign weight 1 to each of A,
 B, and (C and D and E).
 Furthermore, C, D, and
 E each should get a weight of 1/3.

 Things become more complicated when considering boolean operators,
 as used in MySQL full-text boolean searching. Obviously,
 +A +B should be treated as A and
 B, and A B - as A or
 B. The problem is that +A B can
 not be rewritten in and/or terms
 (that's the reason why thisextendedset of operators was chosen).
 Still, approximations can be used. +A B C can
 be approximated as A or (A and (B or C)) or as
 A or (A and B) or (A and C) or (A and B and C).
 Applying the above logic (and omitting mathematical
 transformations and normalization) one gets that for +A_1
 +A_2 ... +A_N B_1 B_2 ... B_M the weights should be:
 A_i = N, B_j=1 if
 N==0, and, otherwise, in the first rewriting
 approach B_j = B_j =
 (1+(M-1)*2^M)/(M*(2^(M+1)-1)).

 The second expression gives a somewhat steeper increase in total
 weight as number of matched B_j values
 increases, because it assigns higher weights to individual
 B_j values. Also, the first expression is much
 simpler, so it is the first one that is implemented in MySQL.

10.8 FLOAT and DOUBLE Data Type Representation

 The MySQL Reference Manual has a discussion of floating-point
 numbers in Section 11.2 Numeric Types, including details about the
 storage. Let us now take up the story from where the MySQL
 Reference Manual leaves off.

 The following discussion concentrates on the case where no display
 width and decimals are given. This means that
 FLOAT is stored as whatever the C type
 float is and REAL or
 DOUBLE [PRECISION] is stored as whatever the C
 type double is. The field length is selected by
 the MySQL code.

 This document was created when
 http://bugs.mysql.com/4457 (Different results in
 SQL-Statements for the same record) was fixed at the end of August
 2004. Until then there was some confusion in the double-to-string
 conversion at different places in the code.

 The bugfix for http://bugs.mysql.com/4937
 (INSERT + SELECT + UNION ALL + DATE to
 VARCHAR(8) conversion problem) produced a conversion
 function which was a promising approach to the conversion
 problems. Unfortunately it was only used for direct field
 conversions and not for function results etc. It did not take
 small numbers (absolute value less than 1) and negative numbers
 into account. It did not take the limited precision of
 float and double data types
 into account. The bugfix was developed in two steps: The first
 attempt looked like this (in principle):

length= sprintf(buff, "%.*g", field_length, nr);
if (length > field_length)
 length= sprintf(buff, "%.*g", field_length-5, nr);

 If the libc conversion produces too many
 characters, the precision is reduced by the space required for the
 scientific notation (1.234e+05). Thus the
 printf() conversion is forced to switch to the
 scientific notation, since the value would not fit otherwise. Or,
 if it was scientific already, the precision is reduced and also
 uses less space. I left out some important stuff around limit
 checking just to show the idea. This simple algorithm should work
 quite well in most cases, but has been discarded for the sake of
 performance. The double call to the slow
 printf() conversion %g
 didn't seem reasonable, though it would only be used for extreme
 values and small fields. During my explorations of the code I
 didn't find places where float or
 double were to be converted into small fields.
 Remember that I talk only of conversions where field length and
 precision are not given. In this case a sufficient field length is
 selected at several places, except for a bug where it was selected
 wrongly. If a field length is given, a different conversion is
 used anyway. But since the code is quite complex, I don't claim to
 grasp it in full, and therefore may be in error. So let us look
 further:

 The second attempt to fix the bug looked like this:

bool use_scientific_notation=TRUE;
if (field_length < 32 && nr > 1)
{
 double e[]={1, 1e1, 1e2, 1e4, 1e8, 1e16 }, p=1;
 for (int i=sizeof(e), j=1<<i-- ; j; i--, j>>=1)
 {
 if (field_length & j)
 p*=e[i];
 }
 use_scientific_notation=(p < nr);
}
length= sprintf(buff, "%.*g", use_scientific_notation ?
 field_length-5 : field_length, nr);

 Here we evaluate if the string representation of a given number
 fits into field_length characters. If not, we reduce the precision
 to make it fit. Again, I left out important details. For example,
 the evaluation is done only once per field for the sake of
 performance. The downside here is the unconditional reduction of
 precision for field length > 31 (which doesn't really matter),
 for negative numbers and for small numbers (absolute value less
 than 1).

 Both algorithms do not take the limited precision of
 float and double values into
 account. This could lead to conversions with ridiculous bogus
 precision output. For example a value of 0.7 converted with
 %.30g will give a lot of digits, which pretend
 to tell about deviations from the value 0.7 and are completely
 absurd: 0.699999988079071044921875. To understand more about the
 %g conversion, I quote from a comment
 introduced in the source at the beginning of bugfixing #4937 (this
 comment was removed because it mainly describes, how the
 printf() conversion works, but I think it's
 valuable enough to include it here):

/*
 Let's try to pretty print a floating point number. Here we use
 '%-*.*g' conversion string:
 '-' stands for right-padding with spaces, if such padding will take
 place
 '*' is a placeholder for the first argument, field_length, and
 signifies minimal width of result string. If result is less than
 field length it will be space-padded. Note, however, that we'll not
 pass spaces to Field_string::store(const char *, ...), due to
 strcend in the next line.
 '.*' is a placeholder for DBL_DIG and defines maximum number of
 significant digits in the result string. DBL_DIG is a hardware
 specific C define for maximum number of decimal digits of a floating
 point number, such that rounding to hardware floating point
 representation and back to decimal will not lead to loss of
 precision. That is: if DBL_DIG is 15, number 123456789111315 can be
 represented as double without precision loss. As one can judge from
 this description, choosing DBL_DIG here is questionable, especially
 because it introduces a system dependency.
 'g' means that conversion will use [-]ddd.ddd (conventional) style,
 and fall back to [-]d.ddde[+|i]ddd (scientific) style if there is not
 enough space for all digits.
 Maximum length of result string (not counting spaces) is (I guess)
 DBL_DIG + 8, where 8 is 1 for sign, 1 for decimal point, 1 for
 exponent sign, 1 for exponent, and 4 for exponent value.
 XXX: why do we use space-padding and trim spaces in the next line?
*/
sprintf(to,"%-*.*g",(int) field_length,DBL_DIG,nr);
to=strcend(to,' ');

 There is one small misapprehension in the comment.
 %g does not switch to scientific notation when
 there is 'not enough space for all digits'. As the commentator
 says, the field length gives the minimal output length.
 printf() happily outputs more characters if
 required to produce a result with 'precision' digits. In fact it
 switches to scientific when the value can no longer be represented
 by 'precision' digits in conventional notation. The man page says
 "Style e is used if the exponent from its conversion is less than
 -4 or greater than or equal to the precision." In explanation, a
 precision of 3 digits can print a value of 345 in conventional
 notation, but 3456 needs scientific notation, as it would require
 4 digits (a precision of 4) in conventional notation. Thus, it is
 printed as 3.46e+03 (rounded).

 Since we don't want spaces in the output, we should not give a
 field length, but always use "%.*g". However,
 the precision matters, as seen above. It is worth its own
 paragraph.

 Since MySQL uses the machine-dependent binary representation of
 float and double to store
 values in the database, we have to care about these. Today, most
 systems use the IEEE standard 754 for binary floating-point
 arithmetic. It describes a representation for single precision
 numbers as 1 bit for sign, 8 bits for biased exponent and 23 bits
 for fraction and for double precision numbers as 1-bit sign,
 11-bit biased exponent and 52-bit fraction. However, we can not
 rely on the fact that every system uses this representation.
 Luckily, the ISO C standard requires the standard C library to
 have a header float.h that describes some
 details of the floating point representation on a machine. The
 comment above describes the value DBL_DIG.
 There is an equivalent value FLT_DIG for the C
 data type float.

 So, whenever we print a floating-point value, we must not specify
 a precision above DBL_DIG or
 FLT_DIG respectively. Otherwise we produce a
 bogus precision, which is wrong. For the honor of the writer of
 the first attempt above, I must say that his complete algorithm
 took DBL_DIG into account, if however only for
 the second call to sprintf(). But
 FLT_DIG has never been accounted for. At the
 conversion section of the code, it was not even known whether the
 value came from a float or
 double field.

 My attempt to solve the problems tries to take all this into
 account. I tried to concentrate all
 float/double-to-string
 conversions in one function, and to bring the knowledge about
 float versus double to this
 function wherever it is called. This solution managed to keep the
 test suite happy while solving the new problem of
 [http://bugs.mysql.com/4457
 Bug#4457]. Luckily the first problem was not big, as the
 test cases have been very carefully selected, so that they succeed
 as long as the machine uses IEEE 754.

 Nevertheless, the function is still not perfect. It is not
 possible to guess how many significant digits a number has. Given
 that, it is not simple to tell how long the resulting string would
 be. This applies to numbers with an absolute value smaller then 1.
 There are probably ways to figure this out, but I doubt that we
 would win in terms of performance over the simple solution of the
 first attempt, and besides we might cause new bugs. The compromise
 taken here is to accept that the resulting string may exceed the
 destination field length by five characters in the worst case.

if (nr < 0.0)
{
 abs_nr= -nr;
 extra_space= 1;
}
else
{
 abs_nr= nr;
 extra_space= 0;
}
precision= is_float ? FLT_DIG : DBL_DIG;
if (precision > field_length)
 precision= field_length;

if (! initialized)
{
 /* Better switch to scientific too early than too late. */
 double mult;
 mult= 1e0;
 for (length= 0; length < DBL_DIG; length++)
 mult/= 1e1;
 mult= 1e1 - mult;

 double val;
 val= 1.0;
 for (int idx= 0; idx < DBL_DIG+1; idx++)
 {
 DBUG_PRINT("info",("double_to_string_conv: big[%d] %.*g",
 idx, DBL_DIG+3, val));
 big_number[idx]= val;
 val*= mult;
 }
 small_number[0]= 1e0;
 small_number[1]= 1e0;
 small_number[2]= 1e0;
 small_number[3]= 1e-1;
 small_number[4]= 1e-2;
 small_number[5]= 1e-3;
 small_number[6]= 1e-4;
 /* %g switches to scientific when exponent < -4. */
 for (int idx= 7; idx < DBL_DIG+1; idx++)
 small_number[idx]= 1e-4;
 initialized= TRUE;
}

use_scientific_notation= (abs_nr != 0.0) &&
 ((abs_nr > big_number[precision]) ||
 (abs_nr < small_number[precision]));

if (use_scientific_notation)
{
 if (((nr >= 0.0) && ((nr >= 1e+100) || (nr <= 1e-100))) ||
 ((nr < 0.0) && ((nr <= -1e+100) || (nr >= -1e-100))))
 extra_space+= 6; /* .e+100 or .e-100 */
 else
 extra_space+= 5; /* .e+99 or .e-99 */
}

if (field_length < extra_space)
 precision= 0;
else if (precision > (field_length - extra_space))
 precision= field_length - extra_space;

length= sprintf(buff, "%.*g", precision, nr);

 This solution takes performance into account by initializing the
 limiting numbers arrays only once into static space. It copes with
 negative numbers and tries to decide even over small numbers. The
 latter has only small implications, as the prefix 0.000 is exactly
 the same size as the postfix e-100. But knowing if scientific
 notation will be selected by sprintf() allows
 for saving one digit when the exponent is larger than -100.

 The calculations for the big number array are less precise than in
 the second attempt, but faster. The precision is sufficient for
 the guess whether sprintf() uses scientific
 notation. There may be number to field length combinations which
 exploit the gap, but these won't emerge anyway as I found no
 situation where this function is called with small field lengths.
 Remember again that it is not called with user-supplied field
 lengths.

 However in the current stable releases (including gamma) we have
 some places where the field length is too small by one character.
 Thus, the precision is sometimes one digit smaller than
 DBL_DIG would allow for. Consequently, we
 cannot use the simple algorithm in the stable releases. There is a
 chance of doing it in a development release, though.

 Addendum:

 There turned out to be a new solution to the "big number array"
 problem. We have a statically initialized array
 log_10, which holds the necessary values. But I
 did not check whether these values are safe. Even if computed by
 the compiler, they could carry values slightly above the decimal
 powers, which would be bad. In this case we needed to initialize
 by 9.99999999e+xxx, where the number of nines is equal to
 DBL_DIG. This must be protected by #if
 DBL_DIG == yy, so that a new DBL_DIG
 on a new platform is detected. And the array is of limited length.
 We must at least protect it by a
 DBUG_ASSERT(sizeof(log_10)/sizeof(log_10[0]) >
 DBL_DIG).

 But all of this is probably completely unnecessary, since we are
 only speaking of cases where no user-supplied field length is
 given. So MySQL selects the field length on its own. So it is
 totally possible, indeed highly desirable, that MySQL selects a
 field length, which allows for a maximum of precision for all
 possible values. And these are DBL_DIG+7 or
 FLT_DIG+6 respectively as far as IEEE 754 is
 used. In this case we can have values of about +/-1e-307 to
 +/-1e+308 for double and +/-1e-37 to +/-1e+38
 for float. That is, for example
 -1.<DBL_DIG-1 digits>e+100. For cases where a precision
 above IEEE 754 is possible, we may need +8 instead. We can detect
 this with #if DBL_MAX_10_EXP >= So using a
 field length of DBL_DIG+8 in all cases should
 be sufficient for a simple sprintf(buff, "%.*g", DBL_DIG,
 nr) or sprintf(buff, "%.*g", FLT_DIG,
 nr), respectively. To be safe, we should not use the
 machine dependent constants everywhere, but instead concentrate
 them into definitions like these:

 #if (DBL_MAX_10_EXP > 9999) || (DBL_MIN_10_EXP < -9999)
error "Need new definition for UNSPECIFIED_DOUBLE_FIELD_LENGTH"
#elif (DBL_MAX_10_EXP > 999) || (DBL_MIN_10_EXP < -999)
define UNSPECIFIED_DOUBLE_FIELD_LENGTH (DBL_DIG+8)
#else
define UNSPECIFIED_DOUBLE_FIELD_LENGTH (DBL_DIG+7)
#endif

#if (FLT_MAX_10_EXP > 999) || (FLT_MIN_10_EXP < -999)
#error "Need new definition for UNSPECIFIED_FLOAT_FIELD_LENGTH"
#elif (FLT_MAX_10_EXP > 99) || (FLT_MIN_10_EXP < -99)
define UNSPECIFIED_FLOAT_FIELD_LENGTH (FLT_DIG+7)
#else
define UNSPECIFIED_FLOAT_FIELD_LENGTH (FLT_DIG+6)
#endif

 These definitions should be used wherever an item or field of type
 float or double without an
 explicit field length specification is encountered. We have to
 propagate these lengths though all derived items and fields and we
 have to select the maximum of all field lengths wherever in two or
 more of them are used in an expression or a function.

 We need to treat the precision
 (DBL_DIG/FLT_DIG) similarly,
 but have to select the minimum in expressions or functions.

10.9 Date and Time Data Type Representation

 The following table shows the storage requirements for date and
 type data types.

	
 Type

	
 Storage before MySQL
 5.6.4

	
 Storage as of MySQL
 5.6.4

	
 YEAR

	
 1 byte, little endian

	
 Unchanged

	
 DATE

	
 3 bytes, little endian

	
 Unchanged

	
 TIME

	
 3 bytes, little endian

	
 3 bytes + fractional-seconds storage, big endian

	
 TIMESTAMP

	
 4 bytes, little endian

	
 4 bytes + fractional-seconds storage, big endian

	
 DATETIME

	
 8 bytes, little endian

	
 5 bytes + fractional-seconds storage, big endian

 Before MySQL 5.6.4, date and time data types have these encodings:

	
 YEAR: A one-byte integer

	
 DATE: A three-byte integer packed as YYYY×16×32 + MM×32 +
 DD

	
 TIME: A three-byte integer packed as DD×24×3600 + HH×3600 +
 MM×60 + SS

	
 TIMESTAMP: A four-byte integer representing seconds UTC since
 the epoch ('1970-01-01 00:00:00' UTC)

	
 DATETIME: Eight bytes: A four-byte integer for date packed as
 YYYY×10000 + MM×100 + DD and a four-byte integer for time
 packed as HH×10000 + MM×100 + SS

 As of MySQL 5.6.4 the TIME, TIMESTAMP, and DATETIME types can have
 a fractional seconds part. Storage for these types is big endian
 (for memcmp() compatibility purposes), with the nonfractional part
 followed by the fractional part. (Storage and encoding for the
 YEAR and DATE types remains unchanged.)

	
 TIME encoding for nonfractional part:

 1 bit sign (1= non-negative, 0= negative)
 1 bit unused (reserved for future extensions)
10 bits hour (0-838)
 6 bits minute (0-59)
 6 bits second (0-59)

24 bits = 3 bytes

	
 TIMESTAMP encoding for nonfractional part: Same as before
 5.6.4, except big endian rather than little endian

	
 DATETIME encoding for nonfractional part:

 1 bit sign (1= non-negative, 0= negative)
17 bits year*13+month (year 0-9999, month 0-12)
 5 bits day (0-31)
 5 bits hour (0-23)
 6 bits minute (0-59)
 6 bits second (0-59)

40 bits = 5 bytes

 The sign bit is always 1. A value of 0 (negative) is reserved.

	
 Fractional-part encoding depends on the fractional seconds
 precision (FSP).

	
 FSP

	
 Storage

	
 0

	
 0 bytes

	
 1,2

	
 1 byte

	
 3,4

	
 2 bytes

	
 4,5

	
 3 bytes

10.10 Threads

 Threads in mysqld can run at four different priorities, defined in
 mysql_priv.h:

 #define INTERRUPT_PRIOR 10
 #define CONNECT_PRIOR 9
 #define WAIT_PRIOR 8
 #define QUERY_PRIOR 6

 Some threads try to set their priority; others don't. These calls
 are passed along to pthread_setschedparam() if the native
 threading library implements it.

 The different threads are:

	
 The main thread. Runs at CONNECT_PRIOR priority. Calls
 thr_setconcurrency() if it is available at compile time; this
 call is generally assumed to exist only on Solaris, its value
 should reflect the number of physical CPUs.

	
 The "bootstrap" thread. See handle_bootstrap() in
 sql_parse.cc. The mysql_install_db script starts a server with
 an option telling it to start this thread and read commands in
 from a file. Used to initialize the grant tables. Runs once
 and then exits.

	
 The "maintenance" thread. See sql_manager_cc. Like the old
 "sync" daemon in unix, this thread occasionally flushes MyISAM
 tables to disk. InnoDB has a separate maintenance thread, but
 BDB also uses this one to occasionally call
 berkeley_cleanup_log_files(). Begins at startup and persists
 until shutdown.

	
 The "handle TCP/IP sockets" thread. See
 handle_connections_sockets() in mysqld.cc. Loop with a
 select() function call, to handle incoming connections.

	
 The "handle named pipes" thread. Only on Windows.

	
 The "handle shared memory connections" thread. Only on
 Windows.

	
 Signal handler ("interrupt") thread. See signal_hand() in
 mysqld.cc. Runs at INTERRUPT_PRIOR priority. Sets up to
 receive signals, and then handles them as they come in. Begins
 at server startup and persists until shutdown.

	
 The "shutdown" thread. See kill_server() in mysqld.cc. Created
 by the signal handling thread. Closes all connections with
 close_connections(), the ends.

	
 Active and cached per-connection threads. See
 handle_one_connection() in sql_parse.cc. These can run at
 QUERY_PRIOR priority or WAIT_PRIOR priority depending on what
 they are doing.

	
 The "delayed" thread. See handle_delayed_insert() in
 sql_insert.cc. Used for MyISAM's delayed inserts.

	
 The two slave threads, in slave.cc. One thread connects to the
 master and handles network IO. The other reads queries from
 the relay log and executes them.

 In InnoDB, all thread management is handled through os/os0thread.c
 InnoDB's threads are:

	
 The I/O handler threads, See io_handler_thread().

	
 Two "watchmen" threads: srv_lock_timeout_and_monitor_thread(),
 and srv_error_monitor_thread().

	
 The master thread "which does purge and other utility
 operations", See srv_master_thread().

 InnoDB's internal os_thread_set_priority() function implements
 three priorities (Background, normal, and high) but only on
 windows. The function is a no-op on unix.

10.11 Character Sets and Collations

 Character sets are used by MySQL when storing information, both to
 ensure that the information is stored (and returned) in the
 correct format, but also for the purposes of collation and
 sorting. Each character set supports one or more collations, and
 so these are collectively known as Collation
 Sets, rather than character sets.

 Character sets are recorded against individual tables and returned
 as part of the field data. For example, the
 MYSQL_FIELD data type definition includes the
 field charsetnr:

typedef struct st_mysql_field {
 char *name; /* Name of column */
 char *org_name; /* Original column name, if an alias */
 char *table; /* Table of column if column was a field */
 char *org_table; /* Org table name, if table was an alias */
 char *db; /* Database for table */
 char *catalog; /* Catalog for table */
 char *def; /* Default value (set by mysql_list_fields) */
 unsigned long length; /* Width of column (create length) */
 unsigned long max_length; /* Max width for selected set */
 unsigned int name_length;
 unsigned int org_name_length;
 unsigned int table_length;
 unsigned int org_table_length;
 unsigned int db_length;
 unsigned int catalog_length;
 unsigned int def_length;
 unsigned int flags; /* Div flags */
 unsigned int decimals; /* Number of decimals in field */
 unsigned int charsetnr; /* Character set */
 enum enum_field_types type; /* Type of field. See mysql_com.h for types */
} MYSQL_FIELD;

 Character set and collation information are specific to a server
 version and installation, and are generated automatically from the
 sql/share/charsets/Index.xml file in the source
 distribution.

 You can obtain a list of the available character sets configured
 within a server by running SHOW COLLATION, or
 by running a query on the
 INFORMATION_SCHEMA.COLLATION table. A sample of
 the information from that table has been provided here for
 reference.

	
 Collation Id

	
 Charset

	
 Collation

	
 Default

	
 Sortlen

	
 64

	
 armscii8

	
 armscii8_bin

	
 ??

	
 1

	
 32

	
 armscii8

	
 armscii8_general_ci

	
 Yes

	
 1

	
 65

	
 ascii

	
 ascii_bin

	
 ??

	
 1

	
 11

	
 ascii

	
 ascii_general_ci

	
 Yes

	
 1

	
 84

	
 big5

	
 big5_bin

	
 ??

	
 1

	
 1

	
 big5

	
 big5_chinese_ci

	
 Yes

	
 1

	
 63

	
 binary

	
 binary

	
 Yes

	
 1

	
 66

	
 cp1250

	
 cp1250_bin

	
 ??

	
 1

	
 44

	
 cp1250

	
 cp1250_croatian_ci

	
 ??

	
 1

	
 34

	
 cp1250

	
 cp1250_czech_cs

	
 ??

	
 2

	
 26

	
 cp1250

	
 cp1250_general_ci

	
 Yes

	
 1

	
 50

	
 cp1251

	
 cp1251_bin

	
 ??

	
 1

	
 14

	
 cp1251

	
 cp1251_bulgarian_ci

	
 ??

	
 1

	
 52

	
 cp1251

	
 cp1251_general_cs

	
 ??

	
 1

	
 23

	
 cp1251

	
 cp1251_ukrainian_ci

	
 ??

	
 1

	
 51

	
 cp1251

	
 cp1251_general_ci

	
 Yes

	
 1

	
 67

	
 cp1256

	
 cp1256_bin

	
 ??

	
 1

	
 57

	
 cp1256

	
 cp1256_general_ci

	
 Yes

	
 1

	
 58

	
 cp1257

	
 cp1257_bin

	
 ??

	
 1

	
 29

	
 cp1257

	
 cp1257_lithuanian_ci

	
 ??

	
 1

	
 59

	
 cp1257

	
 cp1257_general_ci

	
 Yes

	
 1

	
 80

	
 cp850

	
 cp850_bin

	
 ??

	
 1

	
 4

	
 cp850

	
 cp850_general_ci

	
 Yes

	
 1

	
 81

	
 cp852

	
 cp852_bin

	
 ??

	
 1

	
 40

	
 cp852

	
 cp852_general_ci

	
 Yes

	
 1

	
 68

	
 cp866

	
 cp866_bin

	
 ??

	
 1

	
 36

	
 cp866

	
 cp866_general_ci

	
 Yes

	
 1

	
 96

	
 cp932

	
 cp932_bin

	
 ??

	
 1

	
 95

	
 cp932

	
 cp932_japanese_ci

	
 Yes

	
 1

	
 69

	
 dec8

	
 dec8_bin

	
 ??

	
 1

	
 3

	
 dec8

	
 dec8_swedish_ci

	
 Yes

	
 1

	
 98

	
 eucjpms

	
 eucjpms_bin

	
 ??

	
 1

	
 97

	
 eucjpms

	
 eucjpms_japanese_ci

	
 Yes

	
 1

	
 85

	
 euckr

	
 euckr_bin

	
 ??

	
 1

	
 19

	
 euckr

	
 euckr_korean_ci

	
 Yes

	
 1

	
 86

	
 gb2312

	
 gb2312_bin

	
 ??

	
 1

	
 24

	
 gb2312

	
 gb2312_chinese_ci

	
 Yes

	
 1

	
 87

	
 gbk

	
 gbk_bin

	
 ??

	
 1

	
 28

	
 gbk

	
 gbk_chinese_ci

	
 Yes

	
 1

	
 93

	
 geostd8

	
 geostd8_bin

	
 ??

	
 1

	
 92

	
 geostd8

	
 geostd8_general_ci

	
 Yes

	
 1

	
 70

	
 greek

	
 greek_bin

	
 ??

	
 1

	
 25

	
 greek

	
 greek_general_ci

	
 Yes

	
 1

	
 71

	
 hebrew

	
 hebrew_bin

	
 ??

	
 1

	
 16

	
 hebrew

	
 hebrew_general_ci

	
 Yes

	
 1

	
 72

	
 hp8

	
 hp8_bin

	
 ??

	
 1

	
 6

	
 hp8

	
 hp8_english_ci

	
 Yes

	
 1

	
 73

	
 keybcs2

	
 keybcs2_bin

	
 ??

	
 1

	
 37

	
 keybcs2

	
 keybcs2_general_ci

	
 Yes

	
 1

	
 74

	
 koi8r

	
 koi8r_bin

	
 ??

	
 1

	
 7

	
 koi8r

	
 koi8r_general_ci

	
 Yes

	
 1

	
 75

	
 koi8u

	
 koi8u_bin

	
 ??

	
 1

	
 22

	
 koi8u

	
 koi8u_general_ci

	
 Yes

	
 1

	
 47

	
 latin1

	
 latin1_bin

	
 ??

	
 1

	
 15

	
 latin1

	
 latin1_danish_ci

	
 ??

	
 1

	
 48

	
 latin1

	
 latin1_general_ci

	
 ??

	
 1

	
 49

	
 latin1

	
 latin1_general_cs

	
 ??

	
 1

	
 5

	
 latin1

	
 latin1_german1_ci

	
 ??

	
 1

	
 31

	
 latin1

	
 latin1_german2_ci

	
 ??

	
 2

	
 94

	
 latin1

	
 latin1_spanish_ci

	
 ??

	
 1

	
 8

	
 latin1

	
 latin1_swedish_ci

	
 Yes

	
 1

	
 77

	
 latin2

	
 latin2_bin

	
 ??

	
 1

	
 27

	
 latin2

	
 latin2_croatian_ci

	
 ??

	
 1

	
 2

	
 latin2

	
 latin2_czech_cs

	
 ??

	
 4

	
 21

	
 latin2

	
 latin2_hungarian_ci

	
 ??

	
 1

	
 9

	
 latin2

	
 latin2_general_ci

	
 Yes

	
 1

	
 78

	
 latin5

	
 latin5_bin

	
 ??

	
 1

	
 30

	
 latin5

	
 latin5_turkish_ci

	
 Yes

	
 1

	
 79

	
 latin7

	
 latin7_bin

	
 ??

	
 1

	
 20

	
 latin7

	
 latin7_estonian_cs

	
 ??

	
 1

	
 42

	
 latin7

	
 latin7_general_cs

	
 ??

	
 1

	
 41

	
 latin7

	
 latin7_general_ci

	
 Yes

	
 1

	
 43

	
 macce

	
 macce_bin

	
 ??

	
 1

	
 38

	
 macce

	
 macce_general_ci

	
 Yes

	
 1

	
 53

	
 macroman

	
 macroman_bin

	
 ??

	
 1

	
 39

	
 macroman

	
 macroman_general_ci

	
 Yes

	
 1

	
 88

	
 sjis

	
 sjis_bin

	
 ??

	
 1

	
 13

	
 sjis

	
 sjis_japanese_ci

	
 Yes

	
 1

	
 82

	
 swe7

	
 swe7_bin

	
 ??

	
 1

	
 10

	
 swe7

	
 swe7_swedish_ci

	
 Yes

	
 1

	
 89

	
 tis620

	
 tis620_bin

	
 ??

	
 1

	
 18

	
 tis620

	
 tis620_thai_ci

	
 Yes

	
 4

	
 90

	
 ucs2

	
 ucs2_bin

	
 ??

	
 1

	
 138

	
 ucs2

	
 ucs2_czech_ci

	
 ??

	
 8

	
 139

	
 ucs2

	
 ucs2_danish_ci

	
 ??

	
 8

	
 145

	
 ucs2

	
 ucs2_esperanto_ci

	
 ??

	
 8

	
 134

	
 ucs2

	
 ucs2_estonian_ci

	
 ??

	
 8

	
 146

	
 ucs2

	
 ucs2_hungarian_ci

	
 ??

	
 8

	
 129

	
 ucs2

	
 ucs2_icelandic_ci

	
 ??

	
 8

	
 130

	
 ucs2

	
 ucs2_latvian_ci

	
 ??

	
 8

	
 140

	
 ucs2

	
 ucs2_lithuanian_ci

	
 ??

	
 8

	
 144

	
 ucs2

	
 ucs2_persian_ci

	
 ??

	
 8

	
 133

	
 ucs2

	
 ucs2_polish_ci

	
 ??

	
 8

	
 131

	
 ucs2

	
 ucs2_romanian_ci

	
 ??

	
 8

	
 143

	
 ucs2

	
 ucs2_roman_ci

	
 ??

	
 8

	
 141

	
 ucs2

	
 ucs2_slovak_ci

	
 ??

	
 8

	
 132

	
 ucs2

	
 ucs2_slovenian_ci

	
 ??

	
 8

	
 142

	
 ucs2

	
 ucs2_spanish2_ci

	
 ??

	
 8

	
 135

	
 ucs2

	
 ucs2_spanish_ci

	
 ??

	
 8

	
 136

	
 ucs2

	
 ucs2_swedish_ci

	
 ??

	
 8

	
 137

	
 ucs2

	
 ucs2_turkish_ci

	
 ??

	
 8

	
 128

	
 ucs2

	
 ucs2_unicode_ci

	
 ??

	
 8

	
 35

	
 ucs2

	
 ucs2_general_ci

	
 Yes

	
 1

	
 91

	
 ujis

	
 ujis_bin

	
 ??

	
 1

	
 12

	
 ujis

	
 ujis_japanese_ci

	
 Yes

	
 1

	
 83

	
 utf8

	
 utf8_bin

	
 ??

	
 1

	
 202

	
 utf8

	
 utf8_czech_ci

	
 ??

	
 8

	
 203

	
 utf8

	
 utf8_danish_ci

	
 ??

	
 8

	
 209

	
 utf8

	
 utf8_esperanto_ci

	
 ??

	
 8

	
 198

	
 utf8

	
 utf8_estonian_ci

	
 ??

	
 8

	
 210

	
 utf8

	
 utf8_hungarian_ci

	
 ??

	
 8

	
 193

	
 utf8

	
 utf8_icelandic_ci

	
 ??

	
 8

	
 194

	
 utf8

	
 utf8_latvian_ci

	
 ??

	
 8

	
 204

	
 utf8

	
 utf8_lithuanian_ci

	
 ??

	
 8

	
 208

	
 utf8

	
 utf8_persian_ci

	
 ??

	
 8

	
 197

	
 utf8

	
 utf8_polish_ci

	
 ??

	
 8

	
 195

	
 utf8

	
 utf8_romanian_ci

	
 ??

	
 8

	
 207

	
 utf8

	
 utf8_roman_ci

	
 ??

	
 8

	
 205

	
 utf8

	
 utf8_slovak_ci

	
 ??

	
 8

	
 196

	
 utf8

	
 utf8_slovenian_ci

	
 ??

	
 8

	
 206

	
 utf8

	
 utf8_spanish2_ci

	
 ??

	
 8

	
 199

	
 utf8

	
 utf8_spanish_ci

	
 ??

	
 8

	
 200

	
 utf8

	
 utf8_swedish_ci

	
 ??

	
 8

	
 201

	
 utf8

	
 utf8_turkish_ci

	
 ??

	
 8

	
 192

	
 utf8

	
 utf8_unicode_ci

	
 ??

	
 8

	
 33

	
 utf8

	
 utf8_general_ci

	
 Yes

	
 1

 Note that it is the collation ID, not the character set ID, that
 is used to identify the unique combination of character set and
 collation. Thus, when requesting character set information using
 one of the character set functions in
 mysys/charset.c, such as
 get_charset(), different IDs may return the
 same base character set, but a different collation set.

 The following functions provide an internal interface to the
 collation and character set information, enabling you to access
 the information by name or ID:

static uint get_collation_number_internal(const char *name)
uint get_collation_number(const char *name)
uint get_charset_number(const char *charset_name, uint cs_flags)
const char *get_charset_name(uint charset_number)
static CHARSET_INFO *get_internal_charset(uint cs_number, myf flags)
CHARSET_INFO *get_charset(uint cs_number, myf flags)
CHARSET_INFO *get_charset_by_name(const char *cs_name, myf flags)
CHARSET_INFO *get_charset_by_csname(const char *cs_name,
 uint cs_flags,
 myf flags)

 The table below details the functions, the key argument that is
 supplied, and the return value.

	
 Function

	
 Supplied Argument

	
 Return Value

	
 get_collation_number_internal()

	
 Collation name

	
 Collation ID

	
 get_collation_number()

	
 Collation name

	
 Collation ID

	
 get_charset_number()

	
 Character set name

	
 Collation ID

	
 get_charset_name()

	
 Collation ID

	
 Character set name

	
 get_internal_charset()

	
 Collation ID

	
 Character datatype

	
 get_charset()

	
 Collation ID

	
 Character datatype

10.12 Error Flags and Functions

 The following flags can be examined or set to alter the behavior
 during error handling:

	
 thd->net.report_error

 thd->net.report_error is set in
 my_message_sql() if the error message was
 registered. (my_message_sql() is called by
 my_error(),
 my_printf_error(),
 my_message()).

	
 thd->query_error

 Like net.report_error, but is always set to 1
 in my_message_sql() if error was not caught by
 an error handler. Used by replication to see if a query generated
 any kind of errors.

	
 thd->no_warnings_for_error

 Normally an error also generates a warning. The warning can be
 disabled by setting
 thd->no_warnings_for_error. (This allows one
 to catch all error messages generated by a statement)

	

 thd->lex->current_select->no_error

 This is set to in case likes INSERT IGNORE ...
 SELECT. In this case we ignore all not fatal errors
 generated by the select.

	
 thd->is_fatal_error

 Set this if we should abort the current statement (and any
 multi-line statements) because something went fatally wrong. (for
 example, a stored procedure continue handler should not be able to
 catch this). This is reset by
 mysql_reset_thd_for_next_command().

	
 thd->abort_on_warning

 Strict mode flag, which means that we should abort the statement
 if we get a warning. In the field::store
 function this changes the warning level from
 WARN to ERROR. In other
 cases, this flag is mostly tested with
 thd->really_abort_on_warning() to ensure we
 don't abort in the middle of an update with not transactional
 tables.

	
 thd->count_cuted_fields

 If set, we generate warning for field conversations (normal case
 for
 INSERT/UPDATE/DELETE).
 This is mainly set to 0 when doing internal copying of data
 between fields and we don't want to generate any conversion errors
 at any level.

	
 thd->killed

 Set in case of error in connection protocol or in case of 'kill'.
 In this case we should abort the query and kill the connection.

 Error functions

	
 thd->really_abort_on_warning()

 This function returns 1 if a warning should be converted to an
 error, like in strict mode when all tables are transactional. The
 conversion is handled in
 sql_error.cc::push_warning().

	
 thd->fatal_error()

 Should be called if we want to abort the current statement and any
 multi-line statement.

	
 thd->clear_error()

 Resets thd->net.report_error and
 thd->query_error.

10.13 Functions in the mysys Library

 Functions in mysys: (For flags see
 my_sys.h)

	
 int my_copy _A((const char *from, const char *to, myf
 MyFlags));

 Copy file from from to to.

	
 int my_rename _A((const char *from, const char *to,
 myf MyFlags));

 Rename file from from to to.

	
 int my_delete _A((const char *name, myf
 MyFlags));

 Delete file name.

	
 int my_redel _A((const char *from, const char *to,
 int MyFlags));

 Delete from before rename of
 to to from. Copies state
 from old file to new file. If MY_COPY_TIME is
 set, sets old time.

	
 int my_getwd _A((string buf, uint size, myf
 MyFlags)); , int my_setwd _A((const char
 *dir, myf MyFlags));

 Get and set working directory.

	
 string my_tempnam _A((const char *dir, const char
 *pfx, myf MyFlags));

 Make a unique temporary file name by using dir
 and adding something after pfx to make the name
 unique. The file name is made by adding a unique six character
 string and TMP_EXT after
 pfx. Returns pointer to
 malloc()'ed area for filename. Should be freed
 by free().

	
 File my_open _A((const char *FileName,int Flags,myf
 MyFlags)); , File my_create _A((const char
 *FileName, int CreateFlags, int AccsesFlags, myf
 MyFlags)); , int my_close _A((File Filedes,
 myf MyFlags)); , uint my_read _A((File
 Filedes, byte *Buffer, uint Count, myf MyFlags)); ,
 uint my_write _A((File Filedes, const byte *Buffer,
 uint Count, myf MyFlags)); , ulong my_seek
 _A((File fd,ulong pos,int whence,myf MyFlags)); ,
 ulong my_tell _A((File fd,myf MyFlags));

 Use instead of open, open-with-create-flag, close, read, and write
 to get automatic error messages (flag MYF_WME)
 and only have to test for != MY_NABP</code>).

	
 FILE *my_fopen _A((const char *FileName,int Flags,myf
 MyFlags)); , FILE *my_fdopen _A((File
 Filedes,int Flags,myf MyFlags)); , int
 my_fclose _A((FILE *fd,myf MyFlags)); ,
 uint my_fread _A((FILE *stream,byte *Buffer,uint
 Count,myf MyFlags)); , uint my_fwrite
 _A((FILE *stream,const byte *Buffer,uint Count, myf
 MyFlags)); , ulong my_fseek _A((FILE
 *stream,ulong pos,int whence,myf MyFlags)); ,
 ulong my_ftell _A((FILE *stream,myf
 MyFlags));

 Same read-interface for streams as for files.

	
 gptr _mymalloc _A((uint uSize,const char *sFile,uint
 uLine, myf MyFlag)); , gptr _myrealloc
 _A((string pPtr,uint uSize,const char *sFile,uint uLine, myf
 MyFlag)); , void _myfree _A((gptr
 pPtr,const char *sFile,uint uLine)); , int
 _sanity _A((const char *sFile,unsigned int uLine));
 , gptr _myget_copy_of_memory _A((const byte
 *from,uint length,const char *sFile, uint uLine,myf
 MyFlag));

 malloc(size,myflag) is mapped to these
 functions if not compiled with -DSAFEMALLOC.

	
 void TERMINATE _A((void));

 Writes malloc() info on
 stdout if compiled with
 -DSAFEMALLOC.

	
 int my_chsize _A((File fd, ulong newlength, myf
 MyFlags));

 Change size of file fd to
 newlength.

	
 void my_error _D((int nr, myf MyFlags,
 ...));

 Writes message using error number (see
 mysys/errors.h) on stdout,
 or using curses, if MYSYS_PROGRAM_USES_CURSES()
 has been called.

	
 void my_message _A((const char *str, myf
 MyFlags));

 Writes str on stdout, or
 using curses, if MYSYS_PROGRAM_USES_CURSES()
 has been called.

	
 void my_init _A((void));

 Start each program (in main()) with this.

	
 void my_end _A((int infoflag));

 Gives info about program. If infoflag &
 MY_CHECK_ERROR, prints if some files are left open. If
 infoflag & MY_GIVE_INFO, prints timing info
 and malloc() info about program.

	
 int my_copystat _A((const char *from, const char *to,
 int MyFlags));

 Copy state from old file to new file. If
 MY_COPY_TIME is set, sets old time.

	
 string my_filename _A((File fd));

 Returns filename of open file.

	
 int dirname _A((string to, const char
 *name));

 Copy name of directory from filename.

	
 int test_if_hard_path _A((const char
 *dir_name));

 Test if dir_name is a hard path (starts from
 root).

	
 void convert_dirname _A((string name));

 Convert dirname according to system. On Windows, changes all
 characters to capitals and changes '/' to
 '\'.

	
 string fn_ext _A((const char *name));

 Returns pointer to extension in filename.

	
 string fn_format _A((string to,const char *name,const
 char *dsk,const char *form,int flag));

 Format a filename with replacement of library and extension and
 convert between different systems. The to and
 name parameters may be identical. Function
 doesn't change name if name !=
 to. flag may be:

	
 1

	
 Force replace filenames library with 'dsk'

	
 2

	
 Force replace extension with 'form' */

	
 4

	
 Force unpack filename (replace ~ with
 home directory)

	
 8

	
 Pack filename as short as possible for output to user

 All open requests should always use at least
 open(fn_format(temp_buffer, name, " ", " ", 4),
 ...) to unpack home and convert filename to system-form.

	
 string fn_same _A((string toname, const char *name,
 int flag));

 Copies directory and extension from name to
 toname if needed. Copying can be forced by same
 flags used in fn_format().

	
 int wild_compare _A((const char *str, const char
 *wildstr));

 Compare if str matches
 wildstr. wildstr can contain
 '*' and '?' as wildcard
 characters. Returns 0 if str and
 wildstr match.

	
 void get_date _A((string to, int
 timeflag));

 Get current date in a form ready for printing.

	
 void soundex _A((string out_pntr, string
 in_pntr))

 Makes in_pntr to a 5 char long string. All
 words that sound alike have the same string.

	
 int init_key_cache _A((ulong use_mem, ulong
 leave_this_much_mem));

 Use caching of keys in MISAM, PISAM, and ISAM.
 KEY_CACHE_SIZE is a good size. Remember to lock
 databases for optimal caching.

	
 void end_key_cache _A((void));

 End key caching.

10.14 Bitmaps

 Inside the mysys directory is a file named my_bitmap.c. It
 contains functions for manipulating bitmaps. Specifically there
 are functions for setup or teardown (bitmap_init, bitmap_free),
 for setting and clearing individual bits or whole sections of the
 bitmap (bitmap_set_bit, bitmap_fast_test_and_set,
 bitmap_clear_all, bitmap_set_all, bitmap_set_prefix,
 bitmap_set_above), and for performing comparisons and set
 operations on two bitmaps (bitmap_cmp, bitmap_intersect,
 bitmap_subtract, bitmap_union). Bitmaps are useful, so the
 functions are called from several places (opt_range.cc, slave.cc,
 mysqld.c, sql_insert.cc, log_event.cc, sql_show.cc) and we're
 expecting to make more use of them in the next version of MySQL,
 MySQL 5.1.

 There are a few warnings and limitations that apply for the
 present bitmap implementation. First: the allocation is an
 integral number of bytes, and it is not possible to determine
 whether the last few bits are meaningful. Second: the whole bitmap
 might have to be protected by a mutex for manipulations; this is
 settable by passing appropriate flag values. Third: the bitmap is
 allocated with a 'uint' size, which means that ordinarily it can't
 have more than 2^32 bytes. Fourth: when unioning two bitmaps, they
 must be of the same size.

Chapter 11 File Formats

Table of Contents
	11.1 MySQL .frm File Format

 MySQL uses a number of different file formats for the storage of
 information. This section covers the different file formats and how
 to read, write, and understand the contents.

11.1 MySQL .frm File Format

 Regardless of the storage engine you choose, every MySQL table you
 create is represented on disk by a .frm file
 that describes the table's format (that is, the table definition).
 The file bears the same name as the table, with an
 .frm extension. The .frm
 format is the same on all platforms, but in the description of the
 .frm format that follows, the examples come
 from tables created under the Linux operating system.

 First, let's create an example table, using the
 mysql client:

mysql> CREATE TABLE table1 (column1 CHAR(5)) ENGINE=MYISAM COMMENT '*';
Query OK, 0 rows affected (0.00 sec)

 The .frm file associated with
 table1 can be found in the directory that
 represents the database (or schema) to which the table belongs.
 The datadir system variable contains the name
 of this directory:

mysql> SHOW VARIABLES LIKE 'datadir';
 +---------------+-----------------------+
 | Variable_name | Value |
 +---------------+-----------------------+
 | datadir | /usr/local/mysql/var/ |
 +---------------+-----------------------+
 1 row in set (0.00 sec)

 The DATABASE() function contains the name of
 the relevant database:

mysql> SELECT DATABASE();
 +------------+
 | DATABASE() |
 +------------+
 | ff |
 +------------+
 1 row in set (0.00 sec)

 Since MySQL stores .frm files in
 datadir/database_name,
 it's a simple matter to locate the corresponding
 .frm file for table1. For
 example, within a Linux shell:

shell> su root
shell> cd /usr/local/mysql/var/ff
shell> ls table1.*
 table1.frm table1.MYD table1.MYI
shell> ls -l table1.*
-rw-rw---- 1 root root 8566 2006-09-22 11:22 table1.frm
-rw-rw---- 1 root root 0 2006-09-22 11:22 table1.MYD
-rw-rw---- 1 root root 1024 2006-09-22 11:22 table1.MYI

 The .MYD (data) and .MYI
 (index) files are not our concern here; they are described at
 Section 20.1, “MyISAM Record Structure”. To understand the
 .frm format, let's look at
 table1.frm using a hexadecimal-dump utility:

shell> hexdump -v -C table1.frm
 00000000 fe 01 09 09 03 00 00 10 01 00 00 30 00 00 10 00 |...........0....|
 00000010 06 00 00 00 00 00 00 00 00 00 00 02 08 00 08 00 |................|
 00000020 00 05 00 00 00 00 08 00 00 00 00 00 00 00 00 10 |................|
 00000030 00 00 00 c0 c3 00 00 10 00 00 00 00 00 00 00 00 |................|
 00000040 2f 2f 00 00 20 00 00 00 00 00 00 00 00 00 00 00 |//..|
 ... | (many 0s) |
 00001000 00 00 00 00 02 00 ff 00 00 00 00 00 00 00 00 00 |................|
 00001010 ff 20 20 20 20 20 00 00 06 00 4d 79 49 53 41 4d |. MyISAM|
 ... | (many 0s) |
 00002000 6c 01 00 10 00 00 00 00 00 00 00 00 00 00 00 00 |l...............|
 00002010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
 00002020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 2a |...............*|
 ...
 00002100 01 00 01 00 3b 00 05 00 00 00 06 00 0a 00 00 00 |....;...........|
 00002110 00 00 00 00 00 00 50 00 16 00 01 00 00 00 00 00 |......P.........|
 00002120 3b 00 02 01 02 14 29 20 20 20 20 20 20 20 20 20 |;.....) |
 00002130 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | |
 00002140 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 00 | .|
 00002150 04 00 08 63 6f 6c 75 6d 6e 31 00 04 08 05 05 00 |...column1......|
 00002160 02 00 00 00 80 00 00 00 fe 08 00 00 ff 63 6f 6c |.............col|
 00002170 75 6d 6e 31 ff 00 |umn1..|
 00002176

 The details just shown might change, especially since there is a
 transition underway from an old (“binary”) format to
 a new (“text based”) .frm
 format. You can confirm that the details are correct by comparing
 this description with the statements in
 sql/table.cc,
 create_frm(). The following tables explain the
 meaning of each byte in the hexadecimal dump shown in the
 preceding example:

	
 Offset: The byte position in the file.

	
 Length: The number of bytes.

	
 Value: What's in the given byte position for the given length
 (remember that storage is “low byte first”, so
 0010 means 0x1000, not 0x0010!).

	
 Explanation: A brief explanation of the contents.

Table 11.1 .frm File Header Section
	Offset	Length	Value	Explanation
	
 0000

	
 1

	
 fe

	
 Always

	
 0001

	
 1

	
 01

	
 Always

	
 0002

	
 1

	
 09

	
 FRM_VER (which is in
 include/mysql_version.h) +3
 +test(create_info->varchar)

	
 0003

	
 1

	
 09

	
 See enum legacy_db_type in
 sql/handler.h. For example, 09 is
 DB_TYPE_MYISAM, but 14 if MyISAM with
 partitioning.

	
 0004

	
 1

	
 03

	
 ??

	
 0005

	
 1

	
 00

	
 Always

	
 0006

	
 2

	
 0010

	
 IO_SIZE

	
 0008

	
 2

	
 0100

	
 ??

	
 000a

	
 4

	
 00300000

	
 Length, based on key_length + rec_length +
 create_info->extra_size

	
 000e

	
 2

	
 1000

	
 "tmp_key_length", based on key_length

	
 0010

	
 2

	
 0600

	
 rec_length

	
 0012

	
 4

	
 00000000

	
 create_info->max_rows

	
 0016

	
 4

	
 00000000

	
 create_info->min_rows

	
 001b

	
 1

	
 02

	
 Always (means “use long pack-fields”)

	
 001c

	
 2

	
 0800

	
 key_info_length

	
 001e

	
 2

	
 0800

	
 create_info->table_options also
 known as db_create_options? one
 possible option is HA_LONG_BLOB_PTR

	
 0020

	
 1

	
 00

	
 Always

	
 0021

	
 1

	
 05

	
 Always (means “version 5 frm file”)

	
 0022

	
 4

	
 00000000

	
 create_info->avg_row_length

	
 0026

	
 1

	
 08

	
 create_info->default_table_charset

	
 0027

	
 1

	
 00

	
 Always

	
 0028

	
 1

	
 00

	
 create_info->row_type

	
 0029

	
 6

	
 00..00

	
 Always (formerly used for RAID support)

	
 002f

	
 4

	
 10000000

	
 key_length

	
 0033

	
 4

	
 c0c30000

	
 MYSQL_VERSION_ID from
 include/mysql_version.h

	
 0037

	
 4

	
 10000000

	
 create_info->extra_size

	
 003b

	
 2

	
 0000

	
 Reserved for extra_rec_buf_length

	
 003d

	
 1

	
 00

	
 Reserved for default_part_db_type,
 but 09 if MyISAM with partitioning

	
 003e

	
 2

	
 0000

	
 create_info->key_block_size

Table 11.2 .frm File Key Information Section
	Offset	Length	Value	Explanation
	
 1000

	
 1

	
 00

	
 Always 00 when there are no keys (that is, indexes)

	
 ...

	
 ??

	
 ??

	
 ??

	
 101a

	
 6

	
 "MyISAM"

	
 Name of engine. If partitioning, the partition clauses
 are here

Table 11.3 .frm File Comment Section
	Offset	Length	Value	Explanation
	
 202e

	
 1

	
 01

	
 Length of comment

	
 202f

	
 40

	
 "*"

	
 The string in the COMMENT table
 option

Table 11.4 .frm File Column Information Section
	Offset	Length	Value	Explanation
	
 2100

	
 2

	
 01

	
 Always

	
 2102

	
 2

	
 0100

	
 share->fields (number of columns)

	
 2104

	
 2

	
 3b00

	
 pos (“length of all
 screens”). Goes up if
 column-name length increases. Doesn't
 go up if add comment.

	
 2106

	
 2

	
 0500

	
 Based on number of bytes in row.

	
 210c

	
 2

	
 0500

	
 n_length. Goes up if row length
 increases.

	
 210e

	
 2

	
 0000

	
 interval_count. Number of different
 ENUM/SET columns.

	
 2110

	
 2

	
 0000

	
 interval_parts. Number of different
 strings in
 ENUM/SET columns.

	
 2112

	
 2

	
 0000

	
 int_length

	
 211a

	
 2

	
 0100

	
 share->null_fields. Number of
 nullable columns.

	
 211c

	
 2

	
 0000

	
 com_length

	
 2152

	
 1

	
 08

	
 Length of column-name including '\0'
 termination

	
 2153

	
 3

	
 "column1\0"

	
 column-name

	
 215b

	
 1

	
 04

	
 ??

	
 215c

	
 1

	
 03

	
 ??

	
 215d

	
 1

	
 05

	
 Number of bytes in column

	
 215e

	
 1

	
 05

	
 Number of bytes in column

	
 215f

	
 4

	
 00020000

	
 ??

	
 2163

	
 1

	
 00

	
 Flags for zerofill, unsigned, etc.

	
 2164

	
 1

	
 80

	
 Additional flags, and scale if decimal/numeric

	
 2168

	
 1

	
 fe

	
 Data type (fe=char,
 02=smallint,
 03=int, etc.) see enum
 field_types in
 include/mysql_com.h

	
 2169

	
 1

	
 08

	
 Character set or geometry type

	
 (later)

	
 ??

	
 ??

	
 Column names again, defaults,
 ENUM/SET strings,
 column comments ... at end of row. not shown.

 The .frm file for a partitioned table
 contains partition information, in clear text, in addition to the
 usual table definition details. Let's create a partitioned table
 and do a hexadecimal dump of its .frm file:

mysql> CREATE TABLE table2 (column1 INT) ENGINE=MYISAM COMMENT '*'
 PARTITION BY HASH(column1) PARTITIONS 2;
Query OK, 0 rows affected (0.00 sec)

 The hexadecimal dump from table2 is shown here:

00000000 fe 01 09 14 03 00 00 10 01 00 00 30 00 00 10 00 |...........0....|
00000010 05 00 00 00 00 00 00 00 00 00 00 02 08 00 08 00 |................|
00000020 00 05 00 00 00 00 08 00 00 00 00 00 00 00 00 10 |................|
00000030 00 00 00 c0 c3 00 00 3d 00 00 00 00 00 09 00 00 |.......=........|
00000040 2f 2f 00 00 20 00 00 00 00 00 00 00 00 00 00 00 |//..|
00000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
...
00001000 00 00 00 00 02 00 ff 00 00 00 00 00 00 00 00 00 |................|
00001010 ff 00 00 00 00 00 00 09 00 70 61 72 74 69 74 69 |.........partiti|
00001020 6f 6e 2a 00 00 00 20 50 41 52 54 49 54 49 4f 4e |on*... PARTITION|
00001030 20 42 59 20 48 41 53 48 20 28 63 6f 6c 75 6d 6e | BY HASH (column|
00001040 31 29 20 50 41 52 54 49 54 49 4f 4e 53 20 32 20 |1) PARTITIONS 2 |
00001050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
...
00002000 76 01 00 10 00 00 00 00 00 00 00 00 00 00 00 00 |v...............|
00002010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00002020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 2a |...............*|
00002030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
...
00002100 01 00 01 00 3b 00 0b 00 00 00 05 00 0a 00 00 00 |....;...........|
00002110 00 00 00 00 00 00 50 00 16 00 01 00 00 00 00 00 |......P.........|
00002120 3b 00 02 01 02 14 29 20 20 20 20 20 20 20 20 20 |;.....) |
00002130 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | |
00002140 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 00 | .|
00002150 04 00 08 63 6f 6c 75 6d 6e 31 00 04 08 0b 0b 00 |...column1......|
00002160 02 00 00 1b 80 00 00 00 03 08 00 00 ff 63 6f 6c |.............col|
00002170 75 6d 6e 31 ff 00 |umn1..|
00002176

 In the example output, notice that position 00001010 and following
 contains the clear text of the CREATE TABLE ...
 PARTITION clause and not just the
 MYISAM engine information, as in
 table1, which shows the
 .frm of a nonpartitioned table.

 Finally, CREATE VIEW also causes creation of a
 .frm file, but a view
 .frm bears no resemblance to a base table
 .frm; it's purely textual. Here's an example
 of a .frm for a view made with:

mysql> CREATE VIEW v AS SELECT 5;
Query OK, 0 rows affected (0.00 sec)

 Just looking at the text will tell you what it's about:

00000000 54 59 50 45 3d 56 49 45 57 0a 71 75 65 72 79 3d |TYPE=VIEW.query=|
00000010 73 65 6c 65 63 74 20 35 20 41 53 20 60 35 60 0a |select 5 AS `5`.|
00000020 6d 64 35 3d 38 64 39 65 32 62 62 66 64 35 33 35 |md5=8d9e2bbfd535|
00000030 66 35 37 39 64 34 61 39 34 39 62 39 65 62 37 64 |f579d4a949b9eb7d|
00000040 32 33 34 39 0a 75 70 64 61 74 61 62 6c 65 3d 30 |2349.updatable=0|
00000050 0a 61 6c 67 6f 72 69 74 68 6d 3d 30 0a 64 65 66 |.algorithm=0.def|
00000060 69 6e 65 72 5f 75 73 65 72 3d 72 6f 6f 74 0a 64 |iner_user=root.d|
00000070 65 66 69 6e 65 72 5f 68 6f 73 74 3d 6c 6f 63 61 |efiner_host=loca|
00000080 6c 68 6f 73 74 0a 73 75 69 64 3d 32 0a 77 69 74 |lhost.suid=2.wit|
00000090 68 5f 63 68 65 63 6b 5f 6f 70 74 69 6f 6e 3d 30 |h_check_option=0|
000000a0 0a 72 65 76 69 73 69 6f 6e 3d 31 0a 74 69 6d 65 |.revision=1.time|
000000b0 73 74 61 6d 70 3d 32 30 30 36 2d 30 39 2d 32 32 |stamp=2006-09-22|
000000c0 20 31 32 3a 31 34 3a 34 38 0a 63 72 65 61 74 65 | 12:14:48.create|
000000d0 2d 76 65 72 73 69 6f 6e 3d 31 0a 73 6f 75 72 63 |-version=1.sourc|
000000e0 65 3d 73 65 6c 65 63 74 20 35 0a |e=select 5.|

Chapter 12 How MySQL Performs Different Selects

Table of Contents
	12.1 Steps of Select Execution
	12.2 select_resultClass
	12.3 SIMPLE or PRIMARY SELECT
	12.4 Structure Of Complex Select
	12.5 Non-Subquery UNION Execution
	12.6 Derived Table Execution
	12.7 Subqueries
	12.8 Single Select Engine
	12.9 Union Engine
	12.10 Special Engines
	12.11 Explain Execution

12.1 Steps of Select Execution

 Every select is performed in these base steps:

	
 JOIN::prepare

	
 Initialization and linking JOIN
 structure to st_select_lex.

	
 fix_fields() for all items (after
 fix_fields(), we know everything
 about item).

	
 Moving HAVING to
 WHERE if possible.

	
 Initialization procedure if there is one.

	
 JOIN::optimize

	
 Single select optimization.

	
 Creation of first temporary table if needed.

	
 JOIN::exec

	
 Performing select (a second temporary table may be
 created).

	
 JOIN::cleanup

	
 Removing all temporary tables, other cleanup.

	
 JOIN::reinit

	
 Prepare all structures for execution of
 SELECT (with
 JOIN::exec).

12.2 select_resultClass

 This class has a very important role in SELECT
 performance with select_result class and
 classes inherited from it (usually called with a
 select_ prefix). This class provides the
 interface for transmitting results.

 The key methods in this class are the following:

	
 send_fields sends given item list headers
 (type, name, etc.).

	
 send_data sends given item list values as
 row of table of result.

	
 send_error is used mainly for error
 interception, making some operation and then
 ::send_error will be called.

 For example, there are the following
 select_result classes:

	
 select_send used for sending results though
 network layer.

	
 select_export used for exporting data to
 file.

	
 multi_delete used for multi-delete.

	
 select_insert used for
 INSERT ... SELECT ...

	
 multi_update used for multi-update.

	
 select_singlerow_subselect used for row and
 scalar subqueries..

	
 select_exists_subselect used for
 EXISTS/IN/ALL/ANY/SOME
 subqueries.

	
 select_max_min_finder_subselect used for
 min/max subqueries
 (ALL/ANY subquery
 optimization).

12.3 SIMPLE or PRIMARY SELECT

 For performing single primary select, SELECT
 uses the mysql_select function, which does:

	
 allocate JOIN

	
 JOIN::prepare

	
 JOIN::optimize

	
 JOIN::exec

	
 JOIN::cleanup

 In previous versions of MySQL, all SELECT
 operations were performed with the help of this function and
 mysql_select() was not divided into parts.

12.4 Structure Of Complex Select

 There are two structures that describe selects:

	
 st_select_lex
 (SELECT_LEX) for representing
 SELECT itself

	
 st_select_lex_unit
 (SELECT_LEX_UNIT) for grouping several
 selects in a bunch

 The latter item represents UNION operation (the
 absence of UNION is a union with only one
 SELECT and this structure is present in any
 case). In the future, this structure will be used for
 EXCEPT and INTERSECT as
 well.

 For example:

(SELECT ...) UNION (SELECT ... (SELECT...)...(SELECT...UNION...SELECT))
 1 2 3 4 5 6 7

 will be represented as:

--
 level 1
SELECT_LEX_UNIT(2)
|
+---------------+
| |
SELECT_LEX(1) SELECT_LEX(3)
 |
--------------- | --
 | level 2
 +-------------------+
 | |
 SELECT_LEX_UNIT(4) SELECT_LEX_UNIT(6)
 | |
 | +--------------+
 | | |
 SELECT_LEX(4) SELECT_LEX(5) SELECT_LEX(7)

--

 Note: Single subquery 4 has its own
 SELECT_LEX_UNIT.

 The uppermost SELECT_LEX_UNIT (#2 in example)
 is stored in LEX. The first and uppermost
 SELECT_LEX (#1 in example) is stored in LEX,
 too. These two structures always exist.

 At the time of creating or performing any
 JOIN::* operation,
 LEX::current_select points to an appropriate
 SELECT_LEX.

 Only during parsing of global ORDER BY and
 LIMIT clauses (for the whole
 UNION), LEX::current_select
 points to SELECT_LEX_UNIT of this unit, in
 order to store this parameter in this
 SELECT_LEX_UNIT. SELECT_LEX
 and SELECT_LEX_UNIT are inherited from
 st_select_lex_node.

12.5 Non-Subquery UNION Execution

 Non-subquery unions are performed with the help of
 mysql_union(). For now, it is divided into the
 following steps:

	
 st_select_lex_unit::prepare (the same
 procedure can be called for single SELECT
 for derived table => we have support for it in this
 procedure, but we will not describe it here):

	
 Create select_union (inherited from
 select_result) which will write select
 results in this temporary table, with empty temporary
 table entry. We will need this object to store in every
 JOIN structure link on it, but we have
 not (yet) temporary table structure.

	
 Allocate JOIN structures and execute
 JOIN::prepare() for every
 SELECT to get full information about
 types of elements of SELECT list
 (results). Merging types of result fields and storing them
 in special Items (Item_type_holder)
 will be done in this loop, too. Result of this operation
 (list of types of result fields) will be stored in
 st_select_lex_unit::types).

	
 Create a temporary table for storing union results (if
 UNION without ALL
 option, 'distinct' parameter will be passed to the table
 creation procedure).

	
 Assign a temporary table to the
 select_union object created in the
 first step.

	
 st_select_lex_unit::exec

	
 Delete rows from the temporary table if this is not the
 first call.

	
 if this is the first call, call
 JOIN::optimize else
 JOIN::reinit and then
 JOIN::exec for all
 SELECTs
 (select_union will write a result for
 the temporary table). If union is cacheable and this is
 not the first call, the method will do nothing.

	
 Call mysql_select on temporary table
 with global ORDER BY and
 LIMIT parameters after collecting
 results from all SELECTs. A special
 fake_select_lex
 (SELECT_LEX) which is created for
 every UNION will be passed for this
 procedure (this SELECT_LEX also can
 be used to store global ORDER BY and
 LIMIT parameters if brackets used in
 a query).

12.6 Derived Table Execution

 Derived tables is the internal name for subqueries in the
 FROM clause.

 The processing of derived tables is now included in the table
 opening process (open_and_lock_tables() call).
 Routine of execution derived tables and substituting temporary
 table instead of it (mysql_handle_derived())
 will be called just after opening and locking all real tables used
 in query (including tables used in derived table query).

 If lex->derived_tables flag is present, all
 SELECT_LEX structures will be scanned (there is
 a list of all SELECT_LEX structures in reverse
 order named lex->all_selects_list, the first
 SELECT in the query will be last in this list).

 There is a pointer for the derived table,
 SELECT_LEX_UNIT stored in the
 TABLE_LIST structure
 (TABLE_LIST::derived). For any table that has
 this pointer, mysql_derived() will be called.

 mysql_derived():

	
 Creates union_result for writing results in
 this table (with empty table entry, same as for
 UNIONs).

	
 call unit->prepare() to get list of
 types of result fields (it work correctly for single
 SELECT, and do not create temporary table
 for UNION processing in this case).

	
 Creates a temporary table for storing results.

	
 Assign this temporary table to union_result
 object.

	
 Calls mysql_select or
 mysql_union to execute the query.

	
 If it is not explain, then cleanup JOIN
 structures after execution (EXPLAIN needs
 data of optimization phase and cleanup them after whole query
 processing).

	
 Stores pointer to this temporary table in
 TABLE_LIST structure, then this table will
 be used by outer query.

	
 Links this temporary table in
 thd->derived_tables for removing after
 query execution. This table will be closed in
 close_thread_tables if its second parameter
 (bool skip_derived) is true.

12.7 Subqueries

 In expressions, subqueries (that is, subselects) are represented
 by Item inherited from
 Item_subselect.

 To hide difference in performing single SELECTs
 and UNIONs, Item_subselect
 uses two different engines, which provide uniform interface for
 access to underlying SELECT or
 UNION
 (subselect_single_select_engine and
 subselect_union_engine, both are inherited from
 subselect_engine).

 The engine will be created at the time
 Item_subselect is constructed
 (Item_subselect::init method).

 On Item_subselect::fix_fields(),
 engine->prepare() will be called.

 Before calling any value-getting method (val,
 val_int, val_str,
 bring_value (in case of row result))
 engine->exec() will be called, which
 executes the query or just does nothing if subquery is cacheable
 and has already been executed.

 Inherited items have their own select_result classes. There are
 two types of them:

	
 select_singlerow_subselect , to store
 values of given rows in
 Item_singlerow_subselect cache on
 send_data() call, and report error if
 Item_subselect has 'assigned' attribute.

	
 select_exists_subselect just store 1 as
 value of Item_exists_subselect on
 send_data() call. Since
 Item_in_subselect and
 Item_allany_subselect are inherited from
 Item_exists_subselect, they use the same
 select_result class.

 Item_subselect will never call the
 cleanup() procedure for
 JOIN. Every JOIN::cleanup
 will call cleanup() for inner
 JOINs. The uppermost
 JOIN::cleanup will be called by
 mysql_select() or
 mysql_union().

12.8 Single Select Engine

 subselect_single_select_engine:

	
 constructor allocate
 JOIN and store pointers on
 SELECT_LEX and JOIN.

	
 prepare() call
 JOIN::prepare.

	
 fix_length_and_dec() prepare cache and
 receive type and parameters of returning items (called only by
 Item_singlerow_subselect).

	
 exec() drop 'assigned' flag of
 Item_subselect. If this is the first time,
 call JOIN::optimize and
 JOIN::exec(), else do nothing or
 JOIN::reinit()JOIN::exec()
 depending on type of subquery.

12.9 Union Engine

 subselect_union_engine:

	
 constructor just store pointer to
 st_select_lex_union
 (SELECT_LEX_UNION).

	
 prepare() call
 st_select_lex_unit::prepare.

	
 fix_length_and_dec() prepare cache and
 receive type and parameters (maximum of length) of returning
 items (called only by
 Item_singlerow_subselect).

	
 exec() call
 st_select_lex_unit::exec().
 st_select_lex_unit::exec() can drop
 'assigned' flag of Item_subselect if
 st_select_lex_unit::item is not 0.

12.10 Special Engines

 There are special engines used for optimization purposes. These
 engines do not have a full range of features. They can only fetch
 data. The normal engine can be replaced with such special engines
 only during the optimization process.

 Now we have two such engines:

 subselect_uniquesubquery_engine used for:

left_expression IN (SELECT primary_key FROM table WHERE conditions)

 This looks for the given value once in a primary index, checks the
 WHERE condition, and returns was it found or
 not?

	
 subselect_indexsubquery_engine used for:

left_expression IN (SELECT any_key FROM table WHERE conditions)

 This first looks up the value of the left expression in an index
 (checking the WHERE condition), then if value
 was not found, it checks for NULL values so
 that it can return NULL correctly (only if a
 NULL result makes sense, for example if an
 IN subquery is the top item of the
 WHERE clause then NULL will
 not be sought)

 The decision about replacement of the engine happens in
 JOIN::optimize, after calling
 make_join_readinfo, when we know what the best
 index choice is.

12.11 Explain Execution

 For an EXPLAIN statement, for every
 SELECT, mysql_select will be
 called with option SELECT_DESCRIBE.

 For main UNION,
 mysql_explain_union will be called.

 For every SELECT in a given union,
 mysql_explain_union will call
 mysql_explain_select.

 mysql_explain_select will call
 mysql_select with option
 SELECT_DESCRIBE.

 mysql_select creates a JOIN
 for select if it does not already exist (it might already exist
 because if it called for subquery JOIN can be
 created in JOIN::optimize of outer query when
 it decided to calculate the value of the subquery). Then it calls
 JOIN::prepare,
 JOIN::optimize, JOIN::exec
 and JOIN::cleanup as usual.

 JOIN::exec is called for
 SELECT with SELECT_DESCRIBE
 option call select_describe.

 select_describe returns the user description of
 SELECT and calls
 mysql_explain_union for every inner
 UNION.

 PROBLEM: how it will work with global query optimization?

Chapter 13 How MySQL Transforms Subqueries

Table of Contents
	13.1 Item_in_subselect::select_transformer
		13.1.1 Scalar IN Subquery
	13.1.2 Row IN Subquery

	13.2 Item_allany_subselect
	13.3 Item_singlerow_subselect

 The Item_subselect virtual method
 select_transformer is used to rewrite subqueries.
 It is called from Item_subselect::init (which is
 called just after the call to the fix_fields()
 method for all items in JOIN::prepare).

13.1 Item_in_subselect::select_transformer

 Item_in_subselect::select_transformer is
 divided into two parts, one for the scalar left part and one for
 the row left part.

13.1.1 Scalar IN Subquery

 To rewrite a scalar IN subquery, the
 Item_in_subselect::single_value_transformer
 method is used. The scalar IN subquery will
 be replaced with an Item_in_optimizer item.

 An Item_in_optimizer item is a special
 boolean function. On a value request (one of
 val, val_int, or
 val_str methods) it evaluates the left
 expression of the IN by storing its value in
 a cache item (one of Item_cache* items), then
 it tests the cache to see whether it is NULL.
 If left expression (cache) is NULL, then
 Item_in_optimizer returns
 NULL, else it evaluates
 Item_in_subselect.

 Example queries.

a) SELECT * from t1 where t1.a in (SELECT t2.a FROM t2);
b) SELECT * from t1 where t1.a in (SELECT t2.a FROM t2 GROUP BY t2.a);

	
 Item_in_subselect inherits the mechanism
 for getting a value from
 Item_exists_subselect.

	
 Select_transformer stores a reference to
 the left expression in its conditions:

(in WHERE and HAVING in case 'a' and in HAVING in case 'b')

	
 Item from item list of this select (t2.a)
 can be referenced with a special reference
 (Item_ref_null_helper or
 Item_null_helper). This reference informs
 Item_in_optimizer whether item
 (t2.a) is NULL by
 setting the was_null flag.

	
 The return value from Item_in_subselect
 will be evaluated as follows:

	
 If TRUE, return true

	
 If NULL, return null (that is, unknown)

	
 If FALSE, and was_null is set, return
 null

	
 Return FALSE

 <left_expression> IN (SELECT <item>
 ...) will be represented as follows:

 +-----------------+
 |Item_in_optimizer|
 +-----------------+
 |
 +---------------------+------------+
 | |
+-----------------------+ +-----------------+
| <left_expression> | |Item_in_subselect|
| | +-----------------+
+-----------------------+ |
|<left_expression cache>| +-----------+-----------+
| | | |
+-----------------------+ | |
 ^ +----------+ +--------------------+
 +<<<<<<<<<<<<<<<<<| Item_ref | +<<<|Item_ref_null_helper|
 +----------+ V +--------------------+
 V +--------------------+
 +>>>| <item> |
 +--------------------+

 where <<<<<<<<< is
 reference in meaning of Item_ref.

 Item_ref is used to point to
 <left_expression cache>, because at the
 time of transformation we know only the address of the variable
 where the cache pointer will be stored.

 If the select statement has an ORDER BY
 clause, it will be wiped out, because there is no sense in
 ORDER BY without LIMIT
 here.

 If IN subquery union, the condition of every
 select in the UNION will be changed
 individually.

 If a condition needs to be added to the WHERE
 clause, it will be presented as (item OR item IS
 NULL) and
 Item_is_not_null_test(item) will be added to
 the HAVING clause.
 Item_is_not_null_test registers a
 NULL value the way
 Item_ref_null_helper does it, and returns
 FALSE if the argument is NULL. With the above
 trick, we will register NULL value of
 Item even for the case of index optimization
 of a WHERE clause (case 'a' in the following
 example).

 The following are examples of IN
 transformations:

	
 Example 1:

<left_expression> IN (SELECT <item> FROM t WHERE <where_exp>)

 If returning NULL correctly would make sense,
 the above will become:

(SELECT 1 FROM t
 WHERE
 <where_exp> and
 (Item_ref(<cached_left_expression>)=<item> or <Item> is null)
 HAVING Item_is_not_null_test(<item>))

 When a subquery is marked as the top item of the
 WHERE clause, it will become:

(SELECT 1 FROM t
 WHERE
 <where_exp> and
 Item_ref(<cached_left_expression>)=<item>)

 Example 2:

<left_expression> IN (SELECT <item> FROM t
 HAVING <having_expr>
 ORDER BY 1)

 will be represented as

(SELECT <item> as ref_null_helper FROM t
 HAVING <having_exp> AND
 Item_ref(<cached_left_expression>) = Item_ref_null_helper(item))
	
 Example 3:

<left_expression> IN (SELECT <item> UNION ...)

 will become

(SELECT 1
 HAVING Item_ref(<cached_left_expression>)= <Item_null_helper(<Item>)>
 UNION ...)

 (HAVING without FROM is a
 syntax error, but a HAVING condition is
 checked even for subquery without FROM)

	
 Example 4:

<left_expression> IN (select <item>)

 will be completely replaced with
 <left_expression> = <item>

 Now conditions (WHERE (a) or HAVING (b)) will
 be changed, depending on the select, in the following way:

 If subquery contains a HAVING clause,
 SUM() function or GROUP BY
 (example 1), then the item list will be unchanged and an
 Item_ref_null_helper reference will be
 created on item list element. A condition will be added to the
 HAVING.

 If the subquery does not contain HAVING,
 SUM() function, or GROUP
 BY (example 2), then:

	
 item list will be replaced with 1.

	
 left_expression cache> = <item> or is null
 <item> will be added to the
 WHERE clause and a special
 is_not_null(item) will be added to the
 HAVING, so null values will be
 registered. If returning NULL wouldn't
 make correct sense, then only left_expression
 cache> = <item> will be added to the
 WHERE clause. If this subquery does not
 contain a FROM clause or if the subquery
 contains UNION (example 3), then
 left_expression cache> =
 Item_null_helper(<item>) will be added to
 the HAVING clause.

 A single select without a FROM clause will be
 reduced to just <left_expression> =
 <item> without use of
 Item_in_optimizer.

13.1.2 Row IN Subquery

 To rewrite a row IN subquery, the method used
 is Item_in_subselect::row_value_transformer.
 It works in almost the same way as the scalar analog, but works
 with Item_cache_row for caching left
 expression and uses references for elements of
 Item_cache_row. To refer to the item list, it
 uses Item_ref_null_helper(ref_array+i).

 A subquery with HAVING,
 SUM() function, or GROUP
 BY will transformed in the following way:

ROW(l1, l2, ... lN) IN (SELECT i1, i2, ... iN FROM t HAVING <having_expr>)

 will become:

(SELECT i1, i2, ... iN FROM t
 HAVING <having_expr> and <cache_l0> = <Item_ref_null_helper(ref_array[0]> AND <cache_l1> = <Item_ref_null_helper(ref_array[1])> AND
 ...
 <cache_lN-1> = <Item_ref_null_helper(ref_array[N-1]>)

 SELECT without FROM will
 be transformed in this way, too.

 It will be the same for other subqueries, except for the
 WHERE clause.

13.2 Item_allany_subselect

 Item_allany_subselect is inherited from
 Item_in_subselect.
 ALL/ANY/SOME
 use the same algorithm (and the same method of
 Item_in_subselect) as scalar
 IN, but use a different function instead of
 =.

 ANY/SOME use the same
 function that was listed after the left expression.

 ALL uses an inverted function, and all
 subqueries passed as arguments to
 Item_func_not_all
 (Item_func_not_all is a special
 NOT function used in optimization, see
 following).

 But before above transformation ability of independent
 ALL/ANY/SOME
 optimization will be checked (query is independent, operation is
 one of <, =<,
 >, >=, returning
 correct NULL have no sense (top level of
 WHERE clause) and it is not row subquery).

 For such queries, the following transformation can be done:

val > ALL (SELECT...) -> val > MAX (SELECT...)
val < ALL (SELECT...) -> val < MIN (SELECT...)
val > ANY (SELECT...) -> val > MIN (SELECT...)
val < ANY (SELECT...) -> val < MAX (SELECT...)
val >= ALL (SELECT...) -> val >= MAX (SELECT...)
val <= ALL (SELECT...) -> val <= MIN (SELECT...)
val >= ANY (SELECT...) -> val >= MIN (SELECT...)
val <= ANY (SELECT...) -> val <= MAX (SELECT...)

 ALL subqueries already have
 NOT before them. This problem can be solved
 with help of special NOT, which can bring 'top'
 tag to its argument and correctly process NULL
 if it is 'top' item (return TRUE if argument is
 NULL if it is 'top' item). Let's call this
 operation _NOT_. Then we will have following
 table of transformation:

val > ALL (SELECT...) -> _NOT_ val >= MAX (SELECT...)
val < ALL (SELECT...) -> _NOT_ val <= MIN (SELECT...)
val > ANY (SELECT...) -> val < MIN (SELECT...)
val < ANY (SELECT...) -> val > MAX (SELECT...)
val >= ALL (SELECT...) -> _NOT_ val > MAX (SELECT...)
val <= ALL (SELECT...) -> _NOT_ val < MIN (SELECT...)
val >= ANY (SELECT...) -> val <= MIN (SELECT...)
val <= ANY (SELECT...) -> val >= MAX (SELECT...)

 If subquery does not contain grouping and aggregate function,
 above subquery can be rewritten with
 MAX()/MIN() aggregate
 function, for example:

val > ANY (SELECT item ...) -> val < (SELECT MIN(item)...)

 For queries with aggregate function and/or grouping, special
 Item_maxmin_subselect will be used. This
 subquery will return the maximum (minimum) value of the result
 set.

13.3 Item_singlerow_subselect

 Item_singlerow_subselect will be rewritten only
 if it contains no FROM clause, and it is not
 part of UNION, and it is a scalar subquery. For
 now, there will be no conversion of subqueries with field or
 reference on top of item list (on the one hand, we can't change
 the name of such items, but on the other hand, we should assign to
 it the name of the whole subquery which will be reduced).

 The following will not be reduced:

SELECT a;
SELECT 1 UNION SELECT 2;
SELECT 1 FROM t1;

 The following select will be reduced:

SELECT 1;
SELECT a+2;

 Such a subquery will be completely replaced by its expression from
 item list and its SELECT_LEX and
 SELECT_LEX_UNIT will be removed from
 SELECT_LEX's tree.

 But every Item_field and
 Item_ref of that expression will be marked for
 processing by a special fix_fields() procedure.
 The fix_fields() procedures for such
 Items will be performed in the same way as for
 items of an inner subquery. Also, if this expression is
 Item_fields or Item_ref,
 then the name of this new item will be the same as the name of
 this item (but not (SELECT ...)). This is done
 to prevent broken references on such items from more inner
 subqueries.

Chapter 14 MySQL Client/Server Protocol

Table of Contents
	14.1 Overview
		14.1.1 Basic Data Types
	14.1.2 MySQL Packets
	14.1.3 Generic Response Packets
	14.1.4 Character Set
	14.1.5 Connection Lifecycle
	14.1.6 Command Phase

	14.2 Connection Phase
		14.2.1 Initial Handshake
	14.2.2 Auth Phase Fast Path
	14.2.3 Authentication Method Mismatch
	14.2.4 Authentication After COM_CHANGE_USER Command
	14.2.5 Connection Phase Packets
	14.2.6 Capability Flags

	14.3 Authentication Method
		14.3.1 Limitations
	14.3.2 Old Password Authentication
	14.3.3 Secure Password Authentication
	14.3.4 Clear Text Authentication
	14.3.5 Windows Native Authentication
	14.3.6 SHA256

	14.4 Compression
		14.4.1 Compressed Packet
	14.4.2 Compressed Packet Header
	14.4.3 Compressed Payload
	14.4.4 Uncompressed Payload

	14.5 SSL
	14.6 Text Protocol
		14.6.1 COM_SLEEP
	14.6.2 COM_QUIT
	14.6.3 COM_INIT_DB
	14.6.4 COM_QUERY
	14.6.5 COM_FIELD_LIST
	14.6.6 COM_CREATE_DB
	14.6.7 COM_DROP_DB
	14.6.8 COM_REFRESH
	14.6.9 COM_SHUTDOWN
	14.6.10 COM_STATISTICS
	14.6.11 COM_PROCESS_INFO
	14.6.12 COM_CONNECT
	14.6.13 COM_PROCESS_KILL
	14.6.14 COM_DEBUG
	14.6.15 COM_PING
	14.6.16 COM_TIME
	14.6.17 COM_DELAYED_INSERT
	14.6.18 COM_CHANGE_USER
	14.6.19 COM_RESET_CONNECTION
	14.6.20 COM_DAEMON

	14.7 Prepared Statements
		14.7.1 Binary Protocol Resultset
	14.7.2 Binary Protocol Resultset Row
	14.7.3 Binary Protocol Value
	14.7.4 COM_STMT_PREPARE
	14.7.5 COM_STMT_SEND_LONG_DATA
	14.7.6 COM_STMT_EXECUTE
	14.7.7 COM_STMT_CLOSE
	14.7.8 COM_STMT_RESET

	14.8 Stored Procedures
		14.8.1 Multi-Resultset
	14.8.2 Multi-Statement
	14.8.3 COM_SET_OPTION
	14.8.4 COM_STMT_FETCH

	14.9 Replication Protocol
		14.9.1 Binlog File
	14.9.2 Binlog Network Stream
	14.9.3 Binlog Version
	14.9.4 Binlog Event
	14.9.5 COM_BINLOG_DUMP
	14.9.6 COM_BINLOG_DUMP_GTID
	14.9.7 COM_TABLE_DUMP
	14.9.8 COM_CONNECT_OUT
	14.9.9 COM_REGISTER_SLAVE

	14.10 Row-Based Replication
		14.10.1 TABLE_MAP_EVENT
	14.10.2 ROWS_EVENT
	14.10.3 ROWS_QUERY_EVENT

	14.11 Semi-Synchronous Replication
		14.11.1 Semi-Synchronous Binlog Event
	14.11.2 Semi-Synchronous ACK Packet

	14.12 Protocol Examples
		14.12.1 A mysql Client Logs In
	14.12.2 ProtocolText::Resultset
	14.12.3 Auth Method Switch
	14.12.4 SHA256 Example

	14.13 Source Code Locations
		14.13.1 MySQL Server
	14.13.2 Binary Protocol Type Implementation

14.1 Overview

 The MySQL protocol is used between MySQL Clients and a MySQL
 Server. It is implemented by:

	
 Connectors (Connector/C, Connector/J, and so forth)

	
 MySQL Proxy

	
 Communication between master and slave replication servers

 The protocol supports these features:

	
 Transparent encryption using SSL

	
 Transparent compression using
 Compression

	
 A Connection Phase
 where capabilities and authentication data are exchanged

	
 A Command Phase which
 supports the needs of Section 14.7, “Prepared Statements”
 and Section 14.8, “Stored Procedures”

 The documentation is based on the source files of the MySQL Server
 such as:

	
 sql/sql_parse.cc for the protocol basics

	
 dispatch_command()

	
 sql/sql_prepare.cc for the prepared statement protocol

	
 mysqld_stmt_prepare()

	
 mysqld_stmt_execute()

	
 mysqld_stmt_close()

	
 mysqld_stmt_reset()

	
 mysqld_stmt_fetch()

	
 mysql_stmt_get_longdata()

	
 sql/sql_repl.cc for the binlog protocol

	
 mysql_binlog_send()

	
 sql/protocol.cc for the value and type encoding

14.1.1 Basic Data Types

 The protocol has a few very basic types that are used throughout
 the protocol:

	
 Integers

	
 Strings

14.1.1.1 Integer Types

 The MySQL Protocol has a set of possible encodings for
 integers:

	
 Fixed-length integers

	
 Length-encoded integers

14.1.1.1.1 Fixed-Length Integer Types

Protocol::FixedLengthInteger

 A fixed-length integer stores its value in a series of bytes
 with the least significant byte first.

	
 int<1>

	
 int<2>

	
 int<3>

	
 int<4>

	
 int<6>

	
 int<8>

Example

 A int<3> with the value
 1 is stored as:

01 00 00

14.1.1.1.2 Length-Encoded Integer Type

Protocol::LengthEncodedInteger

 An integer that consumes 1, 3, 4, or 9 bytes, depending on
 its numeric value

 To convert a number value into a length-encoded integer:

	
 If the value is < 251, it is stored as a 1-byte
 integer.

	
 If the value is ≥ 251 and <
 (216), it is stored as
 fc + 2-byte integer.

	
 If the value is ≥ (216)
 and < (224), it is stored
 as fd + 3-byte integer.

	
 If the value is ≥ (224)
 and < (264) it is stored
 as fe + 8-byte integer.

Note

 Up to MySQL 3.22, 0xfe was followed by
 a 4-byte integer.

 To convert a length-encoded integer into its numeric value,
 check the first byte:

	
 If it is < 0xfb, treat it as a 1-byte integer.

	
 If it is 0xfc, it is followed by a 2-byte integer.

	
 If it is 0xfd, it is followed by a 3-byte integer.

	
 If it is 0xfe, it is followed by a 8-byte integer.

Caution

 If the first byte of a packet is a length-encoded integer
 and its byte value is 0xfe, you must
 check the length of the packet to verify that it has
 enough space for a 8-byte integer.

 If not, it may be an
 EOF_Packet
 instead.

 Depending on the context, the first byte may also have other
 meanings:

	
 If it is 0xfb, it is represents a
 NULL in a
 ProtocolText::ResultsetRow.

	
 If it is 0xff and is the first byte of an
 ERR_Packet

Caution

 0xff as the first byte of a
 length-encoded integer is undefined.

Implemented By

 int<lenenc>

Example

fa -- 250
fc fb 00 -- 251

14.1.1.2 String Types

 Strings are sequences of bytes and appear in a few forms in
 the protocol.

Protocol::FixedLengthString

 Fixed-length strings have a known, hardcoded length.

 An example is the sql-state of the
 ERR_Packet
 which is always 5 bytes long.

Implemented By

 string<fix>

Protocol::NulTerminatedString

 Strings that are terminated by a [00] byte.

Implemented By

 string<NUL>

Protocol::VariableLengthString:

 The length of the string is determined by another field or is
 calculated at runtime

Implemented By

 string<var>

Protocol::LengthEncodedString

 A length encoded string is a string that is prefixed with
 length encoded
 integer describing the length of the string.

 It is a special case of
 Protocol::VariableLengthString

Fields
	
 length
 (int<lenenc>) -- length of the
 string

	
 string
 (string<fix>) -- [len=$length]
 string

Implemented By

 string<lenenc>

Protocol::RestOfPacketString

 If a string is the last component of a packet, its length can
 be calculated from the overall packet length minus the current
 position.

Implemented By

 string<EOF>

14.1.1.3 Describing Packets

 In this document we describe each packet by first defining its
 payload and provide an
 example showing each packet that is sent,
 including its packet header:

<packetname>
 <description>

 direction: client -> server
 response: <response>

 payload:
 <type> <description>

 Example:
 01 00 00 00 01

 The <type> describes the sequence of
 bytes of the packet:

	Type	Description
	int<1>	1 byte Protocol::FixedLengthInteger
	int<2>	2 byte Protocol::FixedLengthInteger
	int<3>	3 byte Protocol::FixedLengthInteger
	int<4>	4 byte Protocol::FixedLengthInteger
	int<6>	6 byte Protocol::FixedLengthInteger
	int<8>	8 byte Protocol::FixedLengthInteger
	int<lenenc>	Protocol::LengthEncodedInteger
	string<lenenc>	Protocol::LengthEncodedString
	string<fix>	Protocol::FixedLengthString
	string<var>	Protocol::VariableLengthString:
	string<EOF>	Protocol::RestOfPacketString
	string<NUL>	Protocol::NulTerminatedString

Note

 Some packets have optional fields or a different layout
 depending on the
 Protocol::CapabilityFlags
 that are sent as part of the
 Protocol::HandshakeResponse
 packet.

 If a field has a fixed value, its description shows it as a
 hex value in brackets like this: [00]

14.1.2 MySQL Packets

 If a MySQL client or server wants to send data, it:

	
 Splits the data into packets of size
 (224−1) bytes

	
 Prepends to each chunk a packet header

Protocol::Packet

 Data between client and server is exchanged in packets of max
 16MByte size.

Payload
	Type	Name	Description
	int<3>	payload_length	Length of the payload. The number of bytes in the packet beyond the
 initial 4 bytes that make up the packet header.
	int<1>	sequence_id	Sequence ID
	string<var>	payload	[len=payload_length] payload
 of the packet

Example

 A
 COM_QUIT
 looks like this:

	
01 00 00 00 01

	
* length: 1
* sequence_id: x00
* payload: 0x01

14.1.2.1 Sending More Than 16Mbyte

 If the payload is larger than or equal to
 224−1 bytes the length is set
 to 224−1 (ff ff
 ff) and a additional packets are sent with the rest
 of the payload until the payload of a packet is less than
 224−1 bytes.

 Sending a payload of 16 777 215
 (224−1) bytes looks like:

ff ff ff 00 ...
00 00 00 01

14.1.2.2 Sequence ID

 The sequence-id is incremented with each packet and may wrap
 around. It starts at 0 and is reset to 0 when a new command
 begins in the Command
 Phase.

14.1.3 Generic Response Packets

 For most commands the client sends to the server, the server
 returns one of these packets in response:

	
 Section 14.1.3.1, “OK_Packet”

	
 Section 14.1.3.2, “ERR_Packet”

	
 Section 14.1.3.3, “EOF_Packet”

14.1.3.1 OK_Packet

 An OK packet is sent from the server to the client to signal
 successful completion of a command. As of MySQL 5.7.5, OK
 packes are also used to indicate EOF, and EOF packets are
 deprecated.

 If
 CLIENT_PROTOCOL_41
 is set, the packet contains a warning count.

Table 14.1 Payload of OK Packet
	Type	Name	Description
	int<1>	header	[00] or [fe] the OK packet header
	int<lenenc>	affected_rows	affected rows
	int<lenenc>	last_insert_id	last insert-id
	if capabilities &
 CLIENT_PROTOCOL_41
 {
	 int<2>	status_flags	Status Flags
	 int<2>	warnings	number of warnings
	} elseif capabilities &
 CLIENT_TRANSACTIONS
 {
	 int<2>	status_flags	Status Flags
	}
	if capabilities &
 CLIENT_SESSION_TRACK
 {
	 string<lenenc>	info	human readable status information
	 if
 status_flags
 &
 SERVER_SESSION_STATE_CHANGED
 {
	 string<lenenc>	session_state_changes	session state info
	 }
	} else {
	 string<EOF>	info	human readable status information
	}

 These rules distinguish whether the packet represents OK or
 EOF:

	
 OK: header = 0 and length of packet
 > 7

	
 EOF: header = 0xfe and length of packet
 < 9

 To ensure backward compatibility between old (prior to 5.7.5)
 and new (5.7.5 and up) versions of MySQL, new clients
 advertise the
 CLIENT_DEPRECATE_EOF
 flag:

	
 Old clients do not know about this flag and do not
 advertise it. Consequently, the server does not send OK
 packets that represent EOF. (Old servers never do this,
 anyway. New servers recognize the absence of the flag to
 mean they should not.)

	
 New clients advertise this flag. Old servers do not know
 this flag and do not send OK packets that represent EOF.
 New servers recognize the flag and can send OK packets
 that represent EOF.

Example

 OK with
 CLIENT_PROTOCOL_41.
 0 affected rows, last-insert-id was 0, AUTOCOMMIT enabled, 0
 warnings. No further info.

	07 00 00 02 00 00 00 02 00 00 00

14.1.3.1.1 Session State Information

 State-change information is sent in the OK packet as a array
 of state-change blocks which are made up of:

Table 14.2 Layout of Changed Session
 Information
	Type	Name	Description
	int<1>	type	type of data
	string<lenenc>	data	data of the changed session info

Table 14.3 Types of State Change Information
	Name	Value	Description
	SESSION_TRACK_SYSTEM_VARIABLES	0x00	one or more system variables changed. See also:
 session_track_system_variables
	SESSION_TRACK_SCHEMA	0x01	schema changed. See also:
 session_track_schema
	SESSION_TRACK_STATE_CHANGE	0x02	"track state change" changed. See also:
 session_track_state_change
	SESSION_TRACK_GTIDS	0x03	"track GTIDs" changed. See also:
 session_track_gtids

 Interpretation of the
 data
 field depends on the
 type
 value:

	
 SESSION_TRACK_SYSTEM_VARIABLES

		Type	Name	Description
	string<lenenc>	name	name of the changed system variable
	string<lenenc>	value	value of the changed system variable

Example

 After a SET autocommit = OFF
 statement:

	00 0f[image: 1] 0a 61 75 74 6f 63 6f 6d 6d 69 74 03 4f 46
46
autocommit.OF
F

	[image: 1]
	
 The length of the
 data
 field.

	
 SESSION_TRACK_SCHEMA

		Type	Name	Description
	string<lenenc>	name	name of the changed schema

Example

 After a USE test statement:

	01 05 04 74 65 73 74
	...test

	
 SESSION_TRACK_STATE_CHANGE

	
 A flag byte that indicates whether session state
 changes occurred. This flag is represented as an ASCII
 value. Example:

	Type	Name	Description
	string<lenenc>	is_tracked	[31] ("1") if state tracking got enabled.

Example

 After a SET SESSION
 session_track_state_change = 1 statement:

	03 02 01 31
	...1

14.1.3.2 ERR_Packet

 This packet signals that an error occurred. It contains a SQL
 state value if
 CLIENT_PROTOCOL_41
 is enabled.

Payload
	Type	Name	Description
	int<1>	header	[ff] header of the ERR packet
	int<2>	error_code	error-code
	if capabilities &
 CLIENT_PROTOCOL_41
 {
	 string[1]	sql_state_marker	# marker of the SQL State
	 string[5]	sql_state	SQL State
	}
	string<EOF>	error_message	human readable error message

Example
	
17 00 00 01 ff 48 04 23 48 59 30 30 30 4e 6f 20
74 61 62 6c 65 73 20 75 73 65 64
	
.....H.#HY000No
tables used

14.1.3.3 EOF_Packet

 If
 CLIENT_PROTOCOL_41
 is enabled, the EOF packet contains a warning count and status
 flags.

Note

 In the MySQL client/server protocol, EOF and OK packets
 serve the same purpose, to mark the end of a query execution
 result. Due to changes in MySQL 5.7 in the OK packet (such
 as session state tracking), and to avoid repeating the
 changes in the EOF packet, the EOF packet is deprecated as
 of MySQL 5.7.5.

Caution

 The EOF packet may appear in places where a
 Protocol::LengthEncodedInteger
 may appear. You must check whether the packet length is less
 than 9 to make sure that it is a EOF packet.

Payload
	Type	Name	Description
	int<1>	header	[fe] EOF header
	if capabilities &
 CLIENT_PROTOCOL_41
 {
	 int<2>	warnings	number of warnings
	 int<2>	status_flags	Status Flags
	}

Example

 A MySQL 4.1 EOF packet with: 0 warnings, AUTOCOMMIT enabled.

	05 00 00 05 fe 00 00 02 00

14.1.3.4 Status Flags

 The status flags are a bit-field.

Protocol::StatusFlags
	Flag	Value	Comment
	SERVER_STATUS_IN_TRANS	0x0001	a transaction is active
	SERVER_STATUS_AUTOCOMMIT	0x0002	auto-commit is enabled
	SERVER_MORE_RESULTS_EXISTS	0x0008	
	SERVER_STATUS_NO_GOOD_INDEX_USED	0x0010	
	SERVER_STATUS_NO_INDEX_USED	0x0020	
	SERVER_STATUS_CURSOR_EXISTS	0x0040	Used by Binary
 Protocol Resultset to signal that
 COM_STMT_FETCH
 must be used to fetch the row-data.
	SERVER_STATUS_LAST_ROW_SENT	0x0080	
	SERVER_STATUS_DB_DROPPED	0x0100	
	SERVER_STATUS_NO_BACKSLASH_ESCAPES	0x0200	
	SERVER_STATUS_METADATA_CHANGED	0x0400	
	SERVER_QUERY_WAS_SLOW	0x0800	
	SERVER_PS_OUT_PARAMS	0x1000	
	SERVER_STATUS_IN_TRANS_READONLY	0x2000	in a read-only transaction
	SERVER_SESSION_STATE_CHANGED	0x4000	connection state information has changed

14.1.4 Character Set

 MySQL has a very flexible character set support as documented in
 Character Set Support. The list of character sets and their
 IDs can be queried as follows:

SELECT id, collation_name FROM information_schema.collations ORDER BY id;
+----+-------------------+
| id | collation_name |
+----+-------------------+
1	big5_chinese_ci
2	latin2_czech_cs
3	dec8_swedish_ci
4	cp850_general_ci
5	latin1_german1_ci
6	hp8_english_ci
7	koi8r_general_ci
8	latin1_swedish_ci
9	latin2_general_ci
10	swe7_swedish_ci
+----+-------------------+

 The following table shows a few common character sets.

	
 Number

	
 Hex

	
 Character Set Name

	
 8

	
 0x08

	
 latin1_swedish_ci

	
 33

	
 0x21

	
 utf8_general_ci

	
 63

	
 0x3f

	
 binary

Protocol::CharacterSet

 A character set is defined in the protocol as a integer.

Fields
	
 charset_nr
 (2) --
 number of the character set and collation

14.1.5 Connection Lifecycle

 The MySQL Protocol

	
 Connection Phase

	
 Command Phase

14.1.6 Command Phase

 In the command phase, the client sends a command packet with the
 sequence-id [00]:

13 00 00 00 03 53 ...
01 00 00 00 01
 ^^- command-byte
 ^^---- sequence-id == 0

 The first byte of the payload describes the command-type like:

	
 Hex

	
 Constant Name

	
 00

	
 COM_SLEEP

	
 01

	
 COM_QUIT

	
 02

	
 COM_INIT_DB

	
 03

	
 COM_QUERY

	
 04

	
 COM_FIELD_LIST

	
 05

	
 COM_CREATE_DB

	
 06

	
 COM_DROP_DB

	
 07

	
 COM_REFRESH

	
 08

	
 COM_SHUTDOWN

	
 09

	
 COM_STATISTICS

	
 0a

	
 COM_PROCESS_INFO

	
 0b

	
 COM_CONNECT

	
 0c

	
 COM_PROCESS_KILL

	
 0d

	
 COM_DEBUG

	
 0e

	
 COM_PING

	
 0f

	
 COM_TIME

	
 10

	
 COM_DELAYED_INSERT

	
 11

	
 COM_CHANGE_USER

	
 12

	
 COM_BINLOG_DUMP

	
 13

	
 COM_TABLE_DUMP

	
 14

	
 COM_CONNECT_OUT

	
 15

	
 COM_REGISTER_SLAVE

	
 16

	
 COM_STMT_PREPARE

	
 17

	
 COM_STMT_EXECUTE

	
 18

	
 COM_STMT_SEND_LONG_DATA

	
 19

	
 COM_STMT_CLOSE

	
 1a

	
 COM_STMT_RESET

	
 1b

	
 COM_SET_OPTION

	
 1c

	
 COM_STMT_FETCH

	
 1d

	
 COM_DAEMON

	
 1e

	
 COM_BINLOG_DUMP_GTID

	
 1f

	
 COM_RESET_CONNECTION

 The commands belong to:

	
 The Text Protocol

	
 Prepared
 Statements

	
 Stored Procedures

	
 The Replication
 Protocol

14.2 Connection Phase

 The Connection Phase performs these tasks:

	
 exchange the capabilities of client and server

	
 setup SSL communication channel if requested

	
 authenticate the client against the server

 It starts with the client connect()ing to the
 server which may send a ERR
 packet and finish the handshake or send a
 Initial
 Handshake Packet which the client answers with a
 Handshake
 Response Packet. At this stage client can request
 SSL connection, in which case an SSL communication channel is
 established before client sends its authentication response.

Note

 In case the server sent a
 ERR
 packet as first packet it will happen before
 the client and server negotiated any capabilities. Therefore the
 ERR packet will not contain the SQL-state.

 After initial handshake, server informs client about the method to
 be used for authentication (unless it was already established
 during the handshake) and the authentication exchange continues
 until server either accepts connection by sending an
 OK_Packet
 or rejects it with
 ERR_Packet.

[image: Connection Phase]
14.2.1 Initial Handshake

 Initial Handshake starts with server sending the
 Initial
 Handshake Packet. After this, optionally,
 client can request an SSL connection to be established with
 SSL
 Connection Request Packet, and then client
 sends the
 Handshake
 Response Packet.

14.2.1.1 Plain Handshake

	
 server sending
 Initial
 Handshake Packet

	
 client replying with
 Handshake
 Response Packet

[image: Plain Handshake]

14.2.1.2 SSL Handshake

	
 server sending
 Initial
 Handshake Packet

	
 client replying with
 SSL
 Connection Request Packet

	
 the ususal SSL exchange leading to establishing SSL
 connection

	
 client sends
 Handshake
 Response Packet

[image: SSL Handshake]

14.2.1.3 Capability Negotiation

 To permit an old client to connect to newer servers, the
 initial
 handshake contains

	
 the MySQL Server version

	
 the server's
 capabilities

 The client should only announce the capabilities in the
 Handshake
 Response Packet that it has in common with the server.

 They can agree on:

	
 use of status
 flags

	
 use of SQL states
 for error-codes

	
 authentication
 methods

	
 SSL support

	
 Compression

14.2.1.4 Determining Authentication Method

 Method used for authentication is tied to the user account and
 stored in the plugin column of
 mysql.user table. Client informs about the
 user account it wants to log into in the
 Handshake
 Response Packet. Only then server can look-up
 the mysql.user table and find the
 authentication method to be used.

 However, to save some round-trips, server and client start
 authentication exchange already in the initial handshake using
 an optimistic guess of the authentication method to be used.

 Server uses its default authentication method to produce
 intial authentication data payload and sends it to the client
 inside
 Initial
 Handshake Packet together with the name of
 the method used. Client can include in the
 Handshake
 Response Packet its reply to the
 authentication data sent by server.

 When including authentication reply in the
 Handshake
 Response Packet, client is not obliged to use
 the same authentication method that was indicated by server in
 the
 Initial
 Handshake Packet. The name of the
 authentication method used by client is stored in the packet.
 If the guessed authentication method used either by the client
 or the server in the initial handshake was not correct, server
 informs client which authentication method should be used
 using
 Authentication
 Method Switch Request Packet (see
 Section 14.2.3, “Authentication Method Mismatch”).

 Up to MySQL 4.0 the MySQL protocol only supported the
 Old
 Password Authentication, in MySQL 4.1 the
 Secure
 Password Authentication method was added and
 in MySQL 5.5 arbitrary authentication methods can be
 implemented by means of authentication plugins.

 If client or server do not support pluggable authentication
 (CLIENT_PLUGIN_AUTH
 capability flag is not set) then the authentication method
 used is inferred from client and server capabilities as
 follows:

	
 The method used is
 Old
 Password Authentication if
 CLIENT_PROTOCOL_41
 or
 CLIENT_SECURE_CONNECTION
 are not set.

	
 The method used is
 Secure
 Password Authentication if both
 CLIENT_PROTOCOL_41
 and
 CLIENT_SECURE_CONNECTION
 are set but
 CLIENT_PLUGIN_AUTH
 is not set.

14.2.2 Auth Phase Fast Path

 Assume that client wants to log in as user U and that user
 account uses authentication method M. The fast authentication
 path is used if both client and server used method M to generate
 authentication data in the initial handshake. In that case the
 first round of authentication has been already commenced during
 the handshake. Now, dependign on the authentication method,
 further authentication data can be exchanged until server either
 refuses or accepts connection.

14.2.2.1 Successful Authentication

 A successful fast authentication path looks as follows:

	
 the client connecting to the server

	
 the server responds with the
 Initial
 Handshake Packet using auth method M

	
 the client sends the
 Handshake
 Response Packet using the same method M

	
 client and server possibly exchange further packets as
 required by authentication method M

	
 the server responds with
 OK_Packet

[image: Successful Authentication]

 The packets which server sends in step 4 are the
 Extra
 Authentication Data packet prefixed with
 0x01, to distinguish them from the
 OK_Packet
 or
 ERR_Packet.

Note

 Many authentication methods, including the native mysql
 password methods, consists of a single challenge--response
 exchange. In that case no extra packets are exchanged in
 step 4 and server sends
 OK_Packet
 directly after receiving
 Handshake
 Response Packet (provided that client is
 authorized).

14.2.2.2 Authentication Fails

 Server indicates that client is not permitted to connect by
 sending
 ERR_Packet.
 This can happen at any moment after initial handshake.

	
 the client connecting to the server

	
 the server responds with the
 Initial
 Handshake Packet

	
 the client sends the
 Handshake
 Response Packet

	
 client and server possibly exchange further packets as
 required by the authentication method used

	
 the server responds with
 ERR_Packet
 and closes connection

[image: Authentication Fails]

 Again, the
 Extra
 Authentication Data packets sent by server
 during step 4 start with 0x01 byte and thus can never be
 confused with the
 ERR_Packet.

14.2.3 Authentication Method Mismatch

 Assume that client wants to log in as user U and that user
 account uses uthentication method M. If

	
 server's default method used to generate authentication
 payload for
 Initial
 Handshake Packet was different than M, or

	
 method used by client to generate authentication reply in
 Handshake
 Response Packet was different than M

 then there is an authentication method missmatch and
 authentication exchange must be restarted using the correct
 authentication method.

Note
	
 The missmatch can happen even if client and server used
 the same authentication method in the initial handshake,
 but this method was different from the method M required
 by the user account.

	
 In the 4.1+ server the default authentication method is
 always
 Secure
 Password Authentication. For mysql client
 this is configurable with
 --default-auth option. Note hovewer,
 that as long as server uses
 Secure
 Password Authentication as its default
 method, there is no point in changing client's default
 authentication method to anything else. Doing so will
 always lead to method missmatch and the following
 authentication method switch request from server.

	
 A sensibe thing to do for a client would be to see the
 server's default authentication method announced in the
 Initial
 Handshake Packet and try to use the same
 method for generating the
 Handshake
 Response Packet. However, this behavior
 is not yet implemented in the current mysql client
 library.

 If authentication method missmatch happens, server sends to
 client the
 Authentication
 Method Switch Request Packet which contains the
 name of the authentication method to be used and the first
 authentication payload generated by the new method. Client
 should switch to the requested authentication method and
 continue exchange as dictated by that method. If client does not
 know the requested method it should disconnect.

14.2.3.1 Authentication Method Change

	
 the client connecting to the server

	
 the server responds with the
 Initial
 Handshake Packet

	
 the client sends the
 Handshake
 Response Packet

	
 the server responds with the
 Authentication
 Method Switch Request Packet to tell the
 client which authentication method to use.

	
 client and server exchange further packets as required by
 the authentication method used

	
 the server responds with
 OK_Packet
 or rejects connection with
 ERR_Packet.

[image: Authentication Method Change]

14.2.3.2 Insufficient Client Capabilities

 Server will reject connection with
 ERR_Packet
 if it discovers that client capabilities are not sufficient to
 complete authenticaiton. This can happen in the following
 situations:

	
 A client which does not support pluggable authentication
 (CLIENT_PLUGIN_AUTH
 flag not set) connects to an account which uses
 authentication method different from
 Secure
 Password Authentication or
 Old
 Password Authentication.

	
 A client which does not support secure authentication
 (CLIENT_SECURE_CONNECTION
 flag not set) connects to an account which uses
 authentication method different from
 Old
 Password Authentication.

	
 Server's default authentication method used to generate
 authentication data in the
 Initial
 Handshake Packet is different from
 Secure
 Password Authentication and client does
 not support pluggable authentication
 (CLIENT_PLUGIN_AUTH
 flag not set).

 In either of these cases authentication phase will look as
 follows:

	
 the client connecting to the server

	
 the server responds with the
 Initial
 Handshake Packet

	
 the client sends the
 Handshake
 Response Packet

	
 server recognizes that client does not have enough
 capabilities to handle required authentication method,
 sends
 ERR_Packet
 and closes connection.

[image: Insufficient Client Capabilities]

14.2.3.3 New Authentication Method Not Known by Client

 Even if client supports external authentication
 (CLIENT_PLUGIN_AUTH
 flag is set) the new authentication method indicated in the
 Authentication
 Method Switch Request Packet might be not
 know to it. In that case client simply disconnects.

	
 the client connecting to the server

	
 the server responds with the
 Initial
 Handshake Packet

	
 the client sends the
 Handshake
 Response Packet

	
 the server responds with the
 Authentication
 Method Switch Request Packet to tell the
 client which authentication method to use.

	
 client discovers that it does not know the authentication
 method requested by server -- it disconnects.

[image: New Authentication Method Not Known by Client]

14.2.3.4 Non-CLIENT_PLUGIN_AUTH Clients

 The only situation where server will request authentication
 method change from a client which does not set
 CLIENT_PLUGIN_AUTH
 flag is when the following conditions hold:

	
 the client connects to an account which uses
 Old
 Password Authentication.

	
 the client supports secure authentication
 (CLIENT_SECURE_CONNECTION
 flag is set),

	
 server's default authentication method is
 Secure
 Password Authentication.

 In that case server sends
 Old
 Authentication Method Switch Request Packet.
 This packet does not contain new authentication mehtod name,
 which is implicitly assumed to be
 Secure
 Password Authentication, and it does not
 contain new authentication data. Client replies with
 Old
 Handshake Response Packet. To generate
 password hash client should re-use the random bytes sent by
 server in the
 Initial
 Handshake Packet.

[image: Non-CLIENT_PLUGIN_AUTH Clients]

14.2.4 Authentication After COM_CHANGE_USER Command

 During Command Phase, a
 client can send a
 COM_CHANGE_USER
 command which will trigger logging into a new account, including
 the authentication handshake.

 Similar to the initial authentication the server may reply with
 a
 OK_Packet
 or
 ERR_Packet
 for the usual fast-path or with a
 Authentication
 Method Switch Request Packet which contains the
 authentication method used for the new account and the first
 authentication data payload to be consumed by the client.
 Further handshake continues as usual, as defined by the
 authentication method being used. Eventually server will accept
 new account with
 OK_Packet
 and resume the command phase or it will reject change with
 ERR_Packet
 and disconnect.

	
 the client sends
 COM_CHANGE_USER
 packet

	
 the server responds with the
 Authentication
 Method Switch Request Packet which
 initiates authentication handshake using the correct
 authentication method

	
 client and server exchange further packets as required by
 the authentication method used

	
 the server responds with
 OK_Packet
 and returns to command phase or
 ERR_Packet
 and closes the connection

[image: Authentication After COM_CHANGE_USER Command]
14.2.4.1 COM_CHANGE_USER and Non-CLIENT_PLUGIN_AUTH Clients

 Clients which do not support pluggable authentication can send
 COM_CHANGE_USER
 command for accounts which use
 Secure
 Password Authentication or
 Old
 Password Authentication. In this case it is
 assumed that server has already sent the authentication
 challenge - the same which was sent when the client connected
 for the first time - and client's reply to that challenge,
 i.e. the hash of the new password, should be sent in the
 auth-response field of
 COM_CHANGE_USER
 packet.

	
 the client sends
 COM_CHANGE_USER
 packet with authentication response (hash of a password)
 for
 Secure
 Password Authentication (post 4.1
 clients) or
 Old
 Password Authentication (pre 4.1 clients)
 method.

	
 the server responds with
 OK_Packet
 and returns to command phase or with
 ERR_Packet
 and closes the connection.

[image: COM_CHANGE_USER and Non-CLIENT_PLUGIN_AUTH Clients]

 As during normal connection, it is also possible that a post
 4.1 client which does not support pluggable authentication
 connects to an account which uses
 Old
 Password Authentication. In that case server
 will send
 Old
 Authentication Method Switch Request Packet
 and expect client to reply with
 Old
 Handshake Response Packet.

	
 the client sends
 COM_CHANGE_USER
 packet with response for
 Secure
 Password Authentication method

	
 the server replies with
 Old
 Authentication Method Switch Request
 Packet (0xFE byte)

	
 the client sends response again, this time in the form
 required by
 Old
 Password Authentication method

	
 the server responds with
 OK_Packet
 and returns to command phase or
 ERR_Packet
 and closes the connection.

[image: COM_CHANGE_USER and Non-CLIENT_PLUGIN_AUTH Clients]

14.2.4.2 Expired Password

 Since MySQL 5.6.7, a MySQL account can be expired with
 ALTER USER account
 PASSWORD EXPIRE.

 If a account is expired, the session is in a restricted mode
 which only permits SET PASSWORD ... and
 similar SET commands. All other statements
 fail with an error like this:

mysql> SELECT 1;
ERROR 1820 (HY000): You must SET PASSWORD before executing this statement

 On the protocol side exists a safeguard
 CLIENT_CAN_HANDLE_EXPIRED_PASSWORDS
 to protect clients from running into special mode. Only
 clients that can handle this mode should set this capability.
 Usually this means all interactive clients and all
 applications that got adjusted to handle the ERROR
 1820.

 If a client is not setting that capability and it tries to
 login with an account that has an expired password, the server
 will return an ERR
 packet for the authentication or the
 COM_CHANGE_USER
 request. Basically blocking all actions until a new password
 got set.

14.2.5 Connection Phase Packets

Protocol::Handshake

 Initial Handshake Packet

 When the client connects to the server the server sends a
 handshake packet to the client. Depending on the server version
 and configuration options different variants of the initial
 packet are sent.

 To permit the server to add support for newer protocols, the
 first byte defines the protocol version.

 Since 3.21.0 the
 Protocol::HandshakeV10
 is sent, while it was still supporting
 Protocol::HandshakeV9
 with a compile time option.

Payload

1 protocol_version
...

Protocol::HandshakeV10

 Initial Handshake Packet - protocol version 10

Payload

1 [0a] protocol version
string[NUL] server version
4 connection id
string[8] auth-plugin-data-part-1
1 [00] filler
2 capability flags (lower 2 bytes)
 if more data in the packet:
1 character set
2 status flags
2 capability flags (upper 2 bytes)
 if capabilities & CLIENT_PLUGIN_AUTH {
1 length of auth-plugin-data
 } else {
1 [00]
 }
string[10] reserved (all [00])
 if capabilities & CLIENT_SECURE_CONNECTION {
string[$len] auth-plugin-data-part-2 ($len=MAX(13, length of auth-plugin-data - 8))
 if capabilities & CLIENT_PLUGIN_AUTH {
string[NUL] auth-plugin name
 }

Fields
	
 protocol_version
 (1) --
 0x0a protocol_version

	
 server_version
 (string.NUL)
 -- human-readable server version

	
 connection_id
 (4) --
 connection id

	
 auth_plugin_data_part_1
 (string.fix_len)
 -- [len=8] first 8 bytes of the auth-plugin data

	
 filler_1
 (1) --
 0x00

	
 capability_flag_1
 (2) --
 lower 2 bytes of the
 Protocol::CapabilityFlags
 (optional)

	
 character_set
 (1) --
 default server character-set, only the lower 8-bits
 Protocol::CharacterSet
 (optional)

	
 status_flags
 (2) --
 Protocol::StatusFlags
 (optional)

	
 capability_flags_2
 (2) --
 upper 2 bytes of the
 Protocol::CapabilityFlags

	
 auth_plugin_data_len
 (1) --
 length of the combined auth_plugin_data, if
 auth_plugin_data_len is > 0

	
 auth_plugin_name
 (string.NUL)
 -- name of the auth_method that the auth_plugin_data belongs
 to

Note

 Due to
 Bug#59453
 the auth-plugin-name is missing the terminating NUL-char
 in versions prior to 5.5.10 and 5.6.2.

Returns

 Protocol::HandshakeResponse
 from the client

Implemented By

 send_server_handshake_packet()

Example

36 00 00 00 0a 35 2e 35 2e 32 2d 6d 32 00 0b 00 6....5.5.2-m2...
00 00 64 76 48 40 49 2d 43 4a 00 ff f7 08 02 00 ..dvH@I-CJ......
00 00 00 00 00 00 00 00 00 00 00 00 00 2a 34 64 *4d
7c 63 5a 77 6b 34 5e 5d 3a 00 |cZwk4^]:.

 If
 CLIENT_PLUGIN_AUTH
 is set the server sends the name of the
 Authentication
 Method that the
 auth_plugin_data belongs to:

50 00 00 00 0a 35 2e 36 2e 34 2d 6d 37 2d 6c 6f P....5.6.4-m7-lo
67 00 56 0a 00 00 52 42 33 76 7a 26 47 72 00 ff g.V...RB3vz&Gr..
ff 08 02 00 0f c0 15 00 00 00 00 00 00 00 00 00
00 2b 79 44 26 2f 5a 5a 33 30 35 5a 47 00 6d 79 .+yD&/ZZ305ZG.my
73 71 6c 5f 6e 61 74 69 76 65 5f 70 61 73 73 77 sql_native_passw
6f 72 64 00 ord

Note

 The auth-plugin-data is the concatenation
 of strings auth-plugin-data-part-1 and
 auth-plugin-data-part-2.

Note

 Only the fields up to the filler after the
 auth_plugin_data_part_1 are required, all
 other fields are optional.

Protocol::HandshakeV9:

 Initial Handshake Packet - Protocol Version 9

Payload

1 [09] protocol_version
string[NUL] server_version
4 connection_id
string[NUL] scramble

Fields
	
 protocol_version
 (1) --
 0x09 protocol_version

	
 server_version
 (string.NUL)
 -- human-readable server version

	
 connection_id
 (4) --
 connection id

	
 auth_plugin_data
 (string.NUL)
 -- auth plugin data for
 Authentication::Old

Returns

 Protocol::HandshakeResponse320

Protocol::HandshakeResponse:

 Depending on the servers support for the
 CLIENT_PROTOCOL_41
 capability and the clients understanding of that flag the client
 has to send either a
 Protocol::HandshakeResponse41
 or
 Protocol::HandshakeResponse320.

Protocol::HandshakeResponse41:

 Handshake Response Packet sent by 4.1+ clients supporting
 CLIENT_PROTOCOL_41
 capability, if the server announced it in its Initial Handshake
 Packet. Otherwise (talking to an old server) the
 Protocol::HandshakeResponse320
 packet must be used.

Payload

4 capability flags, CLIENT_PROTOCOL_41 always set
4 max-packet size
1 character set
string[23] reserved (all [0])
string[NUL] username
 if capabilities & CLIENT_PLUGIN_AUTH_LENENC_CLIENT_DATA {
lenenc-int length of auth-response
string[n] auth-response
 } else if capabilities & CLIENT_SECURE_CONNECTION {
1 length of auth-response
string[n] auth-response
 } else {
string[NUL] auth-response
 }
 if capabilities & CLIENT_CONNECT_WITH_DB {
string[NUL] database
 }
 if capabilities & CLIENT_PLUGIN_AUTH {
string[NUL] auth plugin name
 }
 if capabilities & CLIENT_CONNECT_ATTRS {
lenenc-int length of all key-values
lenenc-str key
lenenc-str value
 if-more data in 'length of all key-values', more keys and value pairs
 }

Fields
	
 capability_flags
 (4) --
 capability flags of the client as defined in
 Protocol::CapabilityFlags

	
 max_packet_size
 (4) --
 max size of a command packet that the client wants to send
 to the server

	
 character_set
 (1) --
 connection's default character set as defined in
 Protocol::CharacterSet.

	
 username
 (string.fix_len)
 -- name of the SQL account which client wants to log in --
 this string should be interpreted using the character set
 indicated by character set field.

	
 auth-response
 (string.NUL)
 -- opaque authentication response data generated by
 Authentication
 Method indicated by the plugin
 name field.

	
 database
 (string.NUL)
 -- initail database for the connection -- this string should
 be interpreted using the character set indicated by
 character set field.

	
 auth plugin name
 (string.NUL)
 -- the
 Authentication
 Method used by the client to generate
 auth-response value in this packet. This
 is an UTF-8 string.

Example

 On MySQL 5.5.8 with
 CLIENT_PROTOCOL_41
 CLIENT_PLUGIN_AUTH,
 CLIENT_SECURE_CONNECTION,
 and
 CLIENT_CONNECT_WITH_DB
 set, it may look like:

54 00 00 01 8d a6 0f 00 00 00 00 01 08 00 00 00 T...............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 70 61 6d 00 14 ab 09 ee f6 bc b1 32 pam........2
3e 61 14 38 65 c0 99 1d 95 7d 75 d4 47 74 65 73 >a.8e....}u.Gtes
74 00 6d 79 73 71 6c 5f 6e 61 74 69 76 65 5f 70 t.mysql_native_p
61 73 73 77 6f 72 64 00 assword.

 Starting with MySQL 5.6.6 the client may send attributes if
 CLIENT_CONNECT_ATTRS
 is set:

b2 00 00 01 85 a2 1e 00 00 00 00 40 08 00 00 00 @....
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 72 6f 6f 74 00 14 22 50 79 a2 12 d4 root.."Py...
e8 82 e5 b3 f4 1a 97 75 6b c8 be db 9f 80 6d 79 uk.....my
73 71 6c 5f 6e 61 74 69 76 65 5f 70 61 73 73 77 sql_native_passw
6f 72 64 00 61 03 5f 6f 73 09 64 65 62 69 61 6e ord.a._os.debian
36 2e 30 0c 5f 63 6c 69 65 6e 74 5f 6e 61 6d 65 6.0._client_name
08 6c 69 62 6d 79 73 71 6c 04 5f 70 69 64 05 32 .libmysql._pid.2
32 33 34 34 0f 5f 63 6c 69 65 6e 74 5f 76 65 72 2344._client_ver
73 69 6f 6e 08 35 2e 36 2e 36 2d 6d 39 09 5f 70 sion.5.6.6-m9._p
6c 61 74 66 6f 72 6d 06 78 38 36 5f 36 34 03 66 latform.x86_64.f
6f 6f 03 62 61 72 oo.bar

Caution

 Currently, multibyte character sets such as UCS2, UTF16 and
 UTF32 are not supported.

Note

 If client wants to have a secure SSL connection and sets
 CLIENT_SSL
 flag it should first send the
 SSL
 Request Packet and only then, after
 establishing the secure connection, it should send the
 Handshake Response Packet.

Protocol::HandshakeResponse320:

 Old Handshake Response Packet used by old clients or if the
 server doesn't support
 CLIENT_PROTOCOL_41
 capability.

Payload

2 capability flags, CLIENT_PROTOCOL_41 never set
3 max-packet size
string[NUL] username
 if capabilities & CLIENT_CONNECT_WITH_DB {
string[NUL] auth-response
string[NUL] database
 } else {
string[EOF] auth-response
 }

Fields
	
 capability_flags
 (2) --
 capability flags of the client as defined in
 Protocol::CapabilityFlags

	
 max_packet_size
 (3) --
 max size of a command packet that the client wants to send
 to the server

	
 auth-response
 (string.NUL)
 -- opaque authentication response data generated by
 Authentication
 Method indicated by the plugin
 name field.

	
 database
 (string.NUL)
 -- initail database for the connection -- this string should
 be interpreted using the character set indicated by
 character set field.

Example

11 00 00 01 85 24 00 00 00 6f 6c 64 00 47 44 53 $...old.GDS
43 51 59 52 5f CQYR_

Note

 if auth-response field is followed by a
 database field it must be 0-terminated.

Protocol::SSLRequest:

 SSL Connection Request Packet. It is like Handshake Response
 Packet but is truncated right before username
 field. If server supports
 CLIENT_SSL
 capability, client can send this packet to request a secure SSL
 connection. The
 CLIENT_SSL
 capability flag must be set inside the SSL Connection Request
 Packet.

Payload

4 capability flags, CLIENT_SSL always set
4 max-packet size
1 character set
string[23] reserved (all [0])

Protocol::AuthSwitchRequest:

 Authentication Method Switch Request Packet. If both server and
 client support
 CLIENT_PLUGIN_AUTH
 capability, server can send this packet to ask client to use
 another authentication method.

Payload

1 [fe]
string[NUL] plugin name
string[EOF] auth plugin data

Fields
	
 status
 (1) --
 0xfe

	
 auth_method_name
 (string.NUL)
 -- name of the authentication method to switch to

	
 auth_method_data
 (string.EOF)
 -- initial auth-data for that authentication method

Returns

 Protocol::AuthSwitchResponse
 or connection close

Example

 If
 CLIENT_PLUGIN_AUTH
 was set and the server wants the client to authenticate with the
 Authentication::Native41
 method it sends:

2c 00 00 02 fe 6d 79 73 71 6c 5f 6e 61 74 69 76 ,....mysql_nativ
65 5f 70 61 73 73 77 6f 72 64 00 7a 51 67 34 69 e_password.zQg4i
36 6f 4e 79 36 3d 72 48 4e 2f 3e 2d 62 29 41 00 6oNy6=rHN/>-b)A.

Protocol::OldAuthSwitchRequest:

 Old Authentication Method Switch Request Packet consisting of a
 single 0xfe byte. It is sent by server to request client to
 switch to
 Old Password
 Authentication if
 CLIENT_PLUGIN_AUTH
 capability is not supported (by either the client or the server)

Payload

1 [fe]

Fields

 status
 (1) --
 0xfe

Returns

 Protocol::AuthSwitchResponse
 with old password hash

Example

01 00 00 02 fe

Protocol::AuthSwitchResponse:

 Authentication Method Switch Response Packet which contains
 response data generated by the authenticatication method
 requested in Authentication Method Switch Request Packet. This
 data is opaque to the protocol.

Payload

string[EOF] auth plugin response

Fields

 data
 (string.EOF)
 -- authentication response data

Returns

 Protocol::AuthMoreData
 or
 OK_Packet
 or
 ERR_Packet

Example

 If the client sends a mysql_native_password
 response, but the server has a
 mysql_old_password for that user, it will ask
 the client to switch to mysql_old_password
 and client would reply with:

09 00 00 03 5c 49 4d 5e 4e 58 4f 47 00 \IM^NXOG.

 In the case it is the other way around (mysql
 --default-auth=mysql_old_password against a
 mysql_native_password user) the client will
 respond with the reply of the
 mysql_native_password plugin:

14 00 00 03 f4 17 96 1f 79 f3 ac 10 0b da a6 b3 y.......
b5 c2 0e ab 59 85 ff b8 Y...

 More examples in
 Auth Method
 Switch

Protocol::AuthMoreData:
Payload

1 [01]
string[EOF] plugin data

Fields
	
 status
 (1) --
 0x01

	
 auth_method_data
 (string.EOF)
 -- extra auth-data beyond the initial challenge

14.2.6 Capability Flags

 The capability flags are used by the client and server to
 indicate which features they support and want to use.

Protocol::CapabilityFlags:
	
 CLIENT_LONG_PASSWORD

	
 Use the improved version of
 Old
 Password Authentication.

Note

 Assumed to be set since 4.1.1.

	
 Value

	
 0x00000001

	
 CLIENT_FOUND_ROWS

	
 Send found rows instead of
 affected rows in
 EOF_Packet.

	
 Value

	
 0x00000002

	
 CLIENT_LONG_FLAG

	
 Longer flags in
 Protocol::ColumnDefinition320.

	
 Value

	
 0x00000004

	
 Server

	
 Supports longer flags.

	
 Client

	
 Expects longer flags.

	
 CLIENT_CONNECT_WITH_DB

	
 Database (schema) name can be specified on connect in
 Handshake
 Response Packet.

	
 Value

	
 0x00000008

	
 Server

	
 Supports schema-name in
 Handshake
 Response Packet.

	
 Client

	
 Handshake
 Response Packet contains a
 schema-name.

	
 CLIENT_NO_SCHEMA

		
 Value

	
 0x00000010

	
 Server

	
 Do not permit
 database.table.column.

	
 CLIENT_COMPRESS

	
 Compression protocol
 supported.

	
 Value

	
 0x00000020

	
 Server

	
 Supports compression.

	
 Client

	
 Switches to
 Compression
 compressed protocol after successful authentication.

	
 CLIENT_ODBC

		
 Value

	
 0x00000040

 Special handling of ODBC behavior.

Note

 No special behavior since 3.22.

	
 CLIENT_LOCAL_FILES

	
 Can use LOAD DATA LOCAL.

	
 Value

	
 0x00000080

	
 Server

	
 Enables the
 LOCAL
 INFILE request of LOAD DATA|XML.

	
 Client

	
 Will handle
 LOCAL
 INFILE request.

	
 CLIENT_IGNORE_SPACE

		
 Value

	
 0x00000100

	
 Server

	
 Parser can ignore spaces before
 '('.

	
 Client

	
 Let the parser ignore spaces before
 '('.

	
 CLIENT_PROTOCOL_41

		
 Value

	
 0x00000200

	
 Server

	
 Supports the 4.1 protocol.

	
 Client

	
 Uses the 4.1 protocol.

Note

 this value was CLIENT_CHANGE_USER in
 3.22, unused in 4.0

	
 CLIENT_INTERACTIVE

	
 wait_timeout versus
 wait_interactive_timeout.

	
 Value

	
 0x00000400

	
 Server

	
 Supports interactive and noninteractive clients.

	
 Client

	
 Client is interactive.

	
 See

	
 mysql_real_connect()

	
 CLIENT_SSL

		
 Value

	
 0x00000800

	
 Server

	
 Supports SSL.

	
 Client

	
 Switch to SSL after
 sending the capability-flags.

	
 CLIENT_IGNORE_SIGPIPE

		
 Value

	
 0x00001000

	
 Client

	
 Do not issue SIGPIPE if network
 failures occur (libmysqlclient only).

	
 See

	
 mysql_real_connect()

	
 CLIENT_TRANSACTIONS

		
 Value

	
 0x00002000

	
 Server

	
 Can send status flags in
 EOF_Packet.

	
 Client

	
 Expects status flags in
 EOF_Packet.

Note

 This flag is optional in 3.23, but always set by the
 server since 4.0.

	
 CLIENT_RESERVED

	
 Unused.

	
 Value

	
 0x00004000

Note

 Was named CLIENT_PROTOCOL_41 in
 4.1.0.

	
 CLIENT_SECURE_CONNECTION

		
 Value

	
 0x00008000

	
 Server

	
 Supports
 Authentication::Native41.

	
 Client

	
 Supports
 Authentication::Native41.

	
 CLIENT_MULTI_STATEMENTS

		
 Value

	
 0x00010000

	
 Server

	
 Can handle multiple statements per
 COM_QUERY
 and
 COM_STMT_PREPARE.

	
 Client

	
 May send multiple statements per
 COM_QUERY
 and
 COM_STMT_PREPARE.

Note

 Was named CLIENT_MULTI_QUERIES in
 4.1.0, renamed later.

	
 Requires

	
 CLIENT_PROTOCOL_41

	
 CLIENT_MULTI_RESULTS

		
 Value

	
 0x00020000

	
 Server

	
 Can send multiple resultsets for
 COM_QUERY.

	
 Client

	
 Can handle multiple resultsets for
 COM_QUERY.

	
 Requires

	
 CLIENT_PROTOCOL_41

	
 CLIENT_PS_MULTI_RESULTS

		
 Server

	
 Can send multiple resultsets for
 COM_STMT_EXECUTE.

	
 Client

	
 Can handle multiple resultsets for
 COM_STMT_EXECUTE.

	
 Value

	
 0x00040000

	
 Requires

	
 CLIENT_PROTOCOL_41

	
 CLIENT_PLUGIN_AUTH

		
 Value

	
 0x00080000

	
 Server

	
 Sends extra data in
 Initial
 Handshake Packet and supports the pluggable
 authentication protocol.

	
 Client

	
 Supports authentication plugins.

	
 Requires

	
 CLIENT_PROTOCOL_41

	
 CLIENT_CONNECT_ATTRS

		
 Value

	
 0x00100000

	
 Server

	
 Permits connection attributes in
 Protocol::HandshakeResponse41.

	
 Client

	
 Sends connection attributes in
 Protocol::HandshakeResponse41.

	
 CLIENT_PLUGIN_AUTH_LENENC_CLIENT_DATA

		
 Value

	
 0x00200000

	
 Server

	
 Understands length-encoded integer for auth response
 data in
 Protocol::HandshakeResponse41.

	
 Client

	
 Length of auth response data in
 Protocol::HandshakeResponse41
 is a length-encoded integer.

Note

 The flag was introduced in 5.6.6, but had the wrong
 value.

	
 CLIENT_CAN_HANDLE_EXPIRED_PASSWORDS

		
 Value

	
 0x00400000

	
 Server

	
 Announces support for
 expired
 password extension.

	
 Client

	
 Can handle
 expired
 passwords.

	
 CLIENT_SESSION_TRACK

		
 Value

	
 0x00800000

	
 Server

	
 Can set
 SERVER_SESSION_STATE_CHANGED
 in the Status
 Flags and send
 session-state
 change data after a
 OK packet.

	
 Client

	
 Expects the server to send sesson-state changes
 after a OK
 packet.

	
 CLIENT_DEPRECATE_EOF

		
 Value

	
 0x01000000

	
 Server

	
 Can send OK
 after a Text Resultset.

	
 Client

	
 Expects an
 OK (instead
 of EOF)
 after the resultset rows of a Text Resultset.

	
 Background

	
 To support
 CLIENT_SESSION_TRACK,
 additional information must be sent after all
 successful commands. Although the
 OK packet is
 extensible, the
 EOF packet
 is not due to the overlap of its bytes with the
 content of the Text Resultset Row.

 Therefore, the EOF packet in the Text Resultset is
 replaced with an OK packet. EOF packets are
 deprecated as of MySQL 5.7.5.

14.3 Authentication Method

 To authenticate a user against the server the client-server
 protocol employs one of serveral authentication methods:

	
 Old
 Password Authentication

	
 Secure
 Password Authentication

	
 methods provided by auth plugins as defined in
 WL1054

 As of MySQL 5.5.7, the authentication method to be used to
 authenticate connections to a particular MySQL account is
 indicated in the mysql.user table. For earlier
 servers it is always
 Secure
 Password Authentication or
 Old Password
 Authentication depending on the
 CLIENT_SECURE_CONNECTION
 flag.

 Client and server negotiate what types of authentication they
 support as part of the connection phase. (See
 Section 14.2, “Connection Phase” and
 Section 14.2.1.4, “Determining Authentication Method”.)

 Each auth method is made up of

	
 a name

	
 its input and output data

 The exchanged in- and output data may either be sent as part of
 the Initial
 Handshake Packet and
 Handshake
 Response Packet or as part of the
 Authentication
 Method Switch Request Packet and following
 packets. The structure is usually the same.

14.3.1 Limitations

 While the overall exchange of data is free-form there are
 limitations in the initial handshake of the amount of data that
 can be exchanged:

	
 the auth_plugin_data field in
 Initial
 Handshake Packet can only carry 255 bytes
 max (see
 CLIENT_SECURE_CONNECTION)

	
 the auth_response_data field in
 Handshake
 Response Packet can only carry 255 bytes
 max too if
 CLIENT_PLUGIN_AUTH_LENENC_CLIENT_DATA
 is not yet

	
 the client-side plugin may not receive its initial data in
 the initial handshake

14.3.2 Old Password Authentication

	
 Authentication::Old:

		
 auth_method_name is
 mysql_old_password

	
 client-side requires "8-byte random challenge" from
 server

	
 client-side sends a 8-byte response based on the
 algorithm described later

Note

 If the server announces
 Secure
 Password Authentication in the
 Initial
 Handshake Packet the client may use the
 first 8 byte of its 20-byte auth_plugin_data as input.

[image: Old Password Authentication]
Warning

 The hashing algorithm used for this auth method is
 broken as shown at
 http://sqlhack.com/
 and
 CVE-2000-0981

14.3.3 Secure Password Authentication

	
 Authentication::Native41:

		
 client-side expects a 20-byte random challenge

	
 client-side returns a 20-byte response based on the
 algorithm described later

	
 Name

	
 mysql_native_password

	
 Requires

	
 CLIENT_SECURE_CONNECTION

[image: Secure Password Authentication]

 This method fixes a 2 short-comings of the
 Old Password
 Authentication:

	
 using a tested, crypto-graphic hashing function which isn't
 broken

	
 knowning the content of the hash in the
 mysql.user table isn't enough to
 authenticate against the MySQL Server.

 The password is calculated by:

SHA1(password) XOR SHA1("20-bytes random data from server" <concat> SHA1(SHA1(password)))

14.3.4 Clear Text Authentication

	
 Authentication::ClearText:

		
 client-side requires no input from the server

	
 client-side sends password as
 string.NUL

	
 Name

	
 mysql_clear_password

	
 Requires

	
 CLIENT_PLUGIN_AUTH

[image: Clear Text Authentication]

14.3.5 Windows Native Authentication

	
 Authentication::WindowsAuth:

		
 Name

	
 authentication_windows_client

	
 Requires

	
 CLIENT_PLUGIN_AUTH

 The
 Windows
 Native Authentication method is more complex
 than the other methods and extends the auth protocol as it has
 to send more data forth and back than the old handshake
 permitted.

 Basically it wraps the output of the
 Negotiate
 SSP in the Auth Phase protocol which either means
 NTLM or
 SPNEGO are used as underlying
 protocol.

 Due to the implementation details the
 Windows
 Native Authentication method doesn't use the
 fast path of the Connection
 Phase, but is only triggered on request as part of the
 Authentication
 Method Switch Request Packet.

[image: Windows Native Authentication]
Note

 Due to implementation details (again) the first packet sent
 from the client to the server is expected to be either

	
 254 bytes long max or

	
 send the first 254 bytes first, appended by 1 byte with a
 magic value plus a 2nd packet with rest of the data

 All following win-auth-packets don't get split.

 The client will either send a
 SPNEGO or
 NTLM packet as next packet.

 To implement the protocol several implementations exist:

	
 Windows provides
 InitializeSecurityContextW
 and
 AcceptSecurityContext

	
 a open source implemenation of NTML, SPNEGO and Kerberos5
 are provided by
 Heimdal

	
 Java6 added SPNEGO support to
 JGSS
 which also provides the NTLM and Kerberos5 support

14.3.5.1 NTLM

Note

 removed in Windows Vista and 2008:
 http://msdn.microsoft.com/en-us/library/aa480152.aspx#appcomp_topic16

Note

 documented in
 http://msdn.microsoft.com/en-us/library/cc207842.aspx

[image: NTLM]

14.3.5.2 SPNEGO

 Uses GSS-API as protocol and negotiates the proper auth-method
 automatically.

Tip

 to decode these packets by hand you need to read:

	

 RFC
 2743 Section 3.1:
 Mechanism-Independent Token Format

	

 RFC
 4178 Section 4: Token Definitions

	
 X.680
 ASN.1

	
 X.690
 DER

[image: SPNEGO]

14.3.6 SHA256

	
 Authentication::SHA256:

		
 Name

	
 sha256_password

	
 Requires

	
 CLIENT_PLUGIN_AUTH

 If the password is non-empty SHA256 auth method

	
 XORs the clients password with the scramble buffers content

	
 RSA encrypts that with the server's public key using
 RSA_PKCS1_OAEP_PADDING as padding

 Empty passwords are not hashed, but sent as empty string.

14.3.6.1 Public Key Retrieval

 If the client doesn't have the public key it can ask for it
 by:

	
 sending 0x01 as auth
 response in the
 Protocol::HandshakeResponse41

	
 server will send a
 Protocol::AuthMoreData
 with the keyfile

	
 client sends the encrypted password

14.4 Compression

 Compression

	
 is its own protocol,

	
 is transparent to the rest of the MySQL protocol and

	
 compresses a stream of bytes (which may even be a part of
 several
 Protocol::Packet).

 It is enabled if

	
 the server announces
 CLIENT_COMPRESS
 in its
 Protocol::Handshake
 and

	
 the client requests it too in its
 Protocol::HandshakeResponse
 packet and

	
 after the server finishes
 Connection Phase, with
 a
 OK_Packet.

14.4.1 Compressed Packet

 The compressed packet consists of a
 Compressed Packet
 header and a payload which is either a
 Compressed Payload or
 Uncompressed
 Payload.

14.4.2 Compressed Packet Header

 The header looks like:

3 length of compressed payload
1 compressed sequence id
3 length of payload before compression

	
 length of compressed payload

	
 raw packet length minus the size of the
 compressed packet header (7 bytes) itself.

	
 compressed sequence id

	
 sequence id of the compressed packets, reset in the same
 way as the MySQL
 Packet, but incremented independently

	

 length of payload before compression

	
 size of payload before it was compressed.

14.4.3 Compressed Payload

 If the
 length of
 payload before compression is more than 0 the
 Compressed Packet
 header is followed by the compressed payload.

 It uses the deflate algorithm as defined in

 RFC
 1951 and implemented in
 zlib. The header of the
 compressed packet has the parameters of the
 uncompress() function in mind:

ZEXTERN int ZEXPORT uncompress OF((Bytef *dest, uLongf *destLen,
 const Bytef *source, uLong sourceLen));

 The payload can be anything from a piece of a MySQL Packet to
 several MySQL Packets. The client or server may bundle several
 MySQL packets, compress it and send it as one compressed packet.

14.4.3.1 Example: One MySQL Packet

 A
 COM_QUERY
 for select
 "012345678901234567890123456789012345" without
 CLIENT_COMPRESS
 has a payload length of 46 bytes looks
 like:

2e 00 00 00 03 73 65 6c 65 63 74 20 22 30 31 32 select "012
33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 3456789012345678
39 30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 9012345678901234
35 22 5"

 with
 CLIENT_COMPRESS
 the packet is:

22 00 00 00 32 00 00 78 9c d3 63 60 60 60 2e 4e "...2..x..c```.N
cd 49 4d 2e 51 50 32 30 34 32 36 31 35 33 b7 b0 .IM.QP20426153..
c4 cd 52 02 00 0c d1 0a 6c ..R.....l

	
 comp-length

	
 seq-id

	
 uncomp-len

	
 Compressed Payload

	
 22 00 00

	
 00

	
 32 00 00

	
 compress("\x2e\x00\x00\x00\x03select
 ...")

 The compressed packet is 41 bytes long and splits into:

raw packet length -> 41
compressed payload length = 22 00 00 -> 34 (41 - 7)
sequence id = 00 -> 0
uncompressed payload length = 32 00 00 -> 50

14.4.3.2 Example: Several MySQL Packets

 Executing SELECT repeat("a", 50) results in
 uncompressed
 ProtocolText::Resultset
 like:

01 00 00 01 01 25 00 00 02 03 64 65 66 00 00 00 %....def...
0f 72 65 70 65 61 74 28 22 61 22 2c 20 35 30 29 .repeat("a", 50)
00 0c 08 00 32 00 00 00 fd 01 00 1f 00 00 05 00 2...........
00 03 fe 00 00 02 00 33 00 00 04 32 61 61 61 61 3...2aaaa
61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 aaaaaaaaaaaaaaaa
61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 aaaaaaaaaaaaaaaa
61 61 61 61 61 61 61 61 61 61 61 61 61 61 05 00 aaaaaaaaaaaaaa..
00 05 fe 00 00 02 00

 which consists of 5
 Protocol::Packet.

	
 01 00 00 01 01

	
 25 00 00 02 03 64 65 66 00 00 00 0f 72 65 70 65
 61 74 28 22 61 22 2c 20 35 30 29 00 0c 08 00 32 00 00 00
 fd 01 00 1f 00 00

	
 05 00 00 03 fe 00 00 02 00

	
 33 00 00 04 32 61 61 61 61 ...

	
 05 00 00 05 fe 00 00 02 00

 If compression is enabled a compressed packet containing the
 compressed version of all 5 packets is sent to the client:

4a 00 00 01 77 00 00 78 9c 63 64 60 60 64 54 65 J...w..x.cd``dTe
60 60 62 4e 49 4d 63 60 60 e0 2f 4a 2d 48 4d 2c ``bNIMc``./J-HM,
d1 50 4a 54 d2 51 30 35 d0 64 e0 e1 60 30 02 8a .PJT.Q05.d..`0..
ff 65 64 90 67 60 60 65 60 60 fe 07 54 cc 60 cc .ed.g``e``..T.`.
c0 c0 62 94 48 32 00 ea 67 05 eb 07 00 8d f9 1c ..b.H2..g.......
64 d

Note

 sending a MySQL Packet of the size
 224−5 to
 224−1
 via compression leads to at least one extra compressed
 packet.

 If the uncompressed MySQL Packet is like:

fe ff ff 03 ... -- length = 2^24-2, sequence id = 3

 compressing it would result in the
 length
 of payload before compression being:

length of mysql packet payload: 2^24-2
length of mysql packet header: 4
length of payload before compression: 2^24+2

 which can not be represented in one compressed packet.
 Instead two or more packets have to be sent.

14.4.4 Uncompressed Payload

 For small packets it may be to costly to compress the packet:

	
 compressing the packet may lead to more data and sending the
 data uncompressed

	
 CPU overhead may be not worth to compress the data

Tip

 Usually payloads less than 50 bytes
 (MIN_COMPRESS_LENGTH) aren't compressed.

 To send an uncompressed
 payload:

	
 set
 length
 of payload before compression to 0

	
 the compressed
 payload contains the
 uncompressed
 payload instead.

 Sending a SELECT 1 query as
 uncompressed payload
 to the server looks like:

0d 00 00 00 00 00 00 09 00 00 00 03 53 45 4c 45 SELE
43 54 20 31 CT 1

 decodes into:

raw packet length -> 20
compressed payload length = 0d 00 00 -> 13 (20 - 7)
sequence id = 00 -> 0
uncompressed payload length = 00 00 00 -> uncompressed

 ... with the uncompressed payload starting
 right after the 7 byte header:

09 00 00 00 03 53 45 4c 45 43 54 20 31 -- SELECT 1

14.5 SSL

 The MySQL Protocol also supports encryption and authentication via
 SSL. The encryption is transparent to the rest of the protocol and
 is applied after the data is compressed right before the data is
 written to the network layer.

 The SSL suppport is announced in
 Initial
 Handshake Packet sent by the server via
 CLIENT_SSL
 and is enabled if the client returns the same capability.

 For an unencrypted connection the server starts with its
 Initial
 Handshake Packet:

36 00 00 00 0a 35 2e 35 2e 32 2d 6d 32 00 52 00 6....5.5.2-m2.R.
00 00 22 3d 4e 50 29 75 39 56 00 ff ff 08 02 00 .."=NP)u9V......
00 00 00 00 00 00 00 00 00 00 00 00 00 29 64 40 )d@
52 5c 55 78 7a 7c 21 29 4b 00 R\Uxz|!)K.

 ... and the client returns its
 Handshake
 Response Packet:

3a 00 00 01 05 a6 03 00 00 00 00 01 08 00 00 00 :...............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 72 6f 6f 74 00 14 14 63 6b 70 99 8a root...ckp..
b6 9e 96 87 a2 30 9a 40 67 2b 83 38 85 4b 0.@g+.8.K

 If client wants to do SSL and the server supports it, it would
 send a SSL
 Request Packet with the
 CLIENT_SSL
 capability enabled instead:

20 00 00 01 05 ae 03 00 00 00 00 01 08 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

 The rest of the communication is switched to SSL:

16 03 01 00 5e 01 00 00 5a 03 01 4c a3 49 2e 7a ^...Z..L.I.z
b5 06 75 68 5c 30 36 73 f1 82 79 70 58 4c 64 bb ..uh\06s..ypXLd.
47 7e 90 cd 9b 30 c5 66 65 da 35 00 00 2c 00 39 G~...0.fe.5..,.9
00 38 00 35 00 16 00 13 00 0a 00 33 00 32 00 2f .8.5.......3.2./
00 9a 00 99 00 96 00 05 00 04 00 15 00 12 00 09
00 14 00 11 00 08 00 06 00 03 02 01 00 00 04 00
23 00 00 #..

 The preceding packet is from SSL_connect()
 which does the SSL greeting and certificate exchange. Once the SSL
 tunnel is established, the normal communication continues starting
 with the client sending the
 Handshake
 Response Packet.

14.6 Text Protocol

 The old commands are supported for all MySQL Server versions from
 3.20 upwards (and perhaps older). Additional commands implemented
 since then are described in sections following this one.

14.6.1 COM_SLEEP

	
 COM_SLEEP:

	
 internal server command

	
 Payload

	
1 [00] COM_SLEEP

	
 Returns

	
 ERR_Packet

14.6.2 COM_QUIT

	
 COM_QUIT:

	
 tells the server that the client wants to close the
 connection

 response: either a connection close or a
 OK_Packet

	
 Payload

	
1 [01] COM_QUIT

	
 Fields

	
 command
 (1)
 -- 0x01
 COM_QUIT

	
 Example

	
01 00 00 00 01

14.6.3 COM_INIT_DB

	
 COM_INIT_DB:

	
 change the default schema of the connection

	
 Returns

	
 OK_Packet
 or
 ERR_Packet

	
 Payload

	
1 [02] COM_INIT_DB
string[EOF] schema name

	
 Fields

		
 command
 (1)
 -- 0x02
 COM_INIT_DB

	
 schema_name
 (string.EOF)
 -- name of the schema to change to

	
 Example

	
05 00 00 00 02 74 65 73 74 test

14.6.4 COM_QUERY

	
 COM_QUERY:

	
 A COM_QUERY is used to send the server
 a text-based query that is executed immediately.

 The server replies to a COM_QUERY
 packet with a
 COM_QUERY
 Response.

 The length of the query-string is a taken from the packet
 length - 1.

	
 Payload

	
1 [03] COM_QUERY
string[EOF] the query the server shall execute

	
 Fields

		
 command_id
 (1)
 -- 0x03
 COM_QUERY

	
 query
 (string.EOF)
 -- query_text

	
 Implemented By

	
 mysql_query()

	
 Returns

	
 COM_QUERY_Response

	
 Example

	
21 00 00 00 03 73 65 6c 65 63 74 20 40 40 76 65 !....select @@ve
72 73 69 6f 6e 5f 63 6f 6d 6d 65 6e 74 20 6c 69 rsion_comment li
6d 69 74 20 31 mit 1

14.6.4.1 COM_QUERY Response

 The query-response packet is a meta packet which can be one of

	
 COM_QUERY_Response:

		
 a
 ERR_Packet

	
 a
 OK_Packet

	
 a
 Protocol::LOCAL_INFILE_Request

	
 a
 ProtocolText::Resultset

[image: COM_QUERY Response]

 The type of the packet is defined by the type-identifier:

COM_QUERY response
 response to a COM_QUERY packet

 payload
 lenenc-int number of columns in the resultset

 If the number of columns in the resultset is 0, this is a
 OK_Packet.

[image: COM_QUERY Response]

 If it is not a valid
 Protocol::LengthEncodedInteger
 it is either a
 ERR_Packet
 or a
 Protocol::LOCAL_INFILE_Request.

[image: COM_QUERY Response]
14.6.4.1.1 Text Resultset

 A Text Resultset is a possible
 COM_QUERY
 Response.

 It is made up of two parts:

	
 the column definitions

	
 the rows

 which consist of a sequence of packets.

 The column definitions part starts with a packet containing
 the column-count, followed by as many
 Column Definition
 packets as there are columns and terminated by an
 EOF_Packet.
 packet if the
 CLIENT_DEPRECATE_EOF
 capability flag is not set.

 Each row is a packet, too. The rows are terminated by
 another
 EOF_Packet.
 In case the query could generate the column-definition, but
 generating the rows afterwards failed, a
 ERR_Packet
 may be sent instead of the last
 EOF_Packet.

	
 ProtocolText::Resultset:

		
 A packet containing a
 Protocol::LengthEncodedInteger
 column_count

	
 column_count *
 Protocol::ColumnDefinition
 packets

	
 If the
 CLIENT_DEPRECATE_EOF
 client capability flag is not set,
 EOF_Packet

	
 One or more
 ProtocolText::ResultsetRow
 packets, each containing
 column_count values

	
 ERR_Packet
 in case of error. Otherwise: If the
 CLIENT_DEPRECATE_EOF
 client capability flag is set,
 OK_Packet;
 else
 EOF_Packet.

 If the
 SERVER_MORE_RESULTS_EXISTS
 flag is set in the last
 EOF_Packet
 or (if the
 CLIENT_DEPRECATE_EOF
 capability flag is set)
 OK_Packet,
 another
 ProtocolText::Resultset
 will follow (see
 Multi-resultset).

[image: Text Resultset]
	
 Example

	
 see
 ProtocolText::Resultset

14.6.4.1.1.1 Column Type

Table 14.4 Column Types
	Table Column Type	Hex Value	Notes
	Protocol::MYSQL_TYPE_DECIMAL	0x00	Implemented by
 ProtocolBinary::MYSQL_TYPE_DECIMAL
	Protocol::MYSQL_TYPE_TINY	0x01	Implemented by
 ProtocolBinary::MYSQL_TYPE_TINY
	Protocol::MYSQL_TYPE_SHORT	0x02	Implemented by
 ProtocolBinary::MYSQL_TYPE_SHORT
	Protocol::MYSQL_TYPE_LONG	0x03	Implemented by
 ProtocolBinary::MYSQL_TYPE_LONG
	Protocol::MYSQL_TYPE_FLOAT	0x04	Implemented by
 ProtocolBinary::MYSQL_TYPE_FLOAT
	Protocol::MYSQL_TYPE_DOUBLE	0x05	Implemented by
 ProtocolBinary::MYSQL_TYPE_DOUBLE
	Protocol::MYSQL_TYPE_NULL	0x06	Implemented by
 ProtocolBinary::MYSQL_TYPE_NULL
	Protocol::MYSQL_TYPE_TIMESTAMP	0x07	Implemented by
 ProtocolBinary::MYSQL_TYPE_TIMESTAMP
	Protocol::MYSQL_TYPE_LONGLONG	0x08	Implemented by
 ProtocolBinary::MYSQL_TYPE_LONGLONG
	Protocol::MYSQL_TYPE_INT24	0x09	Implemented by
 ProtocolBinary::MYSQL_TYPE_INT24
	Protocol::MYSQL_TYPE_DATE	0x0a	Implemented by
 ProtocolBinary::MYSQL_TYPE_DATE
	Protocol::MYSQL_TYPE_TIME	0x0b	Implemented by
 ProtocolBinary::MYSQL_TYPE_TIME
	Protocol::MYSQL_TYPE_DATETIME	0x0c	Implemented by
 ProtocolBinary::MYSQL_TYPE_DATETIME
	Protocol::MYSQL_TYPE_YEAR	0x0d	Implemented by
 ProtocolBinary::MYSQL_TYPE_YEAR
	Protocol::MYSQL_TYPE_NEWDATE

 [a]	0x0e	see
 Protocol::MYSQL_TYPE_DATE
	Protocol::MYSQL_TYPE_VARCHAR	0x0f	Implemented by
 ProtocolBinary::MYSQL_TYPE_VARCHAR
	Protocol::MYSQL_TYPE_BIT	0x10	Implemented by
 ProtocolBinary::MYSQL_TYPE_BIT
	Protocol::MYSQL_TYPE_TIMESTAMP2

 [a]	0x11	see
 Protocol::MYSQL_TYPE_TIMESTAMP
	Protocol::MYSQL_TYPE_DATETIME2

 [a]	0x12	see
 Protocol::MYSQL_TYPE_DATETIME
	Protocol::MYSQL_TYPE_TIME2

 [a]	0x13	see
 Protocol::MYSQL_TYPE_TIME
	Protocol::MYSQL_TYPE_NEWDECIMAL	0xf6	Implemented by
 ProtocolBinary::MYSQL_TYPE_NEWDECIMAL
	Protocol::MYSQL_TYPE_ENUM	0xf7	Implemented by
 ProtocolBinary::MYSQL_TYPE_ENUM
	Protocol::MYSQL_TYPE_SET	0xf8	Implemented by
 ProtocolBinary::MYSQL_TYPE_SET
	Protocol::MYSQL_TYPE_TINY_BLOB	0xf9	Implemented by
 ProtocolBinary::MYSQL_TYPE_TINY_BLOB
	Protocol::MYSQL_TYPE_MEDIUM_BLOB	0xfa	Implemented by
 ProtocolBinary::MYSQL_TYPE_MEDIUM_BLOB
	Protocol::MYSQL_TYPE_LONG_BLOB	0xfb	Implemented by
 ProtocolBinary::MYSQL_TYPE_LONG_BLOB
	Protocol::MYSQL_TYPE_BLOB	0xfc	Implemented by
 ProtocolBinary::MYSQL_TYPE_BLOB
	Protocol::MYSQL_TYPE_VAR_STRING	0xfd	Implemented by
 ProtocolBinary::MYSQL_TYPE_VAR_STRING
	Protocol::MYSQL_TYPE_STRING	0xfe	Implemented by
 ProtocolBinary::MYSQL_TYPE_STRING
	Protocol::MYSQL_TYPE_GEOMETRY	0xff	
	[a]
 Internal to MySQL Server. Not used in
 ProtocolBinary::*
 nor
 ProtocolText::*.

Note

 Not all Table Column Types have a
 representation in the Text or Binary protocol. While a
 TIMESTAMP field may be a
 MYSQL_TYPE_TIMESTAMP or
 MYSQL_TYPE_TIMESTAMP2 within the
 MySQL Server depending on the version, in the protocol
 it always is MYSQL_TYPE_TIMESTAMP.

14.6.4.1.1.2 Column Definition

	
 Protocol::ColumnDefinition:

	
 if
 CLIENT_PROTOCOL_41
 is set
 Protocol::ColumnDefinition41
 is used,
 Protocol::ColumnDefinition320
 otherwise

	
 Protocol::ColumnDefinition41:

	
 Column Definition

	
 Payload

	
lenenc_str catalog
lenenc_str schema
lenenc_str table
lenenc_str org_table
lenenc_str name
lenenc_str org_name
lenenc_int length of fixed-length fields [0c]
2 character set
4 column length
1 type
2 flags
1 decimals
2 filler [00] [00]
 if command was COM_FIELD_LIST {
lenenc_int length of default-values
string[$len] default values
 }

	
 Implemented By

	
 Protocol::send_result_set_metadata()

	
 Fields

		
 catalog
 (lenenc_str)
 -- catalog (always "def")

	
 schema
 (lenenc_str)
 -- schema-name

	
 table
 (lenenc_str)
 -- virtual table-name

	
 org_table
 (lenenc_str)
 -- physical table-name

	
 name
 (lenenc_str)
 -- virtual column name

	
 org_name
 (lenenc_str)
 -- physical column name

	
 next_length
 (lenenc_int)
 -- length of the following fields (always
 0x0c)

	
 character_set
 (2)
 -- is the column character set and is
 defined in
 Protocol::CharacterSet.

	
 column_length
 (4)
 -- maximum length of the field

	
 column_type
 (1)
 -- type of the column as defined in
 Column
 Type

	
 flags
 (2)
 -- flags

	
 decimals
 (1)
 -- max shown decimal digits

	
 0x00 for integers
 and static strings

	
 0x1f for dynamic
 strings, double, float

	
 0x00 to
 0x51 for decimals

Note

 decimals and
 column_length can be used for
 text-output formatting.

	
 Protocol::ColumnDefinition320:

	
 Column Definition

	
 Payload

	
lenenc-str table
lenenc-str name
lenenc_int [03] length of the column_length field
3 column_length
lenenc_int [01] length of type field
1 type
 if capabilities & CLIENT_LONG_FLAG {
lenenc_int [03] length of flags+decimals fields
2 flags
1 decimals
 } else {
1 [02] length of flags+decimals fields
1 flags
1 decimals
 }
 if command was COM_FIELD_LIST {
lenenc_int length of default-values
string[$len] default values
 }

	
 Implemented By

	
 Protocol::send_result_set_metadata()

14.6.4.1.1.3 Text Resultset Row

	
 ProtocolText::ResultsetRow:

	
 A row with the data for each column.

	
 NULL is sent as
 0xfb

	
 everything else is converted into a string and
 is sent as
 Protocol::LengthEncodedString.

14.6.4.1.2 LOCAL INFILE Request

 If the client wants to LOAD DATA from a LOCAL file into the
 server it sends:

LOAD DATA LOCAL INFILE '<filename>' INTO TABLE <table>;

 The LOCAL keyword triggers the server to send a LOCAL INFILE
 request packet which asks the client to send the file via a
 Protocol::LOCAL_INFILE_Data
 response.

[image: LOCAL INFILE Request]

 The client has to set the
 CLIENT_LOCAL_FILES
 capability.

	
 Protocol::LOCAL_INFILE_Request:

		
 Returns

	
 LOCAL INFILE
 data

	
 Payload

	
1 [fb] LOCAL INFILE
string[EOF] filename the client shall send

	
 Example

	
0c 00 00 01 fb 2f 65 74 63 2f 70 61 73 73 77 64 /etc/passwd

14.6.4.1.2.1 LOCAL INFILE Data

 If the client has data to send, it sends in one or more
 non-empty packets AS IS followed by a empty packet.

 If the file is empty or there is a error while reading the
 file only the empty packet is sent.

	
 Protocol::LOCAL_INFILE_Data:

		
 Payload

	
string[EOF] the filedata

	
 Fields

	
 data
 (string.EOF)
 -- the raw file data

14.6.5 COM_FIELD_LIST

Note

 As of MySQL 5.7.11, COM_FIELD_LIST is
 deprecated and will be removed in a future version of MySQL.
 Instead, use mysql_query() to
 execute a SHOW COLUMNS
 statement.

	
 COM_FIELD_LIST:

	
 get the column definitions of a table

	
 Payload

	
1 [04] COM_FIELD_LIST
string[NUL] table
string[EOF] field wildcard

	
 Returns

	
 COM_FIELD_LIST
 response

	
 Implemented By

	
 mysql_list_fields()

14.6.5.1 COM_FIELD_LIST Response

 The response to a
 COM_FIELD_LIST can
 either be a

	
 a
 ERR_Packet
 or

	
 one or more Column
 Definition packets and a closing
 EOF_Packet

31 00 00 01 03 64 65 66 04 74 65 73 74 09 66 69 1....def.test.fi
65 6c 64 6c 69 73 74 09 66 69 65 6c 64 6c 69 73 eldlist.fieldlis
74 02 69 64 02 69 64 0c 3f 00 0b 00 00 00 03 00 t.id.id.?.......
00 00 00 00 fb 05 00 00 02 fe 00 00 02 00

14.6.6 COM_CREATE_DB

	
 COM_CREATE_DB:

	
 create a schema

	
 Payload

	
1 [05] COM_CREATE_DB
string[EOF] schema name

	
 Returns

	
 OK_Packet
 or
 ERR_Packet

	
 Example

	
05 00 00 00 05 74 65 73 74 test

14.6.7 COM_DROP_DB

	
 COM_DROP_DB:

	
 drop a schema

	
 Payload

	
1 [06] COM_DROP_DB
string[EOF] schema name

	
 Returns

	
 OK_Packet
 or
 ERR_Packet

	
 Example

	
05 00 00 00 06 74 65 73 74 test

14.6.8 COM_REFRESH

Note

 As of MySQL 5.7.11, COM_REFRESH is
 deprecated and will be removed in a future version of MySQL.
 Instead, use mysql_query() to
 execute a FLUSH statement.

 A low-level version of several FLUSH ... and
 RESET ... statements.

COM_REFRESH:

 Call REFRESH or FLUSH
 statements

Payload

1 [07] COM_REFRESH
1 sub_command

Fields
	
 command
 (1) --
 0x07 COM_REFRESH

	
 sub_command
 (1) -- a
 bitmask of sub-systems to refresh

	
 sub_command

	
 Constant Name

	
 Description

	
 0x01

	
 REFRESH_GRANT

	
 Refresh grant tables FLUSH
 PRIVILEGES

	
 0x02

	
 REFRESH_LOG

	
 Start on new log file FLUSH
 LOGS

	
 0x04

	
 REFRESH_TABLES

	
 Close all tables FLUSH TABLES

	
 0x08

	
 REFRESH_HOSTS

	
 Flush host cache FLUSH HOSTS

	
 0x10

	
 REFRESH_STATUS

	
 Flush status variables FLUSH
 STATUS

	
 0x20

	
 REFRESH_THREADS

	
 Flush thread cache

	
 0x40

	
 REFRESH_SLAVE

	
 Reset master info and restart slave thread
 RESET SLAVE

	
 0x80

	
 REFRESH_MASTER

	
 Remove all binary logs in the index and truncate
 the index RESET MASTER

Returns

 OK_Packet
 or
 ERR_Packet

14.6.9 COM_SHUTDOWN

Note

 COM_SHUTDOWN is deprecated as of MySQL
 5.7.9 and removed in MySQL 5.8.0. Instead, use
 mysql_query() to execute a
 SHUTDOWN statement.

 COM_SHUTDOWN is used to shut down the MySQL
 server.

 The SHUTDOWN privilege is
 required for this operation.

	
 COM_SHUTDOWN:

	
 shut down the server

	
 Payload

	
1 [08] COM_SHUTDOWN
 if more data {
1 shutdown type
 }

	
 Fields

		
 command
 (1)
 -- 0x08
 COM_SHUTDOWN

	
 sub_command
 (1)
 -- optional if sub_command is
 0x00

	
 Type

	
 Constant Name

	
 Description

	
 0x00

	
 SHUTDOWN_DEFAULT

	
 defaults to
 SHUTDOWN_WAIT_ALL_BUFFERS

	
 0x01

	
 SHUTDOWN_WAIT_CONNECTIONS

	
 wait for existing connections to
 finish

	
 0x02

	
 SHUTDOWN_WAIT_TRANSACTIONS

	
 wait for existing trans to finish

	
 0x08

	
 SHUTDOWN_WAIT_UPDATES

	
 wait for existing updates to finish
 (=> no partial MyISAM update)

	
 0x10

	
 SHUTDOWN_WAIT_ALL_BUFFERS

	
 flush InnoDB buffers and other
 storage engines' buffers

	
 0x11

	
 SHUTDOWN_WAIT_CRITICAL_BUFFERS

	
 don't flush InnoDB buffers, flush
 other storage engines' buffers

	
 0xfe

	
 KILL_QUERY

	
	
 0xff

	
 KILL_CONNECTION

	

	
 Returns

	
 EOF_Packet
 or
 ERR_Packet

Note

 Even if several shutdown types are defined, right now
 only one is in use:
 SHUTDOWN_WAIT_ALL_BUFFERS

14.6.10 COM_STATISTICS

 Get a human readable string of internal statistics.

	
 COM_STATISTICS:

	
 get a list of active threads

Todo.
 check description

	
 Returns

	
 string.EOF

	
 Payload

	
1 [09] COM_STATISTICS

14.6.11 COM_PROCESS_INFO

Note

 As of MySQL 5.7.11, COM_PROCESS_INFO is
 deprecated and will be removed in a future version of MySQL.
 Instead, use mysql_query() to
 execute a SHOW PROCESSLIST
 statement.

	
 COM_PROCESS_INFO:

	
 get a list of active threads

	
 Returns

	
 a
 ProtocolText::Resultset
 or
 ERR_Packet

	
 Payload

	
1 [0a] COM_PROCCESS_INFO

14.6.12 COM_CONNECT

	
 COM_CONNECT:

	
 an internal command in the server

	
 Payload

	
1 [0b] COM_CONNECT

	
 Returns

	
 ERR_Packet

14.6.13 COM_PROCESS_KILL

Note

 As of MySQL 5.7.11, COM_PROCESS_KILL is
 deprecated and will be removed in a future version of MySQL.
 Instead, use mysql_query() to
 execute a KILL statement.

 Same as KILL <id>.

	
 COM_PROCESS_KILL:

	
 ask the server to terminate a connection

	
 Returns

	
 OK_Packet
 or
 ERR_Packet

	
 Payload

	
1 [0c] COM_PROCCESS_KILL
4 connection id

14.6.14 COM_DEBUG

 COM_DEBUG triggers a dump on internal debug
 info to stdout of the mysql-server.

 The SUPER privilege is required
 for this operation.

	
 COM_DEBUG:

	
 dump debug info to stdout

	
 Returns

	
 EOF_Packet
 or
 ERR_Packet
 on error

	
 Payload

	
1 [0d] COM_DEBUG

14.6.15 COM_PING

	
 COM_PING:

	
 check if the server is alive

	
 Returns

	
 OK_Packet

	
 Payload

	
1 [0e] COM_PING

14.6.16 COM_TIME

	
 COM_TIME:

	
 an internal command in the server

	
 Payload

	
1 [0f] COM_TIME

	
 Returns

	
 ERR_Packet

14.6.17 COM_DELAYED_INSERT

	
 COM_DELAYED_INSERT:

	
 an internal command in the server

	
 Payload

	
1 [10] COM_DELAYED_INSERT

	
 Returns

	
 ERR_Packet

14.6.18 COM_CHANGE_USER

 COM_CHANGE_USER changes the user of the
 current connection and reset the connection state.

	
 user variables

	
 temp tables

	
 prepared statemants

	
 ... and others

 It is followed by the same states as the initial handshake.

	
 COM_CHANGE_USER:

	
 change the user of the current connection

	
 Returns

	
 Authentication
 Method Switch Request Packet or
 ERR_Packet

	
 Payload

	
1 [11] COM_CHANGE_USER
string[NUL] user
 if capabilities & SECURE_CONNECTION {
1 auth-response-len
string[$len] auth-response
 } else {
string[NUL] auth-response
 }
string[NUL] schema-name
 if more data {
2 character-set
 if capabilities & CLIENT_PLUGIN_AUTH {
string[NUL] auth plugin name
 }
 if capabilities & CLIENT_CONNECT_ATTRS) {
lenenc-int length of all key-values
lenenc-str key
lenenc-str value
 if-more data in 'length of all key-values', more keys and value pairs
 }
 }

	
 Fields

		
 command
 (1)
 -- command byte

	
 username
 (string.NUL)
 -- user name

	
 auth_plugin_data_len
 (1)
 -- length of the auth_plugin_data filed

	
 auth_plugin_data
 (string.var_len)
 -- auth data

	
 schema
 (string.NUL)
 -- default schema

	
 character_set
 (2)
 -- new connection character set (see
 Protocol::CharacterSet)

	
 auth_plugin_name
 (string.NUL)
 -- name of the auth plugin that auth_plugin_data
 corresponds to

	
 connect_attrs_len
 (lenenc_int)
 -- length in bytes of the following block of
 key-value pairs

	
 Implemented By

	
 parse_com_change_user_packet()

 character set is the connection character set
 as defined in
 Protocol::CharacterSet
 and is also the encoding of user and
 schema-name.

14.6.19 COM_RESET_CONNECTION

	
 COM_RESET_CONNECTION:

	
 Resets the session state; more lightweight than
 COM_CHANGE_USER because it does not
 close and reopen the connection, and does not
 re-authenticate

	
 Payload

	
1 [1f] COM_RESET_CONNECTION

	
 Returns

		
 a
 ERR_Packet

	
 a
 OK_Packet

14.6.20 COM_DAEMON

	
 COM_DAEMON:

	
 an internal command in the server

	
 Payload

	
1 [1d] COM_DAEMON

	
 Returns

	
 ERR_Packet

14.7 Prepared Statements

 The prepared statement protocol was introduced in MySQL 4.1 and
 adds a few new commands:

	
 COM_STMT_PREPARE

	
 COM_STMT_EXECUTE

	
 COM_STMT_CLOSE

	
 COM_STMT_RESET

	
 COM_STMT_SEND_LONG_DATA

 It also defines a more compact resultset format that is used
 instead of the
 ProtocolText::Resultset
 to return resultsets.

 Keep in mind that not all statements can be prepared:

 WL2871

14.7.1 Binary Protocol Resultset

 Binary Protocol Resultset is similar to the
 ProtocolText::Resultset.
 It just contains the rows in
 Binary Protocol
 Resultset Row format.

	
 ProtocolBinary::Resultset:

	
 Packets:

	
 lenenc_int
 column_count > 0

	
 column_count *
 Protocol::ColumnDefinition

	
 none or many
 ProtocolBinary::ResultsetRow

	
 EOF_Packet

Note

 If the
 CLIENT_DEPRECATE_EOF
 client capability flag is set,
 OK_Packet
 is sent; else
 EOF_Packet
 is sent.

	
 Example

	
01 00 00 01 01|1a 00 00 02 03 64 65 66 00 00 00 def...
04 63 6f 6c 31 00 0c 08 00 06 00 00 00 fd 00 00 .col1...........
1f 00 00|05 00 00 03 fe 00 00 02 00|09 00 00 04
00 00 06 66 6f 6f 62 61 72|05 00 00 05 fe 00 00 ...foobar.......
02 00 ..

14.7.2 Binary Protocol Resultset Row

 A Binary Protocol Resultset Row is made up of the NULL
 bitmap containing as many bits as we have columns in
 the resultset + 2 and the values for columns
 that are not NULL in the
 Binary Protocol
 Value format.

	
 ProtocolBinary::ResultsetRow:

	
 row of a binary resultset
 (COM_STMT_EXECUTE)

	
 Payload

	
1 packet header [00]
string[$len] NULL-bitmap, length: (column-count + 7 + 2) / 8
string[$len] values

	
 Example

	
09 00 00 04 00 00 06 66 6f 6f 62 61 72

14.7.2.1 NULL-Bitmap

 The binary protocol sends NULL values as
 bits inside a bitmap instead of a full byte as the
 ProtocolText::ResultsetRow
 does. If many NULL values are sent, it is
 more efficient than the old way.

Caution

 For the Binary
 Protocol Resultset Row the
 num-fields and the
 field-pos need to add a offset of 2. For
 COM_STMT_EXECUTE
 this offset is 0.

 The NULL-bitmap needs enough space to store
 a possible NULL bit for each column that is
 sent. Its space is calculated with:

NULL-bitmap-bytes = (num-fields + 7 + offset) / 8

 resulting in:

	
 num-fields+offset

	
 NULL-bitmap-bytes

	
 0

	
 0

	
 1

	
 1

	
 [...]

	
 [...]

	
 8

	
 1

	
 9

	
 2

	
 [...]

	
 [...]

 To store a NULL bit in the bitmap, you need
 to calculate the bitmap-byte (starting with 0) and the bitpos
 (starting with 0) in that byte from the field-index (starting
 with 0):

NULL-bitmap-byte = ((field-pos + offset) / 8)
NULL-bitmap-bit = ((field-pos + offset) % 8)

 Example:

Resultset Row, 9 fields, 9th field is a NULL (9th field -> field-index == 8, offset == 2)

nulls -> [00] [00]

byte_pos = (10 / 8) = 1
bit_pos = (10 % 8) = 2

nulls[byte_pos] |= 1 << bit_pos
nulls[1] |= 1 << 2;

nulls -> [00] [04]

14.7.3 Binary Protocol Value

	
 ProtocolBinary::MYSQL_TYPE_STRING,
 ProtocolBinary::MYSQL_TYPE_VARCHAR,
 ProtocolBinary::MYSQL_TYPE_VAR_STRING,
 ProtocolBinary::MYSQL_TYPE_ENUM,
 ProtocolBinary::MYSQL_TYPE_SET,
 ProtocolBinary::MYSQL_TYPE_LONG_BLOB,
 ProtocolBinary::MYSQL_TYPE_MEDIUM_BLOB,
 ProtocolBinary::MYSQL_TYPE_BLOB,
 ProtocolBinary::MYSQL_TYPE_TINY_BLOB,
 ProtocolBinary::MYSQL_TYPE_GEOMETRY,
 ProtocolBinary::MYSQL_TYPE_BIT,
 ProtocolBinary::MYSQL_TYPE_DECIMAL,
 ProtocolBinary::MYSQL_TYPE_NEWDECIMAL:

		
 Fields

	
 value
 (lenenc_str)
 -- string

	
 Example

	
03 66 6f 6f -- string = "foo"

Todo.
 provide example for
 ProtocolBinary::MYSQL_TYPE_DECIMAL
 and
 ProtocolBinary::MYSQL_TYPE_NEWDECIMAL

	
 ProtocolBinary::MYSQL_TYPE_LONGLONG

		
 Fields

	
 value
 (8)
 -- integer

	
 Example

	
01 00 00 00 00 00 00 00 -- int64 = 1

	
 ProtocolBinary::MYSQL_TYPE_LONG,
 ProtocolBinary::MYSQL_TYPE_INT24:

		
 Fields

	
 value
 (4)
 -- integer

	
 Example

	
01 00 00 00 -- int32 = 1

	
 ProtocolBinary::MYSQL_TYPE_SHORT,
 ProtocolBinary::MYSQL_TYPE_YEAR:

		
 Fields

	
 value
 (2)
 -- integer

	
 Implemented By

	
 Field_year::send_binary()
 and
 Protocol_binary::store_short()

	
 Example

	
01 00 -- int16 = 1

	
 ProtocolBinary::MYSQL_TYPE_TINY:

		
 Fields

	
 value
 (1)
 -- integer

	
 Example

	
01 -- int8 = 1

	
 ProtocolBinary::MYSQL_TYPE_DOUBLE:

	
 MYSQL_TYPE_DOUBLE stores a floating point in IEEE 754
 double precision format

 first byte is the last byte of the significant as stored
 in C.

	
 Fields

	
 value
 (string.fix_len)
 -- (len=8) double

	
 Example

	
66 66 66 66 66 66 24 40 -- double = 10.2

	
 ProtocolBinary::MYSQL_TYPE_FLOAT:

	
 MYSQL_TYPE_FLOAT stores a floating point in IEEE 754
 single precision format

	
 Fields

	
 value
 (string.fix_len)
 -- (len=4) float

	
 Example

	
33 33 23 41 -- float = 10.2

	
 ProtocolBinary::MYSQL_TYPE_DATE,
 ProtocolBinary::MYSQL_TYPE_DATETIME,
 ProtocolBinary::MYSQL_TYPE_TIMESTAMP:

	
 type to store a DATE, DATETIME and TIMESTAMP fields in the
 binary protocol.

 to save space the packet can be compressed:

	
 if year, month, day, hour, minutes, seconds and
 micro_seconds are all 0, length is 0 and no other
 field is sent

	
 if hour, minutes, seconds and micro_seconds are all 0,
 length is 4 and no other field is sent

	
 if micro_seconds is 0, length is 7 and micro_seconds
 is not sent

	
 otherwise length is 11

	
 Fields

		
 length
 (1)
 -- number of bytes following (valid values: 0,
 4, 7, 11)

	
 year
 (2)
 -- year

	
 month
 (1)
 -- month

	
 day
 (1)
 -- day

	
 hour
 (1)
 -- hour

	
 minute
 (1)
 -- minutes

	
 second
 (1)
 -- seconds

	
 micro_second
 (4)
 -- micro-seconds

	
 Example

	
0b da 07 0a 11 13 1b 1e 01 00 00 00 -- datetime 2010-10-17 19:27:30.000 001
04 da 07 0a 11 -- date = 2010-10-17
0b da 07 0a 11 13 1b 1e 01 00 00 00 -- timestamp

	
 Implemented By

	
 Protocol_binary::store()

	
 ProtocolBinary::MYSQL_TYPE_TIME:

	
 type to store a TIME field in the binary protocol.

 to save space the packet can be compressed:

	
 if days, hours, minutes, seconds and micro_seconds are
 all 0, length is 0 and no other field is sent

	
 if micro_seconds is 0, length is 8 and micro_seconds
 is not sent

	
 otherwise length is 12

	
 Fields

		
 length
 (1)
 -- number of bytes following (valid values: 0,
 8, 12)

	
 is_negative
 (1)
 -- (1 if minus, 0 for plus)

	
 days
 (4)
 -- days

	
 hours
 (1)
 -- hours

	
 minutes
 (1)
 -- minutes

	
 seconds
 (1)
 -- seconds

	
 micro_seconds
 (4)
 -- micro-seconds

	
 Example

	
0c 01 78 00 00 00 13 1b 1e 01 00 00 00 -- time -120d 19:27:30.000 001
08 01 78 00 00 00 13 1b 1e -- time -120d 19:27:30
01 -- time 0d 00:00:00

	
 Implemented By

	
 Protocol_binary::store_time()

	
 ProtocolBinary::MYSQL_TYPE_NULL:

	
 stored in the
 NULL-bitmap only

14.7.4 COM_STMT_PREPARE

 COM_STMT_PREPARE creates a prepared statement
 from the passed query string.

 The server returns a
 COM_STMT_PREPARE
 Response which contains a statement-id which is used to
 identify the prepared statement.

	
 COM_STMT_PREPARE:

	
 create a prepared statement

	
 Fields

		
 command
 (1)
 -- [16] the
 COM_STMT_PREPARE command

	
 query
 (string.EOF)
 -- the query to prepare

	
 Example

	
1c 00 00 00 16 53 45 4c 45 43 54 20 43 4f 4e 43 SELECT CONC
41 54 28 3f 2c 20 3f 29 20 41 53 20 63 6f 6c 31 AT(?, ?) AS col1

	
 Implemented By

	
 mysqld_stmt_prepare()

	
 Return

	
 COM_STMT_PREPARE_OK
 on success,
 ERR_Packet
 otherwise

Note

 As LOAD DATA isn't supported by
 COM_STMT_PREPARE
 yet, no
 Protocol::LOCAL_INFILE_Request
 is expected here. Compare this to
 COM_QUERY_Response.

14.7.4.1 COM_STMT_PREPARE Response

 If the
 COM_STMT_PREPARE
 succeeded, it sends a
 COM_STMT_PREPARE_OK

	
 COM_STMT_PREPARE_OK:

		
 Fields

	
 First packet:

	
 status
 (1)
 -- [00] OK

	
 statement_id
 (4)
 -- statement-id

	
 num_columns
 (2)
 -- number of columns

	
 num_params
 (2)
 -- number of params

	
 reserved_1
 (1)
 -- [00] filler

	
 warning_count
 (2)
 -- number of warnings

 If num_params > 0 more
 packets will follow:

	
 Parameter Definition
 Block

	
 num_params *
 Protocol::ColumnDefinition

	
 EOF_Packet

 If num_columns > 0 more
 packets will follow:

	
 Column Definition
 Block

	
 num_colums *
 Protocol::ColumnDefinition

	
 EOF_Packet

	
 Example

	
 for a prepared query like SELECT
 CONCAT(?, ?) AS col1:

0c 00 00 01 00 01 00 00 00 01 00 02 00 00 00 00|
17 00 00 02 03 64 65 66 00 00 00 01 3f 00 0c 3f def....?..?
00 00 00 00 00 fd 80 00 00 00 00|17 00 00 03 03
64 65 66 00 00 00 01 3f 00 0c 3f 00 00 00 00 00 def....?..?.....
fd 80 00 00 00 00|05 00 00 04 fe 00 00 02 00|1a
00 00 05 03 64 65 66 00 00 00 04 63 6f 6c 31 00 def....col1.
0c 3f 00 00 00 00 00 fd 80 00 1f 00 00|05 00 00 .?..............
06 fe 00 00 02 00

	
 Example

	
 for a query without parameters and resultset like
 DO 1 it is:

0c 00 00 01 00 01 00 00 00 00 00 00 00 00 00 00

	
 Implemented By

	
 send_prep_stmt()

14.7.5 COM_STMT_SEND_LONG_DATA

 COM_STMT_SEND_LONG_DATA sends the data for a
 column. Repeating to send it, appends the data to the parameter.

 No response is sent back to the client.

	
 COM_STMT_SEND_LONG_DATA:

	
COM_STMT_SEND_LONG_DATA
 direction: client -> server
 response: none

 payload:
 1 [18] COM_STMT_SEND_LONG_DATA
 4 statement-id
 2 param-id
 n data

 COM_STMT_SEND_LONG_DATA has to be sent before
 COM_STMT_EXECUTE.

14.7.6 COM_STMT_EXECUTE

 COM_STMT_EXECUTE asks the server to execute a
 prepared statement as identified by stmt-id.

 It sends the values for the placeholders of the prepared
 statement (if it contained any) in
 Binary Protocol
 Value form. The type of each parameter is made up of two
 bytes:

	
 the type as in
 Protocol::ColumnType

	
 a flag byte which has the highest bit set if the type is
 unsigned [80]

 The num-params used for this packet has to
 match the num_params of the
 COM_STMT_PREPARE_OK
 of the corresponding prepared statement.

 The server returns a
 COM_STMT_EXECUTE
 Response.

	
 COM_STMT_EXECUTE:

	
COM_STMT_EXECUTE
 execute a prepared statement

 direction: client -> server
 response: COM_STMT_EXECUTE Response

 payload:
 1 [17] COM_STMT_EXECUTE
 4 stmt-id
 1 flags
 4 iteration-count
 if num-params > 0:
 n NULL-bitmap, length: (num-params+7)/8
 1 new-params-bound-flag
 if new-params-bound-flag == 1:
 n type of each parameter, length: num-params * 2
 n value of each parameter

 example:
 12 00 00 00 17 01 00 00 00 00 01 00 00 00 00 01
 0f 00 03 66 6f 6f ...foo

 The iteration-count is always
 1.

 The flags are:

	
 Flags

	
 Constant Name

	
 0x00

	
 CURSOR_TYPE_NO_CURSOR

	
 0x01

	
 CURSOR_TYPE_READ_ONLY

	
 0x02

	
 CURSOR_TYPE_FOR_UPDATE

	
 0x04

	
 CURSOR_TYPE_SCROLLABLE

 NULL-bitmap is like
 NULL-bitmap for the
 Binary Protocol
 Resultset Row just that it has a bit-offset of 0.

14.7.6.1 COM_STMT_EXECUTE Response

 Similar to the
 COM_QUERY_Response
 a
 COM_STMT_EXECUTE
 either returns:

	
 a
 OK_Packet

	
 a
 ERR_Packet

	
 or a resultset:
 Binary Protocol
 Resultset

14.7.7 COM_STMT_CLOSE

 COM_STMT_CLOSE deallocates a prepared
 statement

 No response is sent back to the client.

	
 COM_STMT_CLOSE:

	
COM_STMT_CLOSE
 direction: client -> server
 response: none

 payload:
 1 [19] COM_STMT_CLOSE
 4 statement-id

 example:
 05 00 00 00 19 01 00 00 00

14.7.8 COM_STMT_RESET

 COM_STMT_RESET resets the data of a prepared
 statement which was accumulated with
 COM_STMT_SEND_LONG_DATA
 commands and closes the cursor if it was opened with
 COM_STMT_EXECUTE

 The server will send a
 OK_Packet
 if the statement could be reset, a
 ERR_Packet
 if not.

	
 COM_STMT_RESET:

	
COM_STMT_RESET
 direction: client -> server
 response: OK or ERR

 payload:
 1 [1a] COM_STMT_RESET
 4 statement-id

 example:
 05 00 00 00 1a 01 00 00 00

14.8 Stored Procedures

 In MySQL 5.0 the protocol was extended to handle:

	
 multi-resultset

	
 multi-statement

14.8.1 Multi-Resultset

 Multi-resultsets are sent up by stored procedures if more than
 one resultset was generated inside of it:

CREATE TEMPORARY TABLE ins (id INT);
DROP PROCEDURE IF EXISTS multi;
DELIMITER $$
CREATE PROCEDURE multi() BEGIN
 SELECT 1;
 SELECT 1;
 INSERT INTO ins VALUES (1);
 INSERT INTO ins VALUES (2);
END$$
DELIMITER ;

CALL multi();
DROP TABLE ins;

 results in:

	
 a resultset:

01 00 00 01 01 17 00 00 02 03 64 65 66 00 00 00 def...
01 31 00 0c 3f 00 01 00 00 00 08 81 00 00 00 00 .1..?...........
05 00 00 03 fe 00 00 0a 00 02 00 00 04 01 31 05 1.
00 00 05 fe 00 00 0a 00

	
 see the
 EOF_Packet:
 05 00 00 03 fe 00 00 0a 00 with its
 status-flag being 0a

	
 the 2nd resultset:

01 00 00 06 01 17 00 00 07 03 64 65 66 00 00 00 def...
01 31 00 0c 3f 00 01 00 00 00 08 81 00 00 00 00 .1..?...........
05 00 00 08 fe 00 00 0a 00 02 00 00 09 01 31 05 1.
00 00 0a fe 00 00 0a 00

	
 see the
 EOF_Packet:
 05 00 00 0a fe 00 00 0a 00 with its
 status-flag being 0a

	
 ... and a closing empty resultset, an
 OK_Packet:

07 00 00 0b 00 01 00 02 00 00 00

 If the
 SERVER_MORE_RESULTS_EXISTS
 flag is set, that indicates more resultsets will follow.

 The trailing
 OK_Packet
 is the response to the CALL
 statement and contains the affected-rows count of the last
 statement. In our case we inserted 2 rows, but only the
 affected_rows of the last
 INSERT statement is returned as
 part of the
 OK_Packet.
 If the last statement is a
 SELECT, the affected-rows count
 is 0.

 As of MySQL 5.7.5, the resultset is followed by an
 OK_Packet,
 and this
 OK_Packet
 has the
 SERVER_MORE_RESULTS_EXISTS
 flag set to start processing the next resultset.

 The client has to announce that it wants multi-resultsets by
 either setting the
 CLIENT_MULTI_RESULTS
 or
 CLIENT_PS_MULTI_RESULTS
 capability.

14.8.1.1 OUT Parameter Set

 Starting with MySQL 5.5.3, prepared statements can bind
 OUT parameters of stored procedures. They
 are returned as an extra resultset in the multi-resultset
 response. The client announces it can handle
 OUT parameters by settting the
 CLIENT_PS_MULTI_RESULTS
 capability.

 To distinguish a normal resultset from an
 OUT parameter set, the
 EOF_Packet
 or (if the
 CLIENT_DEPRECATE_EOF
 capability flag is set)
 OK_Packet
 that follows its field definition has the
 SERVER_PS_OUT_PARAMS
 flag set.

Note

 The closing
 EOF_Packet
 does NOT have neither the
 SERVER_PS_OUT_PARAMS
 flag nor the
 SERVER_MORE_RESULTS_EXISTS
 flag set. Only the first
 EOF_Packet
 has.

14.8.2 Multi-Statement

 A multi-statement is permitting COM_QUERY to
 send more than one query to the server, separated by
 ';' characters.

 The client must announce that it wants multi-statements by
 either setting the
 CLIENT_MULTI_STATEMENTS
 capability or by using
 COM_SET_OPTION.

14.8.3 COM_SET_OPTION

 Enables capabilities for the current connection to be enabled
 and disabled:

	
 CLIENT_MULTI_STATEMENTS

 The option operation is one of:

	
 Operation

	
 Constant Name

	
 0

	
 MYSQL_OPTION_MULTI_STATEMENTS_ON

	
 1

	
 MYSQL_OPTION_MULTI_STATEMENTS_OFF

 On success it returns a
 EOF_Packet
 otherwise a
 ERR_Packet.

	
 COM_SET_OPTION:

	
COM_SET_OPTION
 set options for the current connection

 response: EOF or ERR

 payload:
 1 [1b] COM_SET_OPTION
 2 option operation

14.8.4 COM_STMT_FETCH

	
 COM_STMT_FETCH:

	
 Fetch rows from a existing resultset after a
 COM_STMT_EXECUTE.

	
 Payload

	
1 [1c] COM_STMT_FETCH
4 stmt-id
4 num rows

	
 Returns

	
 a
 COM_STMT_FETCH
 response

14.8.4.1 COM_STMT_FETCH Response

 A fetch may result:

	
 a multi-resultset

	
 a
 ERR_Packet

14.9 Replication Protocol

 Replication uses binlogs to ship changes done on the master to the
 slave and can be written to Binlog
 File and sent over the network as
 Binlog Network
 Stream.

14.9.1 Binlog File

 Binlog files start with a
 Binlog File Header
 followed by a series of Binlog
 Event

14.9.1.1 Binlog File Header

 A binlog file starts with a Binlog File
 Header [fe 'bin']

$ hexdump -C /tmp/binlog-test.log
00000000 fe 62 69 6e 19 6f c9 4c 0f 01 00 00 00 66 00 00 |.bin.o.L.....f..|
00000010 00 6a 00 00 00 00 00 04 00 6d 79 73 71 6c 2d 70 |.j.......mysql-p|
00000020 72 6f 78 79 2d 30 2e 37 2e 30 00 00 00 00 00 00 |roxy-0.7.0......|
...

14.9.2 Binlog Network Stream

 Network streams are requested with
 COM_BINLOG_DUMP
 and prepend each Binlog
 Event with 00 OK-byte.

14.9.3 Binlog Version

 Depending on the MySQL Version that created the binlog the
 format is slightly different. Four versions are currently known:

Table 14.5 Binlog Versions
	
 Binlog version

	
 MySQL Version

	
 1

	
 MySQL 3.23 - < 4.0.0

	
 2

	
 MySQL 4.0.0 - 4.0.1

	
 3

	
 MySQL 4.0.2 - < 5.0.0

	
 4

	
 MySQL 5.0.0+

	
 Version 1

	
 supported
 statement
 based replication events

	
 Version 2

	
 can be ignored as it was only used in early alpha versions
 of MySQL 4.1.x and won't be documented here

	
 Version 3

	
 added the relay logs and changed the meaning of the log
 position

	
 Version 4

	
 added the
 FORMAT_DESCRIPTION_EVENT
 and made the protocol extensible

 In MySQL 5.1.x the
 Row Based
 Replication Events were added.

14.9.3.1 Determining the Binlog Version

 By the time you read the first event from the log you don't
 know what binlog version
 the binlog has. To determine the version correctly it has to
 be checked if the first event is:

	
 a
 FORMAT_DESCRIPTION_EVENT
 version = 4

	
 a START_EVENT_V3

	
 if event-size == 13 + 56: version =
 1

	
 if event-size == 19 + 56: version =
 3

	
 otherwise: invalid

14.9.4 Binlog Event

 The events contain the actual data that should be shipped from
 the master to the slave. Depending on the use, different events
 are sent.

	
 Binlog Management

	
 The first event is either a
 START_EVENT_V3 or a
 FORMAT_DESCRIPTION_EVENT
 while the last event is either a
 STOP_EVENT or a
 ROTATE_EVENT.

	
 START_EVENT_V3

	
 FORMAT_DESCRIPTION_EVENT

	
 STOP_EVENT

	
 ROTATE_EVENT

	
 SLAVE_EVENT

	
 INCIDENT_EVENT

	
 HEARTBEAT_EVENT

	

 Statement Based Replication Events

	
 Statement Based Replication or SBR sends the SQL queries a
 client sent to the master AS IS to the slave. It needs
 extra events to mimic the client connection's state on the
 slave side.

	
 QUERY_EVENT

	
 INTVAR_EVENT

	
 RAND_EVENT

	
 USER_VAR_EVENT

	
 XID_EVENT

	

 Row Based Replication Events

	
 In Row Based replication the changed rows are sent to the
 slave which removes side-effects and makes it more
 reliable. Now all statements can be sent with RBR though.
 Most of the time you will see RBR and SBR side by side.

	
 TABLE_MAP_EVENT

	
 DELETE_ROWS_EVENTv0

	
 UPDATE_ROWS_EVENTv0

	
 WRITE_ROWS_EVENTv0

	
 DELETE_ROWS_EVENTv1

	
 UPDATE_ROWS_EVENTv1

	
 WRITE_ROWS_EVENTv1

	
 DELETE_ROWS_EVENTv2

	
 UPDATE_ROWS_EVENTv2

	
 WRITE_ROWS_EVENTv2

	
 LOAD INFILE replication

	
 LOAD DATA|XML INFILE is a special SQL
 statement as it has to ship the files over to the slave
 too to execute the statement.

	
 LOAD_EVENT

	
 CREATE_FILE_EVENT

	
 APPEND_BLOCK_EVENT

	
 EXEC_LOAD_EVENT

	
 DELETE_FILE_EVENT

	
 NEW_LOAD_EVENT

	
 BEGIN_LOAD_QUERY_EVENT

	
 EXECUTE_LOAD_QUERY_EVENT

 A binlog event starts with a
 Binlog Event header
 and is followed by a Binlog
 Event Type specific data part.

14.9.4.1 Binlog Event header

 The binlog event header starts each event and is either 13 or
 19 bytes long, depending on the
 binlog version.

	
 Binlog::EventHeader:

	
 Binlog header

	
 Payload

	
4 timestamp
1 event type
4 server-id
4 event-size
 if binlog-version > 1:
4 log pos
2 flags

	
 Fields

		
 timestamp
 (4)
 -- seconds since unix epoch

	
 event_type
 (1)
 -- see
 Binlog Event
 Type

	
 server_id
 (4)
 -- server-id of the originating mysql-server.
 Used to filter out events in circular
 replication.

	
 event_size
 (4)
 -- size of the event (header, post-header,
 body)

	
 log_pos
 (4)
 -- position of the next event

	
 flags
 (2)
 -- see
 Binlog Event
 Flag

14.9.4.2 Binlog Event Flag

	
 Hex

	
 Flag

	
 0x0001

	
 LOG_EVENT_BINLOG_IN_USE_F

	
 0x0002

	
 LOG_EVENT_FORCED_ROTATE_F

	
 0x0004

	
 LOG_EVENT_THREAD_SPECIFIC_F

	
 0x0008

	
 LOG_EVENT_SUPPRESS_USE_F

	
 0x0010

	
 LOG_EVENT_UPDATE_TABLE_MAP_VERSION_F

	
 0x0020

	
 LOG_EVENT_ARTIFICIAL_F

	
 0x0040

	
 LOG_EVENT_RELAY_LOG_F

	
 0x0080

	
 LOG_EVENT_IGNORABLE_F

	
 0x0100

	
 LOG_EVENT_NO_FILTER_F

	
 0x0200

	
 LOG_EVENT_MTS_ISOLATE_F

	

 LOG_EVENT_BINLOG_IN_USE_F

	
 gets unset in the
 FORMAT_DESCRIPTION_EVENT
 when the file gets closed to detect broken binlogs

	

 LOG_EVENT_FORCED_ROTATE_F

	
 unused

	

 LOG_EVENT_THREAD_SPECIFIC_F

	
 event is thread specific (CREATE TEMPORARY TABLE ...)

	

 LOG_EVENT_SUPPRESS_USE_F

	
 event doesn't need default database to be updated
 (CREATE DATABASE, ...)

	

 LOG_EVENT_UPDATE_TABLE_MAP_VERSION_F

	
 unused

	

 LOG_EVENT_ARTIFICIAL_F

	
 event is created by the slaves SQL-thread and shouldn't
 update the master-log pos

	

 LOG_EVENT_RELAY_LOG_F

	
 event is created by the slaves IO-thread when written to
 the relay log

14.9.4.3 Binlog Event Type

	
 Hex

	
 Event Name

	
 0x00

	
 UNKNOWN_EVENT

	
 0x01

	
 START_EVENT_V3

	
 0x02

	
 QUERY_EVENT

	
 0x03

	
 STOP_EVENT

	
 0x04

	
 ROTATE_EVENT

	
 0x05

	
 INTVAR_EVENT

	
 0x06

	
 LOAD_EVENT

	
 0x07

	
 SLAVE_EVENT

	
 0x08

	
 CREATE_FILE_EVENT

	
 0x09

	
 APPEND_BLOCK_EVENT

	
 0x0a

	
 EXEC_LOAD_EVENT

	
 0x0b

	
 DELETE_FILE_EVENT

	
 0x0c

	
 NEW_LOAD_EVENT

	
 0x0d

	
 RAND_EVENT

	
 0x0e

	
 USER_VAR_EVENT

	
 0x0f

	
 FORMAT_DESCRIPTION_EVENT

	
 0x10

	
 XID_EVENT

	
 0x11

	
 BEGIN_LOAD_QUERY_EVENT

	
 0x12

	
 EXECUTE_LOAD_QUERY_EVENT

	
 0x13

	
 TABLE_MAP_EVENT

	
 0x14

	
 WRITE_ROWS_EVENTv0

	
 0x15

	
 UPDATE_ROWS_EVENTv0

	
 0x16

	
 DELETE_ROWS_EVENTv0

	
 0x17

	
 WRITE_ROWS_EVENTv1

	
 0x18

	
 UPDATE_ROWS_EVENTv1

	
 0x19

	
 DELETE_ROWS_EVENTv1

	
 0x1a

	
 INCIDENT_EVENT

	
 0x1b

	
 HEARTBEAT_EVENT

	
 0x1c

	
 IGNORABLE_EVENT

	
 0x1d

	
 ROWS_QUERY_EVENT

	
 0x1e

	
 WRITE_ROWS_EVENTv2

	
 0x1f

	
 UPDATE_ROWS_EVENTv2

	
 0x20

	
 DELETE_ROWS_EVENTv2

	
 0x21

	
 GTID_EVENT

	
 0x22

	
 ANONYMOUS_GTID_EVENT

	
 0x23

	
 PREVIOUS_GTIDS_EVENT

14.9.4.4 Ignored Cvents

	

 UNKNOWN_EVENT

	

 SLAVE_EVENT

14.9.4.5 START_EVENT_V3

	
 Binlog::START_EVENT_V3:

	
 A start event is the first event of a binlog for
 binlog-version 1 to 3.

	
 Payload

	
2 binlog-version
string[50] mysql-server version
4 create timestamp

	
 Fields

		
 binlog-version
 (2)
 -- version of this binlog format.

	
 mysql-server
 version
 (string.fix_len)
 -- [len=50] version of the MySQL Server that
 created the binlog. The string is evaluted to
 apply work-arounds in the slave.

	
 create_timestamp
 (4)
 -- seconds since Unix epoch when the binlog
 was created

14.9.4.6 FORMAT_DESCRIPTION_EVENT

	
 Binlog::FORMAT_DESCRIPTION_EVENT:

	
 A format description event is the first event of a
 binlog for binlog-version 4. It describes how the other
 events are layed out.

Note

 added in MySQL 5.0.0 as replacement for
 START_EVENT_V3

	
 Payload

	
2 binlog-version
string[50] mysql-server version
4 create timestamp
1 event header length
string[p] event type header lengths

	
 Fields

		
 binlog-version
 (2)
 -- version of this binlog format.

	
 mysql-server
 version
 (string.fix_len)
 -- [len=50] version of the MySQL Server that
 created the binlog. The string is evaluted to
 apply work-arounds in the slave.

	
 create_timestamp
 (4)
 -- seconds since Unix epoch when the binlog
 was created

	
 event_header_length
 (1)
 -- length of the
 Binlog
 Event Header of next events. Should
 always be 19.

	
 event type header
 length
 (string.EOF)
 -- a array indexed by Binlog Event
 Type - 1 to extract the length of
 the event specific header.

	
 Example

	
$ hexdump -v -s 4 -C relay-bin.000001
00000004 82 2d c2 4b 0f 02 00 00 00 67 00 00 00 6b 00 00 |.-.K.....g...k..|
00000014 00 00 00 04 00 35 2e 35 2e 32 2d 6d 32 00 00 00 |.....5.5.2-m2...|
00000024 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000034 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000044 00 00 00 00 00 00 00 82 2d c2 4b 13 38 0d 00 08 |........-.K.8...|
00000054 00 12 00 04 04 04 04 12 00 00 54 00 04 1a 08 00 |..........T.....|
00000064 00 00 08 08 08 02 00 |........ |

 For mysql-5.5.2-m2 the event specific
 header lengths are:

Table 14.6 Event Type Header Lengths by Binlog Version
	
 Event Name

	
 Header Length

	
 v=4

	
 v=3

	
 v=1

	
 Binlog Event
 Header

	
 19

	
 13

	
 START_EVENT_V3

	
 56

	
 QUERY_EVENT

	
 13

	
 11

	
 STOP_EVENT

	
 0

	
 ROTATE_EVENT

	
 8

	
 0

	
 INTVAR_EVENT

	
 0

	
 LOAD_EVENT

	
 18

	
 SLAVE_EVENT

	
 0

	
 CREATE_FILE_EVENT

	
 4

	
 APPEND_BLOCK_EVENT

	
 4

	
 EXEC_LOAD_EVENT

	
 4

	
 DELETE_FILE_EVENT

	
 4

	
 NEW_LOAD_EVENT

	
 18

	
 RAND_EVENT

	
 0

	
 USER_VAR_EVENT

	
 0

	
 FORMAT_DESCRIPTION_EVENT

	
 84

 XID_EVENT

	
 0

 BEGIN_LOAD_QUERY_EVENT

	
 4

 EXECUTE_LOAD_QUERY_EVENT

	
 26

 TABLE_MAP_EVENT

	
 8

 DELETE_ROWS_EVENTv0

	
 0

 UPDATE_ROWS_EVENTv0

	
 0

 WRITE_ROWS_EVENTv0

	
 0

 DELETE_ROWS_EVENTv1

	
 8/6

 UPDATE_ROWS_EVENTv1

	
 8/6

 WRITE_ROWS_EVENTv1

	
 8/6

 INCIDENT_EVENT

	
 2

 HEARTBEAT_EVENT

	
 0

 DELETE_ROWS_EVENTv2

	
 10

 UPDATE_ROWS_EVENTv2

	
 10

 WRITE_ROWS_EVENTv2

	
 10

 The event-size of 0x67 (103) minus the
 event-header length of 0x13 (19) should
 match the event type header length of the
 FORMAT_DESCRIPTION_EVENT
 0x54 (84).

 The number of events understood by the master may differ from
 what the slave supports. It is calculated by:

event-size - event-header length - 2 - 50 - 4 - 1

 For mysql-5.5.2-m2 it is 0x1b
 (27).

14.9.4.7 ROTATE_EVENT

	
 Binlog::ROTATE_EVENT:

	
 The rotate event is added to the binlog as last event to
 tell the reader what binlog to request next.

	
 Post-header

	
 if binlog-version > 1 {
8 position
 }

	
 Payload

	
string[p] name of the next binlog

14.9.4.8 STOP_EVENT

 A STOP_EVENT has no payload or post-header.

14.9.4.9 QUERY_EVENT

	
 Binlog::QUERY_EVENT:

	
 The query event is used to send text querys right the
 binlog.

	
 Post-header

	
4 slave_proxy_id
4 execution time
1 schema length
2 error-code
 if binlog-version ≥ 4:
2 status-vars length

	
 Payload

	
string[$len] status-vars
string[$len] schema
1 [00]
string[EOF] query

	
 Fields

		
 status_vars_length
 (2)
 -- number of bytes in the following sequence
 of status-vars

	
 status_vars
 (string.var_len)
 -- [len=$status_vars_length] a sequence of
 status key-value pairs. The key is 1-byte,
 while its value is dependent on the key.

	
 Hex

	
 Flag

	
 Value Length

	
 0x00

	
 Q_FLAGS2_CODE

	
 4

	
 0x01

	
 Q_SQL_MODE_CODE

	
 8

	
 0x02

	
 Q_CATALOG

	
 1 + n + 1

	
 0x03

	
 Q_AUTO_INCREMENT

	
 2 + 2

	
 0x04

	
 Q_CHARSET_CODE

	
 2 + 2 + 2

	
 0x05

	
 Q_TIME_ZONE_CODE

	
 1 + n

	
 0x06

	
 Q_CATALOG_NZ_CODE

	
 1 + n

	
 0x07

	
 Q_LC_TIME_NAMES_CODE

	
 2

	
 0x08

	
 Q_CHARSET_DATABASE_CODE

	
 2

	
 0x09

	
 Q_TABLE_MAP_FOR_UPDATE_CODE

	
 8

	
 0x0a

	
 Q_MASTER_DATA_WRITTEN_CODE

	
 4

	
 0x0b

	
 Q_INVOKERS

	
 1 + n + 1 + n

	
 0x0c

	
 Q_UPDATED_DB_NAMES

	
 1 + n*nul-term-string

	
 0x0d

	
 Q_MICROSECONDS

	
 3

 The value of the different status vars are:

	

 Q_FLAGS2_CODE

	
 Bitmask of flags that are usually set
 with
 SET:

	
 SQL_AUTO_IS_NULL

	
 FOREIGN_KEY_CHECKS

	
 UNIQUE_CHECKS

	
 AUTOCOMMIT

	
 Hex

	
 Flag

	
 0x00004000

	
 OPTION_AUTO_IS_NULL

	
 0x00080000

	
 OPTION_NOT_AUTOCOMMIT

	
 0x04000000

	
 OPTION_NO_FOREIGN_KEY_CHECKS

	
 0x08000000

	
 OPTION_RELAXED_UNIQUE_CHECKS

	

 Q_SQL_MODE_CODE

	
 Bitmask of flags that are usually set
 with
 SET
 sql_mode:

	
 Hex

	
 Flag

	
 0x00000001

	
 MODE_REAL_AS_FLOAT

	
 0x00000002

	
 MODE_PIPES_AS_CONCAT

	
 0x00000004

	
 MODE_ANSI_QUOTES

	
 0x00000008

	
 MODE_IGNORE_SPACE

	
 0x00000010

	
 MODE_NOT_USED

	
 0x00000020

	
 MODE_ONLY_FULL_GROUP_BY

	
 0x00000040

	
 MODE_NO_UNSIGNED_SUBTRACTION

	
 0x00000080

	
 MODE_NO_DIR_IN_CREATE

	
 0x00000100

	
 MODE_POSTGRESQL

	
 0x00000200

	
 MODE_ORACLE

	
 0x00000400

	
 MODE_MSSQL

	
 0x00000800

	
 MODE_DB2

	
 0x00001000

	
 MODE_MAXDB

	
 0x00002000

	
 MODE_NO_KEY_OPTIONS

	
 0x00004000

	
 MODE_NO_TABLE_OPTIONS

	
 0x00008000

	
 MODE_NO_FIELD_OPTIONS

	
 0x00010000

	
 MODE_MYSQL323

	
 0x00020000

	
 MODE_MYSQL40

	
 0x00040000

	
 MODE_ANSI

	
 0x00080000

	
 MODE_NO_AUTO_VALUE_ON_ZERO

	
 0x00100000

	
 MODE_NO_BACKSLASH_ESCAPES

	
 0x00200000

	
 MODE_STRICT_TRANS_TABLES

	
 0x00400000

	
 MODE_STRICT_ALL_TABLES

	
 0x00800000

	
 MODE_NO_ZERO_IN_DATE

	
 0x01000000

	
 MODE_NO_ZERO_DATE

	
 0x02000000

	
 MODE_INVALID_DATES

	
 0x04000000

	
 MODE_ERROR_FOR_DIVISION_BY_ZERO

	
 0x08000000

	
 MODE_TRADITIONAL

	
 0x10000000

	
 MODE_NO_AUTO_CREATE_USER

	
 0x20000000

	
 MODE_HIGH_NOT_PRECEDENCE

	
 0x40000000

	
 MODE_NO_ENGINE_SUBSTITUTION

	
 0x80000000

	
 MODE_PAD_CHAR_TO_FULL_LENGTH

	

 Q_AUTO_INCREMENT

	
 2-byte autoincrement-increment and
 2-byte autoincrement-offset

Note

 only written if the -increment is
 > 1

	

 Q_CATALOG

	
 1-byte length + <length> chars
 of the catalog + '0'-char

Note

 only written length > 0

	

 Q_CHARSET_CODE

	
 2-byte character_set_client + 2-byte
 collation_connection + 2-byte
 collation_server

 See
 Connection Character Sets and Collations

	

 Q_TIME_ZONE_CODE

	
 1-byte length + <length> chars
 of the timezone

 timezone the master is in

 See
 MySQL Server Time Zone Support

Note

 only written length > 0

	

 Q_CATALOG_NZ_CODE

	
 1-byte length + <length> chars
 of the catalog

Note

 only written length > 0

	

 Q_LC_TIME_NAMES_CODE

	
 LC_TIME of the
 server. Defines how to parse week-,
 month and day-names in timestamps.

Note

 only written if code > 0 (aka
 "en_US")

	

 Q_CHARSET_DATABASE_CODE

	
 characterset and collation of the
 schema

	

 Q_TABLE_MAP_FOR_UPDATE_CODE

	
 a 64bit-field ... should only be used
 in
 Row
 Based Replication and
 multi-table updates

	

 Q_MASTER_DATA_WRITTEN_CODE

	
 4-byte ...

	

 Q_INVOKERS

	
 1-byte length + <length> bytes
 username and 1-byte length +
 <length> bytes hostname

	

 Q_UPDATED_DB_NAMES

	
 1-byte count + <count>
 \0 terminated
 string

	

 Q_MICROSECONDS

	
 3-byte microseconds

	
 schema
 (string.var_len)
 -- [len=$schema_length] schema

	
 query
 (string.EOF)
 -- text of the query

14.9.4.10 LOAD_EVENT

	
 Binlog::LOAD_EVENT:

	
 all string lengths are without the terminating 0

	
 Payload

	
4 slave_proxy_id
4 exec_time
4 skip_lines
1 table_name_len
1 schema_len
4 num_fields

1 field_term
1 enclosed_by
1 line_term
1 line_start
1 escaped_by
1 opt_flags
1 empty_flags

string.var_len [len=1 * num_fields] (array of 1-byte) field_name_lengths
string.var_len [len=sum(field_name_lengths) + num_fields] (array of nul-terminated strings) field_names
string.var_len [len=table_name_len + 1] (nul-terminated string) table_name
string.var_len [len=schema_len + 1] (nul-terminated string) schema_name
string.NUL file_name

	
 Fields

		
 empty_flags
 (1)
 --

	
 Hex

	
 Name

	
 0x01

	
 FIELD_TERM_EMPTY

	
 0x02

	
 ENCLOSED_EMPTY

	
 0x04

	
 LINE_TERM_EMPTY

	
 0x08

	
 LINE_START_EMPTY

	
 0x10

	
 ESCAPE_EMPTY

	
 opt_flags
 (1)
 --

	
 Hex

	
 Name

	
 0x01

	
 DUMPFILE_FLAG

	
 0x02

	
 OPT_ENCLOSED_FLAG

	
 0x04

	
 REPLACE_FLAG

	
 0x08

	
 IGNORE_FLAG

14.9.4.11 NEW_LOAD_EVENT

	
 Binlog::NEW_LOAD_EVENT:

		
 Payload

	
4 slave_proxy_id
4 exec_time
4 skip_lines
1 table_name_len
1 schema_len
4 num_fields

1 field_term_len
string.var_len field_term
1 enclosed_by_len
string.var_len enclosed_by
1 line_term_len
string.var_len line_term
1 line_start_len
string.var_len line_start
1 escaped_by_len
string.var_len escaped_by
1 opt_flags

string.var_len [len=1 * num_fields] (array of 1-byte) field_name_lengths
string.var_len [len=sum(field_name_lengths) + num_fields] (array of nul-terminated strings) field_names
string.var_len [len=table_name_len] (nul-terminated string) table_name
string.var_len [len=schema_len] (nul-terminated string) schema_name
string.EOF file_name

	
 Fields

	
 opt_flags
 (1)
 --

	
 Hex

	
 Name

	
 01

	
 DUMPFILE_FLAG

	
 02

	
 OPT_ENCLOSED_FLAG

	
 04

	
 REPLACE_FLAG

	
 08

	
 IGNORE_FLAG

14.9.4.12 CREATE_FILE_EVENT

	
 Binlog::CREATE_FILE_EVENT:

		
 Payload

	
4 file_id
string.EOF block-data

14.9.4.13 APPEND_BLOCK_EVENT

	
 Binlog::APPEND_BLOCK_EVENT:

	
 append block-data to file

	
 Payload

	
4 file_id
string.EOF block-data

14.9.4.14 EXEC_LOAD_EVENT

	
 Binlog::EXEC_LOAD_EVENT:

		
 Payload

	
4 file_id

14.9.4.15 BEGIN_LOAD_QUERY_EVENT

	
 Binlog::BEGIN_LOAD_QUERY_EVENT:

	
 truncate a file and set block-data

	
 Payload

	
4 file_id
string.EOF block-data

	
 See

	
 Binlog::APPEND_BLOCK_EVENT

14.9.4.16 EXECUTE_LOAD_QUERY_EVENT

	
 Binlog::EXECUTE_LOAD_QUERY_EVENT:

		
 Post-header

	
4 slave_proxy_id
4 execution time
1 schema length
2 error-code
2 status-vars length

	
 Payload

	
4 file_id
4 start_pos
4 end_pos
1 dup_handling_flags

	
 See

	
 Binlog::QUERY_EVENT

14.9.4.17 DELETE_FILE_EVENT

	
 Binlog::DELETE_FILE_EVENT:

		
 Payload

	
4 file_id

14.9.4.18 RAND_EVENT

	
 Binlog::RAND_EVENT:

	
 Internal state of the RAND()
 function.

	
 Payload

	
8 seed1
8 seed2

14.9.4.19 XID_EVENT

	
 Binlog::XID_EVENT:

	
 Transaction ID for 2PC, written whenever a
 COMMIT is expected.

	
 Payload

	
8 xid

14.9.4.20 INTVAR_EVENT

	
 Binlog::INTVAR_EVENT:

	
 Integer based session-variables

	
 Payload

	
1 type
8 value

	
 Fields

		
 type
 (1)
 --

	
 Nex

	
 intvar Event Type

	
 0x00

	
 INVALID_INT_EVENT

	
 0x01

	
 LAST_INSERT_ID_EVENT

	
 0x02

	
 INSERT_ID_EVENT

	
 value
 (8)
 -- value

14.9.4.21 USER_VAR_EVENT

	
 Binlog::USER_VAR_EVENT:

		
 Payload

	
4 name_length
string[$len] name
1 is_null
 if not is_null {
1 type
4 charset
4 value_length
string[$len] value
 if more data {
1 flags
 }
 }

	
 Fields

		
 name_length
 (4)
 -- length of name

	
 name
 (string.var_len)
 -- [len=$name_length] name

	
 is_null
 (1)
 -- 1 if value is NULL, 0 otherwise

	
 type
 (1)
 -- type of value

	
 charset
 (4)
 -- character set of value

	
 value_length
 (4)
 -- length of value

	
 value
 (string.var_len)
 -- [len=$value_length] value

	
 flags
 (1)
 -- flags of value

	
 Hex

	
 uservar Flags

	
 0x01

	
 UNSIGNED

14.9.4.22 INCIDENT_EVENT

	
 Binlog::INCIDENT_EVENT:

		
 Payload

	
2 type
1 message length
n message

	
 Fields

		
 type
 (2)
 --

	
 Hex

	
 Name

	
 0x0000

	
 INCIDENT_NONE

	
 0x0001

	
 INCIDENT_LOST_EVENTS

	
 message_length
 (1)
 -- length of message

	
 message
 (string.var_len)
 -- [len=$message_length] message

14.9.4.23 HEARTBEAT_EVENT

 An artificial event generated by the master. It isn't written
 to the relay logs.

 It is added by the master after the replication connection was
 idle for x-seconds to update the slave's
 Seconds_Behind_Master timestamp in the
 SHOW SLAVE STATUS output.

 It has no payload nor post-header.

14.9.5 COM_BINLOG_DUMP

 Requests a binlog network
 stream from the master starting a given position.

 You can use SHOW BINARY LOGS to
 get the current logfile and position from the master.

 The master responds either with a

	
 binlog network
 stream

	
 a
 ERR_Packet

	
 or (if
 BINLOG_DUMP_NON_BLOCK
 is set) with
 EOF_Packet

 If the binlog-filename is empty, the server
 will send the binlog-stream of the first known binlog.

	
 COM_BINLOG_DUMP:

	
 request a binlog-stream from the server

	
 Payload

	
1 [12] COM_BINLOG_DUMP
4 binlog-pos
2 flags
4 server-id
string[EOF] binlog-filename

	
 Fields

		
 binlog_pos
 (4)
 -- position in the binlog-file to start the
 stream with

	
 flags
 (2)
 -- can right now has one value:

	
 Flag

	
 Description

	
 0x01

	

 BINLOG_DUMP_NON_BLOCK

	
 BINLOG_DUMP_NON_BLOCK

	
 if there is no more event to send send a
 EOF_Packet
 instead of blocking the connection

	
 server_id
 (4)
 -- server id of this slave

	
 binlog-filename
 (string.EOF)
 -- filename of the binlog on the master

14.9.6 COM_BINLOG_DUMP_GTID

 If the binlog-filename is empty, the server
 will send the binlog-stream of the first known binlog.

	
 COM_BINLOG_DUMP_GTID:

	
 request the Binlog
 Network Stream based on a GTID

	
 Payload

	
1 [1e] COM_BINLOG_DUMP_GTID
2 flags
4 server-id
4 binlog-filename-len
string[len] binlog-filename
8 binlog-pos
 if flags & BINLOG_THROUGH_GTID {
4 data-size
string[len] data
 }

	
 Fields

		
 flags
 (2)
 --

	
 Flag

	
 Description

	
 0x01

	
 BINLOG_DUMP_NON_BLOCK

	
 0x02

	
 BINLOG_THROUGH_POSITION

	
 0x04

	
 BINLOG_THROUGH_GTID

	
 server_id
 (4)
 -- server id of this slave

	
 binlog-filename-len
 (4)
 -- length of binlog-filename

	
 binlog-filename
 (string.fix_len)
 -- filename of the binlog on the master

	
 binlog_pos
 (8)
 -- position in the binlog-file to start the
 stream with

	
 data-len
 (4)
 -- length of data

	
 data
 (string.fix_len)
 -- SID block

4 n_sids
 for n_sids {
string[16] SID
8 n_intervals
 for n_intervals {
8 start (signed)
8 end (signed)
 }
 }

	
 Returns

	
 a Binlog
 Network Stream, a
 ERR_Packet
 or if BINLOG_DUMP_NON_BLOCK is
 set a
 EOF_Packet

14.9.7 COM_TABLE_DUMP

	
 COM_TABLE_DUMP:

	
 dump a table

	
 Payload

	
1 [13] COM_TABLE_DUMP
1 database_len
string[$len] [len=database_len] database name
1 table_len
string[$len] [len=table_len] tablename

	
 Returns

	
 a table dump or
 ERR_Packet

14.9.8 COM_CONNECT_OUT

	
 COM_CONNECT_OUT:

	
 a internal command in the server

	
 Payload

	
1 [14] COM_CONNECT_OUT

	
 Returns

	
 ERR_Packet

14.9.9 COM_REGISTER_SLAVE

 Registers a slave at the master. Should be sent before
 requesting a binlog events with
 COM_BINLOG_DUMP.

	
 COM_REGISTER_SLAVE:

	
 register a slave at the master

	
 Payload

	

1 [15] COM_REGISTER_SLAVE
4 server-id
1 slaves hostname length
string[$len] slaves hostname
1 slaves user len
string[$len] slaves user
1 slaves password len
string[$len] slaves password
2 slaves mysql-port
4 replication rank
4 master-id

 Note that the value of [15] is
 hexadecimal; in decimal, this would be 21.

	
 Fields

		
 server_id
 (4)
 -- the slaves server-id

	
 slave_hostname
 (string.var_len)
 -- see
 --report-host,
 usually empty

	
 slave_user
 (string.var_len)
 -- see
 --report-user,
 usually empty

	
 slave_password
 (string.var_len)
 -- see
 --report-password,
 usually empty

	
 slave_port
 (2)
 -- see
 --report-port,
 usually empty

	
 replication_rank
 (4)
 -- ignored

	
 master_id
 (4)
 -- usually 0. Appears as "master id" in
 SHOW SLAVE HOSTS
 on the master. Unknown what else it impacts.

	
 Returns

	
 OK_Packet
 or
 ERR_Packet

14.10 Row-Based Replication

14.10.1 TABLE_MAP_EVENT

 The first event used in
 Row Based
 Replication declares how a table that is about to be
 changed is defined.

	
 TABLE_MAP_EVENT:

	
 The TABLE_MAP_EVENT defines the structure if the tables
 that are about to be changed.

	
 Payload

	
post-header:
 if post_header_len == 6 {
 4 table id
 } else {
 6 table id
 }
 2 flags

payload:
 1 schema name length
 string schema name
 1 [00]
 1 table name length
 string table name
 1 [00]
 lenenc-int column-count
 string.var_len [length=$column-count] column-def
 lenenc-str column-meta-def
 n NULL-bitmask, length: (column-count + 8) / 7

	
 Fields

		
 table_id
 (6)
 -- numeric table id

	
 flags
 (2)
 -- flags

	
 schema_name_length
 (1)
 -- length of the schema name

	
 schema_name
 (string.var_len)
 -- [len=schema_name_length] schema name

	
 table_name_length
 (1)
 -- length of the schema name

	
 table_name
 (string.var_len)
 -- [len=table_name_length] table name

	
 column_count
 (lenenc_int)
 -- number of columns in the table map

	
 column_type_def
 (string.var_len)
 -- [len=column_count] array of column
 definitions, one byte per field type

	
 column_meta_def
 (lenenc_str)
 -- array of metainfo per column, length is the
 overall length of the metainfo-array in bytes,
 the length of each metainfo field is dependent
 on the columns field type

	
 null_bitmap
 (string.var_len)
 -- [len=(column_count + 8) / 7]

	
 column_type_def

	
 the column definitions. It is sent as length encoded
 string where the length of the string is the number of
 columns and each byte of it is the
 Protocol::ColumnType
 of the column.

	
 column_meta_def

	
 type-specific metadata for each column

	
 Type

	
 meta-len

	
 Protocol::MYSQL_TYPE_STRING

	
 2

	
 Protocol::MYSQL_TYPE_VAR_STRING

	
 2

	
 Protocol::MYSQL_TYPE_VARCHAR

	
 2

	
 Protocol::MYSQL_TYPE_BLOB

	
 1

	
 Protocol::MYSQL_TYPE_DECIMAL

	
 2

	
 Protocol::MYSQL_TYPE_NEWDECIMAL

	
 2

	
 Protocol::MYSQL_TYPE_DOUBLE

	
 1

	
 Protocol::MYSQL_TYPE_FLOAT

	
 1

	
 Protocol::MYSQL_TYPE_ENUM

	
 2

	
 Protocol::MYSQL_TYPE_SET

	
 see MYSQL_TYPE_ENUM

	
 Protocol::MYSQL_TYPE_BIT

	
 0

	
 Protocol::MYSQL_TYPE_DATE

	
 0

	
 Protocol::MYSQL_TYPE_DATETIME

	
 0

	
 Protocol::MYSQL_TYPE_TIMESTAMP

	
 0

	
 Protocol::MYSQL_TYPE_TIME

	
 --

	
 Protocol::MYSQL_TYPE_TINY

	
 0

	
 Protocol::MYSQL_TYPE_SHORT

	
 0

	
 Protocol::MYSQL_TYPE_INT24

	
 0

	
 Protocol::MYSQL_TYPE_LONG

	
 0

	
 Protocol::MYSQL_TYPE_LONGLONG

	
 0

	
 Protocol::MYSQL_TYPE_STRING

	
 due to
 Bug37426
 layout of the string metadata is a bit tightly
 packed:

1 byte0
1 byte1

 The two bytes encode type and
 length

	
 NULL-bitmap

	
 a bitmask contained a bit set for each column that can be
 NULL. The column-length is taken from
 the column-def

14.10.2 ROWS_EVENT

 Three basic kinds of ROWS_EVENT exist:

	
 Event

	
 SQL Command

	
 rows Contents

	
 WRITE_ROWS_EVENT

	
 INSERT

	
 the row data to insert

	
 DELETE_ROWS_EVENT

	
 DELETE

	
 as much data as needed to identify a row

	
 UPDATE_ROWS_EVENT

	
 UPDATE

	
 as much data as needed to identify a row + the data to
 change

 The format of the events changed between releases which is why 3
 diffent sets of ROWS_EVENT exist:

	
 Version 0

	
 written from MySQL 5.1.0 to 5.1.15

	

 UPDATE_ROWS_EVENTv0

	

 WRITE_ROWS_EVENTv0

	

 DELETE_ROWS_EVENTv0

	
 Version 1

	
 written from MySQL 5.1.15 to 5.6.x

	

 UPDATE_ROWS_EVENTv1

	

 WRITE_ROWS_EVENTv1

	

 DELETE_ROWS_EVENTv1

 added the after-image for the UPDATE_ROWS_EVENT

	
 Version 2

	
 written from MySQL 5.6.x

	

 UPDATE_ROWS_EVENTv2

	

 WRITE_ROWS_EVENTv2

	

 DELETE_ROWS_EVENTv2

 added the extra-data fields

 The format is pretty similar for all the events:

	
 Binlog::RowsEvent:

		
 Payload

	
header:
 if post_header_len == 6 {
4 table id
 } else {
6 table id
 }
2 flags
 if version == 2 {
2 extra-data-length
string.var_len extra-data
 }

body:
lenenc_int number of columns
string.var_len columns-present-bitmap1, length: (num of columns+7)/8
 if UPDATE_ROWS_EVENTv1 or v2 {
string.var_len columns-present-bitmap2, length: (num of columns+7)/8
 }

rows:
string.var_len nul-bitmap, length (bits set in 'columns-present-bitmap1'+7)/8
string.var_len value of each field as defined in table-map
 if UPDATE_ROWS_EVENTv1 or v2 {
string.var_len nul-bitmap, length (bits set in 'columns-present-bitmap2'+7)/8
string.var_len value of each field as defined in table-map
 }
 ... repeat rows until event-end

	
 Fields

		
 table_id
 (6)
 -- If the table id is
 0x00ffffff it is a dummy
 event that should have the end of
 statement flag set that declares that
 all table maps can be freed. Otherwise it refers
 to a table defined by
 TABLE_MAP_EVENT.

Note

 if the post_header_length in the
 Binlog::FORMAT_DESCRIPTION_EVENT
 is 6 (instead of 8 or 10) the table_id is
 only 4 bytes long.

	
 flags
 (2)
 --

	
 Hex

	
 Name

	
 0x0001

	
 end of statement

	
 0x0002

	
 no foreign key checks

	
 0x0004

	
 no unique key checks

	
 0x0008

	
 row has a columns

	
 extra_data_len
 (2)
 -- length of extra_data (has to be ≥ 2)

	
 extra_data
 (string.var_len)
 -- extra_data [length=extra_data_len - 2], zero
 or more
 Binlog::RowsEventExtraData

	
 Binlog::RowsEventExtraData:

		
 Payload

	
1 type
string.len type-specific data

	
 Fields

	
 type
 (1)
 --

	
 Nex

	
 Name

	
 0x00

	
 RW_V_EXTRAINFO_TAG

	
 Binlog::RowsEventExtraDataExtraInfo:

		
 Payload

	
1 length
1 format
string.len payload [length=length]

	
 Fields

		
 length
 (1)
 -- length of the payload

	
 format
 (1)
 -- format of the payload

	
 Hex

	
 Format

	
 0x00

	
 NDB

	
 0x40

	
 OPEN1

	
 0x41

	
 OPEN2

	
 0xFF

	
 MULTI

	
 payload
 (string.var_len)
 -- payload [length=length]

	
 Binlog::RowsEventExtraDataExtraInfoFormat:

	
 not used in 5.6.6 yet

14.10.3 ROWS_QUERY_EVENT

	
 Binlog::RowsQueryEvent:

	
 Query that caused the following ROWS_EVENT

	
 Payload

	
1 length
string.EOF query text

	
 Fields

		
 length
 (1)
 -- ignored

	
 query
 (string.EOF)
 -- query text of the current ROWS_EVENT

14.11 Semi-Synchronous Replication

 In MySQL 5.5 replication can optionally be made semi-synchronous
 instead of the traditionally asynchronous replication.

 The clients COMMIT (or in auto-commit mode the
 current statement) waits until _one_ slave acknowledged that it
 received (not neccesarilly executed) the transaction or a timeout
 is reached. In case the timeout is reached, semi-sync replication
 is disabled.

 For more information, see Semisynchronous Replication.

 To see of the master supports semi-sync replication run:

SHOW VARIABLES LIKE 'rpl_semi_sync_master_enabled';

 The slave requests semi-sync replication by sending:

SET @rpl_semi_sync_slave = 1;

 which the master either responds with a
 OK_Packet
 if it supports semi-sync replication or with
 ERR_Packet
 if it doesn't.

14.11.1 Semi-Synchronous Binlog Event

 After the 00 OK-byte of a
 binlog network
 stream 2 bytes get added before the normal
 Binlog Event continues.:

1 [ef] semi-sync indicator
1 semi-sync flags

	
 semi-sync flags

		
 Flag

	
 Description

	
 0x01

	

 SEMI_SYNC_ACK_REQ

 If the
 SEMI_SYNC_ACK_REQ
 flag is set the master waits for a
 Semi Sync ACK
 packet from the slave before it sends the next
 event.

14.11.2 Semi-Synchronous ACK Packet

 Each Semi Sync Binlog
 Event with the
 SEMI_SYNC_ACK_REQ flag
 set the slave has to acknowledge with Semi-Sync ACK packet:

SEMI_SYNC_ACK
 payload:
 1 [ef]
 8 log position
 string log filename

 which the master acknowledges with a
 OK_Packet
 or a
 ERR_Packet.

14.12 Protocol Examples

14.12.1 A mysql Client Logs In

Tip

 All the examples here are captured with

$ ngrep -x -q -d lo0 '' 'port 3306'

 Taking a look at the packet dump when a mysql-client logs in:

client -> server
 <connect>

 The client initiates the communication by connecting to the
 server:

server -> client
 36 00 00 00 0a 35 2e 35 2e 32 2d 6d 32 00 03 00 6....5.5.2-m2...
 00 00 27 75 3e 6f 38 66 79 4e 00 ff f7 08 02 00 ..'u>o8fyN......
 00 00 00 00 00 00 00 00 00 00 00 00 00 57 4d 5d WM]
 6a 7c 53 68 32 5c 59 2e 73 00 j|Sh2\Y.s.

 which responds with a handshake packet which contains the
 version, some flags and a password challenge.:

client -> server
 3a 00 00 01 05 a6 03 00 00 00 00 01 08 00 00 00 :...............
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 72 6f 6f 74 00 14 cb b5 ea 68 eb 6b root.....h.k
 3b 03 cb ae fb 9b df 5a cb 0f 6d b5 de fd ;......Z..m...

 The client answers with username, some flags and the response to
 the challenge.:

server -> client
 07 00 00 02 00 00 00 02 00 00 00

 As the client provided the right password and the flags are
 fine, the server responds with a
 OK_Packet.
 That closes auth-phase and switches to the command-phase:

client -> server
 21 00 00 00 03 73 65 6c 65 63 74 20 40 40 76 65 !....select @@ve
 72 73 69 6f 6e 5f 63 6f 6d 6d 65 6e 74 20 6c 69 rsion_comment li
 6d 69 74 20 31 mit 1

 The mysql client first checks the version string of the server
 and sends a
 COM_QUERY
 packet.:

server -> client
 01 00 00 01 01 27 00 00 02 03 64 65 66 00 00 00 '....def...
 11 40 40 76 65 72 73 69 6f 6e 5f 63 6f 6d 6d 65 .@@version_comme
 6e 74 00 0c 08 00 1c 00 00 00 fd 00 00 1f 00 00 nt..............
 05 00 00 03 fe 00 00 02 00 1d 00 00 04 1c 4d 79 My
 53 51 4c 20 43 6f 6d 6d 75 6e 69 74 79 20 53 65 SQL Community Se
 72 76 65 72 20 28 47 50 4c 29 05 00 00 05 fe 00 rver (GPL)......
 00 02 00 ...

 The server responds with a resultset containing the
 version-string.:

client -> server
 0e 00 00 00 03 73 65 6c 65 63 74 20 55 53 45 52 select USER
 28 29 ()

 For the prompt (u ...) the mysql client also asks for the
 current username.:

server -> client
 01 00 00 01 01 1c 00 00 02 03 64 65 66 00 00 00 def...
 06 55 53 45 52 28 29 00 0c 08 00 4d 00 00 00 fd .USER()....M....
 01 00 1f 00 00 05 00 00 03 fe 00 00 02 00 0f 00
 00 04 0e 72 6f 6f 74 40 6c 6f 63 61 6c 68 6f 73 ...root@localhos
 74 05 00 00 05 fe 00 00 02 00 t.........

 which is
 'root@localhost' in
 this example.

14.12.2 ProtocolText::Resultset

 A query like SELECT @@version_comment
 returns:

01 00 00 01 01|27 00 00 02 03 64 65 66 00 00 00 '....def...
11 40 40 76 65 72 73 69 6f 6e 5f 63 6f 6d 6d 65 .@@version_comme
6e 74 00 0c 08 00 1c 00 00 00 fd 00 00 1f 00 00| nt..............
05 00 00 03 fe 00 00 02 00|1d 00 00 04 1c 4d 79 My
53 51 4c 20 43 6f 6d 6d 75 6e 69 74 79 20 53 65 SQL Community Se
72 76 65 72 20 28 47 50 4c 29|05 00 00 05 fe 00 rver (GPL)......
00 02 00 ...

	
 length = 01 00 00, sequence_id =
 01

	
 (Protocol::LengthEncodedInteger)

	
 column_count = 01 (1)

	
 length = 27 00 00, sequence_id =
 02

	
 (Protocol::ColumnDefinition)

	
 catalog = 03 64 65 66 ("def")

	
 schema = 00 ("")

	
 table = 00 ("")

	
 org_table = 00 ("")

	
 name = 11 40 40 76 65 72 73 69 6f 6e 5f 63 6f
 6d 6d 65 6e 74 ("@@version_comment")

	
 org_name = 00 ("")

	
 filler_1 = 0c

	
 character_set = 08 00
 (latin1_swedish_ci)

	
 column_length = 1c 00 00 00 (28)

	
 column_type = fd
 (Protocol::MYSQL_TYPE_VAR_STRING)

	
 flags = 00 00

	
 decimals = 1f (127)

	
 filler_2 00 00

	
 length = 05 00 00, sequence_id =
 03

	
 (EOF_Packet)

	
 fe (EOF indicator)

	
 warning_count = 00 00 (0)

	
 status_flags = 02 00
 (Protocol::StatusFlags
 = SERVER_STATUS_AUTOCOMMIT)

	
 length = 05 00 00, sequence_id =
 04

	
 (ProtocolText::ResultsetRow)

	
 1c 4d 79 53 51 4c 20 43 6f 6d 6d 75 6e 69 74 79
 20 53 65 72 76 65 72 20 28 47 50 4c 29 (length
 = 28, string = "MySQL Community Server (GPL)")

	
 length = 05 00 00, sequence_id =
 05

	
 (EOF_Packet)

	
 fe (EOF indicator)

	
 warning_count = 00 00 (0)

	
 status_flags = 02 00
 (Protocol::StatusFlags
 = SERVER_STATUS_AUTOCOMMIT)

14.12.2.1 ERR Instead of EOF

EXPLAIN SELECT * FROM dual;

 results in

01 00 00 01 0a 18 00 00 02 03 64 65 66 00 00 00 def...
02 69 64 00 0c 3f 00 03 00 00 00 08 a1 00 00 00 .id..?..........
00 21 00 00 03 03 64 65 66 00 00 00 0b 73 65 6c .!....def....sel
65 63 74 5f 74 79 70 65 00 0c 08 00 13 00 00 00 ect_type........
fd 01 00 1f 00 00 1b 00 00 04 03 64 65 66 00 00 def..
00 05 74 61 62 6c 65 00 0c 08 00 40 00 00 00 fd ..table....@....
00 00 1f 00 00 1a 00 00 05 03 64 65 66 00 00 00 def...
04 74 79 70 65 00 0c 08 00 0a 00 00 00 fd 00 00 .type...........
1f 00 00 23 00 00 06 03 64 65 66 00 00 00 0d 70 ...#....def....p
6f 73 73 69 62 6c 65 5f 6b 65 79 73 00 0c 08 00 ossible_keys....
00 10 00 00 fd 00 00 1f 00 00 19 00 00 07 03 64 d
65 66 00 00 00 03 6b 65 79 00 0c 08 00 40 00 00 ef....key....@..
00 fd 00 00 1f 00 00 1d 00 00 08 03 64 65 66 00 def.
00 00 07 6b 65 79 5f 6c 65 6e 00 0c 08 00 00 10 ...key_len......
00 00 fd 00 00 1f 00 00 19 00 00 09 03 64 65 66 def
00 00 00 03 72 65 66 00 0c 08 00 00 04 00 00 fd ref.........
00 00 1f 00 00 1a 00 00 0a 03 64 65 66 00 00 00 def...
04 72 6f 77 73 00 0c 3f 00 0a 00 00 00 08 a0 00 .rows..?........
00 00 00 1b 00 00 0b 03 64 65 66 00 00 00 05 45 def....E
78 74 72 61 00 0c 08 00 ff 00 00 00 fd 01 00 1f xtra............
00 00 05 00 00 0c fe 00 00 02 00 17 00 00 0d ff
48 04 23 48 59 30 30 30 4e 6f 20 74 61 62 6c 65 H.#HY000No table
73 20 75 73 65 64 s used

 See how after the column definitions a
 ERR_Packet
 is sent:

 17 00 00 0d ff
48 04 23 48 59 30 30 30 4e 6f 20 74 61 62 6c 65 H.#HY000No table
73 20 75 73 65 64 s used

14.12.3 Auth Method Switch

14.12.3.1 Client Wants Native, Server Wants Old

$ mysql --default-auth=mysql_native_password ## against a mysql_old_password user

 Initial
 Handshake Packet:

50 00 00 00 0a 35 2e 36 2e 34 2d 6d 37 2d 6c 6f P....5.6.4-m7-lo
67 00 5d 0a 00 00 66 5c 7b 74 55 2d 7b 4b 00 ff g.]...f\{tU-{K..
ff 08 02 00 0f c0 15 00 00 00 00 00 00 00 00 00
00 40 42 68 66 48 74 2f 2d 34 5e 5a 2c 00 6d 79 .@BhfHt/-4^Z,.my
73 71 6c 5f 6e 61 74 69 76 65 5f 70 61 73 73 77 sql_native_passw
6f 72 64 00 ord.

 Handshake
 Response Packet announces client wants user
 old with
 mysql_native_password:

4f 00 00 01 85 a6 0f 00 00 00 00 01 08 00 00 00 O...............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 6f 6c 64 00 14 1c eb bb 3a 53 97 c6 old.....:S..
0d 80 b0 62 75 ea 71 24 a2 6c cd 53 81 6d 79 73 ...bu.q$.l.S.mys
71 6c 5f 6e 61 74 69 76 65 5f 70 61 73 73 77 6f ql_native_passwo
72 64 00 rd.

 server checks the account settings and sees
 mysql_old_password and asks the client to
 switch:

29 00 00 02 fe 6d 79 73 71 6c 5f 6f 6c 64 5f 70)....mysql_old_p
61 73 73 77 6f 72 64 00 66 5c 7b 74 55 2d 7b 4b assword.f\{tU-{K
40 42 68 66 48 74 2f 2d 34 5e 5a 2c 00 @BhfHt/-4^Z,.

 client reprocesses the password and sends it according to the
 mysql_old_password:

09 00 00 03 4e 55 4c 52 40 5e 46 54 00 NULR@^FT.

 server is happy and sends a
 OK_Packet:

07 00 00 04 00 00 00 02 00 00 00

14.12.3.2 Client Wants Old, Server Wants Native

$ mysql --default-auth=mysql_old_password ## against a mysql_native_password user

 Initial
 Handshake Packet:

50 00 00 00 0a 35 2e 36 2e 34 2d 6d 37 2d 6c 6f P....5.6.4-m7-lo
67 00 5b 0a 00 00 6c 2e 3e 2f 6c 55 44 36 00 ff g.[...l.>/lUD6..
ff 08 02 00 0f c0 15 00 00 00 00 00 00 00 00 00
00 22 43 6b 74 24 52 53 29 71 7d 44 77 00 6d 79 ."Ckt$RS)q}Dw.my
73 71 6c 5f 6e 61 74 69 76 65 5f 70 61 73 73 77 sql_native_passw
6f 72 64 00 ord.

 Handshake
 Response Packet announces client wants user
 root with
 mysql_old_password:

39 00 00 01 85 a6 0f 00 00 00 00 01 08 00 00 00 9...............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 72 6f 6f 74 00 00 6d 79 73 71 6c 5f root..mysql_
6f 6c 64 5f 70 61 73 73 77 6f 72 64 00 old_password.

 server checks the account settings and sees
 mysql_native_password and asks the client
 to switch:

2c 00 00 02 fe 6d 79 73 71 6c 5f 6e 61 74 69 76 ,....mysql_nativ
65 5f 70 61 73 73 77 6f 72 64 00 6c 2e 3e 2f 6c e_password.l.>/l
55 44 36 22 43 6b 74 24 52 53 29 71 7d 44 77 00 UD6"Ckt$RS)q}Dw.

 client reprocesses the password and sends it according to the
 mysql_native_password:

14 00 00 03 f4 17 96 1f 79 f3 ac 10 0b da a6 b3 y.......
b5 c2 0e ab 59 85 ff b8 Y...

 server is happy and sends a
 OK_Packet:

07 00 00 04 00 00 00 02 00 00 00

14.12.4 SHA256 Example

 Examples for
 Authentication::SHA256

14.12.4.1 Fast Path

	
 set
 --default-authentication-plugin=sha256_password
 for the MySQL server:

46 00 00 00 0a 35 2e 36 2e 37 2d 6c 6f 67 00 02 F....5.6.7-log..
00 00 00 01 2d 4f 1d 32 56 16 4c 00 ff f7 08 02 -O.2V.L.....
00 3f 80 14 00 00 00 00 00 00 00 00 00 00 63 07 .?............c.
35 39 35 15 5c 5f 27 08 3a 27 73 68 61 32 35 36 595._'.:'sha256
5f 70 61 73 73 77 6f 72 64 00 _password.

	
 set --default-auth=sha256_password for
 the MySQL client, provide it with the servers public-key
 with --server-public-key=... and login
 with a user whose account uses
 sha256_password:

1d 01 00 01 85 a6 3f 00 00 00 00 01 21 00 00 00 ?.....!...
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 73 68 61 32 35 36 00 80 a2 77 34 40 sha256...w4@
7e 15 37 ea 41 03 e9 d3 eb ac 66 1e cb 1a b1 79 ~.7.A.....f....y
ed 16 49 e6 94 e7 77 c5 f8 9e 3b 94 4f b0 d4 4d ..I...w...;.O..M
3e 7d 63 4b 11 43 4e 12 9c 70 8d 4f 55 b0 f9 93 >}cK.CN..p.OU...
5f 19 70 36 ea ca ac 10 3d 95 43 95 b8 cb 4b 3e _.p6....=.C...K>
93 cb 46 2c 0f 38 1b 0e 2e ee cd 06 6b 34 0d 2f ..F,.8......k4./
8a ef 98 1b 0a e1 58 2f bf 93 24 ea 1d ba 68 04 X/..$...h.
cd a9 c0 01 12 21 f8 f9 4a e2 e4 62 2b c7 99 98 !..J..b+...
91 03 d3 f5 54 7a 27 97 9c 2e b7 37 73 68 61 32 Tz'....7sha2
35 36 5f 70 61 73 73 77 6f 72 64 00 64 03 5f 6f 56_password.d._o
73 05 4c 69 6e 75 78 0c 5f 63 6c 69 65 6e 74 5f s.Linux._client_
6e 61 6d 65 08 6c 69 62 6d 79 73 71 6c 04 5f 70 name.libmysql._p
69 64 04 34 32 36 30 0f 5f 63 6c 69 65 6e 74 5f id.4260._client_
76 65 72 73 69 6f 6e 05 35 2e 36 2e 37 09 5f 70 version.5.6.7._p
6c 61 74 66 6f 72 6d 06 78 38 36 5f 36 34 0c 70 latform.x86_64.p
72 6f 67 72 61 6d 5f 6e 61 6d 65 05 6d 79 73 71 rogram_name.mysq
6c l

	
 get a
 OK_Packet
 back:

07 00 00 02 00 00 00 02 00 00 00

14.12.4.2 Public Key Retrieval Example

	
 set
 --default-authentication-plugin=sha256_password
 for the MySQL server:

46 00 00 00 0a 35 2e 36 2e 37 2d 6c 6f 67 00 04 F....5.6.7-log..
00 00 00 60 4a 57 38 26 2d 03 72 00 ff f7 08 02 ...`JW8&-.r.....
00 3f 80 14 00 00 00 00 00 00 00 00 00 00 62 53 .?............bS
42 4f 3a 09 15 5c 7b 17 27 39{73 68 61 32 35 36 BO:..\{.'9sha256
5f 70 61 73 73 77 6f 72 64 00} _password.

	
 set --default-auth=sha256_password for
 the MySQL client, don't provide it with the servers
 public-key and login with a user whose account uses
 sha256_password:

9f 00 00 01 85 a6 3f 00 00 00 00 01 21 00 00 00 ?.....!...
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 73 68 61 32 35 36 00{01 01 73 68 61 sha256...sha
32 35 36 5f 70 61 73 73 77 6f 72 64 00}65 03 5f 256_password.e._
6f 73 05 4c 69 6e 75 78 0c 5f 63 6c 69 65 6e 74 os.Linux._client
5f 6e 61 6d 65 08 6c 69 62 6d 79 73 71 6c 04 5f _name.libmysql._
70 69 64 05 31 36 30 38 30 0f 5f 63 6c 69 65 6e pid.16080._clien
74 5f 76 65 72 73 69 6f 6e 05 35 2e 36 2e 37 09 t_version.5.6.7.
5f 70 6c 61 74 66 6f 72 6d 06 78 38 36 5f 36 34 _platform.x86_64
0c 70 72 6f 67 72 61 6d 5f 6e 61 6d 65 05 6d 79 .program_name.my
73 71 6c sql

	
 server sends a
 Protocol::AuthMoreData
 the public key:

11 01 00 02 01 2d 2d 2d 2d 2d 42 45 47 49 4e 20 -----BEGIN
50 55 42 4c 49 43 20 4b 45 59 2d 2d 2d 2d 2d 0a PUBLIC KEY-----.
4d 49 47 66 4d 41 30 47 43 53 71 47 53 49 62 33 MIGfMA0GCSqGSIb3
44 51 45 42 41 51 55 41 41 34 47 4e 41 44 43 42 DQEBAQUAA4GNADCB
69 51 4b 42 67 51 43 33 65 57 55 56 70 71 48 38 iQKBgQC3eWUVpqH8
38 51 33 54 55 4a 34 48 44 41 48 64 37 65 65 7a 8Q3TUJ4HDAHd7eez
0a 65 6e 51 6d 32 64 57 36 76 44 4e 38 7a 5a 64 .enQm2dW6vDN8zZd
31 30 68 46 31 76 66 46 59 30 48 52 49 34 70 32 10hF1vfFY0HRI4p2
4b 32 68 53 65 36 70 35 4c 30 75 64 73 76 5a 46 K2hSe6p5L0udsvZF
65 35 68 34 4d 30 2f 4e 65 4f 36 41 54 5a 5a 56 e5h4M0/NeO6ATZZV
34 0a 57 72 59 7a 4e 4b 37 34 72 78 59 34 52 32 4.WrYzNK74rxY4R2
6b 46 39 47 7a 47 55 4c 67 74 50 69 54 71 75 67 kF9GzGULgtPiTqug
48 64 77 44 4d 56 57 6c 73 52 76 57 31 47 76 39 HdwDMVWlsRvW1Gv9
53 35 4e 6f 6c 77 48 42 69 59 6c 31 45 75 6d 62 S5NolwHBiYl1Eumb
2f 4f 0a 67 2f 74 4d 65 77 57 30 32 72 33 6b 58 /O.g/tMewW02r3kX
45 58 77 64 51 49 44 41 51 41 42 0a 2d 2d 2d 2d EXwdQIDAQAB.----
2d 45 4e 44 20 50 55 42 4c 49 43 20 4b 45 59 2d -END PUBLIC KEY-
2d 2d 2d 2d 0a ----.

	
 client sends back the encrypted key:

80 00 00 03 57 4a bf 0c 19 ee f9 83 31 b7 42 28 WJ......1.B(
a7 ea 95 38 e6 79 94 ee 2c 87 7d c2 09 99 a9 47 ...8.y..,.}....G
3a 45 2d 75 74 97 42 8d 3b 2c 5b c4 9f 90 de 95 :E-ut.B.;,[.....
e2 52 67 63 ec 4c fc f8 42 eb 9e b7 7e 8d d5 0c .Rgc.L..B...~...
6a a0 46 1a 2e db f9 ee 2c 65 45 ca 7e 8b 28 76 j.F.....,eE.~.(v
0c 2f 62 65 5d 53 d7 20 d0 df 21 6f 85 03 8e 69 ./be]S. ..!o...i
98 1c 27 e9 c0 70 5c 61 c8 84 3c e0 04 44 0f ac ..'..p\a..<..D..
4a 8c 96 39 d1 48 d7 d8 78 75 7a 69 c8 e5 67 e4 J..9.H..xuzi..g.
91 70 8c 6c .p.l

	
 server is happy and sends back the
 OK_Packet:

07 00 00 04 00 00 00 02 00 00 00

14.12.4.3 Not So Fast Path

 If the servers default auth method doesn't match the clients
 or accounts auth method a extra round is needed as usual. The
 client indicates this by sending a empty password.

	
 server uses mysql_native_password as
 default:

4d 00 00 00 0a 35 2e 36 2e 37 2d 6c 6f 67 00 01 M....5.6.7-log..
00 00 00 51 5f 5a 73 4c 21 3c 45 00 ff f7 08 02 ...Q_ZsL!<E.....
00 3f 80 15 00 00 00 00 00 00 00 00 00 00 6e 2c .?............n,
6d 26 4a 50 5f 43 71 33 3b 6d 00 6d 79 73 71 6c m&JP_Cq3;m.mysql
5f 6e 61 74 69 76 65 5f 70 61 73 73 77 6f 72 64 _native_password
00 .

	
 client wants to login with
 sha256_password, but doesn't have a
 matching scramble in the preceding initial packet and
 sends an empty password:

9e 00 00 01 85 a6 3f 00 00 00 00 01 21 00 00 00 ?.....!...
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 73 68 61 32 35 36 00{00}73 68 61 32 sha256..sha2
35 36 5f 70 61 73 73 77 6f 72 64 00 65 03 5f 6f 56_password.e._o
73 05 4c 69 6e 75 78 0c 5f 63 6c 69 65 6e 74 5f s.Linux._client_
6e 61 6d 65 08 6c 69 62 6d 79 73 71 6c 04 5f 70 name.libmysql._p
69 64 05 32 34 34 39 37 0f 5f 63 6c 69 65 6e 74 id.24497._client
5f 76 65 72 73 69 6f 6e 05 35 2e 36 2e 37 09 5f _version.5.6.7._
70 6c 61 74 66 6f 72 6d 06 78 38 36 5f 36 34 0c platform.x86_64.
70 72 6f 67 72 61 6d 5f 6e 61 6d 65 05 6d 79 73 program_name.mys
71 6c ql

	
 server sends
 Protocol::AuthSwitchRequest
 with the proper scramble for
 sha256_password

25 00 00 02 fe 73 68 61 32 35 36 5f 70 61 73 73 %....sha256_pass
77 6f 72 64 00{4e 2c 65 5e 2f 13 3f 40 5f 25 26 word.N,e^/.?@_%&
44 65 27 01 13 05 45 45 04} De'...EE.

	
 client needs the public key and asks for it:

01 00 00 03{01}

	
 server sends public key:

a7 00 00 04 01 2d 2d 2d 2d 2d 42 45 47 49 4e 20 -----BEGIN
50 55 42 4c 49 43 20 4b 45 59 2d 2d 2d 2d 2d 0a PUBLIC KEY-----.
4d 46 41 77 44 51 59 4a 4b 6f 5a 49 68 76 63 4e MFAwDQYJKoZIhvcN
41 51 45 42 42 51 41 44 50 77 41 77 50 41 49 31 AQEBBQADPwAwPAI1
41 57 74 75 73 79 2b 6b 38 33 50 33 6f 6f 79 65 AWtusy+k83P3ooye
42 59 6a 77 58 4b 55 66 57 47 42 72 4f 65 44 33 BYjwXKUfWGBrOeD3
0a 76 4c 5a 62 68 58 4b 46 33 6c 67 53 66 75 2f .vLZbhXKF3lgSfu/
6b 34 2b 79 77 4c 43 6e 36 46 45 77 30 52 31 76 k4+ywLCn6FEw0R1v
34 64 74 70 6e 34 58 38 43 41 77 45 41 41 51 3d 4dtpn4X8CAwEAAQ=
3d 0a 2d 2d 2d 2d 2d 45 4e 44 20 50 55 42 4c 49 =.-----END PUBLI
43 20 4b 45 59 2d 2d 2d 2d 2d 0a C KEY-----.

	
 client XORs and RSA encrypts its password and sends it
 back:

35 00 00 05 00 7e 54 3f ae ca 70 a3 b0 2f b0 c2 5....~T?..p../..
e7 8a 18 29 69 c1 86 8c f8 e1 79 c3 45 4d d6 95 ...)i.....y.EM..
fd 47 9c cb b3 f7 da 31 a3 c1 8d 22 fa e4 aa 7c .G.....1..."...|
a0 1c e6 8f e6 9e 9e 1a 31 1

	
 server sends back
 OK_Packet:

07 00 00 06 00 00 00 02 00 00 00

14.13 Source Code Locations

14.13.1 MySQL Server

	
 dispatch_command

		
 Mysql-5.5

	
 sql/sql_parse.cc:869

	
 mysql_binlog_send

		
 Mysql-5.5

	
 sql/sql_repl.cc:436

	
 Mysql-5.6

	
 sql/rpl_master.cc

	
 mysql_stmt_get_longdata

		
 Mysql-5.5

	
 sql/sql_prepare.cc:2802

	
 mysqld_stmt_prepare

		
 Mysql-5.5

	
 sql/sql_prepare.cc:2165

	
 send_prep_stmt

		
 Mysql-5.5

	
 sql/sql_prepare.cc:328

	
 mysqld_stmt_execute

	
 COM_STMT_EXECUTE handler: execute a
 previously prepared statement

	
 Mysql-5.5

	
 /sql/sql_prepare.cc:2525

	
 mysqld_stmt_fetch

	
 COM_STMT_FETCH handler: fetches
 requested amount of rows from cursor

	
 Mysql-5.5

	
 /sql/sql_prepare.cc:2626

	
 mysqld_stmt_close

	
 Delete a prepared statement from memory.

	
 Mysql-5.5

	
 /sql/sql_prepare.cc:2732

	
 mysqld_stmt_reset

	
 Reset a prepared statement in case there was a recoverable
 error.

	
 Mysql-5.5

	
 /sql/sql_prepare.cc:2688

	
 Protocol::send_result_set_metadata

		
 Mysql-5.5

	
 /sql/protocol.cc

	
 parse_com_change_user_packet

		
 Mysql-5.5

	
 /sql/sql_acl.cc:8253

	
 send_server_handshake_packet

		
 Mysql-5.5

	
 /sql/sql_acl.cc:7956

	
 send_server_handshake_packet

		
 Mysql-5.5

	
 /sql/sql_acl.cc:7956

14.13.2 Binary Protocol Type Implementation

	
 Protocol_binary::store_timeMYSQL_TIME*

		
 Mysql-5.5

	
 /sql/protocol.cc:1417

	
 Protocol_binary::storeMYSQL_TIME*

		
 Mysql-5.5

	
 /sql/protocol.cc:1417

	
 Protocol_binary::store_short

		
 Mysql-5.5

	
 /sql/protocol.cc:

	
 Field_year::send_binary

		
 Mysql-5.5

	
 /sql/field.cc:

Chapter 15 Stored Programs

Table of Contents
	15.1 Overview
	15.2 Persistent Representation
		15.2.1 Stored Procedure and Stored Function Storage
	15.2.2 Table Trigger Storage
	15.2.3 Event Storage
	15.2.4 Derived Attribute Storage

	15.3 Internal Representation
		15.3.1 Instructions
	15.3.2 Parsing Context

	15.4 Stored Program Parser
		15.4.1 Parser Structure
	15.4.2 Single-Pass Code Generation

	15.5 Flow Analysis Optimizations
		15.5.1 Dead Code Removal
	15.5.2 Jump Shortcut Resolution

	15.6 Stored Program Caches
		15.6.1 Stored Procedure Cache
	15.6.2 Stored Function Cache
	15.6.3 Table Trigger Cache
	15.6.4 Events and Caching

	15.7 Stored Program Execution
		15.7.1 Runtime Context
	15.7.2 Executing One Instruction
	15.7.3 Flow Control
	15.7.4 Exception Handling
	15.7.5 Call Nesting

15.1 Overview

 Stored Programs in general refers to:

	
 PROCEDURE

	
 FUNCTION

	
 TABLE TRIGGER

	
 EVENT (Starting with 5.1)

 When developing, there are a couple of tools available in the
 server itself that are helpful. These tools are only available in
 builds compiled with debugging support:

	
 SHOW PROCEDURE CODE

	
 SHOW FUNCTION CODE

 The equivalent for triggers or events is not available at this
 point.

 The internal implementation of Stored Programs in the server
 depends on several components:

	
 The storage layer, used to store in the database itself a
 program (hence the name stored program)

	
 The internal memory representation of a Stored Program, used
 within the server implementation

	
 The SQL parser, used to convert a Stored Program from its
 persistent representation to its internal form

	
 A flow analyser, used to optimize the code representing a
 stored program

	
 Various caches, used to improve performance by avoiding the
 need to load and parse a stored program at every invocation

	
 The Stored Program runtime execution itself, which interprets
 the code of the program and executes its statements

15.2 Persistent Representation

 Storage of Stored Programs is implemented using either tables in
 the database (in the mysql schema), or physical
 files.

15.2.1 Stored Procedure and Stored Function Storage

 The table mysql.proc contains one record per
 Stored Procedure or Stored Function. Note that this table design
 is a mix of relational and non relational (blob) content:

	
 Attributes that are part of the interface of a stored
 procedure or function (like its name, return type, etc), or
 that are global to the object (implementation language,
 deterministic properties, security properties, sql mode,
 etc) are stored with a dedicated column in the
 mysql.proc table.

	
 The body of a stored procedure or function, which consists
 of the original code expressed in SQL, including user
 comments if any, is stored as-is preserving the original
 indentation in blob column 'body'.

 This design choice allows the various attributes to be
 representedin a format that is easy to work with (relational
 model), while allowing a lot of flexibility for the content of
 the body.

 A minor exception to this is the storage of the parameters of a
 stored procedure or function (which are part of its interface)
 inside the blob column param_list (instead of
 using a child proc_param table).

 Table mysql.procs_priv describes privileges
 granted for a given Stored Procedure or Stored Function in
 mysql.proc.

 The code used to encapsulate database access is:

	
 db_create_routine()

	
 db_load_routine()

	
 db_drop_routine()

	
 mysql_routine_grant()

	
 grant_load()

	
 grant_reload()

15.2.2 Table Trigger Storage

 Information for a given trigger is stored in plain text files in
 the database directory that contains the table associated with
 the trigger:

	
 There is one .TRN file per trigger. It
 indicates the table associated with the trigger. The design
 decision that every trigger has a dedicated
 .TRN file is used to facilitate
 operating system filesystem services to enforce the SQL
 standard requirement that all triggers in a given schema
 must be unique.

	
 There is one .TRG per table that has
 triggers. It contains information about all the triggers for
 the table.

 Suppose that we create a table named account
 and associate with it three triggers named
 ins_transaction, ins_sum,
 and upd_check:

mysql> CREATE TABLE account (acct_num INT, amount DECIMAL(10,2));
Query OK, 0 rows affected (0.05 sec)

mysql> CREATE TRIGGER ins_sum BEFORE INSERT ON account
 -> FOR EACH ROW SET @sum = @sum + NEW.amount;
Query OK, 0 rows affected (0.04 sec)

mysql> CREATE TRIGGER ins_transaction BEFORE INSERT ON account
 -> FOR EACH ROW PRECEDES ins_sum
 -> SET
 -> @deposits = @deposits + IF(NEW.amount>0,NEW.amount,0),
 -> @withdrawals = @withdrawals + IF(NEW.amount<0,-NEW.amount,0);
Query OK, 0 rows affected (0.02 sec)

mysql> delimiter //
mysql> CREATE TRIGGER upd_check BEFORE UPDATE ON account
 -> FOR EACH ROW
 -> BEGIN
 -> IF NEW.amount < 0 THEN
 -> SET NEW.amount = 0;
 -> ELSEIF NEW.amount > 100 THEN
 -> SET NEW.amount = 100;
 -> END IF;
 -> END;//
mysql> delimiter ;
Query OK, 0 rows affected (0.03 sec)

 In this case, there are three .TRN files
 named after the triggers
 (ins_transaction.TRN,
 ins_sum.TRN,
 upd_check.TRN), and a
 .TRG file named after the table
 (account.TRG). table.

 A .TRN file is specific to a trigger and
 contains these fields:

	
 TYPE: Indicates what the file represents.
 For a .TRN file, this value is always
 TRIGGERNAME, which means that the file
 name corresponds to the trigger name. For example, a
 .TRN file named
 ins_sum.TRN corresponds to a trigger
 named ins_sum.

	
 trigger_table: The table associated with
 the trigger.

 Example .TRN file:

TYPE=TRIGGERNAME
trigger_table=account

 A .TRG file is specific to a table and
 contains these fields:

	
 TYPE: Indicates what the file represents.
 For a .TRN file, this value is always
 TRIGGERS, which means that the file
 contains information about the triggers associated with the
 table that corresponds to the file name. For example, a file
 named account.TRG contains information
 for the triggers associated with the
 account table. trigger definitions and
 related information.

	
 triggers: The CREATE
 TRIGGER statements for the triggers associated
 with the table. Triggers that have the same trigger event
 and action time are listed in activation order.

	
 sql_modes: For each trigger, the
 sql_mode value under which
 the trigger executes, as a numeric value.

	
 definers: For each trigger, the account
 of the user who created it, in
 'user_name'@'host_name'
 format.

	
 client_cs_names: For each trigger, the
 session value of the
 character_set_client system
 variable when the trigger was created.

	
 connection_cl_names: For each trigger,
 the session value of the
 collation_connection system
 variable when the trigger was created.

	
 db_cl_names: For each trigger, the
 collation of the database with which the trigger is
 associated.

	
 created: For each trigger, its creation
 time. This field is present only if triggers have been
 created or dropped for the table as of MySQL 5.7.2 or later.
 A value of 0 means that the trigger was created before 5.7.2
 and thus that no creation time is known. (Creation time
 values are not maintained until 5.7.2.)

 Example .TRG file:

TYPE=TRIGGERS
triggers='CREATE DEFINER=`me`@`localhost` TRIGGER ins_transaction
BEFORE INSERT ON account\nFOR EACH ROW SET\n@deposits = @deposits
+ IF(NEW.amount>0,NEW.amount,0),\n@withdrawals = @withdrawals +
IF(NEW.amount<0,-NEW.amount,0)' 'CREATE DEFINER=`me`@`localhost`
TRIGGER ins_sum BEFORE INSERT ON account\nFOR EACH ROW SET @sum =
@sum + NEW.amount' 'CREATE DEFINER=`me`@`localhost` TRIGGER upd_check
BEFORE UPDATE ON account\nFOR EACH ROW\nBEGIN\n IF NEW.amount <
0 THEN\n SET NEW.amount = 0;\n ELSEIF NEW.amount > 100
THEN\n SET NEW.amount = 100;\n END IF;\nEND'
sql_modes=1073741824 1073741824 1073741824
definers='me@localhost' 'me@localhost' 'me@localhost'
client_cs_names='utf8' 'utf8' 'utf8'
connection_cl_names='utf8_general_ci' 'utf8_general_ci' 'utf8_general_ci'
db_cl_names='latin1_swedish_ci' 'latin1_swedish_ci' 'latin1_swedish_ci'
created=137339041018 137339026087 137339063431

 To convert a value on the sql_modes line to
 more readable form, do this:

mysql> SET sql_mode = 1073741824;
mysql> SELECT @@sql_mode;
+------------------------+
| @@sql_mode |
+------------------------+
| NO_ENGINE_SUBSTITUTION |
+------------------------+

 To break a value on the created line into
 integer and fractional seconds parts and convert them to an
 ISO-format date and time value, do this:

mysql> SET @ts_int = FLOOR(137339041018/100);
Query OK, 0 rows affected (0.01 sec)

mysql> SET @ts_frac = 137339041018 % 100;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT CONCAT(FROM_UNIXTIME(@ts_int),'.',@ts_frac);
+---+
| CONCAT(FROM_UNIXTIME(@ts_int),'.',@ts_frac) |
+---+
| 2013-07-09 12:20:10.18 |
+---+
1 row in set (0.00 sec)

 The code used to encapsulate file access is:

	
 Table_triggers_list::create_trigger()

	
 Table_triggers_list::drop_trigger()

	
 Table_triggers_list::check_n_load()

	
 Table_triggers_list::drop_all_triggers()

	
 Table_triggers_list::change_table_name()

	
 See the C++ class Table_triggers_list in
 general.

 Using files for triggers is due to historical reasons, and
 follows the same design as *.frm files for
 table metadata. This approach has several drawbacks:

	
 Each file has yet another text file format, which is
 necessary to print and parse back correctly. Custom code has
 to be implemented, which is consuming in terms of resources,
 and introduces technical risk or code duplication.

	
 Tables are replicated, values in columns are checked for
 data validity, integrity constraints can be defined ...
 where none of the above is available with a file based
 implementation.

	
 With tables, the default locking, transaction and isolation
 mechanism used by the server in general can be leveraged,
 but the same is not available with files.

	
 Cluster support for any new metadata operation that operates
 on files will require a custom solution. E.g. to propagate
 CREATE TABLE statement across MySQL Cluster mysqld nodes we
 use a so-called “.frm shipping” technique.
 There is no similar solution implemented for triggers at
 this point, and thus a trigger created in one mysqld node
 does not automatically become visible on other nodes.
 Potentially, if data is stored in tables, cluster support
 may be added as simply as by issuing ALTER TABLE
 mysql.triggers ENGINE=NDB;

Note

 Various drawbacks of filesystem based solution are provided in
 this chapter only for a sake of example. Other advantages and
 disadvantages of two approaches may be found in relevant
 worklog entries and design documents.

Warning

 The current implementation of the storage layer for table
 triggers is considered private to the
 server, and might change without warnings in future releases.

15.2.3 Event Storage

 Events storage is very similar to Stored Procedure and Stored
 Function storage, and shares the same design. Since more
 attributes are needed to represent an event, a different table
 is used: mysql.event.

 The code used to encapsulate the database access is:

	
 Event_db_repository::create_event()

	
 Event_db_repository::update_event()

	
 Event_db_repository::drop_event()

	
 See the C++ class Event_db_repository in
 general.

15.2.4 Derived Attribute Storage

 Some critical attributes, such as SQL_MODE,
 are explicitly part of the storage format.

 Other attributes, that also impact significantly the behavior in
 general of Stored Programs, can be implicitly
 derived from other properties of the storage layer.
 In particular:

	
 The USE <database> in effect for a
 stored program is the schema the stored
 object belongs to.

	
 The statement DECLARE v CHAR(10) does not
 intrinsically convey any notion of character set or
 collation. The character set and collation of this local
 variable, in a stored program, derives from the character
 set and collation of the schema the
 stored object belongs to.

15.3 Internal Representation

 A Stored Program is represented in memory by two major parts:

	
 The code of the stored program, including SQL statements and
 control flow logic (IF,
 WHILE, ...),

	
 A symbol table that describes all the local variables,
 cursors, labels, conditions ... declared in the code.

 Individual instructions of various kind are implemented by all the
 C++ classes that inherit from class sp_instr.
 The symbol table ('symbol table' is a term used in conjunction
 with compilers or interpreters, in MySQL the
 term 'Parsing Context' is used instead) is implemented by the C++
 class sp_pcontext. A Stored Program as a whole
 is represented by the C++ class sp_head, which
 contains the instructions (array m_instr) and
 the root parsing context (member m_pcont).

Caution

 Class sp_head contains concepts from
 different areas: it represents both what a stored program
 is, which is the topic of this section, and
 how a stored program logic is used during
 runtime interpretation, which is the subject of other sections.

15.3.1 Instructions

 Data Definition Language and Data Manipulation Language SQL
 statements are represented as-is, by a single instruction. For
 flow control statements and exception handlers, several
 instructions are used to implement in the low level
 sp_instr language the semantic of the SQL
 construct.

 Let's see an example with a stored procedure:

delimiter $$

CREATE PROCEDURE proc_1(x int)
BEGIN
 IF x < 0 THEN
 INSERT INTO t1 VALUES ("negative");
 ELSEIF x = 0 THEN
 INSERT INTO t1 VALUES ("zero");
 ELSE
 INSERT INTO t1 VALUES ("positive");
 END IF;
END$$

 The resulting code, displayed by SHOW PROCEDURE
 CODE, is:

SHOW PROCEDURE CODE proc_1;
Pos Instruction
0 jump_if_not 3(7) (x@0 < 0)
1 stmt 5 "INSERT INTO t1 VALUES ("negative")"
2 jump 7
3 jump_if_not 6(7) (x@0 = 0)
4 stmt 5 "INSERT INTO t1 VALUES ("zero")"
5 jump 7
6 stmt 5 "INSERT INTO t1 VALUES ("positive")"

 Instructions are numbered sequentially. Position 0 is the start
 of the code. The position 7 that is one past the last
 instruction in this example represents the end of the code.

 Note that the instruction jump_if_not 3(7) at
 position 0 can actually jump to three
 locations:

	
 When the evaluation of the condition "x < 0" is true, the
 next instruction will be position 1 (the "then" branch),

	
 When the evaluation of the condition "x < 0" is false,
 the next instruction will be position 3 (the "else" branch),

	
 When the evaluation of the condition "x < 0" results in
 an error, and when a continue handler exists for the error,
 the next instruction will be position 7, known as the
 "continuation" destination.

 Now, let's see how exception handlers are represented. The
 following code contains just a very basic handler, protecting a
 BEGIN/END block in the SQL
 logic:

CREATE PROCEDURE proc_2(x int)
BEGIN
 SELECT "Start";

 INSERT INTO t1 VALUES (1);

 BEGIN
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 BEGIN
 SELECT "Oops";
 END;

 INSERT INTO t1 VALUES (2);
 INSERT INTO t1 VALUES (2);
 END;

 INSERT INTO t1 VALUES (3);
 SELECT "Finish";
END$$

 The internal instructions for this stored procedure are:

SHOW PROCEDURE CODE proc_2;
Pos Instruction
0 stmt 0 "SELECT "Start""
1 stmt 5 "INSERT INTO t1 VALUES (1)"
2 hpush_jump 5 1 CONTINUE
3 stmt 0 "SELECT "Oops""
4 hreturn 1
5 stmt 5 "INSERT INTO t1 VALUES (2)"
6 stmt 5 "INSERT INTO t1 VALUES (2)"
7 hpop 1
8 stmt 5 "INSERT INTO t1 VALUES (3)"
9 stmt 0 "SELECT "Finish""

 Note the flow of control in the code: there is not a single if.
 The couple of hpush_jump /
 hpop represent the installation and the
 removal of the exception handler. The body of the exception
 handler starts at position 3, whereas the code protected by the
 handler starts at position 5. hpush_jump 5 1
 means: add a handler for "1" condition
 (sqlexception), where "1" stands for the
 index of declared conditions in the parsing context, and execute
 the code starting at position "5".

15.3.2 Parsing Context

 A parsing context is a tree of nodes, where each node contains
 symbols (variables, cursors, labels, ...) declared locally in
 the same name visibility scope.

 For example, with the following SQL code:

CREATE PROCEDURE proc_3(x int, y int)
BEGIN
 -- This is the root parsing context
 DECLARE v1 INT;
 DECLARE v2 INT;
 DECLARE v3 INT;

 IF (x > 0) THEN
 BEGIN
 -- This is the child context A
 DECLARE v1 INT;
 DECLARE v4 INT DEFAULT 100;

 set v4:= 1;
 set v1:= x;
 END;
 ELSE
 BEGIN
 -- This is the child context B
 DECLARE v2 INT;
 DECLARE v4 INT DEFAULT 200;

 set v4:= 2;
 set v2:= y;
 set v3:= 3;
 END;
 END IF;

 set v1 := 4;
END$$

 The parsing contexts match exactly the nesting of
 BEGIN/END blocks:

	
 The root parsing context contains parameters
 x, y, and local
 variables v1, v2,
 v3,

	
 The BEGIN/END block in
 the THEN part defines a child parsing
 context (let's call it 'A'), that contains local variables
 v1 and v4,

	
 Likewise, the ELSE block defines a
 parsing context (let's call it 'B') which is a child of the
 root, and contains local variables v2 and
 v4.

 The total number of symbols is 9: 5 for the root + 2 for A + 2
 for B. All the symbols are numbered internally (starting at
 offset 0), by walking the parsing context tree in a depth first
 manner, resulting in the following:

	
 Root:x --> 0, Root:y --> 1, Root:v1 --> 2, Root:v2 --> 3,
 Root:v3 --> 4,

	
 A:v1 --> 5, A:v4 --> 6,

	
 B:v2 --> 7, B:v4 --> 8,

 There is no tool to dump the parsing context tree explicitly.
 However, the internal numbering of symbols is apparent when
 printing the code:

SHOW PROCEDURE CODE proc_3;
Pos Instruction
0 set v1@2 NULL
1 set v2@3 NULL
2 set v3@4 NULL
3 jump_if_not 9(14) (x@0 > 0)
4 set v1@5 NULL
5 set v4@6 100
6 set v4@6 1
7 set v1@5 x@0
8 jump 14
9 set v2@7 NULL
10 set v4@8 200
11 set v4@8 2
12 set v2@7 y@1
13 set v3@4 3
14 set v1@2 4

 The points of interest are that:

	
 There are two variables named
 v1, where the variable
 v1 from block A (represented as
 v1@5) eclipses the variable
 v1 from the root block (represented as
 v1@2).

	
 There are two variables named
 v4, which are independent. The variable
 v4 from block A is represented as
 v4@6, whereas the variable
 v4 from block B is represented as
 v4@8.

 The parsing context C++ class, sp_pcontext,
 contains much more information related to each symbol, notably
 data types of variables (unfortunately not
 printable with SHOW PROCEDURE CODE).

15.4 Stored Program Parser

 There is no “Stored Program Parser” as such, there is
 only one parser in the SQL layer in the server. This parser is
 capable of understanding every SQL statement, including statements
 related to Stored Programs. The parser is implemented as an
 ascendant parser, using bison. The source code is located in the
 file sql/sql_yacc.yy.

 The parts of the parser dedicated more specially to Stored
 Programs are starting at the following rules:

	
 CREATE PROCEDURE : see rule
 sp_tail,

	
 CREATE FUNCTION : see rule
 sp_tail,

	
 CREATE TRIGGER : see rule
 trigger_tail,

	
 CREATE EVENT : see rule
 event_tail.

 In every case, the parser reads the SQL text stream that
 represents the code as input, and creates an internal
 representation of the Stored Program as output, with one C++
 object of type sp_head. A limiting consequence
 of this approach is that a stored program does not support
 nesting: it is impossible to embed one CREATE
 PROCEDURE into another, since the parser currently may
 only support one sp_head object at a time.

15.4.1 Parser Structure

 Conceptually, there are many different layers involved during
 parsing:

	
 Lexical analysis (making words or tokens from a character
 stream),

	
 Syntactic analysis (making "sentences" or an abstract syntax
 tree from the tokens),

	
 Semantic analysis (making sure these sentences do make
 sense),

	
 Code generation (for compilers) or evaluation (for
 interpreters).

 From the implementation point or view, many different concepts
 from different layers actually collide in the same code base, so
 that the actual code organization is as follows:

	
 The lexical analysis is implemented in
 sql/sql_lex.cc, as when parsing regular
 statements.

	
 Syntactic analysis, semantic analysis, and code generation
 -- all of them -- are done at
 once, during parsing of the code. From
 that perspective, the parser behaves as a single pass
 compiler. In other words, both the code and the symbol table
 for the final result are generated on the fly, interleaved
 with syntactic analysis.

 This is both very efficient from a performance point of view,
 but difficult to understand, from a maintenance point of view.

 Let's illustrate for example how the following SQL statement is
 parsed:

 DECLARE my_cursor CURSOR FOR SELECT col1 FROM t1;

 The corresponding part of the grammar in the parser for DECLARE
 CURSOR statements is the following (with annotated line
 numbers):

[1] sp_decl:
[2] DECLARE_SYM ident CURSOR_SYM FOR_SYM sp_cursor_stmt
[3] {
[4] LEX *lex= Lex;
[5] sp_head *sp= lex->sphead;
[6] sp_pcontext *ctx= lex->spcont;
[7] uint offp;
[8] sp_instr_cpush *i;
[9]
[10] if (ctx->find_cursor(&$2, &offp, TRUE))
[11] {
[12] my_error(ER_SP_DUP_CURS, MYF(0), $2.str);
[13] delete $5;
[14] MYSQL_YYABORT;
[15] }
[16] i= new sp_instr_cpush(sp->instructions(), ctx, $5,
[17] ctx->current_cursor_count());
[18] sp->add_instr(i);
[19] ctx->push_cursor(&$2);
[20] $$.vars= $$.conds= $$.hndlrs= 0;
[21] $$.curs= 1;
[22] }
[23] ;

 The lines [1], [2] and [23] are bison code that express the
 structure of the grammar. These lines belong to the syntactic
 parsing realm.

 The lines [3] and [22] are bison delimiters for the associated
 action to execute, when parsing of the syntax succeeds.
 Everything between lines [3] and [22] is C++ code, executed when
 the parser finds a syntactically correct DECLARE
 CURSOR statement.

 The lines [4] to [8] could be considered syntactic parsing: what
 the code does is find what is the current Stored Program being
 parsed, find the associated part of the syntax tree under
 construction (sp_head), and find the
 associated current context in the symbol table
 (sp_pcontext).

 Note that there is some black magic here: since we are still
 currently parsing the content of a Stored
 Program (the DECLARE CURSOR statement), the
 final “syntax” tree for the Stored Program
 (sp_head) is not supposed to exist yet. The
 reason the sp_head object is already
 available is that the actions in the CREATE
 PROCEDURE, CREATE FUNCTION,
 CREATE TRIGGER, or CREATE
 EVENT are implemented as a
 descendant parser (it created an empty
 sp_head object first, filling the content
 later). Mixing code that way (descendant actions with ascendant
 parsing) is extremely sensitive to changes.

 The line [10] is a semantic check. The statement might be
 syntactically correct (it parsed), but to be semantically
 correct, the name or the cursor must be
 unique in the symbol table.

 Line [12] is reporting a semantic error back to the client
 (duplicate cursor). The code at line [14] forces the syntactic
 parser (bison) to abort.

 By line [16], we have verified that the code is syntactically
 valid, and semantically valid: it's now time for code
 generation, implemented by creating a new
 sp_instr_cpush to represent the cursor in the
 compiled code. Note that variable allocation is done on the fly,
 by looking up the current cursor count in the symbol table
 (sp_pcontext::current_cursor_count()).

 Line [18] adds the generated code to the object representing the
 stored program (code generation).

 Line [19] maintains the symbol table (semantic parsing) by
 adding the new cursor in the current local context.

 Lines [20] and [21] return to bison a fragment of a fake syntax
 tree, indicating that one cursor was found.

 By looking at the complete implementation of this action in
 bison, one should note that the target code was generated, the
 symbol table for the Stored Program was looked up and updated,
 while at no point in time a syntax node was even created. Note
 that the sp_instr_cpush object should really
 be considered generated code: the fact that there is a
 one-to-one correspondence with the syntax is incidental.

15.4.2 Single-Pass Code Generation

 All the code generated by the parser is emitted in a
 single pass. For example, consider the
 following SQL logic:

CREATE FUNCTION func_4(i int)
RETURNS CHAR(10)
BEGIN
 DECLARE str CHAR(10);

 CASE i
 WHEN 1 THEN SET str="1";
 WHEN 2 THEN SET str="2";
 WHEN 3 THEN SET str="3";
 ELSE SET str="unknown";
 END CASE;

 RETURN str;
END$$

 The compiled program for this Stored Function is:

SHOW FUNCTION CODE func_4;
Pos Instruction
0 set str@1 NULL
1 set_case_expr (12) 0 i@0
2 jump_if_not 5(12) (case_expr@0 = 1)
3 set str@1 _latin1'1'
4 jump 12
5 jump_if_not 8(12) (case_expr@0 = 2)
6 set str@1 _latin1'2'
7 jump 12
8 jump_if_not 11(12) (case_expr@0 = 3)
9 set str@1 _latin1'3'
10 jump 12
11 set str@1 _latin1'unknown'
12 freturn 254 str@1

 Note the instruction at position 4: jump 12.
 How can the compiler generate this instruction in a single pass,
 when the destination (12) is not known yet ? This instruction is
 a forward jump. What happens during code
 generation is that, by the time the compiler has generated the
 code for positions [0] to [11], the generated code looks like
 this:

Pos Instruction
0 set str@1 NULL
1 set_case_expr (??) 0 i@0
2 jump_if_not 5(??) (case_expr@0 = 1)
3 set str@1 _latin1'1'
4 jump ??
5 jump_if_not 8(??) (case_expr@0 = 2)
6 set str@1 _latin1'2'
7 jump ??
8 jump_if_not 11(??) (case_expr@0 = 3)
9 set str@1 _latin1'3'
10 jump ??
11 set str@1 _latin1'unknown'
...

 The final destination of the label for the END
 CASE is not known yet, and the list of all the
 instructions (1, 2, 4, 5, 7, 8 and 10) that need to point to
 this unknown destination (represented as ??)
 is maintained in a temporary structure used during code
 generation only. This structure is called the context back patch
 list.

 When the destination label is finally resolved to a destination
 (12), all the instructions pointing to that label, which have
 been already generated (but with a bogus destination) are
 back patched to point to the correct
 location. See the comments marked BACKPATCH
 in the code for more details.

 As a side note, this generated code also shows that some
 temporary variables can be generated implicitly, such as the
 operand of the CASE expression, labeled
 case_expr@0.

Caution

 Numbering of case expressions in the symbol table uses a
 different namespace than variables, so that
 case_expr@0 and i@0 are
 two different variables, even when both internally numbered
 with offset zero.

15.5 Flow Analysis Optimizations

 After code is generated, the low level sp_instr
 instructions are optimized. The optimization focuses on two areas:

	
 Dead code removal,

	
 Jump shortcut resolution.

 These two optimizations are performed together, as they both are a
 problem involving flow analysis in the
 graph that represents the generated code.

 The code that implements these optimizations is
 sp_head::optimize().

Caution

 Do not confuse sp_head::optimize() with the
 component named the optimizer, as they are
 very different. The former is specific to Stored Programs, and
 focuses on improving the flow of statements, whereas the latter
 is general to queries, and focuses on finding the best execution
 plan when executing a single statement. For the optimizer, see
 Optimization.

 The (Stored Program) optimizer is invoked from only one place, in
 the following code:

db_load_routine(..., sp_head **sphp, ...)
{
 ...
 (*sphp)->optimize();
 ...
}

Tip

 By disabling the call to sp_head::optimize()
 and recompiling the code, SHOW PROCEDURE CODE
 will display the code before flow
 optimization.

Caution

 When investigating issues related to this area, you may want to
 use a DBUG_EXECUTE_IF to avoid recompiling
 the server with or without flow optimization every time. Be
 careful to shutdown and restart the server with or without the
 call to sp_head::optimize() for each test, or
 you will find that caching of a Stored
 Program code does interfere.

15.5.1 Dead Code Removal

 Dead code is also known as
 unreachable code: code that cannot possibly
 be executed, because no path in the logic leads to it.

 For example, consider the following SQL code:

CREATE PROCEDURE proc_5()
BEGIN
 DECLARE i INT DEFAULT 0;

 again:
 WHILE TRUE DO
 BEGIN
 set i:= i+1;

 SELECT "This code is alive";

 IF (i = 100) THEN
 LEAVE again;
 END IF;

 ITERATE again;

 SELECT "This code is dead";
 END;
 END WHILE;
END$$

 Before flow optimization, the compiled code is:

SHOW PROCEDURE CODE proc_5;
Pos Instruction
0 set i@0 0
1 jump_if_not 10(10) 1
2 set i@0 (i@0 + 1)
3 stmt 0 "SELECT "This code is alive""
4 jump_if_not 7(7) (i@0 = 100)
5 jump 10
6 jump 7
7 jump 1
8 stmt 0 "SELECT "This code is dead""
9 jump 1

 Note the instruction at position 8: the previous instruction is
 an unconditional jump, so the flow of
 control can never reach 8 by coming from 7. Because there exists
 no jump in the entire code that leads to 8 either, the
 instruction at 8 is unreachable. By looking further in the flow,
 because 8 is unreachable and there are no jumps to position 9,
 the instruction at position 9 is also unreachable.

 The instruction at position 6 is also unreachable, for a similar
 reason: the THEN part of the if contains a
 jump, due to the statement LEAVE again;, so
 that the code never executes the jump generated by the compiler
 to go from the end of the THEN block to the
 statement following the IF.

 After detecting all the unreachable instructions, and
 simplifying the code, the result after flow optimization is:

SHOW PROCEDURE CODE proc_5;
Pos Instruction
0 set i@0 0
1 jump_if_not 10(10) 1
2 set i@0 (i@0 + 1)
3 stmt 0 "SELECT "This code is alive""
4 jump_if_not 1(1) (i@0 = 100)
5 jump 10

 The flow optimizer is good at detecting
 most of the dead code, but has limitations.
 For example, coding in SQL IF FALSE THEN ... END
 IF; leads to code that can never be executed, but
 since the flow optimizer does neither propagate constants nor
 consider impossible conditional jumps, this code will not be
 removed.

 The goal of the flow optimizer is mostly to perform
 simple local optimizations with a low cost.
 It's not a fully featured code optimizer, and does not guard
 against poor SQL.

15.5.2 Jump Shortcut Resolution

 The term jump shortcut refers to the
 following optimization: when instruction A is a jump
 (conditional or not) that goes to position B, and when B is an
 unconditional jump to position C, the code can be changed so
 that A can jump to C directly, taking a
 shortcut to avoid the unnecessary B.
 Consider the following SQL code:

CREATE PROCEDURE proc_6(x int, y int, z int)
BEGIN
 SELECT "Start";

 IF (x > 0)
 THEN
 BEGIN
 SELECT "x looks ok";
 IF (y > 0)
 THEN
 BEGIN
 SELECT "so does y";
 IF (z > 0)
 THEN
 SELECT "even z is fine";
 ELSE
 SELECT "bad z";
 END IF;
 END;
 ELSE
 SELECT "bad y";
 END IF;
 END;
 ELSE
 SELECT "bad x";
 END IF;

 SELECT "Finish";
END$$

 Before flow optimization, the compiled code is:

SHOW PROCEDURE CODE proc_6;
Pos Instruction
0 stmt 0 "SELECT "Start""
1 jump_if_not 12(13) (x@0 > 0)
2 stmt 0 "SELECT "x looks ok""
3 jump_if_not 10(11) (y@1 > 0)
4 stmt 0 "SELECT "so does y""
5 jump_if_not 8(9) (z@2 > 0)
6 stmt 0 "SELECT "even z is fine""
7 jump 9
8 stmt 0 "SELECT "bad z""
9 jump 11
10 stmt 0 "SELECT "bad y""
11 jump 13
12 stmt 0 "SELECT "bad x""
13 stmt 0 "SELECT "Finish""

 Note the jump 9 at position 7: since the
 instruction at position 9 is jump 11, the
 code at position 7 can be simplified to jump
 11. The optimization is also recursive: since the
 instruction 11 is jump 13, the final jump
 destination for the instruction at position 7 is jump
 13. Conditional jumps are optimized also, so that the
 instruction 5: jump_if_not 8(9) can be
 optimized to jump_if_not 8(13).

 After flow optimization, the compiled code is:

SHOW PROCEDURE CODE proc_6;
Pos Instruction
0 stmt 0 "SELECT "Start""
1 jump_if_not 12(13) (x@0 > 0)
2 stmt 0 "SELECT "x looks ok""
3 jump_if_not 10(13) (y@1 > 0)
4 stmt 0 "SELECT "so does y""
5 jump_if_not 8(13) (z@2 > 0)
6 stmt 0 "SELECT "even z is fine""
7 jump 13
8 stmt 0 "SELECT "bad z""
9 jump 13
10 stmt 0 "SELECT "bad y""
11 jump 13
12 stmt 0 "SELECT "bad x""
13 stmt 0 "SELECT "Finish""

 Note the differences with every jump instruction.

Caution

 For clarity, this example has been designed to
 not involve dead code. Note that in
 general, an instruction that was reachable
 before taking a shortcut might become
 unreachable after the shortcut, so that
 the optimizations for jump shortcuts and dead code are tightly
 intertwined.

15.6 Stored Program Caches

 The goal of the Stored Program cache is to
 keep a parsed sp_head in memory, for future
 reuse. Reuse means:

	
 To be able to execute concurrently the same Stored Program in
 different THD threads,

	
 To be able to execute the same Stored Program multiple times
 (for recursive calls) in the same THD
 thread.

 To achieve this, the implementation of sp_head
 must be both thread-safe and stateless. Unfortunately, it is
 neither:

	
 The class sp_head is composed of
 sp_instr instructions to represent the
 code, and these instructions in turn depend on
 Item objects, used to represent the
 internal structure of a statement. The various C++
 Item classes are not
 currently thread-safe, since the evaluation of an
 Item at runtime involves methods like
 Item::fix_fields(), which modify the
 internal state of items, making them impossible to safely
 evaluate concurrently.

	
 The class sp_head itself contains
 attributes that describe the SQL logic of
 a Stored Program (which are safe to share), mixed with
 attributes that relate to the evaluation
 of this logic in a given instance to a Stored Program call
 (mostly the MEM_ROOT memory pool used
 during execution), which by definition cannot be shared.

 The consequence of these restrictions is less than optimal code.
 What is currently implemented in the server
 is detailed in the following subsections, to help maintenance.

Warning

 Needless to say, the current implementation of Stored Program
 caching is by no mean final, and could be re factored in future
 releases.

15.6.1 Stored Procedure Cache

 The PROCEDURE cache is maintained on a
 per thread basis, in
 THD::sp_proc_cache.

 The function used to lookup the cache is
 sp_find_routine. It relies on the C++ class
 sp_cache for the low level implementation.

 There is a global mechanism to invalidate all the caches of all
 the THD threads at once, implemented with the
 variable Cversion in file
 sp_cache.cc, which is incremented by
 function sp_cache_invalidate(). This global
 invalidation is used when the server executes
 DROP PROCEDURE or
 ALTER PROCEDURE statements.

 Each entry in the cache is keyed by name, and consists of a
 linked list of stored procedure instances which are all
 duplicates of the same object. The reason for the list is
 recursion, when the runtime needs to evaluate several calls to
 the same procedure at once.

 The runtime behavior of this caching mechanism has some
 limitations, and in particular:

	
 each THD has its own
 cache, so each separate client
 connection to the server uses its own cache. Multiple client
 connections calling the same Stored Procedure will cause the
 parser to be invoked multiple times, and memory to be
 consumed multiple times.

	
 If a given client constantly opens and closes a new
 connection to the server, and invokes Stored Procedures, the
 cache will be always empty, causing excessive parsing of
 used stored procedures on every invocation.

	
 If a given client constantly keeps an existing connection to
 the server for a long time, and invokes Stored Procedures,
 the cache size will grow, consuming and retaining memory. In
 other words, memory limits or expulsion of cold members of
 the stored procedure cache is not implemented.

	
 Calling sp_cache_invalidate() does
 not reclaim the cache memory. This
 memory will be reclaimed only if a
 Stored Procedure is looked up in the cache again, causing
 the cache to flush.

15.6.2 Stored Function Cache

 The FUNCTION cache is implemented exactly
 like the PROCEDURE cache, in the thread
 member in THD::sp_func_cache.

 Note that because THD::sp_proc_cache and
 THD::sp_func_cache are both invalidated based
 on the same Cversion
 counter, executing DROP PROCEDURE happens to
 invalidate the FUNCTION cache as well,
 while DROP FUNCTION also invalidates the
 PROCEDURE cache. In practice, this has no
 consequences since DDL statements like this are not executed
 typically while an application is running, only when it is
 deployed.

15.6.3 Table Trigger Cache

 For table triggers, all the triggers that relate to a given
 table are grouped in the C++ class
 Table_triggers_list, which in particular
 contains the member sp_head
 *bodies[TRG_EVENT_MAX][TRG_ACTION_MAX].

 Note that at most one trigger per event
 (BEFORE, AFTER) and per
 action (INSERT, UPDATE,
 DELETE) can be defined currently.

 The Table_triggers_list itself is a part of
 the structure struct st_table, which is
 better known as a TABLE handle.

 As a result, each table trigger body is duplicated in each table
 handle, which is necessary to properly evaluate them.
 TABLE handles are globally cached and reused
 across threads, so the table triggers are effectively reused
 across different clients connections manipulating the same
 physical table.

15.6.4 Events and Caching

 For events, the sp_head object that
 represents the body of an EVENT is part of
 the C++ class Event_parse_data.

 There is no caching of sp_head for multiple
 scheduling of an event. The method
 Event_job_data::execute() invokes the parser
 every time an event is executed.

15.7 Stored Program Execution

 Executing a Stored Program consists of
 interpreting the low level
 sp_instr code. The runtime interpreter itself
 is implemented in the method
 sp_head::execute(). Wrappers for different
 kinds of Stored Programs are implemented in the following methods:

	
 PROCEDURE : see
 sp_head::execute_procedure(),

	
 FUNCTION : see
 sp_head::execute_function(),

	
 TRIGGER : see
 sp_head::execute_trigger(),

	
 EVENT : see
 Event_job_data::execute().

15.7.1 Runtime Context

 An interpretor needs to be able to represent the
 state of the SQL program being executed:
 this is the role of the C++ class
 sp_rcontext, or runtime context.

15.7.1.1 Local Variables

 Values of local variables in an SQL Stored Program are stored
 within the sp_rcontext. When the code
 enters a new scope, the sp_instr contains
 explicit statements to initialize the local variable
 DEFAULT value, if any. Since initialization
 of values is done in the code, and since
 no logic needs to be executed when an SQL variable goes out of
 scope, space allocation to represent the
 data does not need to follow the nesting
 of BEGIN/END blocks
 during runtime.

 Another important point regarding the representation of local
 SQL variables is that, conceptually, a local variable can be
 considered to be an SQL table with a single column (of the
 variable type), with a single row (to represent the value).

 As a result, all the local variables of a
 Stored Program are represented by a row in a table internally.
 For example, consider the following SQL code:

CREATE PROCEDURE proc_7(x int)
BEGIN
 DECLARE v1 INT;
 DECLARE v2 VARCHAR(10);
 DECLARE v3 TEXT;

 IF (x > 0) THEN
 BEGIN
 DECLARE v4 BLOB;
 DECLARE v5 VARCHAR(20);
 END;
 ELSE
 BEGIN
 DECLARE v6 DECIMAL(10, 2);
 DECLARE v7 BIGINT;
 END;
 END IF;
END$$

 Internally, a temporary table is created, with the following
 structure:

CREATE TEMPORARY TABLE `proc_7_vars` (
 `v1` int(11) DEFAULT NULL,
 `v2` varchar(10) DEFAULT NULL,
 `v3` text,
 `v4` blob,
 `v5` varchar(20) DEFAULT NULL,
 `v6` decimal(10,2) DEFAULT NULL,
 `v7` bigint(20) DEFAULT NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1

 The real name of the table and the columns are purely
 internal, and the table is not accessible to regular
 statements for DDL or DML operations:
 proc_7_vars and v1 ...
 v7 are just a notation used in this
 example. The TABLE handle that implements
 all the local variable storage is the member
 sp_rcontext::m_var_table

 Inside a statement, local variables in a Stored Program are
 represented by the dedicated C++ class
 Item_splocal.
 Item_splocal really is a proxy exposing the
 interface needed to suport Item, which
 delegates to the underlying sp_rcontext for
 reading or writing local variable values. The coupling between
 Item_splocal and
 sp_rcontext is based on
 Item_splocal::m_var_idx, which is the
 variable index in the symbol table
 computed by the parser, and maintained in
 sp_pcontext.

15.7.1.2 Cursors

 Unlike local variables, some action is needed in the
 interpreter when a CURSOR goes out of
 scope: the cursor must be closed, to prevent leaks of the
 underlying TABLE resources.

 As a result, cursor allocation (and really,
 deallocation so they can be properly
 closed) needs to follow tightly the
 BEGIN-END block structure of the code, so a
 stack is used, implemented by
 sp_rcontext::m_cstack and
 sp_rcontext::m_ccount.

15.7.1.3 Case Expressions

 For CASE expressions, temporary variables
 are generated automatically. Like CURSOR,
 there are some constraints that prevent treating these special
 local variables like regular local variables.

 The difficulty with CASE is that the real
 type of the expression is only known when the case statement
 is executed, so that allocating space in a statically computed
 TABLE is not practical. For example,
 CASE (SELECT col1 FROM t1 WHERE ...) is a
 case expression that involves a single row subselect. During
 parsing, the table might not even exists, so evaluating the
 type of col1 is impossible. Creation of the
 table can be delayed until execution, with statements like
 CREATE TEMPORARY TABLE.

 Instead, a array of Item
 * is used, implemented by
 sp_rcontext::m_case_expr_holders. The size
 of the array is static (it's the total number of cases), but
 the content of each element is dynamic (to account for the
 type of the case expression).

Caution

 Note the wording used here: “static” means
 something that can be evaluated when compiling the code, in
 the parser, whereas “dynamic” means something
 that can be evaluated only when interpreting the code,
 during runtime. Of course, from a C++ coding point of view,
 everything is dynamic.

 Inside a CASE statement, temporary local
 variables in a Stored Program are represented by the dedicated
 C++ class Item_case_expr. The class
 Item_case_expr is also a proxy, similar in
 nature to Item_splocal, and delegates to
 sp_rcontext for accessing the underlying
 case expression value. The coupling between
 Item_case_expr and
 sp_rcontext is based on
 Item_case_expr::m_case_expr_id, which is
 the case expression index in the symbol
 table (see sp_pcontext).

15.7.1.4 Exception Handlers

Warning

 As of MySQL 5.1, which is the code base
 described by this documentation, the statements
 SIGNAL, RESIGNAL and
 GET DIAGNOSTICS are not supported.
 Implementing these features will have some impact on the
 material described here, so changes in later versions are
 anticipated.

 When the code enters a block of logic
 guarded by an SQL exception handler, the
 state or the runtime context in the
 interpreter changes, to represent this
 fact. The state change is not apparent immediately, it will
 only become apparent if an exception is raised. The internal
 runtime state of the engine also changes when the code
 leaves a block that contains an exception
 handler.

 How exception handlers work during runtime is the subject of
 another section (see Section 15.7.4, “Exception Handling”). What
 is described here is the state maintained internally, to
 represent which
 HANDLER is currently “active”,
 and what CONDITION is
 protected against.

 The SQL precedence rules for HANDLER
 dictates that the last installed (inner most) handler is
 always considered first, so the natural structure to represent
 what handler is active is a stack,
 implemented by sp_rcontext::m_handler and
 sp_rcontext::m_hcount.

 In addition, some extra information is required for
 CONTINUE handlers: the
 “address” in the code, or instruction pointer in
 the sp_instr array, of where to resume
 execution when the handler returns. This data is maintained in
 sp_rcontext::m_hstack and
 sp_rcontext::m_hsp, which again is a
 stack because exception handlers can be
 nested (exceptions can be raised and
 trapped during the execution of the body
 of an exception handler, too).

15.7.2 Executing One Instruction

 Executing an instruction consists of calling the virtual method
 sp_instr::execute(), which is implemented for
 each instruction.

 For instructions that can be executed directly, and don't depend
 on the evaluation of a general SQL statement or expression, the
 execution is very simple. See for example
 sp_instr_jump::execute(),
 sp_instr_hpush_jump::execute() or
 sp_instr_hpop::execute(). In all cases, the
 implementation of the execute() method is
 purely internal to the runtime interpreter.

 For instructions that need to evaluate a general expression,
 like sp_instr_jump_if_not::execute(), or
 general instructions that need to execute an SQL statement,
 suchh as sp_instr_stmt::execute(), things are
 more complex. The implementation needs to leverage the existing
 code that is already capable of evaluating an expression or
 executing a query, and is implemented by
 the function mysql_execute_command().

 The function mysql_execute_command(), for
 historical reasons (it was implemented
 before Stored Programs), is mostly designed
 to consume directly the result of the parser, which is passed as
 input in THD::lex.

 To comply with this interface, the runtime for stored program
 has to provide a THD::lex structure before
 executing each instruction, to prepare an execution environment
 which looks as if the statement to execute
 was just parsed. Dealing with the existing interface for
 re-entrant execution of SQL statements is the role of the C++
 class sp_lex_keeper. The wrapper method to
 used to execute instructions is
 sp_lex_keeper::reset_lex_and_exec_core(),
 which ultimately invokes the
 sp_instr::exec_core() instructions
 implementation.

15.7.3 Flow Control

 Instructions are numbered sequentially, and the current position
 in the code is represented by an “instruction
 pointer”, which is just an integer. In the main execution
 loop in sp_head::execute(), this instruction
 pointer is represented by the local variable
 ip.

 When executing each instruction, the method
 sp_head::execute() is also responsible to
 return the address of the next instruction to execute. Most of
 the time, this corresponds to the “next”
 instruction (implemented by m_ip+1), except
 for absolute jumps (see
 sp_instr_jump::execute()) or conditional
 jumps (see sp_instr_jump_if_not::execute()).

15.7.4 Exception Handling

 When the code enters a block protected by a
 HANDLER, the execution leads to
 sp_instr_hpush_jump::execute(), which
 installs the exception handler in the runtime handler stack, by
 calling sp_rcontext::push_handler().

 In a similar way, when the code leaves a
 block protected by a HANDLER,
 sp_instr_hpop::execute() removes the handlers
 installed by the matching
 sp_instr_hpush_jump, by calling
 sp_rcontext::pop_handlers().

 During the execution of any statement,
 different CONDITION can be raised at runtime,
 which are reported by the implementation of each statement by
 calling push_warning(),
 my_error() or similar functions. All these
 entry points ultimately leads to the error handler hook callback
 function implemented by error_handler_hook in
 mysys/my_error.c. In case of the server
 itself, this hook points to the function
 my_message_sql().

 Under normal circumstances, my_message_sql()
 just reports a warning or an error to the client application,
 and for errors causes the query to abort.

 When executing a stored program, THD::spcont
 points to the runtime context of the program currently executed.
 When a HANDLER is active, the runtime context
 contains in its handler stack the list of all the
 CONDITIONs currently trapped, giving a chance
 to the call to sp_rcontext::handle_error() to
 intercept error handling.

 If the condition reported does not match any of the conditions
 for which an exception handler is active,
 sp_rcontext::handle_error() returns false,
 and my_message_sql() raises the error or
 warning as usual.

 When the condition reported does match an
 active HANDLER, that handler is
 called, but the technical nature of this
 call is special: the call is asynchronous.
 Instead of invoking the exception handler
 directly,
 sp_rcontext::handle_error() marks which
 exception handler is to be called, by
 setting the member variable
 sp_rcontext::m_hfound, and then returns true,
 so that my_message_sql() returns without
 reporting anything: at this point, the error condition has been
 totally masked, except for the fact that
 sp_rcontext::m_hfound is set.

 Once my_message_sql() returns, the
 implementation of a given statement continues, either by
 proceeding if only a warning was reported, or by aborting the
 current execution if an error was raised. The execution of code
 in the server will eventually return from the implementation of
 a statement, and return from the call to
 sp_instr::execute() for that statement,
 returning control to the loop located in
 sp_head::execute(). Note that during the
 execution of the code that follows a call to
 my_message_sql(), error conditions are
 propagated in the call stack though the function's return value.
 It is transparent to the implementation of statements in general
 whether an exception was caught by an error handler.

 After an instruction is executed in
 sp_head::execute(), the main interpreter loop
 checks for any pending exception handler code to call, by
 invoking sp_rcontext::found_handler(). If an
 exception was caught, the handler to call has been found by
 sp_rcontext::handle_error(), and is invoked.

 In case of CONTINUE HANDLER, the instruction
 to return to after the handler code is executed needs to be
 saved in the runtime context. Finding the continuation
 destination is accomplished by the call to
 sp_instr::get_cont_dest() for the current
 instruction, whereas preserving this destination is done with
 sp_rcontext::push_hstack(). The matching call
 to sp_rcontext::pop_hstack(), which is
 executed when the exception handler is done, is located in
 sp_instr_hreturn::execute().

Caution

 To integrate properly with exception handling in general, the
 code should avoid testing for
 thd->net.report_error, or worse inspecting
 the content of the error stack (displayed by SHOW
 ERRORS), because doing this actually assumes not
 only that an error was raised, but also that it was not
 caught. Instead, the proper way to implement error handling in
 the server is to return error status values and check for
 them.

15.7.5 Call Nesting

 In the following example, the Stored Procedure
 proc_1 makes a nested call to
 proc_2.

CREATE TABLE my_debug(
 seq int NOT NULL AUTO_INCREMENT,
 msg varchar(80),
 PRIMARY KEY(seq)
);

delimiter $$
 CREATE PROCEDURE proc_1()
BEGIN
 INSERT INTO my_debug(msg) VALUES ("entering p1");
 CALL proc_2();
 INSERT INTO my_debug(msg) VALUES ("leaving p1");
END$$

CREATE PROCEDURE proc_2()
BEGIN
 INSERT INTO my_debug(msg) VALUES ("inside p2");
END$$

delimiter ;
 CALL proc_1();

Tip

 Oh, yes, we don't have a debugger yet, so this is old school
 printf-like debugging into a table.

 By setting a breakpoint in mysql_insert in
 the server, the current thread stack at the first insert will
 look like this:

#0 mysql_insert () at sql_insert.cc:351
#1 in mysql_execute_command () at sql_parse.cc:2643
#2 in sp_instr_stmt::exec_core () at sp_head.cc:2609
#3 in sp_lex_keeper::reset_lex_and_exec_core () at sp_head.cc:2455
#4 in sp_instr_stmt::execute () at sp_head.cc:2560
#5 in sp_head::execute () at sp_head.cc:1077
#6 in sp_head::execute_procedure () at sp_head.cc:1726
#7 in mysql_execute_command () at sql_parse.cc:3807
#8 in mysql_parse () at sql_parse.cc:5274
#9 in dispatch_command () at sql_parse.cc:896
#10 in do_command () at sql_parse.cc:662
#11 in handle_one_connection () at sql_connect.cc:1089
#12 in start_thread () from /lib/libpthread.so.0
#13 in clone () from /lib/libc.so.6

 By the time the second INSERT is executed,
 the stack will look like this:

#0 mysql_insert () at sql_insert.cc:351
#1 in mysql_execute_command () at sql_parse.cc:2643
#2 in sp_instr_stmt::exec_core () at sp_head.cc:2609
#3 in sp_lex_keeper::reset_lex_and_exec_core () at sp_head.cc:2455
#4 in sp_instr_stmt::execute () at sp_head.cc:2560
#5 in sp_head::execute () at sp_head.cc:1077
#6 in sp_head::execute_procedure () at sp_head.cc:1726
#7 in mysql_execute_command () at sql_parse.cc:3807
#8 in sp_instr_stmt::exec_core () at sp_head.cc:2609
#9 in sp_lex_keeper::reset_lex_and_exec_core () at sp_head.cc:2455
#10 in sp_instr_stmt::execute () at sp_head.cc:2560
#11 in sp_head::execute () at sp_head.cc:1077
#12 in sp_head::execute_procedure () at sp_head.cc:1726
#13 in mysql_execute_command () at sql_parse.cc:3807
#14 in mysql_parse () at sql_parse.cc:5274
#15 in dispatch_command () at sql_parse.cc:896
#16 in do_command () at sql_parse.cc:662
#17 in handle_one_connection () at sql_connect.cc:1089
#18 in start_thread () from /lib/libpthread.so.0
#19 in clone () from /lib/libc.so.6

 In this stack trace,
 sp_head::execute_procedure() at
 #12 corresponds to CALL
 proc_1();, whereas
 sp_head::execute_procedure() at
 #6 corresponds to CALL
 proc_2();. In other words, recursive calls in the
 user SQL code are implemented by performing
 matching recursive calls in the system C++
 code (the server).

 This is actually a severe limitation of the implementation,
 which causes problems for the following reasons:

	
 User logic can be arbitrarily nested, with a long chain of
 Stored Programs calling other Stored Programs. The total
 depth of calls can be greater than one would expect,
 especially considering that a VIEW can
 invoke a FUNCTION, and that a
 TRIGGER can also invoke other
 PROCEDURE, FUNCTION,
 or TRIGGER objects.

	
 The amount of memory that can be consumed in the
 stack for a thread is not infinite. In
 fact, it's quite limited because {MAX NUMBER OF
 THREADS} * {MAX THREAD STACK} = {TOTAL STACK}.
 Note the catch in the equation here:
 MAX thread stack, which is dependent on
 the nesting of stored program in the user SQL code, for the
 worst case. Since MySQL currently does not use a thread pool
 but is compiled sometimes with a BIG
 number of threads, this can be a problem affecting
 scalability.

	
 As a result, the Stored Program interpreter has to protect
 itself against stack overflow. This is implemented by
 check_stack_overrun()

 What should be implemented instead, is
 representing the user SQL stack on the
 C++ heap, and have the interpreter
 loop instead of making
 recursive calls.

 There are also other good reasons to use the heap. For example,
 for error reporting, the current implementation has no way to
 tell that proc_2 was called from
 proc_1, since this data is not available to
 the code; it's hidden in the C++ stack.

 Nesting calls also has some impact on SQL exception handlers.
 The member THD::spcont for the current thread
 is not pointing to a single sp_rcontext, but
 to a stack of runtime contexts. This is
 implemented internally as a linked list, with
 sp_rcontext::m_prev_runtime_ctx.

 With the example used, when the code is executing
 proc_1, THD::spcont points
 to the runtime context for proc_1. When the
 code is inside proc_2, the current thread
 THD::spcont points to
 sp_rcontext{proc_2}, which member
 m_prev_runtime_ctx points to
 sp_rcontext{proc_1}. This chain allows a
 parent Stored Program to catch exceptions raised by children
 Stored Programs.

Chapter 16 Prepared Statement and Stored Routine Re-Execution

Table of Contents
	16.1 Statement Re-Execution Requirements
	16.2 Preparation of a Prepared Statement
	16.3 Execution of a Prepared Statement
	16.4 Execution of a Stored Procedure Statement

 Let us start with a general description of the MySQL statement
 processing workflow in order to provide the reader with
 understanding of the problem of reexecution and vocabulary for the
 following sections.

 Conventional statements, that is, SQL queries sent in
 COM_QUERY protocol packet, are the only
 statements present in MySQL server prior to version 4.1. Execution
 of such statements is performed in a batch mode, one query processed
 by the server at a time. The original implementation is streamlined
 for this mode and has a single global connection state
 THD shared among all operational steps.

 When executing a query in conventional mode, the server sequentially
 parses its text, acquires table level locks, analyzes the parsed
 tree, builds an execution plan, executes the built plan and releases
 the locks.

 Memory for parsing is allocated using block allocator
 MEM_ROOT in 4k chunks and freed once in the end
 of execution. Memory for execution is allocated in the memory root
 of the parsed tree, as well as in the system heap, and in some cases
 in local "memory roots" of execution modules.

 The role of the parser is to create a set of objects to represent
 the query. E.g. for a SELECT statement, this set
 includes a list of Item's for SELECT list, a list
 of tables (TABLE_LIST object for each table) for
 FROM clause, and a tree of Item's for
 WHERE clause.

 During context analysis phase, links are established from the parsed
 tree to the physical objects of the database, such as open tables
 and table columns. A physical table is represented by a heir of
 class handler that corresponds to the storage engine the table
 belongs to, and is saved in TABLE_LIST::file.

 When context analysis is done, the query optimizer is run. It
 performs two major tasks:

	
 Query transformation — a transformation of the parsed tree
 to an equivalent one, which is simpler and more efficient to
 execute.

	
 Creation of an execution plan, including evaluation of an order
 of joins and initialization of methods to access the used
 tables. At this step parts of the execution plan are attached to
 the parsed tree.

 Finally, the query is passed to the execution runtime — an
 interpreter that operates with and modifies both the parsed tree and
 the execution plan in order to execute the query.

 It should be noted that the overall procedure is infamous for
 breaking borders between abstraction layers. For example, MySQL
 performs [sub]query transformation during context analysis;
 moreover, most parts of the code rely on the fact that
 THD is processing only one statement at a time.

16.1 Statement Re-Execution Requirements

 Features of MySQL 4.1 and 5.0 put a new demand on the execution
 process: prepared statements and stored routines need to reuse the
 same parsed tree to execute a query many times.

 So far no easy mechanism that would allow query reexecution using
 the conventional query processing code has been found. For
 instance, copying of the parsed tree before each reexecution is
 not simple to implement as a parsed tree, which can contain
 instances of more than 300 different classes, has a lot of
 cross-references between its objects.

 The present solution introduces a concept of change management for
 the changes of the parsed tree and is largely a unification of
 numerous fixes of bugs in reexecution. The solution has two
 aspects.

 The first one is that modifications of the parsed tree are tracked
 and a way to restore the tree to a state that allows reexecution
 is introduced.

 The second aspect is that a dedicated block allocator (memory
 root) is used to store the parsed tree, and the memory allocated
 in this memory root is freed only when the parsed tree is
 destroyed. Later this memory root will be denoted as the permanent
 memory root of a statement.

 In order to properly restore the parsed tree to a usable state,
 all modifications of the tree are classified as destructive or
 non-destructive and an appropriate action is taken for every type
 of modification.

 A non-destructive modification does not depend on actual values of
 prepared statement placeholders or contents of the tables used in
 a query. Such modification is [and should be, for future changes]
 made only once and the memory for it is allocated in the permanent
 memory root of the statement.

 As a result, the modified parsed tree remains usable.

 Examples of non-destructive and useful modifications of the parsed
 tree are:

	
 WHERE /ON clause
 flattening

	
 NOT elimination

	
 LEFT JOIN elimination, when it can be done
 based on the constants explicitly specified in the query

 The rest of modifications are destructive, generally because they
 are based on actual contents of tables or placeholders.

 Examples of destructive modifications are:

	
 Equality propagation

	
 Sorting of members of IN array for quick
 evaluation of IN expression.

 Destructive modifications are (and should be for all future
 changes) allocated in a memory root dedicated to execution, are
 registered in THD::change_list and rolled back
 in the end of each execution. Later the memory root dedicated to
 execution of a statement will be denoted as the runtime memory
 root of the statement. Because allocations are done indirectly via
 THD::mem_root, THD::mem_root
 at any given moment of time can point either to the permanent or
 to the runtime memory root of the statement. Consequently,
 THD::mem_root and
 THD::free_list can be denoted as 'currently
 active arena' of THD.

16.2 Preparation of a Prepared Statement

 As mentioned above, THD is currently a required
 argument and the runtime context for every function in the server.
 Therefore, in order to call the parser and allocate memory in the
 statement memory root we perform several save-restore steps with
 THD::mem_root and
 THD::free_list (the active arena of
 THD).

	
 In order to parse a statement, we save the currently active
 arena of THD and assign its members from
 the permanent arena of the statement. This is achieved by
 calling THD::set_and_backup_active_arena.
 This way alloc_query and
 yyparse operate on the permanent arena.

	
 We don't want the garbage which is created during statement
 validation to be left in the permanent arena of the statement.
 For that, after parse but before validation of the statement,
 we restore the THD arena saved in (1). In other words, we use
 the arena of THD that was active when
 Prepared_statement::prepare was invoked as
 the runtime arena of the statement when it is validated.

	
 Statement validation is performed in function
 check_prepared_statement(). This function
 will subsequently call
 st_select_lex_unit::prepare() and
 setup_fields() for the main LEX unit,
 create JOINs for every unit, and call
 JOIN::prepare for every join
 (JOINs in MySQL represents a part of the
 execution plan). Our prepared statement engine does not save
 the execution plan in a prepared statement for reuse, and
 ideally we should not create it at prepare stage. However,
 currently there is no other way to validate a statement except
 to call JOIN::prepare for all its units.

	
 During validation we may perform a transformation of the
 parsed tree. In a clean implementation this would belong to a
 separate step, but in our case the majority of the server
 runtime was not refactored to support reexecution of
 statements, and a permanent transformation of the parsed tree
 can happen at any moment during validation. Such
 transformations absolutely
 must use the permanent arena of the prepared
 statement. To make this arena accessible, we save a pointer to
 it in thd->stmt_arena before calling
 check_prepared_statement.

 Later, whenever we need to perform a permanent transformation,
 we first call
 THD::activate_stmt_arena_if_needed to make
 the permanent arena active, transform the tree, and restore
 the runtime arena.

	
 Some parts of the execution do not distinguish between
 preparation of a prepared statement and its execution and
 perform destructive optimizations of the parsed tree even
 during validation. These changes of the parsed tree are
 recorded in THD::change_list using method
 THD::register_item_tree_change.

	
 After the validation is done, we rollback the changes
 registered in THD::change_list and free new
 items and other memory allocated by destructive
 transformations.

16.3 Execution of a Prepared Statement

 In order to call mysql_execute_command (the function that executes
 a statement) for a prepared statement and not damage its parse
 tree, we backup and restore the active Query_arena of THD.

	
 We don't want the garbage created during execution to be left
 in the permanent arena of the statement. To ensure that, every
 statement is executed in the runtime arena of
 THD. In other words, the arena which was
 active when mysql_stmt_execute was called
 is used as the runtime arena of the statement during its
 execution.

	
 Before calling mysql_stmt_execute, we
 allocate thd->query with parameter markers
 ('?') replaced with their values: the new query is allocated
 in the runtime arena. We'll need this query for general,
 binary, error and slow logs.

	
 The execution plan created at prepare stage is not saved (see
 Section 16.2, “Preparation of a Prepared Statement”), and
 at execute we simply create a new set of JOINs and then
 prepare and optimize it. During the first execution of the
 prepared statement the server may perform non-destructive
 transformations of statement's parsed tree: normally that
 would belong to a separate step executed at statement prepare,
 but once again, this haven't been done in 4.1 or 5.0. Such
 transformations
 absolutely
 must use the permanent arena of the prepared
 statement (saved in thd->stmt_arena).
 Whenever we need to perform a permanent transformation, we
 first call
 THD::activate_stmt_arena_if_needed to make
 the permanent arena active, transform the tree, and restore
 the runtime arena. To avoid double transformations in such
 cases, we track current state of the parsed tree in
 Query_arena::state.

 This state may be one of the following:

	
 INITIALIZED — we're in statement
 PREPARE.

	
 INITIALIZED_FOR_SP — we're in
 first execution of a stored procedure statement.

	
 PREPARED — we're in first
 execution of a prepared statement.

	
 EXECUTED — we're in a subsequent
 execution of a prepared statement or a stored procedure
 statement.

	
 CONVENTIONAL_EXECUTION — we're
 executing a pre-4.1 query.

 One can use helper methods of Query_arena
 to check this state
 (is_conventional_execution(),
 is_stmt_prepare(),
 is_stmt_execute(),
 is_stmt_prepare_or_first_sp_execute()).

 Additionally,
 st_select_lex_unit::first_execution
 contains a flag for the state of each subquery in a complex
 statement. A separate variable is needed because not all
 subqueries may get executed during the first execution of a
 statement.

	
 Some optimizations damage the parsed tree, for example,
 replace leaves and subtrees of items with other items or leave
 item objects cluttered with runtime data. To allow
 re-execution of a prepared statement the following mechanisms
 are currently employed:

	
 A hierarchy of Item::cleanup() and
 st_select_lex::cleanup() methods to
 restore the parsed tree to the condition of
 right-after-parse. These cleanups are called in
 Prepared_statement::cleanup_stmt()
 after the statement has been executed.

	
 In order to roll back destructive transformations of the
 parsed tree, every replacement of one item with another is
 registered in THD::change_list by using
 THD::change_item_tree(). In the end of
 execution all such changes are rolled back in reverse
 order.

 Example:

if (!(fld= new Item_field(from_field)))
goto error;
thd->change_item_tree(reference, fld);

 If a transformation is a non-destructive, it should not be
 registered, but performed only once in the permanent
 memory root. Additionally, be careful to not supply a
 pointer to stack as the first argument of
 change_item_tree(); that will lead to
 stack corruption when a tree is restored.

	
 AND /OR subtrees of
 WHERE and ON clauses
 are created anew for each execution. It was easier to
 implement in 4.1, and the approach with change record list
 used in (b) could not have been used for
 AND/OR
 transformations, because these transformations not only
 replace one item with another, but also can remove a
 complete subtree. Leafs of
 AND/OR subtrees are
 not copied by this mechanism because currently they are
 not damaged by the transformation. For details, see
 Item::copy_andor_structure().

	
 No other mechanism exists
 in the server at the moment to allow re-execution. If the
 code that you're adding transforms the parsed tree, you
 must use one of the mechanisms described above, or propose
 and implement a better approach.

	
 When execution is done, we rollback the damage of the parsed
 tree.

16.4 Execution of a Stored Procedure Statement

 Execution of a stored procedure statement is similar to execution
 of a prepared statement. The few existing exceptions are described
 below.

 During execution of a stored procedure,
 THD::stmt_arena points to the permanent query
 arena of the stored procedure. This arena happens to be also the
 permanent query arena of every instruction of the procedure, as
 the parser creates all instructions in the same arena. More
 generally, THD::stmt_arena is always set and
 always points to the permanent arena of a statement. If the
 statement is a conventional query, then the permanent arena simply
 points to the runtime arena of the query.

 An own runtime memory root is set up for execution of every stored
 procedure statement and freed in the end of execution. This is a
 necessary measure to avoid memory leaks if a stored procedure
 statement is executed in a loop.

 With regard to the transformations and restoration of the parsed
 tree, execution of a stored procedure statement follows the path
 of execution of a prepared statement, with the exception that
 there is no separate prepare step.
 THD::is_first_sp_execute() is used to determine
 whether it's the first execution, and in this case non-destructive
 permanent transformations of the parsed tree are made in the
 permanent memory root of the statement that is currently being
 executed.

 During subsequent executions no non-destructive transformations
 are performed, while all destructive ones are rolled back in the
 end of execution using the same algorithm as in prepared
 statements.

Chapter 17 Writing a Procedure

Table of Contents
	17.1 Extend Class Procedure
		17.1.1 Constructor
	17.1.2 change_columns()
	17.1.3 send_row()
	17.1.4 add()
	17.1.5 end_group()
	17.1.6 end_of_records()

	17.2 Initialization Callback
	17.3 Calling Sequence
	17.4 Required Server Code Patches

Note

 This section is not about SQL stored procedures but about MySQL
 procedures like Using PROCEDURE ANALYSE. For internal
 information on SQL stored procedures see the
 Chapter 15, Stored Programs.

17.1 Extend Class Procedure

 Each new procedure needs to extend the
 Procedure class. For a minimal
 dummy procedure that doesn't actually change the result set it
 would look like this:

 class proc_dummy: public Procedure { }

 In a real procedure you'd extend at least some of the member
 functions below:

17.1.1 Constructor

 Prototype: n/a

 The class constructors prototype signature is completely up to
 you. The only place where objects are instantiated is your own
 init callback.

 To initialize your derived procedure object you have to pass on
 the select_result pointer the init callback was called with to
 the base class constructor together with a flag parameter which
 specifies what kind of procedure you are going to implement. So
 a minimal constructor would look like this:

your_proc::your_proc(select_result *res)
 :Procedure(res, PROC_NO_SORT)
{
}

 Possible flag values are
 PROC_NO_SORT and
 PROC_GROUP. I have no real idea
 yet what the two flags are doing but found that for simple
 procedures PROC_NO_SORT seems to be the right flag to use.

 See also Section 17.2, “Initialization Callback”.

17.1.2 change_columns()

 Prototype: virtual bool
 change_columns(List<Item> &field_list);

 Here you can change the structure of the result field list, for
 example, you can add fields to the
 field_list or replace the
 queries result fields by something completely different
 alltogether (like PROCEDURE ANALYSE() does).

 An example that adds an INTEGER field at the end of the field
 list:

bool proc_rownum::change_columns(List<Item> &field_list)
 {
 DBUG_ENTER("proc_rownum::change_columns");

 // create a new column item
 row_num_column = new Item_proc_int("RowNum");

 // and attach it to the column list
 field_list.push_back(row_num_column);

 DBUG_RETURN(0);
 }

17.1.3 send_row()

 Prototype: virtual int
 send_row(List<Item> &fields);

 This member is called for every result row in the original
 result set. Whatever you do here is up to you, it is important
 to note though that to pass on the result row to the client you
 have to call
 result->send_data()
 yourself.

 PROCEDURE ANALYSE() for example does not send any data here, it
 only produces result rows after aggregating information across
 all result rows so its
 send_row() member only
 aggregates but doesn't send anything.

 A simple example which modifies the result value for a single
 field in the field list before sending it on to the client:

int proc_rownum::send_row(List<Item> &field_list __attribute__((unused)))
 {
 DBUG_ENTER("proc_rownum::send_row");

 // increment row count and set its new value in result row
 row_num_column->set(++row_num);

 // now send the modified results
 if (result->send_data(field_list))
 	DBUG_RETURN(-1);

 DBUG_RETURN(0);
 }

17.1.4 add()

 Prototype: virtual void
 add(void);

 This member function is called once for every source row for a
 GROUP BY query.

 See also Section 17.1.5, “end_group()”.

17.1.5 end_group()

 Prototype: virtual void
 end_group(void);

 This member function is called whenever the end of a group in a
 GROUP BY is detected, it is called after the call to
 add() for the last
 source row in the group but before sending the actual aggregated
 result row for the group with
 Section 17.1.3, “send_row()”.

17.1.6 end_of_records()

 Prototype: virtual bool
 end_of_records(void);

 This member function is called at the very end after all result
 rows have been processed with calls to
 Section 17.1.3, “send_row()”. This is where you
 can send extra summary result rows as, for example, PROCEDURE
 ANALYSE() does.

17.2 Initialization Callback

 The initialization callback is registered together with the
 procedure name in the sql_procs
 array in procedure.cc.

 The initialization callback prototype signature looks like this:

 Procedure *(*init)(THD *thd,ORDER *param,select_result *result,
List<Item> &field_list);

 In the initialization callback you usually just create and return
 an instance of your derived Procedure class:

// Create and register the actual procedure object
 Procedure *proc_rownum_init(THD *thd,
 ORDER *param,
 select_result *result,
 			 List<Item> &field_list)
 {
 DBUG_ENTER("proc_rownum_init");

 proc_rownum *pc = new proc_rownum(result);

 DBUG_RETURN(pc);
 }

17.3 Calling Sequence

 The init callback
 is always called first at the beginning of a query, followed by a
 call to the Section 17.1.2, “change_columns()”. The
 Section 17.1.6, “end_of_records()” member is always
 called last at the very end.

 For simple non-grouping queries only
 Section 17.1.3, “send_row()” is called once for each
 result row.

 For grouping queries
 add() is called once
 for each source row. Section 17.1.5, “end_group()”
 is called once at the end of each group followed by a call to
 Section 17.1.3, “send_row()”.

 You cann use the CALLTRACE() procedure to check in which sequence
 the member functions are called on any query. This procedure will
 send one result row for each member function call, every row
 contains a single text field with one of the values
 add,
 end_group,
 end_of_records or
 send_row.

17.4 Required Server Code Patches

 Currently procedures can only be compiled into the server
 staticly. There is no dynamic procedure for loading them dynamicly
 yet like we have for UDFs and plugins.

 So you have to perform the following steps to register your
 procedure with the server:

	
 register the .cc and
 .h file in the
 mysqld_SOURCES list in
 sql/Makefile.am, for example,
 right after the line that the
 sql_analyse.* files are on:

diff -ruN 5.0/sql/Makefile.am 5.0-myproc/sql/Makefile.am
 --- 5.0/sql/Makefile.am	2007-08-09 12:11:16.000000000 +0200
 +++ 5.0-myproc/sql/Makefile.am	2007-08-09 00:22:19.000000000 +0200
 @@ -94,6 +94,7 @@
 			sql_db.cc sql_table.cc sql_rename.cc sql_crypt.cc \
 			sql_load.cc mf_iocache.cc field_conv.cc sql_show.cc \
 			sql_udf.cc sql_analyse.cc sql_analyse.h sql_cache.cc \
 +			procedure_rownum.cc procedure_rownum.h \
 			slave.cc sql_repl.cc sql_union.cc sql_derived.cc \
 			client.c sql_client.cc mini_client_errors.c pack.c\
 			stacktrace.c repl_failsafe.h repl_failsafe.cc \

	
 register the .cc source file
 in the sqlsources list in
 libmysqld/Makefile.am

diff -ruN 5.0/libmysqld/Makefile.am 5.0-myproc/libmysqld/Makefile.am
 --- 5.0/libmysqld/Makefile.am	2007-08-09 12:18:16.000000000 +0200
 +++ 5.0-myproc/libmysqld/Makefile.am	2007-08-09 00:21:55.000000000 +0200
 @@ -54,6 +54,7 @@
 	opt_sum.cc procedure.cc records.cc sql_acl.cc \
 	sql_load.cc discover.cc sql_locale.cc \
 	sql_analyse.cc sql_base.cc sql_cache.cc sql_class.cc \
 +	procedure_rownum.cc \
 	sql_crypt.cc sql_db.cc sql_delete.cc sql_error.cc sql_insert.cc \
 	sql_lex.cc sql_list.cc sql_manager.cc sql_map.cc sql_parse.cc \
 	sql_prepare.cc sql_derived.cc sql_rename.cc \

	
 include your .h file in
 sql/procedure.cc

diff -ruN 5.0/sql/procedure.cc 5.0-myproc/sql/procedure.cc
 --- 5.0/sql/procedure.cc	2007-08-09 12:11:16.000000000 +0200
 +++ 5.0-myproc/sql/procedure.cc	2007-08-09 00:21:04.000000000 +0200
 @@ -23,6 +23,7 @@
 #include "mysql_priv.h"
 #include "procedure.h"
 #include "sql_analyse.h"			// Includes procedure
 +#include "procedure_rownum.h"		// Includes procedure
 #ifdef USE_PROC_RANGE
 #include "proc_range.h"
 #endif

	
 register your procedures init callback in the
 sql_procs array in
 sql/procedure.cc

diff -ruN 5.0/sql/procedure.cc 5.0-myproc/sql/procedure.cc
 --- 5.0/sql/procedure.cc	2007-08-09 12:11:16.000000000 +0200
 +++ 5.0-myproc/sql/procedure.cc	2007-08-09 00:21:04.000000000 +0200
 @@ -37,6 +38,7 @@
 { "split_count",proc_count_range_init },	// Internal procedure at TCX
 { "matris_ranges",proc_matris_range_init },	// Internal procedure at TCX
 #endif
 + { "rownum", proc_rownum_init }, 		// Add RowNum column to result
 { "analyse",proc_analyse_init }		// Analyse a result
 };

	
 run automake and
 autoconf to regenerate the
 Makefile.in

files and the configure script

	
 run configure or refresh your
 previous configuration by running
 config.status

	
 run make

	
 if your build fails with don't know how
 to make xxx.cc required by xxx.o in the
 libmysqld/ directory you
 might need to create a symlink from
 libmysqld/xxx.cc to
 sql/xxx.cc yourself. The
 build system is not too clever about creating these symlinks
 for files added after the first compile ...

Chapter 18 Replication

Table of Contents
	18.1 Chapter Organization
	18.2 Source Code Files
	18.3 Principles
		18.3.1 Binlog Formats
	18.3.2 Differences Between Master and Slave
	18.3.3 Crashes
	18.3.4 Binlog Files and Indexes

	18.4 Rules
		18.4.1 Determining the Logging Format
	18.4.2 Unsafe Statements
	18.4.3 Logging Transactions
	18.4.4 Logging Updates to auto_increment Columns
	18.4.5 Logging Access to Variables and Functions
	18.4.6 Other Unsafe Statements
	18.4.7 binlog_row_image
	18.4.8 Replication Locks

 Status of this section: up to date 2009-10-21

 This chapter describes MySQL replication principles, rules, and
 code, as it is supposed to work in version 5.1.

 The MySQL replication feature allows a server - the
 master - to send all changes to
 another server - the slave - and
 the slave tries to apply all changes to keep up-to-date with the
 master. Replication works as follows:

	
 Whenever the master's database is modified, the change is
 written to a file, the so-called binary
 log, or binlog. This
 is done by the client thread that executed the query that
 modified the database.

	
 The master has a thread, called the dump
 thread, that continuously reads the master's binlog
 and sends it to the slave.

	
 The slave has a thread, called the IO
 thread, that receives the binlog that the master's
 dump thread sent, and writes it to a file: the
 relay log.

	
 The slave has another thread, called the
 SQL thread, that continuously
 reads the relay log and applies the changes to the slave server.

18.1 Chapter Organization

 We distinguish between two levels of the architecture:
 principles, and rules:

	
 principle

	
 High-level goal that declares how the program shall work,
 from an external point of view. Principles do not discuss
 how the code works. An example of a principle is "no row
 events shall be written to the binlog if
 binlog_format=statement".

	
 rule

	
 Defines how to implement the principles. Rules can be
 formulated on a very high level, but they describe
 implementation (how the code works from the inside) rather
 than interface (how the program behaves when looking from
 the outside). An example of a rule is "at ROLLBACK when the
 transaction cache only contains updates to transactional
 tables, clear the transaction cache and do not write to the
 binlog".

 In the next section, we list the source code files used by
 replication and describe what each file contains. The section
 after describes the replication principles and the following
 section describes the replication rules. The last section contains
 very old, obsolete documentation. It will be removed after we have
 verified that anything useful has been transferred to the main
 sections.

18.2 Source Code Files

 Status of this section: up to date 2009-12-16

 Files in the sql directory:

	
 File

	
 Description

	
 slave.h/.cc

	
 Contains the slave IO and SQL
 threads. This is the high-level
 administrative logic for the slave threads - that is,
 not the low-level functions for parsing the dump from
 the net, parsing the relay log, formatting the relay
 log, or executing events. Also contains the code to
 execute SHOW SLAVE
 STATUS.

	
 log.h/.cc

	
 The high-level binary
 logging mechanism for
 organizing events into a sequence so that it becomes a
 binary log. Routines for creating, writing, and deleting
 binary log files. Also the handler callbacks for the
 binlog.

	
 log_event.h/.cc

	
 The Log_event class and
 subclasses, for creating, writing, reading, printing,
 and applying events of every event type. Reading and
 writing here is at a low level, that is, serializing
 values into records.

	
 old_log_event.h/.cc

	
 Contains classes to read and execute
 old versions of the row
 log events.

	
 rpl_rli.h/.cc

	
 Implementation of the data structure
 Relay_log_info that
 holds the state of the SQL thread, and also some
 auxiliary methods used by the slave SQL thread. (The
 slave SQL thread is in slave.cc and it also uses other
 auxiliary functions.)

	
 rpl_mi.h/.cc

	
 Contains the data structure
 Master_info that holds
 some state of the IO thread (the IO thread is in
 slave.cc and it also uses other auxiliary functions).

	
 sql_repl.cc

	
 The dump thread, where
 the master sends its binary log to the slave. This is
 also where the code resides for
 RESET SLAVE,
 CHANGE MASTER,
 RESET MASTER,
 SHOW BINLOG EVENTS,
 SHOW MASTER STATUS,
 SHOW BINARY LOGS,
 PURGE BINARY LOGS, as
 well as some replication-related system variables.

	
 sql_binlog.cc

	
 Contains code to execute
 BINLOG statements (that
 is, the base64-encoded things that mysqlbinlog prints
 when it sees row events).

	
 rpl_record.h/.cc

	
 Utilities for encoding and decoding table rows into and
 out of the row event
 format.

	
 repl_failsafe.h/.cc

	
 Utilities to initialize and
 register slaves on the
 master. Also unfinished and unused code
 dealing with "failsafe" (master election if the primary
 master fails).

	
 replication.h

	
 Observer class declarations, which together constitute
 the binary log
 interface.

	
 rpl_constants.h

	
 Enumeration of
 incidents (events that
 occur during replication). Also some constants that are
 local to the replication code.

	
 rpl_filter.h/.cc

	
 Implements the table and database
 filters used by the
 --{binlog,replicate}-{do,ignore}-db,
 --replicate[-wild]-{do,ignore}-table, and
 --replicate-rewrite-db flags.

	
 rpl_handler.h/.cc

	
 Coordination classes used by
 plugins to register to
 the binary log interface.

	
 rpl_injector.h/.cc

	
 The injector class that
 allows external insertions into the binary log. This is
 used for cluster replication binary logging.

	
 rpl_reporting.h/.cc

	
 Utilities for reporting replication conditions and
 reporting errors, warnings, and
 informational messages on the slave.

	
 rpl_tblmap.h/.cc

	
 Utilities to generate a mapping
 from numbers to tables. The mapping is used
 by the row logging system to identify tables.

	
 rpl_utility.h/.cc

	
 Auxiliary classes and
 functions used for Table_map_events, and also an
 auxiliary class for smart pointers.

	
 sql_base.cc

	
 Prior to
 Bug#39934,
 the function
 decide_logging_format()
 that determines if statements should be written
 row-based or statement-based to the binlog. After
 Bug#39934,
 there is nothing related to replication here.

	
 sql_class.cc

	
 The function
 binlog_query(), called
 from commands that need to log a query_log_event. After
 Bug#39934,
 also
 decide_logging_format().

	
 sql_lex.h/.cc

	
 List of all types of unsafe
 statements, and functions for marking
 statements unsafe.

 Files in the client directory:

	
 File

	
 Description

	
 mysqlbinlog.cc

	
 The mysqlbinlog program. This file mainly contains a
 loop that calls auxiliary functions (members of
 Log_event defined in log_event.cc) that read and print
 events.

 Files in the plugin/semisync
 directory:

	
 File

	
 Description

	
 semisync.h/.cc

	
 Auxiliary code, particularly for tracing, that is used
 by both the master semisync module and the slave
 semisync module.

	
 semisync_master.h/.cc

	
 The master semisync module.

	
 semisync_master_plugin.cc

	
 The callbacks invoked by the server to use the master
 semisync module, as well as code to register the master
 semisync module.

	
 semisync_slave.h/.cc

	
 The slave semisync module.

	
 semisync_slave_plugin.cc

	
 The callbacks invoked by the server to use the slave
 semisync module, as well as code to register the master
 semisync module.

18.3 Principles

 In this section, we describe the architectural principles of
 replication. These are high-level goals that replication shall
 achieve. The principles have been used as guidelines to construct
 the Rules of replication (next section).

18.3.1 Binlog Formats

 Status of this subsection: Complete but not reviewed
 2009-10-21

 The binlog is organized as a linear sequence of
 events. An SQL query that
 modifies the database will generate one or more events and
 append them to the binlog. There are also auxiliary event types
 that describe the structure of the binlog.

 Queries can be logged in two ways:

	
 In statement format: the SQL query is written to the binlog
 in text.

	
 In row format: rows that changed are written to the binlog
 in a binary format. Each row may consist of a
 Before Image (BI) and/or an
 After Image (AI). The BI
 identifies the row to modify and the AI describes the row
 after the change. There are three types of log_events:

	
	

	
 Write_rows_log_event: adds a new row to a table. Has
 only AI.

	
 Update_rows_log_event: modifies an existing row in a
 table. Has both BI and AI.

	
 Delete_rows_log_event: removes an existing row from
 a table. Has only BI.

 Which of the two formats to use is configured with the
 @@session.binlog_format variable, which takes the values
 STATEMENT, ROW, or MIXED. The following principles shall hold:

	
	
 (P-binlog_format-statement)
 @@session.binlog_format=STATEMENT:

	
 We do not guarantee correct logging.

	
 The client may not generate row events.

	
 If the server cannot determine that a statement is
 correctly logged, a warning or error shall be
 issued:

	
 If it is possible that the user (through
 application-specific logic) knows that the
 statement is correctly logged, then a warning
 shall be issued.

	
 If it is inherently impossible for the user to
 determine that the statement will be correctly
 logged, an error shall be issued and the
 statement shall not execute.

	
	
 (P-binlog_format-row)
 @@session.binlog_format=ROW:

	
 We guarantee correct logging. If a statement cannot
 be correctly logged, then an error shall be
 generated and the statement shall not execute.

	
 DML changes may only be logged in row format, not in
 statement format. If a DML change cannot be logged
 in row format, then an error shall be generated and
 the statement shall not execute.

	
	
 (P-binlog_format-mixed)
 @@session.binlog_format=MIXED:

	
 We guarantee correct logging. If a statement cannot
 be correctly logged, then an error shall be
 generated and the statement shall not execute.

	
 If correct logging can be guaranteed by logging in
 statement format, then statement format shall be
 used. Otherwise, row format shall be used.

	
	
 Clarification: If it cannot be determined in a practical
 manner that statement format leads to correct logging,
 then row format shall be used.

18.3.2 Differences Between Master and Slave

 Status of this subsection: In progress
 2009-10-21

 What does the term correct
 replication really mean? To clarify the notion, we
 make the following preliminiary definitions:

	
	
 (D-identical-environments)
 Two environments are
 identical if all the
 following are identical:

	
 The hardware representation of floating point
 numbers and the hardware implementation of floating
 point arithmetic

	
 The case sensitivity of the file systems

	
 The versions of all used components of MySQL

	
	
 Note: The following are examples of things not taken into
 account by this definition:

	
 The hardware's word size, as long as it is supported
 by MySQL

	
 The hardware's endianness

	
	
 (D-identical-server-states)
 Two server states are
 identical if all the
 following are identical:

	
 The sets of databases (a.k.a. schemas)

	
 The table definitions (including table names, table
 options, column definitions) of all tables outside
 the mysql and information_schema databases

	
 The table contents, modulo row order (in
 mathematical language: the unordered multisets of
 rows are equal), of all tables outside the mysql and
 information_schema databases

	
 The definitions of all functions, procedures,
 triggers, views, prepared statements, and events

	
	
 Note: The following are examples of things not taken into
 account in this definition:

	
 System variables and user variables

	
 The state of clients, including the replication
 slave. The state includes session variables and
 temporary tables.

	
 Binlog files, relay log files, binlog indexes, relay
 log indexes

	
 The internal state of the random number generator

	
 Which plugins are installed

	
	
 TODO: Question:

	
 Should user privileges count as server state?

	
	
 (D-rpl-correct)
 Replication is correct if
 both the following hold:

	
 Any change on the master eventually results in the
 same change on the slave.

	
 Any intermediate state of the slave is identical to
 some intermediate state of the master.

	
	
 Note: it is not required that each intermediate state of
 the master is identical to some intermediate state of the
 slave.

 We now state the architectural principles that define when
 replication shall be correct. The following is the main rule:

	
	
 (P-rpl-correct) If a
 replication master and slave reside on identical
 environments (D-identical-environments) and the server
 states are identical (D-identical-server-states), and
 @@client.binlog_format!=STATEMENT, then replication shall
 be correct.

18.3.2.1 Exceptions: Situations Where We Do Not Guarantee Correct Replication

 There are some exceptions to (P-rpl-correct) where we do not
 guarantee correct replication.

	
	
 (P-exception-federated)
 If a table uses a federated table on the master, then
 TODO

	
	
 (P-exception-table-definition)
 If a CREATE TABLE uses a DATA DIRECTORY or INDEX
 DIRECTORY clause, then the table may not be correctly
 replicated.

	
	
 (P-exception-plugins)
 TODO: figure out principles for plugin replication

18.3.2.2 Additions: Special Situations Where We Do Support Correct Replication

 In addition to what we guarantee in (P-rpl-correct), we also
 guarantee correct replication in the following scenarios:

	
	
 (P-rpl-different-file-system-case-sensitivities)
 TODO: allowed differences in file system case
 sensitivity

	
	
 (P-rpl-different-versions)
 Replication shall be correct even if master has version
 a.b.c and slave has version A.B.C, where A.B.C ≥ a.b.c
 and A ≤ a+1.

	
	
 (P-rpl-different-table-definitions)
 Table options may differ in the following fields: TODO:
 (comments, data/index directories, various hints)

	
	
 (P-rpl-different-engines)
 TODO: allowed differences in storage engines

	
	
 (P-rpl-different-column-definitions)
 Replication shall be correct even if the table
 definitions differ in one or more of the following ways:

	
	

	
	
 (rpl-extra-slave-columns)
 binlog_format=ROW and the slave has extra
 columns after the columns
 of the master. Notes:

	
 Extra indexes still must follow the rules
 for indexes - see below.

	
 For purposes of defining "correct
 replication", the tables are considered
 equal if they are equal on the common
 columns.

	
	

	
	
 (rpl-missing-slave-columns)
 binlog_format=ROW and the master has extra
 columns after the columns
 of the slave, as long as the following rules
 apply:

	
 The slave cannot have both missing columns
 and extra columns (see above) at the same
 time.

	
 If the master uses
 --binlog_row_image=minimal or
 binlog_row_image=noblob, then the BI must
 contain at least one column that exists on
 the slave. Moreover, the set of columns
 that are logged in BI must not match two
 different rows on the slave (but it may
 match two or more identical rows). This
 can be ensured, for example, by one of the
 following strategies:

	
 The master has a PK that only includes
 columns that the slave has.

	
 The master has a PK that includes all
 columns that the slave has, and
 possibly other columns too.

	
	
 Note: For purposes of defining "correct
 replication", the tables are considered equal if
 they are equal on the common columns.

	
	

	
	
 (rpl-type-promotion)
 The data type of a column differs as allowed in
 Replication with Differing Table Definitions on Master and Slave.

	
	

	
	
 (rpl-different-keys)
 Keys, indexes, and NOT NULL attributes may
 differ freely between master and slave, as long
 as the follwing rule applies:

	
	
 If the slave has an enabled key, and the master
 does not have an enabled key of the same type
 over the exact same set of columns (for example,
 because the key is missing/disabled or of a
 different type; or because the columns only
 exist on the slave), then the semantics of the
 slave's key must be ensured before the rows are
 inserted on the slave. Specifically:

	
 If the slave has a uniqueness constraint
 (PK or UK), then uniqueness must be
 guaranteed before a row is inserted on the
 slave. This can be done, for example,
 through the following strategies:

	
 Have a uniqueness constraint (UK or
 PK) on the master, over the same
 columns or over a subset of the
 columns.

	
 If a column only exists on the slave
 (or if application-specific logic
 ensures that only NULL values are
 inserted on the master), then the
 AUTOINCREMENT attribute can be used on
 the slave.

	
 Use application-specific logic on the
 master that ensures that rows inserted
 are unique in the key's columns.

	
 Use BEFORE INSERT and/or BEFORE UPDATE
 triggers on the slave that ensure
 (through application-specific logic)
 that the rows are unique.

	
 If the slave has a non-NULL constraint (PK
 or NOT NULL), then the absence of NULL
 values must be ensured before a row is
 inserted on the slave. This can be done
 analogously to how uniqueness constraints
 are satisfied above:

	
 Have non-NULL constraints (PK or NOT
 NULL) on the master covering all the
 columns.

	
 Use AUTOINCREMENT as above.

	
 Use application-specific logic on the
 master that ensures no NULL values are
 inserted.

	
 Use BEFORE INSERT and/or BEFORE UPDATE
 triggers on the slave that ensure
 (through application-specific logic)
 that no NULL values are inserted.

	
	
 Note: There are no restrictions on
 extra keys on the master.

	
	

	
	
 (rpl-column-names)
 If binlog_format=ROW, then column names may
 differ: columns are identified only by their
 position.

	
	
 (P-rpl-different-rows)
 TODO: allowed extra rows on master or slave

	
	
 (P-rpl-different-default-values)
 TODO:

18.3.3 Crashes

 Status of this subsection: Not started
 2009-10-21

18.3.4 Binlog Files and Indexes

 Status of this subsection: Not started
 2009-10-21

18.4 Rules

18.4.1 Determining the Logging Format

 For each statement, we must determine the logging format: row or
 statement. This is done as follows.

	
 At parse time, it is detected if the statement is unsafe to
 log in statement format (that is, requires row format). If
 this is the case, the THD::Lex::set_stmt_unsafe() function
 is called. This must be done prior to the call to
 THD::decide_logging_format() (that is, prior to
 lock_tables). As a special case, some types of unsafeness
 are detected inside THD::decide_logging_format(), before the
 logging format is decided. Note that statements shall be
 marked unsafe even if binlog_format!=mixed.

	
 THD::decide_logging_format() determines the logging format,
 based on the value of binlog_format and the unsafeness of
 the current statement.

	
 THD::decide_logging_format() also determines if the
 statement is impossible to log, in which case it generates
 an error and the statement is not executed. The statement
 may be impossible to log for the following reasons:

	
 both row-incapable engines and statement-incapable
 engines are involved
 (ER_BINLOG_ROW_ENGINE_AND_STMT_ENGINE)

	
 BINLOG_FORMAT = ROW and at least one table uses a
 storage engine limited to statement-logging
 (ER_BINLOG_ROW_MODE_AND_STMT_ENGINE)

	
 statement is unsafe, BINLOG_FORMAT = MIXED, and storage
 engine is limited to statement-logging and
 (ER_BINLOG_UNSAFE_AND_STMT_ENGINE)

	
 statement is a row injection (that is, a row event
 executed by the slave SQL thread or a BINLOG statement)
 and at least one table uses a storage engine limited to
 statement-logging
 (ER_BINLOG_ROW_INJECTION_AND_STMT_ENGINE)

	
 BINLOG_FORMAT = STATEMENT and at least one table uses a
 storage engine limited to row-logging
 (ER_BINLOG_STMT_MODE_AND_ROW_ENGINE)

	
 statement is a row injection (that is, a row event
 executed by the slave SQL thread or a BINLOG statement)
 and BINLOG_FORMAT = STATEMENT
 (ER_BINLOG_ROW_INJECTION_AND_STMT_MODE)

	
 more than one engine is involved and at least one engine
 is self-logging
 (ER_BINLOG_MULTIPLE_ENGINES_AND_SELF_LOGGING_ENGINE)

	
	
 See the comment above decide_logging_format for
 details.

	
 THD::decide_logging_format() also determines if a warning
 shall be issued. A warning is issued for unsafe statements
 if binlog_format=STATEMENT. Warnings are not issued
 immediately; instead, THD::binlog_stmt_unsafe_flags is set
 and the warning is issued in THD::binlog_query(). This
 prevents warnings in the case that the statement generates
 an error later so that it is not logged.

 Sub-statements. Let T be a
 statement that invokes an unsafe sub-statement S (S may be a
 stored function, stored procedure, trigger, view, or prepared
 statement). Each sub-statement is cached as an sp_head object.
 The sp_head object stores the Lex that was generated when the
 statement defining the sub-statement was parsed (that is, when
 CREATE FUNCTION/CREATE PROCEDURE/CREATE TRIGGER/CREATE
 VIEW/PREPARE was parsed). Hence, this cached Lex has the unsafe
 flag set. When T is parsed, it fetches S from the cache. At this
 point, it calls sp_head::propagate_attributes(), which marks the
 current Lex object as unsafe if the cached Lex object was
 unsafe.

18.4.2 Unsafe Statements

 NOTE: the following list is incomplete; it does not take into
 account changes made in 2010 or later (roughly).

 A statement may be flagged as
 unsafe. An unsafe statement
 will be logged in row format if binlog_format=MIXED and will
 generate a warning if binlog_format=STATEMENT.

 The following types of sub-statements are currently marked
 unsafe:

	
 System functions that may return a different value on slave,
 including: FOUND_ROWS, GET_LOCK, IS_FREE_LOCK, IS_USED_LOCK,
 LOAD_FILE, MASTER_POS_WAIT, RAND, RELEASE_LOCK, ROW_COUNT,
 SESSION_USER, SLEEP, SYSDATE, SYSTEM_USER, USER, UUID,
 UUID_SHORT.

	
	
 Note: the following non-deterministic functions are
 not marked unsafe:

	
 CONNECTION_ID (Query_log_events contain the connection
 number)

	
 CURDATE, CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP,
 CURTIME, LOCALTIME, LOCALTIMESTAMP, NOW, UNIX_TIMESTAMP,
 UTC_DATE, UTC_TIME, UTC_TIMESTAMP (Query_log_event
 contain timezone and the time when the statement was
 executed)

	
 LAST_INSERT_ID (this is replicated in an
 Intvar_log_event)

	
	
 Also note that most floating-point math functions will
 return a hardware-dependent result. We do not mark
 such function unsafe, because we only support
 replication between platforms that use identical
 floating point math.

	
 System variables, with some exceptions listed at
 Mixed Binary Logging Format.

	
 UDFs: since we have no control over what the UDF does, it
 may be doing something unsafe.

	
 Update from a sub-statement of a table that has an
 autoincrement column. This is unsafe because the
 Intvar_log_event is limited to only hold autoincrement
 values for one table.

	
 INSERT DELAYED, since the rows inserted may interleave with
 concurrently executing statements.

	
 Updates using LIMIT, since the order in which rows are
 retreived is not specified.

	
 Statements referencing system log tables, since the contents
 of those tables may differ between master and slave.

	
 Non-transactional reads or writes executing after
 transactional reads or writes in a transaction (see
 Section 18.4.3, “Logging Transactions”).

	
 Reads or writes to self-logging tables, and all statements
 executing after reads or writes to self-logging tables in
 the same transaction.

 The following has not yet been implemented:

	
 Statements using fulltext parser plugins (cf.
 Bug#48183)

18.4.3 Logging Transactions

 Status of this subsection: complete but not reviewed
 2009-10-21

 There are several types of statements that require attention
 because of their special behavior in transactions:

	
 Non-transactional updates that take place inside a
 transaction present problems for logging because (1) they
 are visible to other clients before the transaction is
 committed, and (2) they are not rolled back even if the
 transaction is rolled back. It is not always possible to log
 correctly in statement format when both transactional and
 nontransactional tables are used in the same transaction.

	
 Statements that do an implicit commit (that is, most but not
 all DDL, and some utility commands) are logged specially due
 to unspecified requirements by NDB.

	
 Statements that update temporary tables need special
 treatment since they are not logged in row format.

18.4.3.1 Definitions

 To reason about logging different table types, we make some
 preliminary definitions.

	
	
 (D-T-table) A table
 that has a transactional engine is called a
 T-table.

	
	
 (D-N-table) A table
 that has a nontransactional engine is called an
 N-table.

	
	
 (D-N-write) A statement
 makes an N-write if it
 makes any type of change to the server state that will
 not be changed by a ROLLBACK.

	
	
 Note: N-writes include updates to N-tables, but also
 CREATE and DROP statements.

	
	
 (D-log-target) Events
 are either appended to the
 Transaction Cache (TC)
 or to the Statement Cache
 (SC) or written directly to the binlog.

18.4.3.2 Preliminary Rules

 The following preliminary rules are actually consequences of
 the principle that statements shall be correctly logged when
 binlog_format=MIXED or ROW. They also apply when
 binlog_format=STATEMENT: this makes statement format work in
 many practical cases.

	
	
 (PR-causality) If
 statement A is executed before statement B, and B is
 logged in statement format, and B reads tables that A
 may modifies, then B shall be logged after A.

	
	
 (PR-durability) Events
 shall be written to the binary log at the moment they
 take effect. In particular, changes to N-tables shall be
 written to the binary log when they have been executed,
 and changes to T-tables shall be written to the binary
 log on commit. If --sync-binlog has been specified, then
 it suffices that events are be written to the binary log
 at the next synchronization point.

	
	
 (PR-causality-precedence)
 If P-causality and P-durability cannot both be
 fulfilled, then P-causality is considered more
 important.

18.4.3.3 Rules for Non-committing Statements, Except CREATE TEMPORARY
 TABLE...SELECT

 The preliminary rules above, together with the principles for
 logging format, have been used to construct the following
 rules.

 CALL statements are unrolled (see ???TODO: add section about
 unrolling???), so that each statement executed by the stored
 procedure is logged separately. (If a stored procedure A
 invokes a stored procedure B, then B is unrolled recursively).
 In the following, we assume that unrolling has already been
 done, and the word "statement" refers to a non-CALL top-level
 statement or a non-CALL sub-statement.

 Let S be a logged statement that does not have an implicit
 commit, except CREATE TEMPORARY TABLE...SELECT (This
 includes all "pure DML": INSERT, UPDATE, DELETE, REPLACE,
 TRUNCATE, SELECT, DO, CALL, EXECUTE, LOAD DATA INFILE, and
 BINLOG. It also includes CREATE TEMPORARY TABLE without
 SELECT, and DROP TEMPORARY TABLE. CREATE TEMPORARY
 TABLE...SELECT is handled in the next subsection).

	
 Before executing S, determine unsafeness:

	
	
 (R-unsafe-nontransactional)
 If S either makes N-writes or reads from an N-table, and
 either S or a previous statement in the same transaction
 reads or writes to a T-table then S is marked unsafe.

	
	
 (R-unsafe-self-logging)
 If either S or a previous statement in the same
 transaction reads or writes to a self-logging table,
 then S is marked unsafe.

	
 When logging S, determine where to log it by applying the
 following rules in order:

	
	
 (R-log-statement-format)
 If S is to be logged in statement format (that
 is, if one of the following holds: (1)
 @@session.binlog_format=STATEMENT; (2)
 @@session.binlog_format=MIXED and S is safe; (3) S is of
 DDL type, that is, CREATE TEMPORARY TABLE):

	
 If S produces an error and does not do any
 N-write, do not log.

	
 Otherwise, if either S or any previous statement
 in the same transaction reads or writes in any
 T-tables, log to TC.

	
 Otherwise, log to SC.

	
	
 (R-log-row-format) If S
 is to be logged in row format (that is, if S
 is DML and one of the following holds: (1)
 @@session.binlog_format=ROW; (2)
 @@session.binlog_format=MIXED and S is
 unsafe):

	
 Do not log row events that write to temporary
 tables.

	
 Log row events that write to non-temporary
 N-tables to SC.

	
 Log row events that write to non-temporary
 T-tables to TC, except rows that are rolled back
 due to an error. (Note: if there is an
 error, rows written to a T-table are kept if there
 are subsequent rows written to an
 N-table.)

	
	
 (R-flush-SC) At the end
 of S, write BEGIN + SC + COMMIT to the binlog and clear
 the SC.

	
 At end of transaction:

	
	
 (R-log-commit) At
 COMMIT or implicit commit, where all XA tables in the
 transaction succeed in the "prepare" phase:

	
 If the TC is non-empty, write BEGIN + TC + COMMIT
 to the binlog.

	
 If the TC is empty, do nothing.

	
	
 (R-log-rollback) At
 ROLLBACK; or at COMMIT or implicit commit where some XA
 table fails in the "prepare" phase:

	
 If the TC contains any N-write, write BEGIN + TC +
 ROLLBACK to the binlog.

	
 If the TC does not contain any N-write, do
 nothing.

	
	
 (R-log-rollback-to-savepoint)
 At ROLLBACK TO SAVEPOINT:

	
 If the TC contains any N-write after the
 savepoint, write ROLLBACK TO SAVEPOINT to the TC.

	
 Otherwise, clear the part of the TC that starts at
 the savepoint and extends to the end of the TC.
 (Bug#47327
 breaks this rule)

	
	
 (R-clear-TC) Clear the
 TC at the end of the transaction.

18.4.3.4 Rules for CREATE [TEMPORARY] TABLE...SELECT

 First, unsafeness is determined as above
 (R-unsafe-transaction). Then the logging format is decided.
 Then the following rules apply.

	
	
 (R-log-create-select-statement-format)
 If logging in statement format (that is, one
 of the following holds: (1)
 @@session.binlog_format=STATEMENT; (2)
 @@session.binlog_format=MIXED and statement is
 safe):

	
 If there is an error, do not write anything.

	
 If there is no error and the TEMPORARY keyword is
 used, write the entire CREATE...SELECT statement
 to the TC.

	
 If there is no error and the TEMPORARY keyword is
 not used, write the entire CREATE...SELECT
 directly to the binlog.

	
	
 (R-log-create-select-row-format)
 If logging in row format (that is, one of the
 following holds: (1) @@session.binlog_format=ROW; (2)
 @@session.binlog_format=MIXED and statement is
 unsafe):

	
 If the TEMPORARY keyword is used, do not write
 anything.

	
 If the TEMPORARY keyword is not used, write CREATE
 TABLE (without select) + BEGIN + row events +
 COMMIT to the TC. If there is an error, clear the
 TC; otherwise flush the TC to the binlog at the
 end of the statement and then clear the TC.
 (Note: currently
 Bug#47899
 breaks this rule)

	
	
 Note: this breaks
 D-rpl-correct rule,
 because the slave will have an intermediate state that
 never existed on the master (namely, a state where the
 new table exists and is empty).

18.4.3.5 Rules for Committing Statements, Except CREATE [TEMPORARY]
 TABLE...SELECT

	
	
 (R-log-commit-statement)
 All other statements that have a pre-commit are written
 directly to the binlog. (Note: this is semantically
 equivalent to writing it to the SC and flushing the SC.
 However, due to requirements by NDB (which have not been
 clarified), we write directly to the binlog.)

18.4.4 Logging Updates to auto_increment Columns

 Status of this subsection: not started
 2009-10-21

18.4.5 Logging Access to Variables and Functions

 Status of this subsection: not started
 2009-10-21

 User variables: User variables
 (@variable) are logged as

 User-defined functions

 Server variables

 Built-in functions

18.4.6 Other Unsafe Statements

 Status of this subsection: not started
 2009-10-21

 INSERT DELAYED

 LIMIT

 System tables

18.4.7 binlog_row_image

 Status of this subsection: finished, not reviewed, not
 fully implemented 2009-10-21

 The sets of columns recorded in the BI and AI are determined by
 the value of binlog_row_image. To specify the sets of columns,
 we define the PKE (for Primary Key Equivalent), as follows:

	
 If a PK exists, the PKE is equal to the PK.

	
 Otherwise, if there exists a UK where all columns have the
 NOT NULL attribute, then that is the PKE (if there are more
 than one such UKs, then one is chosen arbitrarily).

	
 Otherwise, the PKE is equal to the set of all columns.

 The set of columns included in the BI and AI are defined as in
 the following tables:

	
 write event

	
	

	
 binlog_row_image

	
 Before image

	
 After image

	
 minimal

	
 -

	
 All columns where a value was specified, and
 the autoincrement column if there is one

	
 noblob

	
 -

	
 All columns where a value was specified, and
 the autoincrement column if there is one, and
 all non-blob columns

	
 full

	
 -

	
 All columns

	
 update event

	
	

	
 binlog_row_image

	
 Before image

	
 After image

	
 minimal

	
 PKE

	
 All columns where a value was specified

	
 noblob

	
 PKE + all non-blob columns

	
 All columns where a value was specified, and
 all non-blob columns

	
 full

	
 All columns

	
 All columns

	
 delete event

	
	

	
 binlog_row_image

	
 Before image

	
 After image

	
 minimal

	
 PKE

	
 -

	
 noblob

	
 PKE + all non-blob columns

	
 -

	
 full

	
 All columns

	
 -

 Cf. WL#5092.

18.4.8 Replication Locks

 Status of this subsection: not started
 2009-10-21

Chapter 19 The Binary Log

Table of Contents
	19.1 Binary Log Overview
	19.2 High-Level Binary Log Structure and Contents
	19.3 Source Files Related to the Binary Log
		19.3.1 Source File Archaeological Notes

	19.4 Generating Browsable Binary Log Information
	19.5 Event Classes and Types
		19.5.1 Event Class Archaeological Notes

	19.6 Event Meanings
	19.7 Event Structure
		19.7.1 Event Content-Writing Conventions
	19.7.2 Event Header Fields
	19.7.3 Event Data Fields (Event-Specific Information)

	19.8 Binary Log Versions
		19.8.1 Determining the Binary Log Version
	19.8.2 Ensuring Compatibility of Future Binary Log Versions

	19.9 Event Data for Specific Event Types
		19.9.1 LOAD DATA INFILE Events

	19.10 Row-Based Binary Logging
	19.11 Additional Resources

 This chapter describes the MySQL binary log, which contains
 information about data modifications made to a MySQL server
 instance.

 Most of the information here applies equally to the relay log used
 on replication slave servers because a relay log has the same format
 as a binary log.

19.1 Binary Log Overview

 [Some information in this section is derived from
 The Binary Log, in the MySQL Reference
 Manual.]

 The binary log is a set of log files that contain information
 about data modifications made to a MySQL server instance. The log
 is enabled by starting the server with the
 --log-bin option.

 The binary log was introduced in MySQL 3.23.14. It contains all
 statements that update data. It also contains statements that
 potentially could have updated it (for example, a
 DELETE which matched no rows), unless row-based
 logging is used. Statements are stored in the form of "events"
 that describe the modifications. The binary log also contains
 information about how long each statement took that updated data.

 The binary log also contains some other metadata, including:

	
 Information about the state of the server that is needed to
 reproduce statements correctly

	
 Error codes

	
 Metadata needed for the maintenance of the binary llog itself
 (for example, rotate events)

 The binary log is a trace of changes of the server's global state
 generated during its operation. The events that it contains
 describe changes of this state. More precisely, binary log events
 describe actions that can be used to reproduce the same changes of
 global state which have happened on server.

 The binary log has two important purposes:

	
 For replication, the binary log is used on master replication
 servers as a record of the statements to be sent to slave
 servers. Many details of binary log format and handling are
 specific to this purpose. The master server sends the events
 contained in its binary log to its slaves, which execute those
 events to make the same data changes that were made on the
 master. A slave stores events received from the master in its
 relay log until they can be executed. The relay log has the
 same format as the binary log.

	
 Certain data recovery operations require use of the binary
 log. After a backup file has been restored, the events in the
 binary log that were recorded after the backup was made are
 re-executed. These events bring databases up to date from the
 point of the backup.

 There are two types of binary logging:

	
 Statement-based logging: Events contain SQL statements that
 produce data changes (inserts, updates, deletes)

	
 Row-based logging: Events describe changes to individual rows

 Mixed logging uses statement-based logging by default but switches
 to row-based logging automatically as necessary.

 Row-based (and mixed) logging is available beginning with MySQL
 5.1.

 For more details about row-based logging, see
 Row-Based Binary
 Logging.

 The mysqlbinlog utility can be used to print
 binary or relay log contents in readable form.

19.2 High-Level Binary Log Structure and Contents

 The binary log is a set of files that contain information about
 data modifications made to a MySQL server instance.

	
 The log consists of a set of binary log files, plus an index
 file.

	
 Each log file contains a 4-byte magic number, followed by a
 set of events that describe data modifications:

	
 The magic number bytes are 0xfe 0x62 0x69 0x6e = 0xfe
 'b''i''n' (this is the BINLOG_MAGIC
 constant in log_event.h).

	
 Each event contains header bytes followed by data bytes:

	
 The header bytes provide information about the type of
 event, when it was generated, by which server, and so
 forth.

	
 The data bytes provide information specific to the
 type of event, such as a particular data modification.

	
 The first event is a descriptor event that describes the
 format version of the file (the format used to write
 events in the file).

	
 The remaining events are interpreted according to the
 version.

	
 The final event is a log-rotation event that specifies the
 next binary log filename.

	
 The index file is a text file that lists the current binary
 log files.

 The details about event structure have changed over time, which
 gives rise to different versions of the binary log format.
 Currently, there are three binary log format versions, described
 in #Binary Log
 Versions.

 The log files are sequentially numbered using a
 .NNNNNN suffix. The index file has a suffix
 of .index. All files share a common basename.
 The default binary log file-naming basename is
 "HOSTNAME-bin". With the default basename,
 the binary log has files with names like this:

...
HOSTNAME-bin.0000101
HOSTNAME-bin.0000102
HOSTNAME-bin.0000103
...
HOSTNAME-bin.index

 Relay log file naming is similar to that of the binary log files.
 The default relay log file-naming basename is
 "HOSTNAME-relay". With the default basename,
 the relay log has files with names like this:

...
HOSTNAME-relay.0000101
HOSTNAME-relay.0000102
HOSTNAME-relay.0000103
...
HOSTNAME-relay.index

19.3 Source Files Related to the Binary Log

 This section describes the files in a MySQL source tree that are
 most relevent to binary log processing.

 sql directory:

	
 log.h /log.cc: The
 high-level binary logging mechanism for organizing events into
 a sequence so that it becomes a binary log. Routines for
 creating, writing, deleting binary log files.

	
 log_event.h
 /log_event.cc: The low-level binary logging
 mechanism for serializing of values into records. The
 Log_event class and subclasses, for creating, writing,
 reading, printing, and applying events of every event type.
 Reading and writing here is at a low level, that is,
 serializing values into records.

	
 rpl_constants.h : Contains codes for
 INCIDENT_EVENT incident types.

	
 slave.cc : Contains some logic for
 processing binary logs in a replication slave (the IO and SQL
 threads).

	
 rpl_injector.h
 /rpl_injector.cc: Contains the injector
 class that allows external insertions into the binary log.
 This is used for cluster replication binary logging.

	
 rpl_record.h
 /rpl_record.cc: Utilities for encoding and
 decoding table rows into and out of the format used by row
 events.

	
 rpl_tblmap.h
 /rpl_tblmap.cc: Contains a mapping from
 numbers to tables. The mapping is used by the row logging
 system to identify tables.

	
 rpl_utility.h
 /rpl_utility.cc: Contains auxiliary classes
 and functions used for Table_map_events,
 and also an auxiliary class for smart pointers

	
 sql_binlog.cc : Code to execute
 BINLOG statements (the base64-encoded
 values that mysqlbinlog prints when it sees
 row events).

	
 sql_base.cc : The function
 decide_logging_format() that determines
 whether statements should be written to the binary log using
 row-based or statement-based format.

 client directory:

	
 mysqlbinlog.cc : The source for the
 mysqlbinlog utility that reads binary log files and displays
 them in text format. It shares some event-interpretation code
 with the server.

19.3.1 Source File Archaeological Notes

 log_event_old.h/log_event_old.cc
 (present in MySQL 5.1.18 and up): Classes to read and execute
 old versions of the row log events:

	
 Write_rows_log_event_old

	
 Update_rows_log_event_old

	
 Delete_rows_log_event_old

 Prior to MySQL 5.1.17, those classes were known as:

	
 Write_rows_log_event

	
 Update_rows_log_event

	
 Delete_rows_log_event

 For information about the relationship of the
 Xxx_rows_log_event and
 Xxx_row_log_event_old classes, see
 #Event Classes and
 Types.

19.4 Generating Browsable Binary Log Information

 Source files in the sql directory of a MySQL source tree or source
 distribution contain comments that can be processed with doxygen
 to generate HTML files that describe classes, files, and so forth.
 Those files can be viewed in your Web browser.

 To generate the HTML files and view information about the classes
 related to binary logging, do this:

	
 In your MySQL source tree, change location to the sql
 directory:

	
	
 shell> cd sql

	
 Run doxygen to generate the HTML files. These commands create
 a subdirectory named html containing the HTML output:

	
	
 shell> doxygen -g

	
	
 shell> doxygen

	
 To view the top-level index page, load the
 html/index.html file into your browser.

	
 To view the classes for binary logging, load the
 html/class_log__event.html page. The
 Log_event class is the main event class,
 and the others inherit from Log_event.

 The pages also contain links that take you to other related pages.
 For example, to navigate from index.html to
 class_log__event.html, click on the
 Classes tab. On the next page, scroll down to
 Log_event and click on it.

19.5 Event Classes and Types

 Internally, the server uses C++ classes to represent binary log
 events. Prototypes are in log_event.h. Code for
 methods of these classes is in log_event.cc.

 Log_event is the base class. Other more
 specific event subclasses are derived from it. Type codes are
 associated with subclasses because class instance contents are
 written to binary or relay logs or are sent over the network from
 master to slave. In those contexts, an event is just a sequence of
 bytes, not a class structure, so a type code is needed to allow
 recognition of the event type from the byte sequence.

 An event byte sequence has a header part and a data part. The type
 code appears in the header part of each event.

 The possible type codes for events are listed in the
 Log_event_type enumeration:

enum Log_event_type {
 UNKNOWN_EVENT= 0,
 START_EVENT_V3= 1,
 QUERY_EVENT= 2,
 STOP_EVENT= 3,
 ROTATE_EVENT= 4,
 INTVAR_EVENT= 5,
 LOAD_EVENT= 6,
 SLAVE_EVENT= 7,
 CREATE_FILE_EVENT= 8,
 APPEND_BLOCK_EVENT= 9,
 EXEC_LOAD_EVENT= 10,
 DELETE_FILE_EVENT= 11,
 NEW_LOAD_EVENT= 12,
 RAND_EVENT= 13,
 USER_VAR_EVENT= 14,
 FORMAT_DESCRIPTION_EVENT= 15,
 XID_EVENT= 16,
 BEGIN_LOAD_QUERY_EVENT= 17,
 EXECUTE_LOAD_QUERY_EVENT= 18,
 TABLE_MAP_EVENT = 19,
 PRE_GA_WRITE_ROWS_EVENT = 20,
 PRE_GA_UPDATE_ROWS_EVENT = 21,
 PRE_GA_DELETE_ROWS_EVENT = 22,
 WRITE_ROWS_EVENT = 23,
 UPDATE_ROWS_EVENT = 24,
 DELETE_ROWS_EVENT = 25,
 INCIDENT_EVENT= 26,
 HEARTBEAT_LOG_EVENT= 27,
 IGNORABLE_LOG_EVENT= 28,
 ROWS_QUERY_LOG_EVENT= 29,
 WRITE_ROWS_EVENT = 30,
 UPDATE_ROWS_EVENT = 31,
 DELETE_ROWS_EVENT = 32,
 GTID_LOG_EVENT= 33,
 ANONYMOUS_GTID_LOG_EVENT= 34,
 PREVIOUS_GTIDS_LOG_EVENT= 35,
 ENUM_END_EVENT
 /* end marker */
};

 The INTVAR_EVENT type has "subtypes," listed in
 the Int_event_type enumeration:

enum Int_event_type {
 INVALID_INT_EVENT = LAST_INSERT_ID_EVENT = INSERT_ID_EVENT = 2
};

 The following table summarizes the relationship between event
 classes and type codes. Each class is derived from
 Log_event unless otherwise indicated. As can be
 seen, an event class is associated with a single type code in most
 cases, although there are some exceptions:

	
 Some classes are not associated with any type code because
 they are used only as a base class for which to derive
 subclasses or because they are never written to binary or
 relay logs or sent from master to slave. For example,
 Log_event has no type code because it is
 used only as a base class.

	
 A class may be associated with multiple type codes:
 Load_log_event may contain a type code of
 either LOAD_EVENT or
 NEW_LOAD_EVENT.

	
 Value

	
 Type Code

	
 Class

	
	
	
 Log_event

	
 Base class for most other classes

	
	
	
 Muted_query_log_event

	
 Added in 5.0.23

	
 Removed in 6.0.4

	
	
	
 Rows_log_event

	
 Added in 5.1.5

	
 Base class for
 Write_rows_log_event,
 Update_rows_log_event,
 Delete_rows_log_event

	
	
	
 Old_rows_log_event

	
 Added in 5.1.22

	
 Base class for
 Write_rows_log_event_old,
 Update_rows_log_event_old,
 Delete_rows_log_event_old

	
 0

	
 UNKNOWN_EVENT

	
 Unknown_log_event

	
 1

	
 START_EVENT_V3

	
 Start_log_event_v3

	
 Renamed from
 START_EVENT/Start_log_event
 in 5.0.0

	
 Base class for
 Format_description_log_event

	
 2

	
 QUERY_EVENT

	
 Query_log_event

	
 Base class for
 Execute_load_query_log_event

	
 3

	
 STOP_EVENT

	
 Stop_log_event

	
 4

	
 ROTATE_EVENT

	
 Rotate_log_event

	
 5

	
 INTVAR_EVENT

	
 Intvar_log_event

	
 6

	
 LOAD_EVENT

	
 Load_log_event

	
 Base class for
 Create_file_log_event

	
 7

	
 SLAVE_EVENT

	
 Slave_log_event

	
 Added in 4.0.0

	
 8

	
 CREATE_FILE_EVENT

	
 Create_file_log_event

	
 Added in 4.0.0

	
 Derived from Load_log_event

	
 9

	
 APPEND_BLOCK_EVENT

	
 Append_block_log_event

	
 Added in 4.0.0

	
 Base class for
 Begin_load_query_log_event

	
 10

	
 EXEC_LOAD_EVENT

	
 Execute_load_log_event

	
 Added in 4.0.0

	
 11

	
 DELETE_FILE_EVENT

	
 Delete_file_log_event

	
 Added in 4.0.0

	
 12

	
 NEW_LOAD_EVENT

	
 Load_log_event

	
 Added in 4.0.0

	
 13

	
 RAND_EVENT

	
 Rand_log_event

	
 Added in 4.0.5

	
 14

	
 USER_VAR_EVENT

	
 User_var_log_event

	
 Added in 4.1.0

	
 15

	
 FORMAT_DESCRIPTION_EVENT

	
 Format_description_log_event

	
 Added in 5.0.0

	
 Derived from Start_log_event_v3

	
 16

	
 XID_EVENT

	
 Xid_log_event

	
 Added in 5.0.3

	
 17

	
 BEGIN_LOAD_QUERY_EVENT

	
 Begin_load_query_log_event

	
 Added in 5.0.3

	
 Derived from
 Append_block_log_event

	
 18

	
 EXECUTE_LOAD_QUERY_EVENT

	
 Execute_load_query_log_event

	
 Added in 5.0.3

	
 Derived from Query_log_event

	
 19

	
 TABLE_MAP_EVENT

	
 Table_map_log_event

	
 Added in 5.1.5

	
 20

	
 PRE_GA_WRITE_ROWS_EVENT

	
 Write_rows_log_event_old

	
 Added in 5.1.5 as
 WRITE_ROWS_EVENT/Write_rows_log_event
 and derived from Rows_log_event

	
 Renamed in 5.1.18 to
 PRE_GA_WRITE_ROWS_EVENT/Write_rows_log_event_old
 and derived from
 Write_rows_log_event

	
 As of 5.1.22, derived from
 Old_rows_log_event

	
 21

	
 PRE_GA_UPDATE_ROWS_EVENT

	
 Update_rows_log_event_old

	
 Added in 5.1.5 as
 UPDATE_ROWS_EVENT/Update_rows_log_event
 and derived from Rows_log_event

	
 Renamed in 5.1.18 to
 PRE_GA_UPDATE_ROWS_EVENT/Update_rows_log_event_old
 and derived from
 Update_rows_log_event

	
 As of 5.1.22, derived from
 Old_rows_log_event

	
 22

	
 PRE_GA_DELETE_ROWS_EVENT

	
 Delete_rows_log_event_old

	
 Added in 5.1.5 as
 DELETE_ROWS_EVENT/Delete_rows_log_event
 and derived from Rows_log_event

	
 Renamed in 5.1.18 to
 PRE_GA_DELETE_ROWS_EVENT/Delete_rows_log_event_old
 and derived from
 Delete_rows_log_event

	
 As of 5.1.22, derived from
 Old_rows_log_event

	
 23

	
 WRITE_ROWS_EVENT

	
 Write_rows_log_event

	
 Derived from Rows_log_event

	
 Renumbered in 5.1.18 from 20 to 23

	
 24

	
 UPDATE_ROWS_EVENT

	
 Update_rows_log_event

	
 Derived from Rows_log_event

	
 Renumbered in 5.1.18 from 21 to 24

	
 25

	
 DELETE_ROWS_EVENT

	
 Delete_rows_log_event

	
 Derived from Rows_log_event

	
 Renumbered in 5.1.18 from 22 to 25

	
 26

	
 INCIDENT_EVENT

	
 Incident_log_event

	
 Added in 5.1.18

	
 27

	
 HEARTBEAT_LOG_EVENT

	
 Heartbeat_log_event

	
 Added in 6.0.5

19.5.1 Event Class Archaeological Notes

 Despite the "V3" in the type code name,
 START_EVENT_V3 currently is used as the type
 code not only for v3 start events, but also for v1 start events.
 The original symbol for type code 1 was
 START_EVENT in the format now known as v1.
 Later, when v3 was developed, type code 1 was reused and the
 symbol associated with it was renamed from
 START_EVENT to
 START_EVENT_V3. The start events for both v1
 and v3 therefore have a type code of 1, although the event
 structures differ and must be distinguished by examining their
 contents.

 Up to MySQL 5.1.17, event type codes from 20 to 22 were
 associated with symbols and classes as follows:

	
 Value

	
 Type Code

	
 Class

	
 20

	
 WRITE_ROWS_EVENT

	
 Write_rows_log_event

	
 21

	
 UPDATE_ROWS_EVENT

	
 Update_rows_log_event

	
 22

	
 DELETE_ROWS_EVENT

	
 Delete_rows_log_event

 In 5.1.18, the symbols and classes were renamed:

	
 Value

	
 Type Code

	
 Class

	
 20

	
 PRE_GA_WRITE_ROWS_EVENT

	
 Write_rows_log_event_old

	
 21

	
 PRE_GA_UPDATE_ROWS_EVENT

	
 Update_rows_log_event_old

	
 22

	
 PRE_GA_DELETE_ROWS_EVENT

	
 Delete_rows_log_event_old

 Also in 5.1.18, the original symbols were reused with different
 values and new implementations of the classes that used the
 original names:

	
 Value

	
 Type Code

	
 Class

	
 23

	
 WRITE_ROWS_EVENT

	
 Write_rows_log_event

	
 24

	
 UPDATE_ROWS_EVENT

	
 Update_rows_log_event

	
 25

	
 DELETE_ROWS_EVENT

	
 Delete_rows_log_event

 Events with type codes 20 to 22 are obsolete now and appear only
 in binary logs created by servers from MySQL 5.1.5 to 5.1.17.

19.6 Event Meanings

 The following descriptions briefly summarize the meaning of each
 event type:

	
 UNKNOWN_EVENT

 This event type should never occur. It is never written to a
 binary log. If an event is read from a binary log that cannot
 be recognized as something else, it is treated as
 UNKNOWN_EVENT.

	
 START_EVENT_V3

 A descriptor event that is written to the beginning of the
 each binary log file. (In MySQL 4.0 and 4.1, this event is
 written only to the first binary log file that the server
 creates after startup.) This event is used in MySQL 3.23
 through 4.1 and superseded in MySQL 5.0 by
 FORMAT_DESCRIPTION_EVENT.

	
 QUERY_EVENT

 Written when an updating statement is done.

	
 STOP_EVENT

 Written when mysqld stops.

	
 ROTATE_EVENT

 Written when mysqld switches to a new
 binary log file. This occurs when someone issues a
 FLUSH LOGS statement or the current binary
 log file becomes too large. The maximum size is determined by
 max_binlog_size.

	
 INTVAR_EVENT

 Written every time a statement uses an
 AUTO_INCREMENT column or the
 LAST_INSERT_ID() function; precedes other
 events for the statement. This is written only before a
 QUERY_EVENT and is not used with row-based
 logging. An INTVAR_EVENT is written with a
 "subtype" in the event data part:

	
 INSERT_ID_EVENT indicates the value to
 use for an AUTO_INCREMENT column in the
 next statement.

	
 LAST_INSERT_ID_EVENT indicates the
 value to use for the LAST_INSERT_ID()
 function in the next statement.

	
 LOAD_EVENT

 Used for LOAD DATA INFILE statements in
 MySQL 3.23. See LOAD
 DATA INFILE Events.

	
 SLAVE_EVENT

 Not used.

	
 CREATE_FILE_EVENT

 Used for LOAD DATA INFILE statements in
 MySQL 4.0 and 4.1. See
 LOAD DATA INFILE
 Events.

	
 APPEND_BLOCK_EVENT

 Used for LOAD DATA INFILE statements as of
 MySQL 4.0. See LOAD
 DATA INFILE Events.

	
 EXEC_LOAD_EVENT

 Used for LOAD DATA INFILE statements in 4.0
 and 4.1. See LOAD DATA
 INFILE Events.

	
 DELETE_FILE_EVENT

 Used for LOAD DATA INFILE statements as of
 MySQL 4.0. See LOAD
 DATA INFILE Events.

	
 NEW_LOAD_EVENT

 Used for LOAD DATA INFILE statements in
 MySQL 4.0 and 4.1. See
 LOAD DATA INFILE
 Events.

	
 RAND_EVENT

 Written every time a statement uses the
 RAND() function; precedes other events for
 the statement. Indicates the seed values to use for generating
 a random number with RAND() in the next
 statement. This is written only before a
 QUERY_EVENT and is not used with row-based
 logging.

	
 USER_VAR_EVENT

 Written every time a statement uses a user variable; precedes
 other events for the statement. Indicates the value to use for
 the user variable in the next statement. This is written only
 before a QUERY_EVENT and is not used with
 row-based logging.

	
 FORMAT_DESCRIPTION_EVENT

 A descriptor event that is written to the beginning of the
 each binary log file. This event is used as of MySQL 5.0; it
 supersedes START_EVENT_V3.

	
 XID_EVENT

 Generated for a commit of a transaction that modifies one or
 more tables of an XA-capable storage engine. Normal
 transactions are implemented by sending a
 QUERY_EVENT containing a
 BEGIN statement and a
 QUERY_EVENT containing a
 COMMIT statement (or a
 ROLLBACK statement if the transaction is
 rolled back).

	
 BEGIN_LOAD_QUERY_EVENT

 Used for LOAD DATA INFILE statements as of
 MySQL 5.0. See LOAD
 DATA INFILE Events.

	
 EXECUTE_LOAD_QUERY_EVENT

 Used for LOAD DATA INFILE statements as of
 MySQL 5.0. See LOAD
 DATA INFILE Events.

	
 TABLE_MAP_EVENT

 Used for row-based binary logging. This event precedes each
 row operation event. It maps a table definition to a number,
 where the table definition consists of database and table
 names and column definitions. The purpose of this event is to
 enable replication when a table has different definitions on
 the master and slave. Row operation events that belong to the
 same transaction may be grouped into sequences, in which case
 each such sequence of events begins with a sequence of
 TABLE_MAP_EVENT events: one per table used
 by events in the sequence.

	
 PRE_GA_WRITE_ROWS_EVENT

 Obsolete version of WRITE_ROWS_EVENT.

	
 PRE_GA_UPDATE_ROWS_EVENT

 Obsolete version of UPDATE_ROWS_EVENT.

	
 PRE_GA_DELETE_ROWS_EVENT

 Obsolete version of DELETE_ROWS_EVENT.

	
 WRITE_ROWS_EVENT

 Used for row-based binary logging. This event logs inserts of
 rows in a single table.

	
 UPDATE_ROWS_EVENT

 Used for row-based binary logging. This event logs updates of
 rows in a single table.

	
 DELETE_ROWS_EVENT

 Used for row-based binary logging. This event logs deletions
 of rows in a single table.

	
 INCIDENT_EVENT

 Used to log an out of the ordinary event that occurred on the
 master. It notifies the slave that something happened on the
 master that might cause data to be in an inconsistent state.

	
 HEARTBEAT_LOG_EVENT

 Sent by a master to a slave to let the slave know that the
 master is still alive. Not written to log files.

19.7 Event Structure

 This section describes the general properties of events as byte
 sequences as they are written to binary or relay log files.

 All events have a common general structure consisting of an event
 header followed by event data:

+===================+
| event header |
+===================+
| event data |
+===================+

 The details about what goes in the header and data parts have
 changed over time, which gives rise to different versions of the
 binary log format:

	
 v1: Used in MySQL 3.23

	
 v3: Used in MySQL 4.0.2 though 4.1

	
 v4: Used in MySQL 5.0 and up

 A v2 format was used briefly (in early MySQL 4.0.x versions), but
 it is obsolete and no longer supported.

 Some details of event structure are invariant across binary log
 versions; others depend on the version. Within any given version,
 different types of events vary in the structure of the data part.

 The first event in a log file is special. It is a descriptor event
 that provides information such as the binary log version and the
 server version. The information in the descriptor event enables
 programs to determine which version of the binary log format
 applies to the file so that the remaining events in the file can
 be properly read and interpreted.

 For details about the initial descriptor event and how to use it
 to determine the format of a binary log file, see
 Binary Log Versions.
 For additional information about other types of events, see
 Event Data for
 Specific Event Types.

 The following event diagrams contain field descriptions written
 using these conventions:

	
 A field line has a name describing the contents of the field.

	
 The name is followed by two numbers in
 offset : length
 format, where offset is the 0-based
 offset (position) of the field within the event and
 length is the length of the field. Both
 values are given in bytes.

 The overall structure for events in the different binary versions
 is shown here. The following sections describe the header and data
 parts in more detail.

 v1 event structure:

+=====================================+
| event | timestamp 0 : 4 |
| header +----------------------------+
| | type_code 4 : 1 |
| +----------------------------+
| | server_id 5 : 4 |
| +----------------------------+
| | event_length 9 : 4 |
+=====================================+
| event | fixed part 13 : y |
| data +----------------------------+
| | variable part |
+=====================================+

 header length = 13 bytes

 data length = (event_length - 13) bytes

 y is specific to the event type.

 v3 event structure:

+=====================================+
| event | timestamp 0 : 4 |
| header +----------------------------+
| | type_code 4 : 1 |
| +----------------------------+
| | server_id 5 : 4 |
| +----------------------------+
| | event_length 9 : 4 |
| +----------------------------+
| | next_position 13 : 4 |
| +----------------------------+
| | flags 17 : 2 |
+=====================================+
| event | fixed part 19 : y |
| data +----------------------------+
| | variable part |
+=====================================+

 header length = 19 bytes

 data length = (event_length - 19) bytes

 y is specific to the event type.

 v4 event structure:

+=====================================+
| event | timestamp 0 : 4 |
| header +----------------------------+
| | type_code 4 : 1 |
| +----------------------------+
| | server_id 5 : 4 |
| +----------------------------+
| | event_length 9 : 4 |
| +----------------------------+
| | next_position 13 : 4 |
| +----------------------------+
| | flags 17 : 2 |
| +----------------------------+
| | extra_headers 19 : x-19 |
+=====================================+
| event | fixed part x : y |
| data +----------------------------+
| | variable part |
+=====================================+

 header length = x bytes

 data length = (event_length - x) bytes

 fixed data length = y bytes variable data length = (event_length -
 (x + y)) bytes

 x is given by the header_length field in the format description
 event (FDE). Currently, x is 19, so the extra_headers field is
 empty.

 y is specific to the event type, and is given by the FDE. The
 fixed-part length is the same for all events of a given type, but
 may vary for different event types.

 The fixed part of the event data is sometimes referred to as the
 "post-header" part. The variable part is sometimes referred to as
 the "payload" or "body."

 For information about how to use the FDE to interpret v4 events,
 see Binary Log
 Formats.

19.7.1 Event Content-Writing Conventions

 Event contents are written using these conventions:

	
 Numbers are written in little-endian format (least
 significant byte first), unless otherwise indicated.

	
 Values that represent positions or lengths are given in
 bytes and should be considered unsigned.

	
 Some numbers are written as Packed Integers. The format is
 described later in this section.

	
 Strings are written in varying formats:

	
 A string may be written to a fixed-length field and
 null-padded (with 0x00 bytes) on the right.

	
 A variable-length string may be preceded by a length
 field that indicates the length of the string.

	
 Some variable-length strings are null-terminated; others
 are not. The descriptions for individual string fields
 indicates which is the case.

	
 For null-terminated strings that are preceded by a
 length field, the length does not include the
 terminating null byte, unless otherwise indicated.

	
 If there is a variable-length string at the end of an
 event and no length field precedes it, its length may be
 determined as the event length minus the length of the
 other fields in the event.

 Some events use Packed Integers, a special format for efficient
 representation of unsigned integers. A Packed Integer has the
 capacity of storing up to 8-byte integers, while small integers
 still can use 1, 3, or 4 bytes. The value of the first byte
 determines how to read the number, according to the following
 table.

	
 First byte

	
 Format

	
 0-250

	
 The first byte is the number (in the range 0-250). No
 additional bytes are used.

	
 252

	
 Two more bytes are used. The number is in the range
 251-0xffff.

	
 253

	
 Three more bytes are used. The number is in the range
 0xffff-0xffffff.

	
 254

	
 Eight more bytes are used. The number is in the range
 0xffffff-0xffffffffffffffff.

 Packed Integer format derives from the "Length Coded Binary"
 representation used in the MySQL client/server network protocol
 (see Chapter 14, MySQL Client/Server Protocol). That
 representation allows a first byte value of 251 to represent the
 SQL NULL value, but 251 is apparently unused for Packed Integers
 in the binary log.

19.7.2 Event Header Fields

 Each event starts with a header of size
 LOG_EVENT_HEADER_LEN. The value of this
 constant is 13 in MySQL 3.23 (v1 format), and 19 in MySQL 4.0
 and up (v3 format and up). The value is larger as of 4.0 because
 next position and flags fields were added to the header format
 then:

	
 v1: 13 bytes: timestamp + type code + server ID + event
 length

	
 v3: 19 bytes: v1 fields + next position + flags

	
 v4: 19 bytes or more: v3 fields + possibly other information

 The header for any version is a superset of the header for all
 earlier versions:

	
 The first 13 bytes for v3 and v4 are the same as those for
 v1.

	
 The first 19 bytes for v4 are the same as those for v3.

 Because the event header in a newer binary log format starts
 with the header of the old formats, headers in different formats
 are backward compatible.

 v1 event header:

+============================+
| timestamp 0 : 4 |
+----------------------------+
| type_code 4 : 1 |
+----------------------------+
| server_id 5 : 4 |
+----------------------------+
| event_length 9 : 4 |
+============================+

 The 13 bytes of the v1 header are also present in the header of
 all subsequent binary log versions.

 v3 event header:

+============================+
| timestamp 0 : 4 |
+----------------------------+
| type_code 4 : 1 |
+----------------------------+
| server_id 5 : 4 |
+----------------------------+
| event_length 9 : 4 |
+----------------------------+
| next_position 13 : 4 |
+----------------------------+
| flags 17 : 2 |
+============================+

 Compared to v1, the header in v3 and up contains two additional
 fields, for a total of 19 bytes.

 v4 event header:

+============================+
| timestamp 0 : 4 |
+----------------------------+
| type_code 4 : 1 |
+----------------------------+
| server_id 5 : 4 |
+----------------------------+
| event_length 9 : 4 |
+----------------------------+
| next_position 13 : 4 |
+----------------------------+
| flags 17 : 2 |
+----------------------------+
| extra_headers 19 : x-19 |
+============================+

 The v4 format includes an extra_headers
 field; this is a mechanism for adding extra fields to the header
 without breaking the format. This extension mechanism is
 implemented via the format description event that appears as the
 first event in the file. (See
 Binary Log Versions
 for details.) Currently, x = 19, so the
 extra_headers field is empty; thus, the v4
 header is the same as the v3 header.

 Note: The extra_headers field does not appear
 in the FORMAT_DESCRIPTION_EVENT or
 ROTATE_EVENT header.

 The offsets of several fields within the event header are
 available as constants in log_event.h:

	
 EVENT_TYPE_OFFSET = 4

	
 SERVER_ID_OFFSET = 5

	
 EVENT_LEN_OFFSET = 9

	
 LOG_POS_OFFSET = 13

	
 FLAGS_OFFSET = 17

 The header fields contain the following information:

	
 timestamp

 4 bytes. This is the time at which the statement began
 executing. It is represented as the number of seconds since 1970
 (UTC), like the TIMESTAMP SQL data type.

	
 type_code

 1 byte. The type of event. 1 means
 START_EVENT_V3, 2 means
 QUERY_EVENT, and so forth. These numbers are
 defined in the enum Log_event_type
 enumeration in log_event.h. (See
 Event Classes and
 Types.)

	
 server_id

 4 bytes. The ID of the mysqld server that
 originally created the event. It comes from the
 server-id option that is set in the server
 configuration file for the purpose of replication. The server ID
 enables endless loops to be avoided when circular replication is
 used (with option --log-slave-updates on).
 Suppose that M1, M2, and M3 have server ID values of 1, 2, and
 3, and that they are replicating in circular fashion: M1 is the
 master for M2, M2 is the master for M3, and M3 is that master
 for M1. The master/server relationships look like this:

M1---->M2
 ^ |
 | |
 +--M3<-+

 A client sends an INSERT statement to M1.
 This is executed on M1 and written to its binary log with an
 event server ID of 1. The event is sent to M2, which executes it
 and writes it to its binary log; the event is still written with
 server ID 1 because that is the ID of the server that originally
 created the event. The event is sent to M3, which executes it
 and writes it to its binary log, still with server ID 1.
 Finally, the event is sent to M1, which sees server ID = 1 and
 understands this event originated from itself and therefore must
 be ignored.

	
 event_length

 4 bytes. The total size of this event. This includes both the
 header and data parts. Most events are less than 1000 bytes,
 except when using LOAD DATA INFILE (where
 events contain the loaded file, so they can be big).

	
 next_position (not present
 in v1 format).

 4 bytes. The position of the next event in the master's binary
 log. The format differs between binlogs and relay logs, and
 depending on the version of the server (and for relay logs,
 depending on the version of the master):

	
	

	
 binlog on a v3 server: Offset to the beginning of
 the event, counting from the beginning of the binlog
 file. In other words, equal to the value of
 tell() just before the event was
 written.

	
	
 So the first event of the binlog has next_position
 = 4, and for events n and n+1, it holds that
 next_position(n+1) = next_position(n) +
 event_length(n).

	
 relay log on a v3 server where the master uses v1:
 Probably 0, but I can't test this because I don't
 know how to run a 3.23 server.

	
 relay log on a v3 server where the master uses v3:
 Offset to the beginning of the event as it was in
 the master's binlog file, counting from the
 beginning of the master's binlog file.

	
	
 The slave's relay log can be different from the
 master's binlog, so next_position can be different
 from the offset of the event in the relay log,
 counting from the beginning of the relay log file.
 However, if both event n and event n+1 originate
 from the master, it holds that next_position(n+1)
 = next_position(n) + event_length(n);

	
 binlog on a v4 server: Offset to the end of the
 event, counting from the beginning of the binlog
 file. In other words, equal to the value of
 tell() just after the event was
 written.

	
	
 So the first event of the binlog has next_position
 = 4 + event_length, and for events number n and
 n+1, it holds that next_position(n+1) =
 next_position(n) + event_length(n+1).

	
 relay log on a v4 server: Offset to the end of the
 event as it was in the master's binlog file,
 counting from the beginning of the master's binlog
 file.

	
	
 The slave's relay log can be different from the
 master's binlog, so next_position can be different
 from the offset of the event in the relay log,
 counting from the beginning of the relay log file.
 However, if both event n and event n+1 originate
 from the master, it holds that next_position(n+1)
 = next_position(n) + event_length(n+1).

	
	
 The next_position is used on the slave in two cases:

	
 for SHOW SLAVE STATUS to be able
 to show coordinates of the last executed event
 in the master's coordinate
 system.

	
 for START SLAVE UNTIL MASTER_LOG_FILE=x,
 MASTER_LOG_POS=y, so that the master's
 coordinates can be used.

	
	
 In 5.0 and up, next_position is called "end_log_pos" in
 the output from mysqlbinlog and SHOW BINLOG
 EVENTS. In 4.1, next_position is called
 "log_pos" in the output from mysqlbinlog and
 "orig_log_pos" in the output from SHOW BINLOG
 EVENTS.

	
 flags (not present in v1
 format)

 2 bytes. The possible flag values are described at
 Event Flags.

	
 extra_headers (not present
 in v1, v3 formats)

 Variable-sized. The size of this field is determined by the
 format description event that occurs as the first event in the
 file. Currently, the size is 0, so, in effect, this field never
 actually occurs in any event. At such time as the size becomes
 nonzero, this field still will not appear in events of type
 FORMAT_DESCRIPTION_EVENT or
 ROTATE_EVENT.

19.7.2.1 Event Flags

 Event headers for v3 format and up contain event flags in the
 two flag bytes at position FLAGS_OFFSET =
 17. There are comments about these flags in log_event.h, in
 addition to the remarks in this section.

 Current event flags:

	
 LOG_EVENT_BINLOG_IN_USE_F = 0x1 (New in
 5.0.3)

 Used to indicate whether a binary log file was closed
 properly. This flag makes sense only for
 FORMAT_DESCRIPTION_EVENT. It is set
 when the event is written to the log file. When the log
 file is closed later, the flag is cleared. (This is the
 only case when MySQL modifies an already written part of a
 binary log file).

	
 LOG_EVENT_THREAD_SPECIFIC_F = 0x4 (New
 in 4.1.0)

 Used only by mysqlbinlog (not by the
 replication code at all) to be able to deal properly with
 temporary tables. mysqlbinlog displays
 events from the binary log in printable format, so that
 you can feed the output into mysql (the
 command-line interpreter), to achieve incremental backup
 recovery. But suppose that the binary log is as follows,
 where two simultaneous threads used temporary tables with
 the same name (which is allowed because temporary tables
 are visible only in the thread which created them):

<thread id 1>
CREATE TEMPORARY TABLE t (a INT);
<thread id 2>
CREATE TEMPORARY TABLE t (a INT);

 In this case, simply feeding this into
 mysql will lead to a "table t already
 exists" error. This is why events that use temporary tables
 are marked with the flag, so that
 mysqlbinlog knows it has to set the
 pseudo_thread_id system variable before,
 like this:

SET PSEUDO_THREAD_ID=1;
CREATE TEMPORARY TABLE t (a INT);
SET PSEUDO_THREAD_ID=2;
CREATE TEMPORARY TABLE t (a INT);

 This way there is no confusion for the server that receives
 these statements. Always printing SET
 PSEUDO_THREAD_ID, even when temporary tables are not
 used, would cause no bug, it would just slow down.

	
 LOG_EVENT_SUPPRESS_USE_F = 0x8 (New in
 4.1.7)

 Suppresses generation of a USE statement before the actual
 statement to be logged. This flag should be set for any
 event that does not need to have the default database set
 to function correctly, such as CREATE DATABASE and DROP
 DATABASE. This flag should only be used in exceptional
 circumstances because it introduces a significant change
 in behavior regarding the replication logic together with
 the --binlog-do-db and
 --replicate-do-db options.

	
 LOG_EVENT_UPDATE_TABLE_MAP_VERSION_F =
 0x10 (New in 5.1.4)

 Causes the table map version internal to the binary log to
 be increased after the event has been written to the log.

 Obsolete event flags:

	
 LOG_EVENT_TIME_F (obsolete as of
 4.1.1). This flag was never set.

	
 LOG_EVENT_FORCED_ROTATE_F (obsolete as
 of 4.1.1). This flag was set in events of type
 ROTATE_EVENT on the master, but was not
 used for anything useful

 They are now commented out in log_event.h
 and their values are available for reuse or have already been
 reused. (But see the associated comments in
 log_event.h for various cautions!)

19.7.3 Event Data Fields (Event-Specific Information)

 The structure of an event's data part depends on the event type:

	
 In v1 and v3, the event type entirely determines the data
 format

	
 In v4, interpretation of the data part depends on the event
 type in conjunction with information from the format
 description event. This is because v4 allows for an
 extra headers field, the size of which is
 defined in the format description event. In practice, the
 extra headers field currently is empty.

 The data part of an event consists of a fixed-size part and a
 variable-size part. Either or both parts may be empty, depending
 on the event type. (For example, a STOP_EVENT
 consists only of the header part; the fixed and variable data
 parts are both empty.)

 The size of the event data part is the event size (contained in
 the header) minus the header size. The size of the fixed data
 part is a function of the event type. The size of the variable
 data part is the event size minus the size of the header, minus
 the size of the fixed data part.

 The following principles hold across all events in a binary log
 file:

	
 The fixed part of the event data is the same size for all
 events of a given type.

	
 The variable part of the event data can differ in size among
 events of a given type.

 For details about the fixed and variable parts of event data for
 different events, see
 Event Data
 for Specific Event Types.

19.7.3.1 Event Data Field Notational Caveat

 The fixed part of the event data goes under different names,
 depending on which source file, work log, bug report, etc. you
 are reading:

	
 Sometimes it is called the "fixed data" part, as in this
 discussion.

	
 Sometimes it is called the "post-headers" part.

	
 To make things notationally interesting, sometimes the
 fixed data part is referred to as the "event-specific
 headers" part of the event. That is, the word "header" is
 used in reference to a portion of the data part. One
 manifestation of this notational phenomenon appears in
 log_event.h, where you will find the
 symbol LOG_EVENT_MINIMAL_HEADER_LEN
 defined as 19 (the header length for v3 and v4), plus
 other symbols with names of the form
 XXX_HEADER_LEN for different event
 types. The former symbol is the size of the event header
 (always 19). The latter symbols define the size of the
 fixed portion of the data part that is to be treated as
 the event-specific headers. For example,
 ROTATE_HEADER_LEN is 8 because a
 ROTATE_EVENT has an 8-byte field in the
 fixed data part that indicates the position in the next
 log file of the first event in that file.

 The variable part of event data also goes under different
 names, such as the event "payload" or "body."

19.8 Binary Log Versions

 There are several versions of the binary log file format:

	
 v1: Used in MySQL 3.23

	
 v3: Used in MySQL 4.0.2 though 4.1

	
 v4: Used in MySQL 5.0 and up

 A v2 format was used briefly (in early MySQL 4.0.x versions), but
 it is obsolete and no longer supported.

 Programs that process the binary log must be able to account for
 each of the supported binary log formats. This section describes
 how the server distinguishes each format to identify which one a
 binary log file uses. mysqlbinlog uses the same principles.

 Important constants:

	
 START_EVENT_V3 = 1

	
 FORMAT_DESCRIPTION_EVENT = 15

	
 EVENT_TYPE_OFFSET = 4

	
 EVENT_LEN_OFFSET = 9

	
 ST_SERVER_VER_LEN = 50

 A binary log file begins with a 4-byte magic number followed by an
 initial descriptor event that identifies the format of the file.

	
 In v1 and v3, this event is called a "start event."

	
 In v4, it is called a "format description event."

 Elsewhere you may see either term used generically to refer
 collectively to both types of event. This discussion uses
 "descriptor event" as the collective term.

 The header and data parts of the descriptor event for each binary
 log format version are shown following. The diagrams use the same
 conventions as those described earlier in
 Event Structure.

 v1 start event (size = 69 bytes):

+=====================================+
| event | timestamp 0 : 4 |
| header +----------------------------+
| | type_code 4 : 1 | = START_EVENT_V3 = 1
| +----------------------------+
| | server_id 5 : 4 |
| +----------------------------+
| | event_length 9 : 4 | = 69
+=====================================+
| event | binlog_version 13 : 2 | = 1
| data +----------------------------+
| | server_version 15 : 50 |
| +----------------------------+
| | create_timestamp 65 : 4 |
+=====================================+

 v3 start event (size = 75 bytes):

+=====================================+
| event | timestamp 0 : 4 |
| header +----------------------------+
| | type_code 4 : 1 | = START_EVENT_V3 = 1
| +----------------------------+
| | server_id 5 : 4 |
| +----------------------------+
| | event_length 9 : 4 | = 75
| +----------------------------+
| | next_position 13 : 4 |
| +----------------------------+
| | flags 17 : 2 |
+=====================================+
| event | binlog_version 19 : 2 | = 3
| data +----------------------------+
| | server_version 21 : 50 |
| +----------------------------+
| | create_timestamp 71 : 4 |
+=====================================+

 v4 format description event (size
 ≥ 91 bytes; the size is 76 + the number of event types):

+=====================================+
| event | timestamp 0 : 4 |
| header +----------------------------+
| | type_code 4 : 1 | = FORMAT_DESCRIPTION_EVENT = 15
| +----------------------------+
| | server_id 5 : 4 |
| +----------------------------+
| | event_length 9 : 4 | >= 91
| +----------------------------+
| | next_position 13 : 4 |
| +----------------------------+
| | flags 17 : 2 |
+=====================================+
| event | binlog_version 19 : 2 | = 4
| data +----------------------------+
| | server_version 21 : 50 |
| +----------------------------+
| | create_timestamp 71 : 4 |
| +----------------------------+
| | header_length 75 : 1 |
| +----------------------------+
| | post-header 76 : n | = array of n bytes, one byte per event
| | lengths for all | type that the server knows about
| | event types |
+=====================================+

 In all binary log versions, the event data for the descriptor
 event begins with a common set of fields

	
 binlog_version

 The binary log version number (1, 3, or 4).

	
 server_version

 The server version as a string.

	
 create_timestamp

 The creation timestamp, if nonzero, is the time in seconds when
 this event was created; it indicates the moment when the binary
 log was created. This field is actually of no value: If nonzero,
 it is redundant because it has the same value that is in the
 header timestamp.

 Note: In practice, the creation
 timestamp field should be considered reserved for future use and
 programs should not rely on its value. This field may be
 commandeered in the future to serve another purpose.

 The v4 format descriptor event data contains two additional fields
 that enable interpretation of other types of events:

	
 header_length

 The length of the event header. This value includes the
 extra_headers field, so this header length - 19
 yields the size of the extra_headers field.

 Currently in v4, the header length (at offset 75) is 19, which
 means that in other events, no extra headers will follow the
 flags field. If in the future the header length
 is some value x > 19, then x-19 extra header bytes will appear
 in other events in the extra_headers field
 following the flags field.

 Note: The
 FORMAT_DESCRIPTION_EVENT itself contains no
 extra_headers field. Suppose that the FDE did
 have a header_length field after the
 flags field. That would introduce this problem:

	
 The value of x is given in the
 header_length field, which occurs in a
 position later than where the extra_headers
 field would be.

	
 Until you know the value of x, you cannot know the exact
 offset of the header_length field.

 In other words, you would need to know x to find the
 header_length field, but you cannot know x
 until you read the header_length field. (A
 circular dependency.) This means that the event extensibility
 mechanism afforded by the FDE does not apply to the FDE itself,
 which therefore is not itself extensible.

	
 post-header lengths

 The lengths for the fixed data part of each event. This is an
 array that provides post-header lengths for all events beginning
 with START_EVENT_V3 (type code 1). The array
 includes no length for UNKNOWN_EVENT (type code
 0).

19.8.1 Determining the Binary Log Version

 Given any binary log file, the information in this section
 describes how to determine the format in which it is written.

 Some important points about descriptor event formats:

	
 The v1 header fields are common to all formats. (v3 and v4
 headers begin with the v1 header fields, and add
 next_position and
 flags fields.)

	
 The v3 and v4 headers contain the same fields. The data part
 for v3 and v4 differs, such that the v4 data part enables
 extensions to the format without having to modify the
 header.

	
 It would be possible to ascertain the binary log version
 simply by reading the two binlog_version
 bytes, were it not for the fact that these bytes occur at a
 different position in v1 compared to v3/v4 (position 13
 versus 19). Therefore, it's necessary to determine whether
 the first event in a file represents a v1-format start
 event.

 To determine the version of a binary log file, use the following
 procedure:

 1) The file begins with a 4-byte magic number. Skip over that to
 get to the first event in the file (which in most cases is a
 start event or format description event).

 2) From the first event, read two values:

	
 The 1-byte type code at position
 EVENT_TYPE_OFFSET (4) within the event.

	
 The 4-byte event length at position
 EVENT_LEN_OFFSET (9) within the event.

 3) If the type code is not START_EVENT_V3 or
 FORMAT_DESCRIPTION_EVENT, the file format is
 v3. (See Exceptional Condition 1 later in this section.)

 4) If the type code is START_EVENT_V3 (1),
 check the event length. If the length is less than 75, the file
 format is v1, and v3 otherwise. Why the value 75? Because that
 is the length of a v3 start event:

	
 header (19 bytes)

	
 binlog version (2 bytes)

	
 server version (ST_SERVER_VER_LEN = 50
 bytes)

	
 timestamp (4 bytes)

 Summing those lengths yields 19 + 2 + 50 + 4 = 75

 Therefore, if the event is shorter than 75 bytes, it must be
 from a v1 file because that will have a shorter first event than
 a v3 file.

 5) If the type code is
 FORMAT_DESCRIPTION_EVENT (15), the file
 format is v4.

 The preceding steps describe the general binary log
 format-recognition principles. However, there are some
 exceptional conditions that must be accounted for:

 Exceptional Condition 1: In MySQL 4.0 and 4.1, the initial event
 in a binary log file might not be a start event. This occurs
 because the server writes the start event only to the first
 binary log file that it creates after startup. For subsequent
 files, the server writes an event of type
 ROTATE_EVENT to the end of the current log
 file, closes it, and the begins the next file without writing a
 start event to it. If a log file begins with an event that is
 not START_EVENT_V3 or
 FORMAT_DESCRIPTION_EVENT, it can be assumed
 to be a v3 file because this behavior occurs only in MySQL 4.0
 and 4.1, and all servers in those versions use v3 format.

 Exceptional Condition 2: In MySQL 5.1 and 5.2, several early
 versions wrote binary log files using v4 format, but using
 different event numbers from those currently used in v4.
 Therefore, when the FDE is read and discovered to be v4, it is
 also necessary to read the server version, which is a string
 that occurs at position 21. If the version is one of those in
 the set of affected versions, event renumbering occurs such that
 events read from the file are mapped onto the current v4 event
 numbering.

19.8.2 Ensuring Compatibility of Future Binary Log Versions

 To enable any future binary log formats to be correctly
 understood, the following conventions must hold:

 a) The binary log file must start with a descriptor event

 b) The descriptor event must start with a v3 header (19 bytes)

 c) The 2 bytes following the header (at position 19) must
 contain the binary log format version number

 With respect to the current formats, only a) holds for v1.
 However, as indicated earlier, v1-format files can be recognized
 from the initial event in the file, by a type code of
 START_EVENT_V3 and an event length less than
 75.

 The v4 format description event is designed so that it can
 handle future format updates. A new format with the same layout
 of event packets as in v4 but with additional fields in the
 header and post-headers can use this format description event to
 correctly describe itself. Actually, it is (theoretically)
 possible to have different "flavors" of v4 format that have
 different (larger) header lengths and even a different number of
 events.

 The current code is written to handle this possibility. That is,
 any code that parses a binary log and discovers that it is v4
 uses the header lengths as given by the format description event
 (thus potentially different lengths from the values hard-wired
 in the server code).

 Note: Although headers of events in v4 format can be longer than
 19 bytes, the format description event is an exception. Its
 header is always 19 bytes long to meet the preceding backward
 compatibility requirements. That is, the
 FORMAT_DESCRIPTION_EVENT does not include an
 extra_headers field.

19.9 Event Data for Specific Event Types

 The following sections provide details about what appears in the
 fixed and variable parts of the event data for each event type.

 LOAD DATA INFILE statements have been
 associated over time with several different events. The event
 contents are detailed in this section, and
 LOAD DATA INFILE
 Events provides a historical perspective on which events
 were used when.

 Start_log_event_v3/START_EVENT_V3

 This event occurs at the beginning of v1 or v3 binary log files.
 See Binary Log Versions
 for how it is used.

 In MySQL 4.0 and 4.1, such events are written only to the first
 binary log file that mysqld creates after
 startup. Log files created subsequently (when someone issues a
 FLUSH LOGS statement or the current binary log
 file becomes too large) do not contain this event. In MySQL 5.0
 and up, all binary log files start with a
 FORMAT_DESCRIPTION_EVENT.

 Fixed data part:

	
 2 bytes. The binary log format version. This is 1 in MySQL
 3.23 and 3 in MySQL 4.0 and 4.1. (In MySQL 5.0 and up,
 FORMAT_DESCRIPTION_EVENT is used instead of
 START_EVENT_V3.)

	
 50 bytes. The MySQL server's version (example:
 4.0.14-debug-log), padded with 0x00 bytes on the right.

	
 4 bytes. Timestamp in seconds when this event was created
 (this is the moment when the binary log was created). This
 value is redundant; the same value occurs in the
 timestamp header field.

 Variable data part:

	
 Empty

 Query_log_event/QUERY_EVENT

 Fixed data part:

	
 4 bytes. The ID of the thread that issued this statement.
 Needed for temporary tables. This is also useful for a DBA for
 knowing who did what on the master.

	
 4 bytes. The time in seconds that the statement took to
 execute. Only useful for inspection by the DBA.

	
 1 byte. The length of the name of the database which was the
 default database when the statement was executed. This name
 appears later, in the variable data part. It is necessary for
 statements such as INSERT INTO t VALUES(1)
 that don't specify the database and rely on the default
 database previously selected by USE.

	
 2 bytes. The error code resulting from execution of the
 statement on the master. Error codes are defined in
 include/mysqld_error.h. 0 means no error.
 How come statements with a nonzero error code can exist in the
 binary log? This is mainly due to the use of nontransactional
 tables within transactions. For example, if an INSERT
 ... SELECT fails after inserting 1000 rows into a
 MyISAM table (for example, with a
 duplicate-key violation), we have to write this statement to
 the binary log, because it truly modified the
 MyISAM table. For transactional tables,
 there should be no event with a nonzero error code (though it
 can happen, for example if the connection was interrupted
 (Control-C)). The slave checks the error code: After executing
 the statement itself, it compares the error code it got with
 the error code in the event, and if they are different it
 stops replicating (unless
 --slave-skip-errors was used to ignore the
 error).

	
 2 bytes (not present in v1, v3). The length of the status
 variable block.

 Variable part:

	
 Zero or more status variables (not present in v1, v3). Each
 status variable consists of one byte code identifying the
 variable stored, followed by the value of the variable. The
 format of the value is variable-specific, as described later.

	
 The default database name (null-terminated).

	
 The SQL statement. The slave knows the size of the other
 fields in the variable part (the sizes are given in the fixed
 data part), so by subtraction it can know the size of the
 statement.

 Each entry in the status variable block has a code and a value,
 where the value format is as indicated in the following list. The
 list provides basic information about each variable. For
 additional details, see log_event.h.

	
 Q_FLAGS2_CODE = 0. Value is a 4-byte
 bit-field. This variable is written only as of MySQL 5.0.

	
 Q_SQL_MODE_CODE = 1. Value is an 8-byte SQL
 mode value.

	
 Q_CATALOG_CODE = 2. Value is the catalog
 name: a length byte followed by that many bytes, plus a
 terminating null byte. This variable is present only in MySQL
 5.0.0 to 5.0.3. It was replaced with
 Q_CATALOG_NZ_CODE in MySQL 5.0.4 because
 the terminating null is unnecessary.

	
 Q_AUTO_INCREMENT = 3. Value is two 2-byte
 unsigned integers representing the
 auto_increment_increment and
 auto_increment_offset system variables.
 This variable is present only if auto_increment is greater
 than 1.

	
 Q_CHARSET_CODE = 4. Value is three 2-byte
 unsigned integers representing the
 character_set_client,
 collation_connection, and
 collation_server system variables.

	
 Q_TIME_ZONE_CODE = 5. Value is the time
 zone name: a length byte followed by that many bytes. This
 variable is present only if the time zone string is non-empty.

	
 Q_CATALOG_NZ_CODE = 6. Value is the catalog
 name: a length byte followed by that many bytes. Value is
 always std. This variable is present only
 if the catalog name is non-empty.

	
 Q_LC_TIME_NAMES_CODE = 7. Value is a 2-byte
 unsigned integer representing the
 lc_time_names number. This variable is
 present only if the value is not 0 (that is, not en_US).

	
 Q_CHARSET_DATABASE_CODE = 8. Value is a
 2-byte unsigned integer representing the
 collation_database system variable.

	
 Q_TABLE_MAP_FOR_UPDATE_CODE = 9. Value is 8
 bytes representing the table map to be updated by a
 multiple-table update statement. Each bit of this variable
 represents a table, and is set to 1 if the corresponding table
 is to be updated by the statement.

 Table_map_for_update is used to evaluate the
 filter rules specified by --replicate-do-table
 / --replicate-ignore-table.

 Stop_log_event/STOP_EVENT

 A Stop_log_event is written under these
 circumstances:

	
 A master writes the event to the binary log when it shuts down

	
 A slave writes the event to the relay log when it shuts down
 or when a RESET SLAVE statement is executed

 Fixed data part:

	
 Empty

 Variable data part:

	
 Empty

 Rotate_log_event/ROTATE_EVENT

 When a binary log file exceeds a size limit, a
 ROTATE_EVENT is written at the end of the file
 that points to the next file in the squence. This event is
 information for the slave to know the name of the next binary log
 it is going to receive.

 ROTATE_EVENT is generated locally and written
 to the binary log on the master. It is written to the relay log on
 the slave when FLUSH LOGS occurs, and when
 receiving a ROTATE_EVENT from the master. In
 the latter case, there will be two rotate events in total
 originating on different servers.

 There are conditions under which the terminating log-rotation
 event does not occur. For example, the server might crash.

 Fixed data part:

	
 8 bytes. The position of the first event in the next log file.
 Always contains the number 4 (meaning the next event starts at
 position 4 in the next binary log). This field is not present
 in v1; presumably the value is assumed to be 4.

 Variable data part:

	
 The name of the next binary log. The filename is not
 null-terminated. Its length is the event size minus the size
 of the fixed parts.

 Intvar_log_event/INTVAR_EVENT

 Fixed data part:

	
 Empty

 Variable data part:

	
 1 byte. A value indicating the variable type:
 LAST_INSERT_ID_EVENT = 1 or
 INSERT_ID_EVENT = 2.

	
 8 bytes. An unsigned integer indicating the value to be used
 for the LAST_INSERT_ID() invocation or
 AUTO_INCREMENT column.

 Load_log_event/LOAD_EVENT

 This event is used for LOAD DATA INFILE
 statements. See also LOAD
 DATA INFILE Events.

 LOAD_EVENT shares the Load_log_event class with
 NEW_LOAD_EVENT. The primary difference is that
 LOAD_EVENT allows only single-character field
 and line option values, whereas NEW_LOAD_EVENT
 allows multiple-character values. Also,
 LOAD_EVENT has no file ID or data block because
 with this event, the slave asks the master to transfer the data
 file at event execution time.

 The format for this event is more complicated than for others,
 because it contains information about many LOAD DATA
 INFILE statement clauses.

 Fixed data part:

	
 4 bytes. The ID of the thread on the master that issued this
 LOAD DATA INFILE statement. Needed for
 temporary tables. This is also useful for a DBA for knowing
 who did what on the master.

	
 4 bytes. The time in seconds which the LOAD DATA
 INFILE took for execution. Only useful for
 inspection by the DBA.

	
 4 bytes. The number of lines to skip at the beginning of the
 file (corresponds to the IGNORE N LINES
 clause of LOAD DATA INFILE).

	
 1 byte. The length of the name of the table to load.

	
 1 byte. The length of the name of the database containing the
 table.

	
 4 bytes. The number of columns to load
 ((col_name,...) clause). Will be nonzero
 only if the columns to load were explicitly mentioned in the
 statement.

 Variable data part:

	
 1 byte. The field-terminating character (FIELDS
 TERMINATED BY option).

	
 1 byte. The field-enclosing character (FIELDS
 ENCLOSED BY option).

	
 1 byte. The line-terminating character (LINES
 TERMINATED BY option).

	
 1 byte. The line-starting character (LINES STARTING
 BY option).

	
 1 byte. The escaping character (FIELDS ESCAPED
 BY option).

	
 1 byte. Flags that indicate whether certain keywords are
 present in the statement:

	
 DUMPFILE_FLAG =0x1 (unused; this flag
 appears to be a botch because it would apply to
 SELECT ... INTO OUTFILE, not
 LOAD DATA INFILE)

	
 OPT_ENCLOSED_FLAG = 0x2 (FIELD
 OPTIONALLY ENCLOSED BY option)

	
 REPLACE_FLAG = 0x4 (LOAD DATA
 INFILE REPLACE)

	
 IGNORE_FLAG = 0x8 (LOAD DATA
 INFILE IGNORE)

	
 1 byte. Flags that indicate whether each of the field and line
 options are empty. The low-order five bits are 1 to indicate
 an empty option (has a length of 0) or 0 to indicate a
 non-empty option (has a length of 1).

	
 FIELD_TERM_EMPTY = 0x1

	
 ENCLOSED_EMPTY = 0x2

	
 LINE_TERM_EMPTY = 0x4

	
 LINE_START_EMPTY = 0x8

	
 ESCAPED_EMPTY = 0x10

	
 1 byte. The length of the name of the first column to load.

	
 ...

	
 1 byte. The length of the name of the last column to load.

	
 Variable-sized. The name of the first column to load
 (null-terminated).

	
 ...

	
 Variable-sized. The name of the last column to load
 (null-terminated).

	
 Variable-sized. The name of the table to load
 (null-terminated).

	
 Variable-sized. The name of the database that contains the
 table (null-terminated).

	
 Variable-sized. The name of the file that was loaded (the
 original name on the master, not the name of the temporary
 file created on the slave). The length of the data filename is
 the event size minus the size of all other parts.

 Note: Because this event allows
 only single-character field and line option values, presumably
 LOAD DATA INFILE statements will not replicate
 correctly if any such option contains multiple characters.

 Slave_log_event/SLAVE_EVENT

 This event is never written, so it cannot exist in a binary log
 file. It was meant for failsafe replication, which has never been
 implemented.

 Create_file_log_event/CREATE_FILE_EVENT

 This event is used for LOAD DATA INFILE
 statements. See also LOAD
 DATA INFILE Events.

 This event tells the slave to create a temporary file and fill it
 with a first data block. Later, zero or more
 APPEND_BLOCK_EVENT events append blocks to this
 temporary file. EXEC_LOAD_EVENT tells the slave
 to load the temporary file into the table, or
 DELETE_FILE_EVENT tells the slave not to do the
 load and to delete the temporary file.
 DELETE_FILE_EVENT occurs when the LOAD
 DATA failed on the master: On the master we start to
 write loaded blocks to the binary log before the end of the
 statement. If for some reason there is an error, we must tell the
 slave to abort the load.

 The format for this event is more complicated than for others,
 because it contains information about many LOAD DATA
 INFILE statement clauses.

 Fixed data part:

	
 4 bytes. The ID of the thread on the master that issued this
 LOAD DATA INFILE statement. Needed for
 temporary tables. This is also useful for a DBA for knowing
 who did what on the master.

 Variable data part:

	
 4 bytes. The time in seconds which the LOAD DATA
 INFILE took for execution. Only useful for
 inspection by the DBA.

	
 4 bytes. The number of lines to skip at the beginning of the
 file (corresponds to the IGNORE N LINES
 clause of LOAD DATA INFILE).

	
 1 byte. The length of the name of the table to load.

	
 1 byte. The length of the name of the database containing the
 table.

	
 4 bytes. The number of columns to load
 ((col_name,...) clause). Will be nonzero
 only if the columns to load were explicitly mentioned in the
 statement.

	
 4 bytes. An ID for the data file. This is necessary in case
 several LOAD DATA INFILE statements occur
 in parallel on the master. In that case, the binary log may
 contain intermixed events for the statements. The ID resolves
 which file the blocks in each
 APPEND_BLOCK_EVENT must be appended, and
 the file that must be loaded by the
 EXEC_LOAD_EVENT or deleted by the
 DELETE_FILE_EVENT.

	
 1 byte. The length of the field-terminating string
 (FIELDS TERMINATED BY option).

	
 Variable-sized. The field-terminating string.

	
 1 byte. The length of the field-enclosing string
 (FIELDS ENCLOSED BY option).

	
 Variable-sized. The field-enclosing string.

	
 1 byte. The length of the line-terminating string
 (LINES TERMINATED BY option).

	
 Variable-sized. The line-terminating string.

	
 1 byte. The length of the line-starting string (LINES
 STARTING BY option).

	
 Variable-sized. The line-starting string.

	
 1 byte. The length of the escaping string (FIELDS
 ESCAPED BY option).

	
 Variable-sized. The escaping string.

	
 1 byte. Flags that indicate whether certain keywords are
 present in the statement:

	
 DUMPFILE_FLAG =0x1 (unused; this flag
 appears to be a botch because it would apply to
 SELECT ... INTO OUTFILE, not
 LOAD DATA INFILE)

	
 OPT_ENCLOSED_FLAG = 0x2 (FIELD
 OPTIONALLY ENCLOSED BY option)

	
 REPLACE_FLAG = 0x4 (LOAD DATA
 INFILE REPLACE)

	
 IGNORE_FLAG = 0x8 (LOAD DATA
 INFILE IGNORE)

	
 1 byte. The length of the name of the first column to load.

	
 ...

	
 1 byte. The length of the name of the last column to load.

	
 Variable-sized. The name of the first column to load
 (null-terminated).

	
 ...

	
 Variable-sized. The name of the last column to load
 (null-terminated).

	
 Variable-sized. The name of the table to load
 (null-terminated).

	
 Variable-sized. The name of the database that contains the
 table (null-terminated).

	
 Variable-sized. The name of the file that was loaded (the
 original name on the master, not the name of the temporary
 file created on the slave) (null-terminated). The length of
 the data filename is not explicit in the event. However, it is
 null-terminated, so the length can be determined by reading to
 the null byte.

	
 Variable-sized. The block of raw data to load. If the file
 size exceeds a threshold, additional
 APPEND_BLOCK_EVENT instances will follow,
 each containing a data block. The size of the raw data is the
 event size minus the size of all other parts.

 Append_block_log_event/APPEND_BLOCK_EVENT

 This event is used for LOAD DATA INFILE
 statements. See also LOAD
 DATA INFILE Events.

 Contains data to be written to the data file for a LOAD
 DATA INFILE statement.

 Fixed data part:

	
 4 bytes. The ID of the file to append this block to.

 Variable data part:

	
 The raw data to load. The raw data size is the event size
 minus the size of all the fixed event parts.

 Execute_log_event/EXEC_LOAD_EVENT

 This event is used for LOAD DATA INFILE
 statements. See also LOAD
 DATA INFILE Events.

 Indicates the end of a successful LOAD DATA
 INFILE statement and that the data file should be
 loaded.

 Fixed data part:

	
 4 bytes. The ID of the file to load.

 Variable data part:

	
 Empty

 Delete_file_log_event/DELETE_FILE_EVENT

 This event is used for LOAD DATA INFILE
 statements. See also LOAD
 DATA INFILE Events.

 Indicates the end of an unsuccessful LOAD DATA
 INFILE statement and that the data file should not be
 loaded.

 Fixed data part:

	
 4 bytes. The ID of the file to be deleted.

 Variable data part:

	
 Empty

 Load_log_event/NEW_LOAD_EVENT

 This event is used for LOAD DATA INFILE
 statements. See also LOAD
 DATA INFILE Events.

 The format for this event is more complicated than for others,
 because it contains information about many LOAD DATA
 INFILE statement clauses.

 LOAD_EVENT shares the Load_log_event class with
 NEW_LOAD_EVENT. The primary difference is that
 LOAD_EVENT allows only single-character field
 and line option values, whereas NEW_LOAD_EVENT
 allows multiple-character values. Each of these is encoded as a
 length followed by a string rather than as a single character.
 Because of that, NEW_LOAD_DATA does not have
 the flags byte that indicates whether each option is empty.

 Fixed data part:

	
 4 bytes. The ID of the thread on the master that issued this
 LOAD DATA INFILE statement. Needed for
 temporary tables. This is also useful for a DBA for knowing
 who did what on the master.

	
 4 bytes. The time in seconds which the LOAD DATA
 INFILE took for execution. Only useful for
 inspection by the DBA.

	
 4 bytes. The number of lines to skip at the beginning of the
 file (corresponds to the IGNORE N LINES
 clause of LOAD DATA INFILE).

	
 1 byte. The length of the name of the table to load.

	
 1 byte. The length of the name of the database containing the
 table.

	
 4 bytes. The number of columns to load
 ((col_name,...) clause). Will be nonzero
 only if the columns to load were explicitly mentioned in the
 statement.

 Variable data part:

	
 1 byte. The length of the field-terminating string
 (FIELDS TERMINATED BY option).

	
 Variable-sized. The field-terminating string.

	
 1 byte. The length of the field-enclosing string
 (FIELDS ENCLOSED BY option).

	
 Variable-sized. The field-enclosing string.

	
 1 byte. The length of the line-terminating string
 (LINES TERMINATED BY option).

	
 Variable-sized. The line-terminating string.

	
 1 byte. The length of the line-starting string (LINES
 STARTING BY option).

	
 Variable-sized. The line-starting string.

	
 1 byte. The length of the escaping string (FIELDS
 ESCAPED BY option).

	
 Variable-sized. The escaping string.

	
 1 byte. Flags that indicate whether certain keywords are
 present in the statement:

	
 DUMPFILE_FLAG =0x1 (unused; this flag
 appears to be a botch because it would apply to
 SELECT ... INTO OUTFILE, not
 LOAD DATA INFILE)

	
 OPT_ENCLOSED_FLAG = 0x2 (FIELD
 OPTIONALLY ENCLOSED BY option)

	
 REPLACE_FLAG = 0x4 (LOAD DATA
 INFILE REPLACE)

	
 IGNORE_FLAG = 0x8 (LOAD DATA
 INFILE IGNORE)

	
 1 byte. The length of the name of the first column to load.

	
 ...

	
 1 byte. The length of the name of the last column to load.

	
 Variable-sized. The name of the first column to load
 (null-terminated).

	
 ...

	
 Variable-sized. The name of the last column to load
 (null-terminated).

	
 Variable-sized. The name of the table to load
 (null-terminated).

	
 Variable-sized. The name of the database that contains the
 table (null-terminated).

	
 Variable-sized. The name of the file that was loaded (the
 original name on the master, not the name of the temporary
 file created on the slave). The length of the data filename is
 not explicit in the event. It is determined as the remaining
 characters to the end of the event.

 There is no file ID or data block in the variable data part. The
 slave is supposed to request the file from the master in a
 separate connection.

 Rand_log_event/RAND_EVENT

 RAND() in MySQL generates a random number. A
 RAND_EVENT contains two seed values that set
 the rand_seed1 and rand_seed2 system variables that are used to
 compute the random number.

 Fixed data part:

	
 Empty

 Variable data part:

	
 8 bytes. The value for the first seed.

	
 8 bytes. The value for the second seed.

 User_var_log_event/USER_VAR_EVENT

 Fixed data part:

	
 Empty

 Variable data part:

	
 4 bytes. the size of the user variable name.

	
 The user variable name.

	
 1 byte. Non-zero if the variable value is the SQL
 NULL value, 0 otherwise. If this byte is 0,
 the following parts exist in the event.

	
 1 byte. The user variable type. The value corresponds to
 elements of enum Item_result defined in
 include/mysql_com.h (STRING_RESULT=0,
 REAL_RESULT=1, INT_RESULT=2, ROW_RESULT=3, DECIMAL_RESULT=4).

	
 4 bytes. The number of the character set for the user variable
 (needed for a string variable). The character set number is
 really a collation number that indicates a character
 set/collation pair.

	
 4 bytes. The size of the user variable value (corresponds to
 member val_len of class
 Item_string).

	
 Variable-sized. For a string variable, this is the string. For
 a float or integer variable, this is its value in 8 bytes. For
 a decimal this value is a packed value - 1 byte for the
 precision, 1 byte for the scale, and $size - 2 bytes for the
 actual value. See the decimal2bin function
 in strings/decimal.c for the format of this
 packed value.

 Format_description_log_event/FORMAT_DESCRIPTION_EVENT

 This event occurs at the beginning of v4 binary log files. See
 Binary Log Versions for
 how it is used.

 In MySQL 5.0 and up, all binary log files start with a
 FORMAT_DESCRIPTION_EVENT, but there will be a
 way to distinguish between a
 FORMAT_DESCRIPTION_EVENT created at
 mysqld startup and other
 FORMAT_DESCRIPTION_EVENT instances; such a
 distinction is needed because the first category of
 FORMAT_DESCRIPTION_EVENT (which means the
 master has started) should trigger some cleaning tasks on the
 slave. (Suppose the master died brutally and restarted: the slave
 must delete old replicated temporary tables.)

 Fixed data part:

	
 2 bytes. The binary log format version. This is 4 in MySQL 5.0
 and up.

	
 50 bytes. The MySQL server's version (example:
 5.0.14-debug-log), padded with 0x00 bytes on the right.

	
 4 bytes. Timestamp in seconds when this event was created
 (this is the moment when the binary log was created). This
 value is redundant; the same value occurs in the
 timestamp header field.

	
 1 byte. The header length. This length - 19 gives the size of
 the extra headers field at the end of the
 header for other events.

	
 Variable-sized. An array that indicates the post-header
 lengths for all event types. There is one byte per event type
 that the server knows about.

 Variable data part:

	
 Empty

 Xid_log_event/XID_EVENT

 An XID event is generated for a commit of a transaction that
 modifies one or more tables of an XA-capable storage engine.
 Strictly speaking, Xid_log_event is used if
 thd->transaction.xid_state.xid.get_my_xid()
 returns nonzero.

 Here is an example of how to generate an XID event (it occurs
 whether or not innodb_support_xa is enabled):

CREATE TABLE t1 (a INT) ENGINE = INNODB;
START TRANSACTION;
INSERT INTO t1 VALUES (1);
COMMIT;

 Fixed data part:

	
 Empty

 Variable data part:

	
 8 bytes. The XID transaction number.

 Note: Contrary to all other
 numeric fields, the XID transaction number is not always written
 in little-endian format. The bytes are copied unmodified from
 memory to disk, so the format is machine-dependent. Hence, when
 replicating from a little-endian to a big-endian machine (or vice
 versa), the numeric value of transaction numbers will differ. In
 particular, the output of mysqlbinlog differs.
 This should does not cause inconsistencies in replication because
 the only important property of transaction numbers is that
 different transactions have different numbers (relative order does
 not matter).

 Begin_load_query_log_event/BEGIN_LOAD_QUERY_EVENT

 This event is used for LOAD DATA INFILE
 statements. See also LOAD
 DATA INFILE Events.

 Fixed data part:

	
 4 bytes. An ID for the data file. This is necessary in case
 several LOAD DATA INFILE statements occur
 in parallel on the master. In that case, the binary log may
 contain intermixed events for the statements. The ID resolves
 which file the blocks in each
 APPEND_BLOCK_EVENT must be appended to, and
 the file that must be loaded by the
 EXEC_LOAD_QUERY_EVENT or deleted by the
 DELETE_FILE_EVENT.

 Variable data part:

	
 Variable-sized. The first block of data to load. The size is
 the event size minus the size of all other fields in the
 event. If the file size exceeds a threshold, additional
 APPEND_BLOCK_EVENT instances will follow,
 each containing a data block.

 Execute_load_query_log_event/EXECUTE_LOAD_QUERY_EVENT

 This event is used for LOAD DATA INFILE
 statements. See also LOAD
 DATA INFILE Events.

 Indicates the end of a successful LOAD DATA
 INFILE statement and that the data file should be
 loaded. It is similar to QUERY_EVENT, but
 before executing the statement, it substitutes the original
 filename in the statement with the name of the slave-side
 temporary file. The first 13 bytes of the fixed data part are the
 same as for QUERY_EVENT, as is the initial
 status variable block in the variable data part. See the
 description of that event type for additional information.

 Fixed data part:

	
 4 bytes. The ID of the thread that issued this statement.

	
 4 bytes. The time in seconds that the statement took to
 execute.

	
 1 byte. The length of the name of the database which was the
 default database when the statement was executed.

	
 2 bytes. The error code resulting from execution of the
 statement on the master.

	
 2 bytes. The length of the status variable block.

	
 4 bytes. The ID of the file to load.

	
 4 bytes. The start position within the statement for filename
 substitution.

	
 4 bytes. The end position within the statement for filename
 substitution.

	
 1 byte. How to handle duplicates:
 LOAD_DUP_ERROR = 0,
 LOAD_DUP_IGNORE = 1,
 LOAD_DUP_REPLACE = 2

 Variable data part:

	
 Zero or more status variables. Each status variable consists
 of one byte identifying the variable stored, followed by the
 value of the variable.

	
 Variable-sized. The database name (null-terminated).

	
 The LOAD DATA INFILE statement. The length
 is the event size minus the size of all other fields.

 Table_map_log_event/TABLE_MAP_EVENT

 Used for row-based binary logging beginning with MySQL 5.1.5.

 Fixed data part:

	
 6 bytes. The table ID.

	
 2 bytes. Reserved for future use.

 Variable data part:

	
 1 byte. The length of the database name.

	
 Variable-sized. The database name (null-terminated).

	
 1 byte. The length of the table name.

	
 Variable-sized. The table name (null-terminated).

	
 Packed integer. The number of columns in the table.

	
 Variable-sized. An array of column types, one byte per column.
 To find the meanings of these values, look at
 enum_field_types in the
 mysql_com.h header file.

	
 Packed integer. The length of the metadata block.

	
 Variable-sized. The metadata block; see log_event.h for
 contents and format.

	
 Variable-sized. Bit-field indicating whether each column can
 be NULL, one bit per column. For this
 field, the amount of storage required for
 N columns is
 INT((N+7)/8) bytes.

 Write_rows_log_event_old/PRE_GA_WRITE_ROWS_EVENT

 Used for row-based binary logging from MySQL 5.1.5 to 5.1.17,
 using the old implementation of
 Write_rows_log_event/WRITE_ROWS_EVENT. The
 structure is similar to that for the newer event.

 Update_rows_log_event_old/PRE_GA_UPDATE_ROWS_EVENT

 Used for row-based binary logging from MySQL 5.1.5 to 5.1.17,
 using the old implementation of
 Update_rows_log_event/UPDATE_ROWS_EVENT. The
 structure is similar to that for the newer event.

 Delete_rows_log_event_old/PRE_GA_DELETE_ROWS_EVENT

 Used for row-based binary logging from MySQL 5.1.5 to 5.1.17,
 using the old implementation of
 Delete_rows_log_event/DELETE_ROWS_EVENT. The
 structure is similar to that for the newer event.

 Write_rows_log_event/WRITE_ROWS_EVENT

 Used for row-based binary logging beginning with MySQL 5.1.18.

 [TODO: following needs verification; it's guesswork]

 Fixed data part:

	
 6 bytes. The table ID.

	
 2 bytes. Reserved for future use.

 Variable data part:

	
 Packed integer. The number of columns in the table.

	
 Variable-sized. Bit-field indicating whether each column is
 used, one bit per column. For this field, the amount of
 storage required for N columns is
 INT((N+7)/8) bytes.

	
 Variable-sized (for UPDATE_ROWS_LOG_EVENT
 only). Bit-field indicating whether each column is used in the
 UPDATE_ROWS_LOG_EVENT after-image; one bit
 per column. For this field, the amount of storage required for
 N columns is
 INT((N+7)/8) bytes.

	
 Variable-sized. A sequence of zero or more rows. The end is
 determined by the size of the event. Each row has the
 following format:

	
 Variable-sized. Bit-field indicating whether each field in
 the row is NULL. Only columns that are
 "used" according to the second field in the variable data
 part are listed here. If the second field in the variable
 data part has N one-bits, the amount
 of storage required for this field is
 INT((N+7)/8) bytes.

	
 Variable-sized. The row-image, containing values of all
 table fields. This only lists table fields that are used
 (according to the second field of the variable data part)
 and non-NULL (according to the previous
 field). In other words, the number of values listed here
 is equal to the number of zero bits in the previous field
 (not counting padding bits in the last byte).

 The format of each value is described in the
 log_event_print_value() function in
 log_event.cc.

	
 (for UPDATE_ROWS_EVENT only) the
 previous two fields are repeated, representing a second
 table row.

 For each row, the following is done:

	
 For WRITE_ROWS_LOG_EVENT, the row described
 by the row-image is inserted.

	
 For DELETE_ROWS_LOG_EVENT, a row matching
 the given row-image is deleted.

	
 For UPDATE_ROWS_LOG_EVENT, a row matching
 the first row-image is removed, and the row described by the
 second row-image is inserted.

 Update_rows_log_event/UPDATE_ROWS_EVENT

 Used for row-based binary logging beginning with MySQL 5.1.18.

 See the description for WRITE_ROWS_EVENT.

 Delete_rows_log_event/DELETE_ROWS_EVENT

 Used for row-based binary logging beginning with MySQL 5.1.18.

 See the description for WRITE_ROWS_EVENT.

 Incident_log_event/INCIDENT_EVENT

 Fixed data part:

	
 1 byte. The incident number.

	
 1 byte. The message length.

 Variable data part:

	
 The incident message, if present.

 Incident number codes are listed in
 rpl_constant.h. The only code currently used is
 INCIDENT_LOST_EVENTS, which indicates that
 there may be lost events (a "gap") in the replication stream that
 requires databases to be resynchronized.

 Heartbeat_log_event/HEARTBEAT_LOG_EVENT

 A Heartbeat_log_event is sent by a master to a
 slave to let the slave know that the master is still alive. Events
 of this type do not appear in the binary or relay logs. They are
 generated on a master server by the thread that dumps events and
 sent straight to the slave without ever being written to the
 binary log. The slave examines the event contents and then
 discards it without writing it to the relay log.

 Fixed data part:

	
 Empty

 Variable data part:

	
 Empty

 Muted_query_log_event

 This is a subclass of Query_log_event that is
 not written to the log. It is used as a means of flushing a
 transaction without logging an event.

 This event class was added in MySQL 5.0.23 and removed in 6.0.4.
 It was a solution to
 Bug#16206 that
 became unnecessary with the fix for
 Bug#29020.

19.9.1 LOAD DATA INFILE Events

 LOAD DATA INFILE is not written to the binary
 log like other statements. It is written as one or more events
 in a packed format, not as a cleartext statement in the binary
 log. The events indicate what options are present in the
 statement and how to process the data file.

 Historically, there seem to have been at least four event
 sequences for representing LOAD DATA INFILE
 operations.

 1) In MySQL 3.23, there was only one event:
 Load_log_event (type code
 LOAD_EVENT = 6).
 Load_log_event only contains the filename,
 not the file itself. When the slave sees a
 Load_log_event, it requests that the master
 send the file in a separate connection. This has the drawback
 that the binary log is not self-contained: If the file has been
 removed on the master or the slave cannot access the master, the
 file transfer fails.

 2) In MySQL 4.0.0, the file contents were included in the binary
 log. Several new event types were introduced:
 Create_file_log_event (type code
 CREATE_FILE_EVENT = 8),
 Append_block_log_event (type code
 APPEND_BLOCK_EVENT = 9),
 Execute_load_log_event (type code
 EXEC_LOAD_EVENT = 10), and
 Delete_file_log_event (type code
 DELETE_FILE_EVENT = 11). The event sequence
 is:

	
 Create_file_log_event : 1 instance

	
 Append_block_log_event : 0 or more
 instances

	
 Execute_load_log_event (success) or
 Delete_file_log_event (failure): 1
 instance

 The Create_file_log_event contains the
 options to LOAD DATA INFILE. This was a
 design flaw since the file cannot be loaded until the
 Exec_load_log_event is seen. To work around
 this, the slave, when executing the
 Create_file_log_event, wrote the
 Create_file_log_event to a temporary file.
 When the Execute_load_log_event was seen,
 this temporary file was read back so that the LOAD DATA
 INFILE statement could be constructed.

 Append_block_log_event is used for files
 larger than a threshold. In this case, the file is split and the
 pieces are sent in separate events. The threshold is around 2^17
 = 131072 bytes.

 CREATE_FILE_EVENT tells the slave to create a
 temporary file and fill it with a first data block. Later, zero
 or more APPEND_BLOCK_EVENT events append
 blocks to this temporary file.
 EXEC_LOAD_EVENT tells the slave to load the
 temporary file into the table, or
 DELETE_FILE_EVENT tells the slave not to do
 the load and to delete the temporary file.
 DELETE_FILE_EVENT occurs when the
 LOAD DATA failed on the master: On the master
 we start to write loaded blocks to the binary log before the end
 of the statement. If for some reason there is an error, we must
 tell the slave to abort the load.

 MySQL 4.0.0 also introduced the
 NEW_LOAD_EVENT = 12 type code.

 If a slave reads a NEW_LOAD_EVENT from a
 binlog, it will use it as a LOAD_EVENT (but
 allowing longer separator names). Lost in the mysteries of time
 is the knowledge of whether there was ever a server version
 capable of writing NEW_LOAD_EVENT.

 3) The original Load_log_event used one
 character for each of the delimiters (FIELDS TERMINATED
 BY, and so forth). At an unknown point in the version
 history, the format was modified to allow multiple-character
 strings as separators. This uses the same class,
 Load_log_event, but has the type code
 NEW_LOAD_EVENT = 12. This affects
 Create_file_log_event, since that inherits from
 <code class="literal">Load_log_event. So the new
 feature in Load_log_event allows
 Create_file_log_event to use
 multiple-character delimiters.

 [A guess for when this occurred would be MySQL 4.0.0: That is
 when the sql_ex structure that holds the
 single-character field/line options was renamed to
 old_sql_ex and a new
 sql_ex structure was created that allows
 multiple-character values.]

 4) In 5.0.3, the event sequence was changed again with the
 addition of two new event types:
 Begin_load_query_log_event (type code
 BEGIN_LOAD_QUERY_EVENT = 17) and
 Execute_load_query_log_event (type code
 EXECUTE_LOAD_QUERY_EVENT = 18). The event
 sequence is:

	
 Begin_load_query_log_event : 1 instance

	
 Append_block_log_event : 0 or more
 instances

	
 Execute_load_query_log_event (success) or
 Delete_file_log_event (failure): 1
 instance

 With the new sequence, information about the options to
 LOAD DATA INFILE is moved from the first
 event to the last event. Consequently,
 Begin_load_query_log_event is almost the same
 as Append_file_log_event (it contains only
 file data), whereas
 Execute_load_query_log_event contains the
 text of the LOAD DATA INFILE statement. The
 revised event sequence fixes the design flaw in the 4.0 format.

 Also, the temp file that stores the parameters to LOAD
 DATA INFILE is not needed anymore. There is still a
 temp file containing all the data to be loaded.

 Here is a concrete example (it applies to MySQL 4.0 and 4.1):

 On the master we have a file named
 /m/tmp/u.txt that contains these lines:

>1,2,3
>4,5,6
>7,8,9
>10,11,12

 And we issue this statement on the master while the default
 database is test:

load data infile '/m/tmp/u.txt' replace into table x fields
terminated by ',' optionally enclosed by '"' escaped by '\\'
lines starting by '>' terminated by '\n' ignore 2 lines (a,b,c);

 Then in the master's binary log we have this
 CREATE_FILE_EVENT (hexadecimal dump):

00000180: db4f 153f 0801 0000 O.?....
00000190: 006f 0000 0088 0100 0000 0004 0000 0000 .o..............
000001a0: 0000 0002 0000 0001 0403 0000 0003 0000
000001b0: 0001 2c01 2201 0a01 3e01 5c06 0101 0161 ..,."...>.\....a
000001c0: 0062 0063 0078 0074 6573 7400 2f6d 2f74 .b.c.x.test./m/t
000001d0: 6d70 2f75 2e74 7874 003e 312c 322c 330a mp/u.txt.>1,2,3.
000001e0: 3e34 2c35 2c36 0a3e 372c 382c 390a 3e31 >4,5,6.>7,8,9.>1
000001f0: 302c 3131 2c31 32db 4f15 3f0a 0100 0000 0,11,12.O.?.....
00000200: 1700 0000 f701 0000 0000 0300 0000

	
 Line 180:

	
 Timestamp (db4f 153f)

	
 Event type (08)

	
 Server ID (01 0000 00)

	
 Line 190:

	
 Event size (6f 0000 00)

	
 Position in the binary log (88 0100 00) (that's 392 in
 decimal base)

	
 Flags (00 00)

	
 Thread ID (04 0000 00)

	
 Time it took (00 0000 00)

	
 Line 1a0:

	
 Number of lines to skip at the beginning of the file (02
 0000 00)

	
 Length of the table name (01)

	
 Length of the database name (04)

	
 Number of columns to load (03 0000 00)

	
 The file ID (03 0000 00)

	
 Line 1b0:

	
 Length of the field terminating string (01)

	
 Field terminating string (2c = ,)

	
 Length of the field enclosing string (01)

	
 Field enclosing string (22 = ")

	
 Length of the line terminating string (01)

	
 Line terminating string (0a = newline)

	
 Length of the line starting string (01)

	
 Line starting string (3e = >)

	
 Length of the escaping string (01)

	
 Escaping string (5c = \)

	
 Flags (06) (that's OPT_ENCLOSED_FLAG
 | REPLACE_FLAG)

	
 Length of the name of the first column to load (01)

	
 Length of the name of the second column to load (01)

	
 Length of the name of the third column to load (01)

	
 Name of the first column to load (61 00 = "a")

	
 Line 1c0:

	
 Name of the second column to load (62 00 = "b")

	
 Name of the third column to load (63 00 = "c")

	
 Name of the table to load (78 00 = "x"), name of the
 database that contains the table (74 6573 7400 = "test")

	
 Name of the file on the master (2f6d 2f74 6d70 2f75 2e74
 7874 00 = "/m/tmp/u.txt")

	
 Line 1d0 and following:

	
 Raw data to load (3e 312c 322c 330a 3e34 2c35 2c36 0a3e
 372c 382c 390a 3e31 302c 3131 2c31 32)

 The next byte in the file is the beginning of the
 EXEC_LOAD_EVENT event.

19.10 Row-Based Binary Logging

 Originally, the binary log was written using statement-based
 logging. Row-based logging was added in MySQL 5.1.5.

	
 Statement-based logging: Events contain SQL statements that
 produce data changes (inserts, updates, deletes)

	
 Row-based logging: Events describe changes to individual rows

 Several event types are used specific to row-based logging:

	
 TABLE_MAP_EVENT

	
 WRITE_ROWS_EVENT

	
 UPDATE_ROWS_EVENT

	
 DELETE_ROWS_EVENT

 It's common to refer to "row-based logging" (RBL) as "row-based
 replication" (RBR), but RBR is in fact a misnomer. Logging in this
 format can be done independent of whether the log is used for
 replication. That is, replication need not figure into the use of
 the binary log at all. Similar remarks apply to the terms
 "statement-based logging" (SBL) versus "statement-based
 replication" (SBR). Unfortunately, by now the RBR/SBR terminology
 is probably too well entrenched for there to be much hope of a
 return to the proper RBL/SBL terms, so I must content myself with
 including this nomenclatural screed here. :-)

19.11 Additional Resources

 The following resources provide additional information on the
 structure, content, or use of the binary log.

	
 In this document, see Chapter 18, Replication:
 Replication is based on the transfer of the binary log
 contents from master to slave.

	
 MySQL Reference Manual,
 The Binary Log

	
 MySQL Reference Manual, Replication Relay and Status Logs

	
 MySQL Reference Manual, mysqlbinlog — Utility for Processing Binary Log Files

Chapter 20 MyISAM Storage Engine

Table of Contents
	20.1 MyISAM Record Structure
		20.1.1 Introduction
	20.1.2 Physical Attributes of Columns
	20.1.3 Where to Look For More Information

	20.2 The .MYI File
		20.2.1 MyISAM Files

	20.3 MyISAM Dynamic Data File Layout
		20.3.1 Layout of the Record Storage Frame (Record Part, Record Block)
	20.3.2 Record Contents
	20.3.3 Packed Record Layout
	20.3.4 In-memory Record Layout

	20.4 MyISAM Compressed Data File Layout
		20.4.1 Huffman Compression
	20.4.2 The myisampack Program
	20.4.3 Record and Blob Length Encoding
	20.4.4 Code Tree Representation
	20.4.5 Usage of the Index File
	20.4.6 myisampackTricks
	20.4.7 Detailed Specification of the Decoding

	20.5 MyISAM Key Cache
		20.5.1 MyISAM Concurrent Insert

20.1 MyISAM Record Structure

20.1.1 Introduction

 When you say:

CREATE TABLE Table1 ...

 MySQL creates files named Table1.MYD
 ("MySQL Data"), Table1.MYI ("MySQL Index"),
 and Table1.frm ("Format"). These files will
 be in the directory:

/<datadir>/<database>/

 For example, if you use Linux, you might find the files in the
 /usr/local/var/test directory (assuming
 your database name is test). if you use
 Windows, you might find the files in the
 \mysql\data\test\ directory.

 Let's look at the .MYD Data file
 (MyISAM SQL Data file) more closely. There
 are three possible formats — fixed, dynamic, and packed.
 First, let's discuss the fixed format.

	
 Page Size

 Unlike most DBMSs, MySQL doesn't store on disk using pages.
 Therefore you will not see filler space between rows.
 (Reminder: This does not refer to BDB and
 InnoDB tables, which do use pages).

	
 Record Header

 The minimal record header is a set of flags:

	
 "X bit" = 0 if row is deleted, = 1 if row is not deleted

	
 "Null Bits" = 1 if row contains any null fields, or = 0
 otherwise.

	
 "Filler Bits" = 1

 The length of the record header is thus:

(1 + number of NULL columns + 7) / 8 bytes

 After the header, all columns are stored in the order that they
 were created, which is the same order that you would get from
 SHOW COLUMNS.

 Here's an example. Suppose you say:

CREATE TABLE Table1 (column1 CHAR(1), column2 CHAR(1), column3 CHAR(1));
INSERT INTO Table1 VALUES ('a', 'b', 'c');
INSERT INTO Table1 VALUES ('d', NULL, 'e');

 A CHAR(1) column takes precisely one byte
 (plus one bit of overhead that is assigned to every column
 — I'll describe the details of column storage later). So
 the file Table1.MYD looks like this:

 Hexadecimal Display of
 Table1.MYD file

F1 61 62 63 00 F5 64 20 65 00 abc..d e.

 Here's how to read this hexadecimal-dump display:

	
 The hexadecimal numbers F1 61 62 63 00 F5 64 20 65
 00 are byte values and the column on the right is
 an attempt to show the same bytes in ASCII.

	
 The F1 byte means that there are no null
 fields in the first row.

	
 The F5 byte means that the second column
 of the second row is NULL.

 (It's probably easier to understand the flag setting if you
 restate F5 as 11110101
 binary, and (a) notice that the third flag bit from
 the right is on, and (b) remember that the
 first flag bit is the X bit.)

 There are complications — the record header is more
 complex if there are variable-length fields — but the
 simple display shown in the example is exactly what you'd see if
 you looked at the MySQL Data file with a debugger or a
 hexadecimal file dumper.

 So much for the fixed format. Now, let's discuss the dynamic
 format.

 The dynamic file format is necessary if rows can vary in size.
 That will be the case if there are BLOB
 columns, or "true"VARCHAR columns. (Remember
 that MySQL may treat VARCHAR columns as if
 they're CHAR columns, in which case the fixed
 format is used.) A dynamic row has more fields in the header.
 The important ones are "the actual length", "the unused length",
 and "the overflow pointer". The actual length is the total
 number of bytes in all the columns. The unused length is the
 total number of bytes between one physical record and the next
 one. The overflow pointer is the location of the rest of the
 record if there are multiple parts.

 For example, here is a dynamic row:

 03 start of header - Block type, see mi_dynrec.c, _mi_get_block_info()
 04, 00 actual length
 0c unused length
 01, fc flags + overflow pointer
 **** data in the row
 ************ unused bytes
 <-- next row starts here)

 In the example, the actual length and the unused length are
 short (one byte each) because the table definition says that the
 columns are short — if the columns were potentially large,
 then the actual length and the unused length could be two bytes
 each, three bytes each, and so on. In this case, actual length
 plus unused length is 10 hexadecimal (sixteen decimal), which is
 a minimum.

 In a dynamic row, there is no deleted bit. Instead, deleted rows
 are marked with a block of type 0.

 As for the third format — packed — we will only say
 briefly that:

	
 Numeric values are stored in a form that depends on the
 range (start/end values) for the data type.

	
 All columns are packed using either Huffman or enum coding.

 For details, see the source files
 /myisam/mi_statrec.c (for fixed format),
 /myisam/mi_dynrec.c (for dynamic format),
 and /myisam/mi_packrec.c (for packed
 format).

 Note: Internally, MySQL uses a format much like the fixed format
 which it uses for disk storage. The main differences are:

	
 BLOB values have a length and a memory
 pointer rather than being stored inline.

	
 "True VARCHAR" (a column storage which
 will be fully implemented in version 5.0) will have a 16-bit
 length plus the data.

	
 All integer or floating-point numbers are stored with the
 low byte first. Point (3) does not apply for
 ISAM storage or internals.

20.1.2 Physical Attributes of Columns

 Next I'll describe the physical attributes of each column in a
 row. The format depends entirely on the data type and the size
 of the column, so, for every data type, I'll give a description
 and an example.

 All the types are defined within the include/mysql_com.h file
 within the enum_field_types enumerated
 structure. Here's a sample of the key values and corresponding
 numbers:

 MYSQL_TYPE_BIT 16 MYSQL_TYPE_BLOB 252 MYSQL_TYPE_DATE 10 MYSQL_TYPE_DATETIME 12 MYSQL_TYPE_DECIMAL 0 MYSQL_TYPE_DOUBLE 5 MYSQL_TYPE_ENUM 247 MYSQL_TYPE_FLOAT 4 MYSQL_TYPE_GEOMETRY 255 MYSQL_TYPE_INT24 9 MYSQL_TYPE_LONG 3 MYSQL_TYPE_LONGLONG 8 MYSQL_TYPE_LONG_BLOB 251 MYSQL_TYPE_MEDIUM_BLOB 250 MYSQL_TYPE_NEWDATE 14 MYSQL_TYPE_NEWDECIMAL 246 MYSQL_TYPE_NULL 6 MYSQL_TYPE_SET 248 MYSQL_TYPE_SHORT 2 MYSQL_TYPE_STRING 254 MYSQL_TYPE_TIME 11 MYSQL_TYPE_TIMESTAMP 7 MYSQL_TYPE_TINY 1 MYSQL_TYPE_TINY_BLOB 249 MYSQL_TYPE_VARCHAR 15 MYSQL_TYPE_VAR_STRING 253 MYSQL_TYPE_YEAR 13
	
 The character data types

 CHAR

	

	
 Storage: fixed-length string with space padding on the
 right.

	
 Example: a CHAR(5) column
 containing the value 'A' looks
 like: hexadecimal 41 20 20 20 20 --
 (length = A??'</code>)

 VARCHAR

	
 Storage: variable-length string with a preceding length.

	
 Example: a VARCHAR(7) column
 containing 'A' looks like:
 hexadecimal 01 41 -- (length =
 A'</code>)

	
 In MySQL 4.1 the length is always 1 byte. In MySQL 5.0
 the length may be either 1 byte (for up to 255) or 2
 bytes (for 256 to 65535). Some further random notes
 about the new format: In old tables (from MySQL 4.1 and
 earlier), VARCHAR columns have type
 MYSQL_TYPE_VAR_STRING, which works
 exactly like a CHAR with the
 exception that if you do an ALTER
 TABLE, it's converted to a true
 VARCHAR
 (MYSQL_TYPE_VARCHAR). (This means
 that old tables will work as before for users.) ...
 Apart from the above case, there are no longer any
 automatic changes from CHAR to
 VARCHAR or from
 VARCHAR to CHAR.
 MySQL will remember the declared type and stick to it
 ... VARCHAR is implemented in
 field.h and
 field.cc through the new class
 Field_varstring ...
 MyISAM implements
 VARCHAR both for dynamic-length and
 fixed-length rows (as signaled with the
 ROW_FORMAT flag) ...
 VARCHAR now stores trailing spaces.
 (If they don't fit, that's an error in strict mode.)
 Trailing spaces are not significant in comparisons ...
 In table->record, the space is
 reserved for length (1 or 2 bytes) plus data ... The
 number of bytes used to store the length is in the field
 Field_varchar->length_bytes. Note
 that internally this can be 2 even if
 Field_varchar->field_length <
 256 (for example, for a shortened key to a
 varchar(256)) ... There is a new
 macro,
 HA_VARCHAR_PACKLENGTH(field_length),
 that can be used on field->length
 in write_row / read_row to check how many length bytes
 are used. (In this context we can't have a field_length
 < 256 with a 2-byte pack length) ... When creating a
 key for the handler,
 HA_KEYTYPE_VARTEXT1 and
 HA_KEYTYPE_BINARY1 are used for a key
 on a column that has a 1-byte length prefix and
 HA_KEYTYPE_VARTEXT2 and
 HA_KEYTYPE_BINARY2 for a column that
 has a 2-byte length prefix. (In the future we will
 probably delete HA_KEYTYPE_BINARY#,
 as this can be instead be done by just using the
 binary character set with
 HA_KEYTYPE_VARTEXT#.) ... When
 sending a key to the handler for
 index_read() or records_in_range, we
 always use a 2-byte length for the
 VARCHAR to make things simpler. (For
 version 5.1 we intend to change CHARs
 to also use a 2-byte length for these functions, as this
 will speed up and simplify the key handling code on the
 handler side.) ... The test case file
 mysql-test/include/varchar.inc
 should be included in the code that tests the handler.
 See t/myisam.test for how to use
 this. You should verify the result against the one in
 mysql-test/t/myisam.result to
 ensure that you get the correct results ... A client
 sees both the old and new VARCHAR
 type as MYSQL_TYPE_VAR_STRING. It
 will never (at least for 5.0) see
 MYSQL_TYPE_VARCHAR. This ensures that
 old clients will work as before ... If you run MySQL 5.0
 with the --new option, MySQL will
 show old VARCHAR columns as
 'CHAR' in SHOW CREATE
 TABLE. (This is useful when testing whether a
 table is using the new VARCHAR type
 or not.)

	
 The numeric data types

 Important: MySQL almost always stores multi-byte binary
 numbers with the low byte first. This is called
 "little-endian" numeric storage; it's normal on Intel x86
 machines; MySQL uses it even for non-Intel machines so that
 databases will be portable.

 TINYINT

	
 Storage: fixed-length binary, always one byte.

	
 Example: a TINYINT column containing
 65 looks like: hexadecimal
 41 -- (length = 1, value = 65)

 SMALLINT

	
 Storage: fixed-length binary, always two bytes.

	
 Example: a SMALLINT column containing
 65 looks like: hexadecimal
 41 00 -- (length = 2, value = 65)

 MEDIUMINT

	
 Storage: fixed-length binary, always three bytes.

	
 Example: a MEDIUMINT column
 containing 65 looks like:
 hexadecimal 41 00 00 -- (length = 3,
 value = 65)

 INT

	
 Storage: fixed-length binary, always four bytes.

	
 Example: an INT column containing
 65 looks like: hexadecimal
 41 00 00 00 -- (length = 4, value = 65)

 BIGINT

	
 Storage: fixed-length binary, always eight bytes.

	
 Example: a BIGINT column containing
 65 looks like: hexadecimal
 41 00 00 00 00 00 00 00 -- (length = 8, value
 = 65)

 FLOAT

	
 Storage: fixed-length binary, always four bytes.

	
 Example: a FLOAT column containing
 approximately 65 looks like:
 hexadecimal 00 00 82 42 -- (length =
 4, value = 65)

 DOUBLE PRECISION

	
 Storage: fixed-length binary, always eight bytes.

	
 Example: a DOUBLE PRECISION column
 containing approximately 65 looks
 like: hexadecimal 00 00 00 00 00 40 50
 40 -- (length = 8, value = 65)

 REAL

	
 Storage: same as FLOAT, or same as
 DOUBLE PRECISION, depending on the
 setting of the --ansi option.

 DECIMAL

	
 MySQL 4.1 Storage: fixed-length string, with a leading
 byte for the sign, if any.

	
 Example: a DECIMAL(2) column
 containing 65 looks like:
 hexadecimal 20 36 35 -- (length = 3,
 value = ' 65')

	
 Example: a DECIMAL(2) UNSIGNED column
 containing 65 looks like:
 hexadecimal 36 35 -- (length = 2,
 value = '65')

	
 Example: a DECIMAL(4,2) UNSIGNED
 column containing 65 looks like:
 hexadecimal 36 35 2E 30 30 -- (length
 = 5, value = '65.00')

	
 MySQL 5.0 Storage: high byte first, four-byte chunks. We
 call the four-byte chunks "*decimal* digits". Since
 2**32 = There is an implied decimal point. Details are
 in /strings/decimal.c.

	
 Example: a MySQL 5.0 DECIMAL(21,9)
 column containing
 111222333444.555666777 looks like:
 hexadecimal 80 6f 0d 40 8a 04 21 1e cd
 59 -- (flag + '111', '222333444',
 '555666777').

 NUMERIC

	
 Storage: same as DECIMAL.

 BOOL

	
 Storage: same as TINYINT.

	
 The temporal data types

 DATE

	
 Storage: 3 byte integer, low byte first. Packed as: 'day
 + month*32 + year*16*32'

	
 Example: a DATE column containing
 '1962-01-02' looks like:
 hexadecimal 22 54 0F

 DATETIME

	
 Storage: eight bytes.

	
 Part 1 is a 32-bit integer containing year*10000 +
 month*100 + day.

	
 Part 2 is a 32-bit integer containing hour*10000 +
 minute*100 + second.

	
 Example: a DATETIME column for
 '0001-01-01 01:01:01' looks like:
 hexadecimal B5 2E 11 5A 02 00 00 00

 TIME

	
 Storage: 3 bytes, low byte first. This is stored as
 seconds: days*24*3600+hours*3600+minutes*60+seconds

	
 Example: a TIME column containing
 '1 02:03:04' (1 day 2 hour 3 minutes
 and 4 seconds) looks like: hexadecimal 58 6E
 01

 TIMESTAMP

	
 Storage: 4 bytes, low byte first. Stored as unix
 time(), which is seconds since the
 Epoch (00:00:00 UTC, January 1, 1970).

	
 Example: a TIMESTAMP column
 containing '2003-01-01 01:01:01'
 looks like: hexadecimal 4D AE 12 23

 YEAR

	
 Storage: same as unsigned TINYINT
 with a base value of 0 = 1901.

	
 Others

 SET

	
 Storage: one byte for each eight members in the set.

	
 Maximum length: eight bytes (for maximum 64 members).

	
 This is a bit list. The least significant bit
 corresponds to the first listed member of the set.

	
 Example: a SET('A','B','C') column
 containing 'A' looks like:
 01 -- (length = 1, value = 'A')

 ENUM

	
 Storage: one byte if less than 256 alternatives, else
 two bytes.

	
 This is an index. The value 1 corresponds to the first
 listed alternative. (Note: ENUM
 always reserves the value 0 for an erroneous value. This
 explains why 'A' is 1 instead of 0.)

	
 Example: an ENUM('A','B','C') column
 containing 'A' looks like:
 01 -- (length = A')

	
 The Large-Object data types

 Warning: Because TINYBLOB's preceding length
 is one byte long (the size of a TINYINT) and
 MEDIUMBLOB's preceding length is three bytes
 long (the size of a MEDIUMINT), it's easy to
 think there's some sort of correspondence between the
 BLOB and INT types. There
 isn't a BLOB's preceding length is not four
 bytes long (the size of an INT).
 TINYBLOB

	

	
 Storage: variable-length string with a preceding
 one-byte length.

	
 Example: a TINYBLOB column
 containing 'A' looks like:
 hexadecimal 01 41 -- (length = A')

 TINYTEXT

	
 Storage: same as TINYBLOB.

 BLOB

	
 Storage: variable-length string with a preceding
 two-byte length.

	
 Example: a BLOB column containing
 'A' looks like: hexadecimal
 01 00 41 -- (length = A')

 TEXT

	
 Storage: same as BLOB.

 MEDIUMBLOB

	
 Storage: variable-length string with a preceding length.

	
 Example: a MEDIUMBLOB column
 containing 'A' looks like:
 hexadecimal 01 00 00 41 -- (length =
 A')

 MEDIUMTEXT

	
 Storage: same as MEDIUMBLOB.

 LONGBLOB

	
 Storage: variable-length string with a preceding
 four-byte length.

	
 Example: a LONGBLOB column containing
 'A' looks like: hexadecimal
 01 00 00 00 41 -- (length = A')

 LONGTEXT

	
 Storage: same as LONGBLOB.

20.1.3 Where to Look For More Information

 References:

 Most of the formatting work for MyISAM
 columns is visible in the program
 /sql/field.cc in the source code directory.
 And in the MyISAM directory, the files that
 do formatting work for different record formats are:
 /myisam/mi_statrec.c,
 /myisam/mi_dynrec.c, and
 /myisam/mi_packrec.c.

20.2 The .MYI File

 A .MYI file for a MyISAM
 table contains the table's indexes.

 The .MYI file has two parts: the header
 information and the key values. So the next sub-sections will be
 "The .MYI Header" and "The
 .MYI Key Values".

 The .MYI
 Header

 A .MYI file begins with a header, with
 information about options, about file sizes, and about the "keys".
 In MySQL terminology, a "key" is something that you create with
 CREATE [UNIQUE] INDEX.

 Program files which read and write .MYI
 headers are in the ./myisam directory:
 mi_open.c has the routines that write each
 section of the header, mi_create.c has a
 routine that calls the mi_open.c routines in
 order, and myisamdef.h has structure
 definitions corresponding to what we're about to describe.

 These are the main header sections:

Section Occurrences
------- -----------
state Occurs 1 time
base Occurs 1 time
keydef (including keysegs) Occurs once for each key
recinfo Occurs once for each field

 Now we will look at each of these sections, showing each field.

 We are going to use an example table throughout the description.
 To make the example table, we executed these statements:

 CREATE TABLE T (S1 CHAR(1), S2 CHAR(2), S3 CHAR(3));
 CREATE UNIQUE INDEX I1 ON T (S1);
 CREATE INDEX I2 ON T (S2,S3);
 INSERT INTO T VALUES ('1', 'aa', 'b');
 INSERT INTO T VALUES ('2', 'aa', 'bb');
 INSERT INTO T VALUES ('3', 'aa', 'bbb');
 DELETE FROM T WHERE S1 = '2';

 We took a hexadecimal dump of the resulting file,
 T.MYI.

 In all the individual descriptions below, the column labeled
 “Dump From Example File” has the exact bytes that are
 in T.MYI. You can verify that by executing
 the same statements and looking at a hexadecimal dump yourself.
 With Linux this is possible using od -h T.MYI;
 with Windows you can use the command-line debugger.

 Along with the typical value, we may include a comment. The
 comment usually explains why the value is what it is. Sometimes
 the comment is derived from the comments in the source code.

 state

 This section is written by mi_open.c,
 mi_state_info_write().

Name Size Dump From Example File Comment
---- ---- ---------------------- -------

file_version 4 FE FE 07 01 from myisam_file_magic
options 2 00 02 HA_OPTION_COMPRESS_RECORD
 etc.
header_length 2 01 A2 this header example has
 0x01A2 bytes
state_info_length 2 00 B0 = MI_STATE_INFO_SIZE
 defined in myisamdef.h
base_info_length 2 00 64 = MI_BASE_INFO_SIZE
 defined in myisamdef.h
base_pos 2 00 D4 = where the base
 section starts
key_parts 2 00 03 a key part is a column
 within a key
unique_key_parts 2 00 00 key-parts+unique-parts
keys 1 02 here are 2 keys --
 I1 and I2
uniques 1 00 number of hash unique
 keys used internally
 in temporary tables
 (nothing to do with
 'UNIQUE' definitions)
language 1 08 "language for indexes"
max_block_size 1 01
fulltext_keys 1 00 # of fulltext keys.
 = 0 if version <= 4.0
not_used 1 00 to align to 8-byte
 boundary

state->open_count 2 00 01
state->changed 1 39 set if table updated;
 reset if shutdown (so
 one can examine this
 to see if there was an
 update without proper
 shutdown)
state->sortkey 1 FF "sorted by this key"
 (not used)
state->state.records 8 00 00 00 00 00 00 00 02 number of actual,
 un-deleted, records
state->state.del 8 00 00 00 00 00 00 00 01 # of deleted records
state->split 8 00 00 00 00 00 00 00 03 # of "chunks" (e.g.
 records or spaces left
 after record deletion)
state->dellink 8 00 00 00 00 00 00 00 07 "Link to next removed
 "block". Initially =
 HA_OFFSET_ERROR
state->state.key_file_length 8 00 00 00 00 00 00 0c 00 2048
state->state.data_file_length 8 00 00 00 00 00 00 00 15 = size of .MYD file
state->state.empty 8 00 00 00 00 00 00 00 00
state->state.key_empty 8 00 00 00 00 00 00 00 00
state->auto_increment 8 00 00 00 00 00 00 00 00
state->checksum 8 00 00 00 00 00 00 00 00
state->process 4 00 00 09 E6 from getpid(). process
 of last update
state->unique 4 00 00 00 0B initially = 0
state->status 4 00 00 00 00
state->update_count 4 00 00 00 04 updated for each write
 lock (there were 3
 inserts + 1 delete,
 total 4 operations)
state->key_root 8 00 00 00 00 00 00 04 00 offset in file where
 I1 keys start, can be
 = HA_OFFSET_ERROR
 00 00 00 00 00 00 08 00 state->key_root occurs
 twice because there
 are two keys
state->key_del 8 FF FF FF FF FF FF FF FF delete links for keys
 (occurs many times if
 many delete links)
state->sec_index_changed 4 00 00 00 00 sec_index = secondary
 index (presumably)
 not currently used
state->sec_index_used 4 00 00 00 00 "which extra indexes
 are in use"
 not currently used
state->version 4 3F 3F EB F7 "timestamp of create"
state->key_map 8 00 00 00 03 "what keys are in use"
state->create_time 8 00 00 00 00 3F 3F EB F7 "time when database
 created" (actually:
 time when file made)
state->recover_time 8 00 00 00 00 00 00 00 00 "time of last recover"
state->check_time 8 00 00 00 00 3F 3F EB F7 "time of last check"
state->rec_per_key_rows 8 00 00 00 00 00 00 00 00
state->rec_per_key_parts 4 00 00 00 00 (key_parts = 3, so
 00 00 00 00 rec_per_key_parts
 00 00 00 00 occurs 3 times)

 base

 This section is written by mi_open.c,
 mi_base_info_write(). The corresponding
 structure in myisamdef.h is
 MI_BASE_INFO.

 In our example T.MYI file, the first byte of
 the base section is at offset 0x00d4. That's
 where it's supposed to be, according to the header field
 base_pos (above).

Name Size Dump From Example File Comment
---- ---- ---------------------- -------

base->keystart 8 00 00 00 00 00 00 04 00 keys start at offset
 1024 (0x0400)
base->max_data_file_length 8 00 00 00 00 00 00 00 00
base->max_key_file_length 8 00 00 00 00 00 00 00 00
base->records 8 00 00 00 00 00 00 00 00
base->reloc 8 00 00 00 00 00 00 00 00
base->mean_row_length 4 00 00 00 00
base->reclength 4 00 00 00 07 length(s1)+length(s2)
 +length(s3)=7
base->pack_reclength 4 00 00 00 07
base->min_pack_length 4 00 00 00 07
base->max_pack_length 4 00 00 00 07
base->min_block_length 4 00 00 00 14
base->fields 4 00 00 00 04 4 fields: 3 defined,
 plus 1 extra
base->pack_fields 4 00 00 00 00
base->rec_reflength 1 04
base->key_reflength 1 04
base->keys 1 02 was 0 at start
base->auto_key 1 00
base->pack_bits 2 00 00
base->blobs 2 00 00
base->max_key_block_length 2 04 00 length of block = 1024
 bytes (0x0400)
base->max_key_length 2 00 10 including length of
 pointer
base->extra_alloc_bytes 2 00 00
base->extra_alloc_procent 1 00
base->raid_type 1 00
base->raid_chunks 2 00 00
base->raid_chunksize 4 00 00 00 00
[extra] that is, filler 6 00 00 00 00 00 00

 keydef

 This section is written by mi_open.c,
 mi_keydef_write(). The corresponding structure
 in myisamdef.h is
 MI_KEYDEF.

 This is a multiple-occurrence structure. Since there are two
 indexes in our example (I1 and I2), we will see that
 keydef occurs two times below. There is a
 subordinate structure, keyseg, which also
 occurs multiple times (once within the keydef
 for I1 and two times within the keydef for I2).

Name Size Dump From Example File Comment
---- ---- ---------------------- -------

/* key definition for I1 */

keydef->keysegs 1 01 there is 1 keyseg (for
 column S1).
keydef->key_alg 1 01 algorithm = Rtree or
 Btree
keydef->flag 2 00 49 HA_NOSAME +
 HA_SPACE_PACK_USED +
 HA_NULL_PART_KEY
keydef->block_length 2 04 00 that is, 1024
key def->keylength 2 00 06 field-count+sizeof(S1)
 sizeof(ROWID)
keydef->minlength 2 00 06
keydef->maxlength 2 00 06
 /* keyseg for S1 in I1 */
 keyseg->type 1 01 /* I1(S1) size(S1)=1,
 column = 1 */
 = HA_KEYTYPE_TEXT
 keyseg->language 1 08
 keyseg->null_bit 1 02
 keyseg->bit_start 1 00
 keyseg->bit_end 1 00
 [0] that is, filler 1 00
 keyseg->flag 2 00 14 HA_NULL_PART +
 HA_PART_KEY
 keyseg->length 2 00 01 length(S1) = 1
 keyseg->start 4 00 00 00 01 offset in the row
 keyseg->null_pos 4 00 00 00 00

/* key definition for I2 */

keydef->keysegs 1 02 keysegs=2, for columns
 S2 and S3
keydef->key_alg 1 01 algorithm = Rtree or
 Btree
keydef->flag 2 00 48 HA_SPACE_PACK_USED +
 HA_NULL_PART_KEY
keydef->block_length 2 04 00 that is, 1024
key def->keylength 2 00 0B field-count+ sizeof(all fields)+
 sizeof(RID)
keydef->minlength 2 00 0B
keydef->maxlength 2 00 0B
 /* keyseg for S2 in I2 */
 keyseg->type 1 01 /* I2(S2) size(S2)=2,
 column = 2 */
 keyseg->language 1 08
 keyseg->null_bit 1 04
 keyseg->bit_start 1 00
 keyseg->bit_end 1 00
 [0] that is, filler 1 00
 keyseg->flag 2 00 14 HA_NULL_PART +
 HA_PART_KEY
 keyseg->length 2 00 02 length(S2) = 2
 keyseg->start 4 00 00 00 02
 keyseg->null_pos 4 00 00 00 00
 /* keyseg for S3 in I2 */
 keyseg->type 1 01 /* I2(S3) size(S3)=3,
 column = 3 */
 keyseg->language 1 08
 keyseg->null_bit 1 08
 keyseg->bit_start 1 00
 keyseg->bit_end 1 00
 [0] thatis, filler 1 00
 keyseg->flag 2 00 14 HA_NULL_PART +
 HA_PART_KEY
 keyseg->length 2 00 03 length(S3) = 3
 keyseg->start 4 00 00 00 04
 keyseg->null_pos 4 00 00 00 00

 recinfo

 The recinfo section is written by
 mi_open.c,
 mi_recinfo_write(). The corresponding structure
 in myisamdef.h is
 MI_COLUMNDEF.

 This is another multiple-occurrence structure. It appears once for
 each field that appears in a key, including an extra field that
 appears at the start and has flags (for deletion and for null
 fields).

Name Size Dump From Example File Comment
---- ---- ---------------------- -------

recinfo->type 2 00 00 extra
recinfo->length 2 00 01
recinfo->null_bit 1 00
recinfo->null_pos 2 00 00

recinfo->type 2 00 00 I1 (S1)
recinfo->length 2 00 01
recinfo->null_bit 1 02
recinfo->null_pos 2 00 00

recinfo->type 2 00 00 I2 (S2)
recinfo->length 2 00 02
recinfo->null_bit 1 04
recinfo->null_pos 2 00 00

recinfo->type 2 00 00 I2 (S3)
recinfo->length 2 00 03
recinfo->null_bit 1 08
recinfo->null_pos 2 00 00

 We are now at offset 0xA2 within the file
 T.MYI. Notice that the value of the third
 field in the header, header_length, is 0xA2.
 Anything following this point, up till the first key value, is
 filler.

 The .MYI Key
 Values

 And now we look at the part which is not the information header:
 we look at the key values. The key values are in blocks (MySQL's
 term for pages). A block contains values from only one index. To
 continue our example: there is a block for the I1 key values, and
 a block for the I2 key values.

 According to the header information
 (state->key_root above), the I1 block starts
 at offset 0x0400 in the file, and the I2 block starts at offset
 0x0800 in the file.

 At offset 0x0400 in the file, we have this:

Name Size Dump From Example File Comment
---- ---- ---------------------- -------

(block header) 2 00 0E = size (inclusive)
 (first bit of word =
 0 meaning this is a
 B-Tree leaf, see the
 mi_test_if_nod macro)
(first key value) 2 01 31 Value is "1" (0x31).
(first key pointer) 4 00 00 00 00 Pointer is to Record
 #0000.
(second key value) 2 01 33 Value is "3" (0x33).
(second key pointer) 4 00 00 00 02 Pointer is to Record
 #0002.
(junk) 1010 rest of the 1024-byte
 block is unused

 At offset 0800x in the file, we have this:

Name Size Dump From Example File Comment
---- ---- ---------------------- -------

(block header) 2 00 18 = size (inclusive)
(first key value) 7 01 61 61 01 62 20 20 Value is "aa/b "
(first key pointer) 4 00 00 00 00 Pointer is to Record
 #0000.
(second key value) 7 01 61 61 01 62 62 62 Value is "aa/bbb"
(second key pointer) 4 00 00 00 02 Pointer is to Record
 #0002.
(junk) 1000 rest of the 1024-byte
 block is unused

 From the above illustrations, these facts should be clear:

	
 Each key contains the entire contents of all the columns,
 including trailing spaces in CHAR columns.
 There is no front truncation. There is no back truncation.
 (There can be space truncation if
 keyseg->flag
 HA_SPACE_PACK flag is on.)

	
 For fixed-row tables: The pointer is a fixed-size (4-byte)
 number which contains an ordinal row number. The first row is
 Record #0000. This item is analogous to the ROWID, or RID (row
 identifier), which other DBMSs use. For dynamic-row tables:
 The pointer is an offset in the .MYD
 file.

	
 The normal block length is 0x0400 (1024) bytes.

 These facts are not illustrated, but are also clear:

	
 If a key value is NULL, then the first byte
 is 0x00 (instead of 001 as in the preceding examples) and
 that's all. Even for a fixed CHAR(3)
 column, the size of the key value is only 1 byte.

	
 Initially the junk at the end of a block is filler bytes,
 value = A5. If MySQL shifts key values up after a
 DELETE, the end of the block is not
 overwritten.

	
 A normal block is at least 65% full, and typically 80% full.
 (This is somewhat denser than the typical B-tree algorithm
 would cause, it is thus because myisamchk
 -rq will make blocks nearly 100% full.)

	
 There is a pool of free blocks, which increases in size when
 deletions occur. If all blocks have the same normal block
 length (1024), then MySQL will always use the same pool.

	
 The maximum number of keys is 32
 (MI_MAX_KEY). The maximum number of
 segments in a key is 16 (MI_MAX_KEY_SEG).
 The maximum key length is 500
 (MI_MAX_KEY_LENGTH). The maximum block
 length is 16384 (MI_MAX_KEY_BLOCK_LENGTH).
 All these MI_... constants are expressed by #defines in the
 myisamdef.h file.

20.2.1 MyISAM Files

 Some notes about MyISAM file handling:

	
 If a table is never updated, MySQL will never touch the
 table files, so it would never be marked as closed or
 corrupted.

	
 If a table is marked readonly by the OS, it will only be
 opened in readonly mode. Any updates to it will fail.

	
 When a normal table is opened for reading by a
 SELECT, MySQL will open it in read/write
 mode, but will not write anything to it.

	
 A table can be closed during one of the following events:

	
 Out of space in table cache

	
 Someone executed flush tables

	
 MySQL was shut down

	
 flush_time expired (which causes an automatic
 flush-tables to be executed)

	
 When MySQL opens a table, it checks if the table is clean.
 If it isn't and the server was started with the
 --myisam-recover option, check the table
 and try to recover it if it's crashed. (The safest automatic
 recover option is probably
 --myisam-recover=BACKUP.)

20.3 MyISAM Dynamic Data File Layout

 Variable length records are contained in "frames". A record can be
 put in one or more frames, also called the record "parts" or
 "blocks". The sense of the frames is to allow reusage of the space
 of deleted records. Starting with an empty data file, records are
 put in a single frame each, unless a record is bigger than the
 maximum frame size (16MB - 4). When a record is deleted, its frame
 is marked deleted. When a record is inserted after this, it reuses
 the old frame. If the new record is smaller, the frame is split.
 The unused part is marked deleted. If a new record is bigger than
 the old frame, the frame is filled with the record as much as
 fits. The rest is inserted in other old frames, or, if non is
 available, in a new frame at end of file.

20.3.1 Layout of the Record Storage Frame (Record Part, Record Block)

MI_MIN_BLOCK_LENGTH 20 /* 20 bytes are required for the biggest frame type: Deleted block. */
 MI_MAX_BLOCK_LENGTH 16777212 /* 16MB - 4, max 3 bytes for length available, 4-byte aligned. */
 MI_DYN_ALIGN_SIZE 4 /* Frames start a 4-byte boundaries. */

 Part header[0] (decimal/hexadecimal, one byte):

0/00: Deleted block
 block_len 3 bytes [1-3]
 next_filepos 8 bytes [4-11]
 prev_filepos 8 bytes [12-19]
 => header length 20

1/01: Full small record, full block
 rec_len,data_len,block_len 2 bytes [1-2]
 => header length 3

2/02: Full big record, full block
 rec_len,data_len,block_len 3 bytes [1-3]
 => header length 4

3/03: Full small record, unused space
 rec_len,data_len 2 bytes [1-2]
 unused_len 1 byte [3]
 => header length 4

4/04: Full big record, unused space
 rec_len,data_len 3 bytes [1-3]
 unused_len 1 byte [4]
 => header length 5

5/05: Start small record
 rec_len 2 bytes [1-2]
 data_len,block_len 2 bytes [3-4]
 next_filepos 8 bytes [5-12]
 => header length 13

6/06: Start big record
 rec_len 3 bytes [1-3]
 data_len,block_len 3 bytes [4-6]
 next_filepos 8 bytes [7-14]
 => header length 15

7/07: End small record, full block
 data_len,block_len 2 bytes [1-2]
 => header length 3

8/08: End big record, full block
 data_len,block_len 3 bytes [1-3]
 => header length 4

9/09: End small record, unused space
 data_len 2 bytes [1-2]
 unused_len 1 byte [3]
 => header length 4

10/0A: End big record, unused space
 data_len 3 bytes [1-3]
 unused_len 1 byte [4]
 => header length 5

11/0B: Continue small record
 data_len,block_len 2 bytes [1-2]
 next_filepos 8 bytes [3-10]
 => header length 11

12/0C: Continue big record
 data_len,block_len 3 bytes [1-3]
 next_filepos 8 bytes [4-11]
 => header length 12

13/0D: Start giant record
 rec_len 4 bytes [1-4]
 data_len,block_len 3 bytes [5-7]
 next_filepos 8 bytes [8-15]
 => header length 16

 block_len does not include the header length except of deleted
 blocks. In deleted blocks block_len includes the header length.

 data_len is the number of bytes within this block that are part
 of the record.

 rec_len is the total record length including the data lengths of
 all belonging blocks.

 In deleted blocks next_filepos and prev_filepos make a doubly
 linked list over all deleted blocks. At list start, prev_filepos
 is HA_OFFSET_ERROR (all bits set). At list end, next_filepos is
 HA_OFFSET_ERROR (all bits set).

 In non-deleted blocks next_filepos points to the next part of
 the record.

 The read function for the block header of dynamic records is
 mi_dynrec.c:_mi_get_block_info().

20.3.2 Record Contents

 This section is still to be written.

20.3.3 Packed Record Layout

pack bits (!= NULL bits!): One bit per packable column:
 FIELD_BLOB: Set if blob is empty. No blob data in record.
 FIELD_SKIP_ZERO: Set if all bytes zero, no data in record.
 FIELD_SKIP_ENDSPACE,
 FIELD_SKIP_PRESPACE: Set if some blanks stripped in record.
 => The "pack bits" are rounded up to the next byte boundary.

Record contents from the in-memory representation.
Each field is copied verbatim unless packed according
to the "pack bits" paragraph.

20.3.4 In-memory Record Layout

null bits: One bit per column that can be NULL.
 The "null bits" are rounded up to the next byte boundary.
 the number of "null bytes" are also referred as data_offset.

fields: One field per column. No separators, length fields, etc.
 Length (pack_length) and layout of the fields depend on the
 field type:

 -- to be added --

 Note: The "in-memory record layout" is used by the SQL layer. It
 is independent from storage engines. All storage engines have to
 accept and produce this in-memory format at the handler
 interface.

20.4 MyISAM Compressed Data File Layout

 This chapter describes the layout for the data file of compressed
 MyISAM tables.

20.4.1 Huffman Compression

 MyISAM compression is based on Huffman
 compression. In his article from 1952 Huffman proved that his
 algorithm uses the least possible number of bits to encode a
 sequence of messages. The number of bits assigned to each
 message depends on its probability to appear in the sequence.

 Huffman did not specify exactly, what those "messages" are. One
 could take all possible values - say of a table column - as
 "messages". But if there are too many of them, the code tables
 could become bigger than the uncompressed table. One would need
 to specify every possible value once and the code tree with its
 indexes and offsets. Not to forget the effort to step through
 big binary trees for every value and - on the encoding side -
 the comparison of each value against the already collected
 distinct values.

 The usual way to define "Huffman messages" is to take the
 possible 256 values, which a byte can express, as the
 "messages". That way the code trees are of limited size. On the
 other hand, the theoretical maximum compression is 1:8 (12.5%)
 in this case.

20.4.2 The myisampack Program

 myisampack tries both ways to compress the
 column values. When starting to analyze the existing
 uncompressed data, it collects distinct column values up to a
 limit of 8KB. If there are more, it falls back to byte value
 compression for this column.

 This means also that myisampack may use
 different algorithms for different columns. Besides a couple of
 other tricks, myisampack determines for every
 column if distinct column value compression or byte value
 compression is better. After that it tries to combine byte value
 compression trees of different columns into one or more code
 trees. This means that finally we may have less code trees than
 columns. Therefore the column information in the file header
 contains the number of the code tree used for each column. Some
 columns might not need a code tree at all. This happens for
 columns which have the same value in all records.

20.4.3 Record and Blob Length Encoding

 Since the compressed data file should be usable for read-only
 purposes by the MySQL database management system, every record
 starts on a byte boundary. For easier handling by the system,
 every record begins with a length information for the compressed
 record and a length information for the total size of all
 uncompressed blobs of this record. Both lengths are encoded in 1
 to 5 bytes, depending on its value.

 A length from 1 to 253 bytes is represented in one byte. A
 length of 254 to 65535 bytes (64KB-1) is represented by three
 bytes. The first contains the value 254 and the next two bytes
 contain the plain length. The low order byte goes first. A
 length of 65536 to 4294967295 bytes (4GB-1) is represented by
 five bytes. The first contains the value 255 and the next four
 bytes contain the plain length. The low order byte goes first.

 The encoded compressed record length does not include these
 length bytes. It tells the number of bytes which follow behind
 the length bytes for this record.

20.4.4 Code Tree Representation

 The code trees are binary trees. Every node has exactly two
 children. The children can be leaves or branches. A leaf
 contains one original, uncompressed value. A branch contains a
 pointer to another node. The Huffman codes represent the
 navigation through the tree. Every left branch gets a 0 bit,
 every right branch gets a 1 bit.

 The in-memory representation of the trees are two unsigned
 integers per node. Each describes either a leaf value or an
 offset (in unsigned integers relative from this node) to another
 node. To distinguish values from offsets, the 15th bit (decimal
 value 32768) is set together with offsets. This is safe as the
 size of the trees is limited by either having a maximum of 256
 elements for byte value compression or 4096 elements for
 distinct column value compression.

 The representation of the trees in the compressed data file is
 almost the same. But instead of writing all bits of the unsigned
 integers, only as many bits are written as are required to
 represent the highest value or offset respectively. One more bit
 per value/offset is written in advance, to distinguish both. The
 number of bits required per value and per offset is computed in
 advance and part of the code tree description.

20.4.5 Usage of the Index File

 While the header of the compressed data file contains a lot of
 information, there are still some things which need to be taken
 from the index file. These are the number of columns of the
 table and the length of each column. The latter is required for
 columns with suppressed leading spaces or suppressed trailing
 spaces or zeros.

20.4.6 myisampackTricks

 As already mentioned, myisampack uses some
 tricks to decrease the amount of data to be encoded. These cope
 with leading and trailing spaces or zeros or with all blank or
 NULL fields.

 I do not describe these in detail here. They do not materialize
 in the compressed data files other than the later mentioned
 field and pack types. They are however important to know for
 decoding the records.

20.4.7 Detailed Specification of the Decoding

 Below follows the detailed specification of the encoding:

 Datafile fixed header (32 bytes):

4 byte magic number
4 byte total header length (fixed + column info + code trees)
4 byte minimum packed record length
4 byte maximum packed record length
4 byte total number of elements in all code trees
4 byte total number of bytes collected for distinct column values
2 byte number of code trees
1 byte maximum number of bytes required to represent record+blob lengths
1 byte record pointer length, number of bytes for compressed data file length
4 byte zeros

 Column Information. For every column in the table:

5 bits field type
 FIELD_NORMAL 0
 FIELD_SKIP_ENDSPACE 1
 FIELD_SKIP_PRESPACE 2
 FIELD_SKIP_ZERO 3
 FIELD_BLOB 4
 FIELD_CONSTANT 5
 FIELD_INTERVALL 6
 FIELD_ZERO 7
 FIELD_VARCHAR 8
 FIELD_CHECK 9

6 bits pack type as a set of flags
 PACK_TYPE_SELECTED 1
 PACK_TYPE_SPACE_FIELDS 2
 PACK_TYPE_ZERO_FILL 4

5 bits if pack type contains PACK_TYPE_ZERO_FILL
 minimum number of trailing zero bytes in this column
 else
 number of bits to encode the number of
 packed bytes in this column (length_bits)

x bits number of the code tree used to encode this column
 x is the minimum number of bits required to represent the highest
 tree number.

 Alignment:

x bits alignment to the next byte border

 Code Trees. For every tree:

1 bit compression type
 0 = byte value compression
 8 bits minimum byte value coded by this tree
 9 bits number of byte values encoded by this tree
 5 bits number of bits used to encode the byte values
 5 bits number of bits used to encode offsets to next tree elements
 1 = distinct column value compression
 15 bits number of distinct column values encoded by this tree
 16 bits length of the buffer with all column values
 5 bits number of bits used to encode the index of the column value
 5 bits number of bits used to encode offsets to next tree elements
For each code tree element:
 1 bit IS_OFFSET
 x bits the announced number of bits for either a value or an offset
x bits alignment to the next byte border
If compression by distinct column values:
 The number of 8-bit values that make up the column value buffer

 Compressed Records. For every record:

1-5 bytes length of the compressed record in bytes
 1. byte 0..253 length
 254 length encoded in the next two bytes little endian
 255 length encoded in the next x bytes little endian
 x = 3 for pack file version 1
 x = 4 for pack file version > 1
1-5 bytes total length of all expanded blobs of this record
 1. byte 0..253 length
 254 length encoded in the next two bytes little endian
 255 length encoded in the next x bytes little endian
 x = 3 for pack file version 1
 x = 4 for pack file version > 1
For every column:
 If pack type includes PACK_TYPE_SPACE_FIELDS,
 1 bit 1 = spaces only, 0 = not only spaces
 In case the field type is of:
 FIELD_SKIP_ZERO
 1 bit 1 = zeros only, 0 = not only zeros
 In the latter case
 x bits the Huffman code for every byte
 FIELD_NORMAL
 x bits the Huffman code for every byte
 FIELD_SKIP_ENDSPACE
 If pack type includes PACK_TYPE_SELECTED,
 1 bit 1 = more than min endspace, 0 = not more
 In the former case
 x bits nr of extra spaces, x = length_bits
 else
 x bits nr of extra spaces, x = length_bits
 x bits the Huffman code for every byte
 FIELD_SKIP_PRESPACE
 If pack type includes PACK_TYPE_SELECTED,
 1 bit 1 = more than min prespace, 0 = not more
 In the former case
 x bits nr of extra spaces, x = length_bits
 else
 x bits nr of extra spaces, x = length_bits
 x bits the Huffman code for every byte
 FIELD_CONSTANT or FIELD_ZERO or FIELD_CHECK
 nothing for these
 FIELD_INTERVALL
 x bits the Huffman code for the buffer index of the column value
 FIELD_BLOB
 1 bit 1 = blob is empty, 0 = not empty
 In the latter case
 x bits blob length, x = length_bits
 x bits the Huffman code for every byte
 FIELD_VARCHAR
 1 bit 1 = varchar is empty, 0 = not empty
 In the latter case
 x bits blob length, x = length_bits
 x bits the Huffman code for every byte
 x bits alignment to the next byte border

20.5 MyISAM Key Cache

20.5.1 MyISAM Concurrent Insert

Session1 Session2
======== ========
 +------------+ +------------+
TABLE		TABLE		
	+---------------+			
s --->	TABLE_SHARE	<--- s		
file				file
 +-----|------+ | | +-----|------+
 | +---------------+ |
 v v
 +------------+ +------------+
ha_myisam		ha_myisam
file		file
 +-----|------+ +-----|------+
 | |
 v v
 +------------+ +------------+
MI_INFO		MI_INFO		
	+---------------+			
s --->	MYISAM_SHARE	<--- s		
state -+--------> state.state <--------+- state				
v				v
save_state				save_state
dfile		kfile		dfile
 +-----|------+ +-----|---------+ +-----|------+
 | | |
 | v |
 | .MYI |
 | |
 +------------> .MYD <----------------+

 MI_INFO::state may either point to MI_INFO::save_state or to
 MYISAM_SHARE::state.state. The latter is the normal case.
 Amongst others, state contains data_file_length.

 To support concurrent inserts, every statement starts with
 copying MYISAM_SHARE::state.state to MI_INFO::save_state and
 lets MI_INFO::state point to the copy. This is done in
 mi_get_status(). This is called from the hook
 THR_LOCK::(*get_status)(). Some of the hooks are explained in
 thr_lock.c. (*get_status)() is called when a thread gets a lock.

 The copy back is done in mi_update_status(), which is called
 from mi_lock_database() when unlocking from a write lock. This,
 in turn, is called from ha_myisam::external_lock() from
 unlock_external() from mysql_unlock_tables(). Until 5.1 this was
 done after thr_multi_unlock(). So it was possible that another
 thread (or even multiple of them) could thr_lock the table and
 work with it before the first thread updates the status. In 6.0
 the order is reversed. The status should now be accurate when
 another thread acquires a thr_lock.

 However, with concurrent inserts, the trick is that read locks
 are allowed to proceed while a concurrent insert holds a write
 lock. So it can copy outdated information when entering the
 lock. Since it works on its local copy of the state, it won't
 notice rows that are made available through mi_update_status()
 after it got the lock.

 But there is another chance to miss the row(s). See also
 Bug#36618
 (myisam insert not immediately visible to select from another
 client). When the concurrent insert ends, it reports success to
 its client application before it unlocks the table. So there is
 non-deterministic time span between the seemingly successful
 ended insert and the final update of the MyISAM status.

Chapter 21 InnoDB Storage Engine

Table of Contents
	21.1 InnoDB Record Structure
		21.1.1 High-Altitude Picture
	21.1.2 Where to Look for More Information

	21.2 InnoDB Page Structure
		21.2.1 High-Altitude View
	21.2.2 Example
	21.2.3 Where to Look For More Information

21.1 InnoDB Record Structure

 This page contains:

	
 A high-altitude "summary" picture of the parts of a
 MySQL/InnoDB record structure.

	
 A description of each part.

	
 An example.

 After reading this page, you will know how
 MySQL/InnoDB stores a physical record.

21.1.1 High-Altitude Picture

 The chart below shows the three parts of a physical record.

	Name	Size
	Field Start Offsets	(F*1) or (F*2) bytes
	Extra Bytes	6 bytes
	Field Contents	depends on content

 Legend: The letter 'F' stands for 'Number Of Fields'.

 The meaning of the parts is as follows:

	
 The FIELD START OFFSETS is a list of numbers containing the
 information "where a field starts".

	
 The EXTRA BYTES is a fixed-size header.

	
 The FIELD CONTENTS contains the actual data.

 An Important Note About The Word
 "Origin"

 The "Origin" or "Zero Point" of a record is the first byte of
 the Field Contents --- not the first byte of the Field Start
 Offsets. If there is a pointer to a record, that pointer is
 pointing to the Origin. Therefore the first two parts of the
 record are addressed by subtracting from the pointer, and only
 the third part is addressed by adding to the pointer.

21.1.1.1 FIELD START OFFSETS

 The Field Start Offsets is a list in which each entry is the
 position, relative to the Origin, of the start of the next
 field. The entries are in reverse order, that is, the first
 field's offset is at the end of the list.

 An example: suppose there are three columns. The first
 column's length is 1, the second column's length is 2, and the
 third column's length is 4. In this case, the offset values
 are, respectively, 1, 3 (1+2), and 7 (1+2+4). Because values
 are reversed, a core dump of the Field Start Offsets would
 look like this: 07,03,01.

 There are two complications for special cases:

	
 Complication #1: The size of each offset can be either one
 byte or two bytes. One-byte offsets are only usable if the
 total record size is less than 127. There is a flag in the
 "Extra Bytes" part which will tell you whether the size is
 one byte or two bytes.

	
 Complication #2: The most significant bits of an offset
 may contain flag values. The next two paragraphs explain
 what the contents are.

 When The Size Of Each Offset Is One
 Byte

	
 1 bit = NULL, = NULL

	
 7 bits = the actual offset, a number between 0 and 127

 When The Size Of Each Offset Is Two
 Bytes

	
 1 bit = NULL, = NULL

	
 1 bit = 0 if field is on same page as offset, = 1 if field
 and offset are on different pages

	
 14 bits = the actual offset, a number between 0 and 16383

 It is unlikely that the "field and offset are on different
 pages" unless the record contains a large
 BLOB.

21.1.1.2 EXTRA BYTES

 The Extra Bytes are a fixed six-byte header.

	
 Name

	
 Size

	
 Description

	
 info_bits:

	
 ??

	
 ??

	
 ()

	
 1 bit

	
 unused or unknown

	
 ()

	
 1 bit

	
 unused or unknown

	
 deleted_flag

	
 1 bit

	
 1 if record is deleted

	
 min_rec_flag

	
 1 bit

	
 1 if record is predefined minimum record

	
 n_owned

	
 4 bits

	
 number of records owned by this record

	
 heap_no

	
 13 bits

	
 record's order number in heap of index page

	
 n_fields

	
 10 bits

	
 number of fields in this record, 1 to 1023

	
 1byte_offs_flag

	
 1 bit

	
 1 if each Field Start Offsets is 1 byte long (this
 item is also called the "short" flag)

	
 next 16 bits

	
 16 bits

	
 pointer to next record in page

	
 TOTAL

	
 48 bits

	
 ??

 Total size is 48 bits, which is six bytes.

 If you're just trying to read the record, the key bit in the
 Extra Bytes is 1byte_offs_flag — you need to know if
 1byte_offs_flag is 1 (that is, "short 1-byteoffsets") or 0
 (that is, "2-byte offsets").

 Given a pointer to the Origin, InnoDB finds
 the start of the record as follows:

	
 Let X = n_fields (the number of fields is by definition
 equal to the number of entries in the Field Start Offsets
 Table).

	
 If 1byte_offs_flag equals 0, then let X = X * 2 because
 there are two bytes for each entry instead of just one.

	
 Let X = X + 6, because the fixed size of Extra Bytes is 6.

	
 The start of the record is at (pointer value minus X).

21.1.1.3 FIELD CONTENTS

 The Field Contents part of the record has all the data. Fields
 are stored in the order they were defined in.

 There are no markers between fields, and there is no marker or
 filler at the end of a record.

 Here's an example.

	
 I made a table with this definition:

CREATE TABLE T
 (FIELD1 VARCHAR(3), FIELD2 VARCHAR(3), FIELD3 VARCHAR(3))
 Type=InnoDB;

 To understand what follows, you must know that table
 T has six columns — not three —
 because InnoDB automatically added three
 "system columns" at the start for its own housekeeping. It
 happens that these system columns are the row ID, the
 transaction ID, and the rollback pointer, but their values
 don't matter now. Regard them as three black boxes.

	
 I put some rows in the table. My last three
 INSERT statements were:

INSERT INTO T VALUES ('PP', 'PP', 'PP');
INSERT INTO T VALUES ('Q', 'Q', 'Q');
INSERT INTO T VALUES ('R', NULL, NULL);

	
 I ran Borland's TDUMP to get a hexadecimal dump of the
 contents of \mysql\data\ibdata1,
 which (in my case) is the MySQL/InnoDB
 data file (on Windows).

 Here is an extract of the dump:

	
 Address Values in
 Hexadecimal

	
 Values in ASCII

	
 0D4280: 00 00 2D 00 84 4F 4F 4F 4F 4F 4F 4F
 4F 4F 19 17

	
 ..-..OOOOOOOOO..

	
 0D4290: 15 13 0C 06 00 00 78 0D 02 BF 00 00
 00 00 04 21

	
 x........!

	
 0D42A0: 00 00 00 00 09 2A 80 00 00 00 2D 00
 84 50 50 50

	
 *....-..PPP

	
 0D42B0: 50 50 50 16 15 14 13 0C 06 00 00 80
 0D 02 E1 00

	
 PPP.............

	
 0D42C0: 00 00 00 04 22 00 00 00 00 09 2B 80
 00 00 00 2D

	
 ".....+....-

	
 0D42D0: 00 84 51 51 51 94 94 14 13 0C 06 00
 00 88 0D 00

	
 ..QQQ...........

	
 0D42E0: 74 00 00 00 00 04 23 00 00 00 00 09
 2C 80 00 00

	
 t.....#.....,...

	
 0D42F0: 00 2D 00 84 52 00 00 00 00 00 00 00
 00 00 00 00

	
 .-..R...........

 A reformatted version of the dump, showing only the relevant
 bytes, looks like this (I've put a line break after each field
 and added labels):

 Reformatted Hexadecimal Dump

19 17 15 13 0C 06 Field Start Offsets /* First Row */
00 00 78 0D 02 BF Extra Bytes
00 00 00 00 04 21 System Column #1
00 00 00 00 09 2A System Column #2
80 00 00 00 2D 00 84 System Column #3
50 50 Field1 'PP'
50 50 Field2 'PP'
50 50 Field3 'PP'

16 15 14 13 0C 06 Field Start Offsets /* Second Row */
00 00 80 0D 02 E1 Extra Bytes
00 00 00 00 04 22 System Column #1
00 00 00 00 09 2B 80 System Column #2
00 00 00 2D 00 84 System Column #3
51 Field1 'Q'
51 Field2 'Q'
51 Field3 'Q'

94 94 14 13 0C 06 Field Start Offsets /* Third Row */
00 00 88 0D 00 74 Extra Bytes
00 00 00 00 04 23 System Column #1
00 00 00 00 09 2C System Column #2
80 00 00 00 2D 00 84 System Column #3
52 Field1 'R'

 You won't need explanation if you followed everything I've
 said, but I'll add helpful notes for the three trickiest
 details.

	
 Helpful Notes About "Field Start Offsets":

 Notice that the sizes of the record's fields, in forward
 order, are: 6, 6, 7, 2, 2, 2. Since each offset is for the
 start of the "next" field, the hexadecimal offsets are 06, 0c
 (6+6), 13 (6+6+7), 15 (6+6+7+2), 17 (6+6+7+2+2), 19
 (6+6+7+2+2+2). Reversing the order, the Field Start Offsets of
 the first record are: 19,17,15,13,0c,06.

	
 Helpful Notes About "Extra Bytes":

 Look at the Extra Bytes of the first record: 00 00 78
 0D 02 BF. The fourth byte is 0D
 hexadecimal, which is 1101 binary
 ... the 110 is the last bits of n_fields (110
 binary is 6 which is indeed the number of fields in
 the record) and the final 1 bit is 1byte_offs_flag. The fifth
 and sixth bytes, which contain 02 BF,
 constitute the "next" field. Looking at the original
 hexadecimal dump, at address 0D42BF (which
 is position 02BF within the page), you'll
 see the beginning bytes of System Column #1 of the second row.
 In other words, the "next" field points to the "Origin" of the
 following row.

	
 Helpful Notes About NULLs:

 For the third row, I inserted NULLs in
 FIELD2 and FIELD3. Therefore in the Field Start Offsets the
 top bit is on for these fields (the values
 are 94 hexadecimal, 94
 hexadecimal, instead of 14
 hexadecimal, 14 hexadecimal). And
 the row is shorter because the NULLs take
 no space.

21.1.2 Where to Look for More Information

 References:

 The most relevant InnoDB source-code files
 are rem0rec.c,
 rem0rec.ic, and
 rem0rec.h in the rem
 ("Record Manager") directory.

21.2 InnoDB Page Structure

 InnoDB stores all records inside a fixed-size
 unit which is commonly called a "page" (though
 InnoDB sometimes calls it a "block" instead).
 Currently all pages are the same size, 16KB.

 A page contains records, but it also contains headers and
 trailers. I'll start this description with a high-altitude view of
 a page's parts, then I'll describe each part of a page. Finally,
 I'll show an example. This discussion deals only with the most
 common format, for the leaf page of a data file.

21.2.1 High-Altitude View

 An InnoDB page has seven parts:

	
 Fil Header

	
 Page Header

	
 Infimum + Supremum Records

	
 User Records

	
 Free Space

	
 Page Directory

	
 Fil Trailer

 As you can see, a page has two header/trailer pairs. The inner
 pair, "Page Header" and "Page Directory", are mostly the concern
 of the \page program group, while the outer pair, "Fil Header"
 and "Fil Trailer", are mostly the concern of the \fil program
 group. The "Fil" header also goes by the name of "File Page
 Header".

 Sandwiched between the headers and trailers, are the records and
 the free (unused) space. A page always begins with two
 unchanging records called the Infimum and the Supremum. Then
 come the user records. Between the user records (which grow
 downwards) and the page directory (which grows upwards) there is
 space for new records.

21.2.1.1 Fil Header

 The Fil Header has eight parts, as follows:

	
 Name

	
 Size

	
 Remarks

	
 FIL_PAGE_SPACE

	
 4

	
 4 ID of the space the page is in

	
 FIL_PAGE_OFFSET

	
 4

	
 ordinal page number from start of space

	
 FIL_PAGE_PREV

	
 4

	
 offset of previous page in key order

	
 FIL_PAGE_NEXT

	
 4

	
 offset of next page in key order

	
 FIL_PAGE_LSN

	
 8

	
 log serial number of page's latest log record

	
 FIL_PAGE_TYPE

	
 2

	
 current defined types are:
 FIL_PAGE_INDEX,
 FIL_PAGE_UNDO_LOG,
 FIL_PAGE_INODE,
 FIL_PAGE_IBUF_FREE_LIST

	
 FIL_PAGE_FILE_FLUSH_LSN

	
 8

	
 "the file has been flushed to disk at least up to
 this lsn" (log serial number), valid only on the
 first page of the file

	
 FIL_PAGE_ARCH_LOG_NO

	
 4

	
 the latest archived log file number at the time that
 FIL_PAGE_FILE_FLUSH_LSN was
 written (in the log)

	
 FIL_PAGE_SPACE is a necessary
 identifier because different pages might belong to
 different (table) spaces within the same file. The word
 "space" is generic jargon for either "log" or
 "tablespace".

	
 FIL_PAGE_PREV and
 FIL_PAGE_NEXT are the page's "backward"
 and "forward" pointers. To show what they're about, I'll
 draw a two-level B-tree.

 - root -

 |

 | |
 | |
 -------- --------
 - leaf - <--> - leaf -
 -------- --------

 Everyone has seen a B-tree and knows that the entries in the
 root page point to the leaf pages. (I indicate those pointers
 with vertical '|' bars in the drawing.) But sometimes people
 miss the detail that leaf pages can also point to each other
 (I indicate those pointers with a horizontal two-way pointer
 '<-->' in the drawing). This feature allows
 InnoDB to navigate from leaf to leaf
 without having to back up to the root level. This is a
 sophistication which you won't find in the classic B-tree,
 which is why InnoDB should perhaps be
 called a B+-tree instead.

	
 The fields FIL_PAGE_FILE_FLUSH_LSN,
 FIL_PAGE_PREV, and
 FIL_PAGE_NEXT all have to do with logs,
 so I'll refer you to my article “How Logs Work With
 MySQL And InnoDB” on
 devarticles.com.

	
 FIL_PAGE_FILE_FLUSH_LSN and
 FIL_PAGE_ARCH_LOG_NO are valid only for
 the first page of a data file.

21.2.1.2 Page Header

 The Page Header has 14 parts, as follows:

	
 Name

	
 Size

	
 Remarks

	
 PAGE_N_DIR_SLOTS

	
 2

	
 number of directory slots in the Page Directory
 part; initial value = 2

	
 PAGE_HEAP_TOP

	
 2

	
 record pointer to first record in heap

	
 PAGE_N_HEAP

	
 2

	
 number of heap records; initial value = 2

	
 PAGE_FREE

	
 2

	
 record pointer to first free record

	
 PAGE_GARBAGE

	
 2

	
 "number of bytes in deleted records"

	
 PAGE_LAST_INSERT

	
 2

	
 record pointer to the last inserted record

	
 PAGE_DIRECTION

	
 2

	
 either PAGE_LEFT,
 PAGE_RIGHT, or
 PAGE_NO_DIRECTION

	
 PAGE_N_DIRECTION

	
 2

	
 number of consecutive inserts in the same direction,
 for example, "last 5 were all to the left"

	
 PAGE_N_RECS

	
 2

	
 number of user records

	
 PAGE_MAX_TRX_ID

	
 8

	
 the highest ID of a transaction which might have
 changed a record on the page (only set for secondary
 indexes)

	
 PAGE_LEVEL

	
 2

	
 level within the index (0 for a leaf page)

	
 PAGE_INDEX_ID

	
 8

	
 identifier of the index the page belongs to

	
 PAGE_BTR_SEG_LEAF

	
 10

	
 "file segment header for the leaf pages in a B-tree"
 (this is irrelevant here)

	
 PAGE_BTR_SEG_TOP

	
 10

	
 "file segment header for the non-leaf pages in a
 B-tree" (this is irrelevant here)

 (Note: I'll clarify what a "heap" is when I discuss the User
 Records part of the page.)

 Some of the Page Header parts require further explanation:

	
 PAGE_FREE :

 Records which have been freed (due to deletion or migration)
 are in a one-way linked list. The PAGE_FREE
 pointer in the page header points to the first record in the
 list. The "next" pointer in the record header (specifically,
 in the record's Extra Bytes) points to the next record in the
 list.

	
 PAGE_DIRECTION and
 PAGE_N_DIRECTION:

 It's useful to know whether inserts are coming in a constantly
 ascending sequence. That can affect
 InnoDB's efficiency.

	
 PAGE_HEAP_TOP and
 PAGE_FREE and
 PAGE_LAST_INSERT:

 Warning: Like all record pointers, these point not to the
 beginning of the record but to its Origin (see the earlier
 discussion of Record Structure).

	
 PAGE_BTR_SEG_LEAF and
 PAGE_BTR_SEG_TOP:

 These variables contain information (space ID, page number,
 and byte offset) about index node file segments.
 InnoDB uses the information for allocating
 new pages. There are two different variables because
 InnoDB allocates separately for leaf pages
 and upper-level pages.

21.2.1.3 The Infimum and Supremum Records

 "Infimum" and "supremum" are real English words but they are
 found only in arcane mathematical treatises, and in
 InnoDB comments. To
 InnoDB, an infimum is lower than the lowest
 possible real value (negative infinity) and a supremum is
 greater than the greatest possible real value (positive
 infinity). InnoDB sets up an infimum record
 and a supremum record automatically at page-create time, and
 never deletes them. They make a useful barrier to navigation
 so that "get-prev" won't pass the beginning and "get-next"
 won't pass the end. Also, the infimum record can be a dummy
 target for temporary record locks.

 The InnoDB code comments distinguish
 between "the infimum and supremum records" and the "user
 records" (all other kinds).

 It's sometimes unclear whether InnoDB
 considers the infimum and supremum to be part of the header or
 not. Their size is fixed and their position is fixed, so I
 guess so.

21.2.1.4 User Records

 In the User Records part of a page, you'll find all the
 records that the user inserted.

 There are two ways to navigate through the user records,
 depending whether you want to think of their organization as
 an unordered or an ordered list.

 An unordered list is often called a "heap". If you make a pile
 of stones by saying "whichever one I happen to pick up next
 will go on top" — rather than organizing them according
 to size and colour — then you end up with a heap.
 Similarly, InnoDB does not want to insert
 new rows according to the B-tree's key order (that would
 involve expensive shifting of large amounts of data), so it
 inserts new rows right after the end of the existing rows (at
 the top of the Free Space part) or wherever there's space left
 by a deleted row.

 But by definition the records of a B-tree must be accessible
 in order by key value, so there is a record pointer in each
 record (the "next" field in the Extra Bytes) which points to
 the next record in key order. In other words, the records are
 a one-way linked list. So InnoDB can access
 rows in key order when searching.

21.2.1.5 Free Space

 I think it's clear what the Free Space part of a page is, from
 the discussion of other parts.

21.2.1.6 Page Directory

 The Page Directory part of a page has a variable number of
 record pointers. Sometimes the record pointers are called
 "slots" or "directory slots". Unlike other DBMSs,
 InnoDB does not have a slot for every
 record in the page. Instead it keeps a sparse directory. In a
 fullish page, there will be one slot for every six records.

 The slots track the records' logical order (the order by key
 rather than the order by placement on the heap). Therefore, if
 the records are 'A''B''F''D' the slots will
 be (pointer to 'A') (pointer to 'B') (pointer to 'D')
 (pointer to 'F'). Because the slots are in key
 order, and each slot has a fixed size, it's easy to do a
 binary search of the records on the page via the slots.

 (Since the Page Directory does not have a slot for every
 record, binary search can only give a rough position and then
 InnoDB must follow the "next" record
 pointers. InnoDB's "sparse slots" policy
 also accounts for the n_owned field in the Extra Bytes part of
 a record: n_owned indicates how many more records must be gone
 through because they don't have their own slots.)

21.2.1.7 Fil Trailer

 The Fil Trailer has one part, as follows:

	
 Name

	
 Size

	
 Remarks

	
 FIL_PAGE_END_LSN

	
 8

	
 low 4 bytes = checksum of page, last 4 bytes = same
 as FIL_PAGE_LSN

 The final part of a page, the fil trailer (or File Page
 Trailer), exists because InnoDB's architect
 worried about integrity. It's impossible for a page to be only
 half-written, or corrupted by crashes, because the
 log-recovery mechanism restores to a consistent state. But if
 something goes really wrong, then it's nice to have a
 checksum, and to have a value at the very end of the page
 which must be the same as a value at the very beginning of the
 page.

21.2.2 Example

 For this example, I used Borland's TDUMP again, as I did for the
 earlier chapter on Record Format. This is what a page looked
 like:

	
 Address Values in
 Hexadecimal

	
 Values in ASCII

	
 0D4000: 00 00 00 00 00 00 00 35 FF FF FF FF
 FF FF FF FF

	
 5........

	
 0D4010: 00 00 00 00 00 00 E2 64 45 BF 00 00
 00 00 00 00

	
 dE.......

	
 0D4020: 00 00 00 00 00 00 00 05 02 F5 00 12
 00 00 00 00

	

	
 0D4030: 02 E1 00 02 00 0F 00 10 00 00 00 00
 00 00 00 00

	

	
 0D4040: 00 00 00 00 00 00 00 00 00 14 00 00
 00 00 00 00

	

	
 0D4050: 00 02 16 B2 00 00 00 00 00 00 00 02
 15 F2 08 01

	

	
 0D4060: 00 00 03 00 89 69 6E 66 69 6D 75 6D
 00 09 05 00

	
 infimum....

	
 0D4070: 08 03 00 00 73 75 70 72 65 6D 75 6D
 00 22 1D 18

	
 supremum."..

	
 0D4080: 13 0C 06 00 00 10 0D 00 B7 00 00 00
 00 04 14 00

	

	
 0D4090: 00 00 00 09 1D 80 00 00 00 2D 00 84
 41 41 41 41

	
 -..AAAA

	
 0D40A0: 41 41 41 41 41 41 41 41 41 41 41 1F
 1B 17 13 0C

	
 AAAAAAAAAAA.....

	
 ...

	
 ??

	
 ...

	
 ??

	
 0D7FE0: 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 74

	
 t

	
 0D7FF0: 02 47 01 AA 01 0A 00 65 3A E0 AA 71
 00 00 E2 64

	
 .G.....e:..q...d

 Let's skip past the first 38 bytes, which are Fil Header. The
 bytes of the Page Header start at location 0d4026
 hexadecimal:

	
 Location

	
 Name

	
 Description

	
 00 05

	
 PAGE_N_DIR_SLOTS

	
 There are 5 directory slots.

	
 02 F5

	
 PAGE_HEAP_TOP

	
 At location 0402F5, not shown, is
 the beginning of free space. Maybe a better name would
 have been PAGE_HEAP_END.

	
 00 12

	
 PAGE_N_HEAP

	
 There are 18 (hexadecimal 12) records in the page.

	
 00 00

	
 PAGE_FREE

	
 There are zero free (deleted) records.

	
 00 00

	
 PAGE_GARBAGE

	
 There are zero bytes in deleted records.

	
 02 E1

	
 PAGE_LAST_INSERT

	
 The last record was inserted at location
 02E1, not shown, within the page.

	
 00 02

	
 PAGE_DIRECTION

	
 A glance at page0page.h will tell you that 2 is the
 #defined value for PAGE_RIGHT.

	
 00 0F

	
 PAGE_N_DIRECTION

	
 The last 15 (hexadecimal 0F) inserts were all done "to
 the right" because I was inserting in ascending order.

	
 00 10

	
 PAGE_N_RECS

	
 There are 16 (hexadecimal 10) user records. Notice
 that PAGE_N_RECS is smaller than
 the earlier field, PAGE_N_HEAP.

	
 00 00 00 00 00 00 00

	
 PAGE_MAX_TRX_ID

	
 ??

	
 00 00

	
 PAGE_LEVEL

	
 Zero because this is a leaf page.

	
 00 00 00 00 00 00 00 14

	
 PAGE_INDEX_ID

	
 This is index number 20.

	
 00 00 00 00 00 00 00 02 16 B2

	
 PAGE_BTR_SEG_LEAF

	
 ??

	
 00 00 00 00 00 00 00 02 15 F2

	
 PAGE_BTR_SEG_TOP

	
 ??

 Immediately after the page header are the infimum and supremum
 records. Looking at the "Values In ASCII" column in the
 hexadecimal dump, you will see that the contents are in fact the
 words "infimum" and "supremum" respectively.

 Skipping past the User Records and the Free Space, many bytes
 later, is the end of the 16KB page. The values shown there are
 the two trailers.

	
 The first trailer (00 74, 02 47, 01 AA, 01 0A, 00
 65) is the page directory. It has 5 entries,
 because the header field PAGE_N_DIR_SLOTS
 says there are 5.

	
 The next trailer (3A E0 AA 71, 00 00 E2
 64) is the fil trailer. Notice that the last four
 bytes, 00 00 E2 64, appeared before in
 the fil header.

21.2.3 Where to Look For More Information

 References:

 The most relevant InnoDB source-code files
 are page0page.c,
 page0page.ic, and
 page0page.h in the
 page directory.

Chapter 22 Writing a Custom Storage Engine

Table of Contents
	22.1 Additional Resources
	22.2 Overview
	22.3 Creating Storage Engine Source Files
	22.4 Adding Engine Specific Variables and Parameters
	22.5 Creating the handlerton
	22.6 Handling Handler Instantiation
	22.7 Defining Filename Extensions
	22.8 Creating Tables
	22.9 Opening a Table
	22.10 Implementing Basic Table Scanning
		22.10.1 Implementing the store_lock() Method
	22.10.2 Implementing the external_lock() Method
	22.10.3 Implementing the rnd_init() Method
	22.10.4 Implementing the info(uinf flag) Method
	22.10.5 Implementing the extra() Method
	22.10.6 Implementing the rnd_next() Method

	22.11 Closing a Table
	22.12 Adding Support for INSERT to a Storage Engine
	22.13 Adding Support for UPDATE to a Storage Engine
	22.14 Adding Support for DELETE to a Storage Engine
	22.15 Supporting Non-Sequential Reads
		22.15.1 Implementing the position() Method
	22.15.2 Implementing the rnd_pos() Method

	22.16 Supporting Indexing
		22.16.1 Indexing Overview
	22.16.2 Getting Index Information During CREATE TABLE Operations
	22.16.3 Creating Index Keys
	22.16.4 Parsing Key Information
	22.16.5 Providing Index Information to the Optimizer
	22.16.6 Preparing for Index Use with index_init()
	22.16.7 Cleaning up with index_end()
	22.16.8 Implementing the index_read() Method
	22.16.9 Implementing the index_read_idx() Method
	22.16.10 Implementing the index_read_last() Method
	22.16.11 Implementing the index_next() Method
	22.16.12 Implementing the index_prev() Method
	22.16.13 Implementing the index_first() Method
	22.16.14 Implementing the index_last() Method

	22.17 Supporting Transactions
		22.17.1 Transaction Overview
	22.17.2 Starting a Transaction
	22.17.3 Implementing ROLLBACK
	22.17.4 Implementing COMMIT
	22.17.5 Adding Support for Savepoints

	22.18 API Reference
		22.18.1 bas_ext
	22.18.2 close
	22.18.3 create
	22.18.4 delete_row
	22.18.5 delete_table
	22.18.6 external_lock
	22.18.7 extra
	22.18.8 index_end
	22.18.9 index_first
	22.18.10 index_init
	22.18.11 index_last
	22.18.12 index_next
	22.18.13 index_prev
	22.18.14 index_read
	22.18.15 index_read_idx
	22.18.16 index_read_last
	22.18.17 info
	22.18.18 open
	22.18.19 position
	22.18.20 records_in_range
	22.18.21 rnd_init
	22.18.22 rnd_next
	22.18.23 rnd_pos
	22.18.24 start_stmt
	22.18.25 store_lock
	22.18.26 update_row
	22.18.27 write_row

	22.19 FAQ

 With MySQL 5.1, MySQL AB has introduced a pluggable storage engine
 architecture that makes it possible to create new storage engines
 and add them to a running MySQL server without recompiling the
 server itself.

 This architecture makes it easier to develop new storage engines for
 MySQL and deploy them.

 This chapter is intended as a guide to assist you in developing a
 storage engine for the new pluggable storage engine architecture.

22.1 Additional Resources

	
 A forum dedicated to custom storage engines is available at
 http://forums.mysql.com/list.php?94.

22.2 Overview

 The MySQL server is built in a modular fashion:

 The storage engines manage data storage and index management for
 MySQL. The MySQL server communicates with the storage engines
 through a defined API.

 Each storage engine is a class with each instance of the class
 communicating with the MySQL server through a special
 handler interface.

 Handlers are instanced on the basis of one handler for each thread
 that needs to work with a specific table. For example: If three
 connections all start working with the same table, three handler
 instances will need to be created.

 Once a handler instance is created, the MySQL server issues
 commands to the handler to perform data storage and retrieval
 tasks such as opening a table, manipulating rows, and managing
 indexes.

 Custom storage engines can be built in a progressive manner:
 Developers can start with a read-only storage engine and later add
 support for INSERT, UPDATE,
 and DELETE operations, and even later add
 support for indexing, transactions, and other advanced operations.

22.3 Creating Storage Engine Source Files

 The easiest way to implement a new storage engine is to begin by
 copying and modifying the EXAMPLE storage
 engine. The files ha_example.cc and
 ha_example.h can be found in the
 storage/example directory of the MySQL 5.1
 source tree. For instructions on how to obtain the 5.1 source
 tree, see Installing MySQL from Source.

 When copying the files, change the names from
 ha_example.cc and
 ha_example.h to something appropriate to your
 storage engine, such as ha_foo.cc and
 ha_foo.h.

 After you have copied and renamed the files you must replace all
 instances of EXAMPLE and
 example with the name of your storage engine.
 If you are familiar with sed, these steps can
 be done automatically (in this example, the name of your storage
 engine would be FOO):

sed -e s/EXAMPLE/FOO/g -e s/example/foo/g ha_example.h > ha_foo.h
sed -e s/EXAMPLE/FOO/g -e s/example/foo/g ha_example.cc > ha_foo.cc

22.4 Adding Engine Specific Variables and Parameters

 For more information on adding system variables, status variables,
 and options supported on the command line or configuration file,
 see Section 5.5, “Specifying mysqld Variables Within a Plugin”.

22.5 Creating the handlerton

 The handlerton (short for handler singleton)
 defines the storage engine and contains method pointers to those
 methods that apply to the storage engine as a whole, as opposed to
 methods that work on a per-table basis. Some examples of such
 methods include transaction methods to handle commits and
 rollbacks.

 Here's an example from the EXAMPLE storage
 engine:

handlerton example_hton= {
 "EXAMPLE",
 SHOW_OPTION_YES,
 "Example storage engine",
 DB_TYPE_EXAMPLE_DB,
 NULL, /* Initialize */
 0, /* slot */
 0, /* savepoint size. */
 NULL, /* close_connection */
 NULL, /* savepoint */
 NULL, /* rollback to savepoint */
 NULL, /* release savepoint */
 NULL, /* commit */
 NULL, /* rollback */
 NULL, /* prepare */
 NULL, /* recover */
 NULL, /* commit_by_xid */
 NULL, /* rollback_by_xid */
 NULL, /* create_cursor_read_view */
 NULL, /* set_cursor_read_view */
 NULL, /* close_cursor_read_view */
 example_create_handler, /* Create a new handler */
 NULL, /* Drop a database */
 NULL, /* Panic call */
 NULL, /* Release temporary latches */
 NULL, /* Update Statistics */
 NULL, /* Start Consistent Snapshot */
 NULL, /* Flush logs */
 NULL, /* Show status */
 NULL, /* Replication Report Sent Binlog */
 HTON_CAN_RECREATE
};

 This is the definition of the handlerton from
 handler.h:

typedef struct
 {
 const char *name;
 SHOW_COMP_OPTION state;
 const char *comment;
 enum db_type db_type;
 bool (*init)();
 uint slot;
 uint savepoint_offset;
 int (*close_connection)(THD *thd);
 int (*savepoint_set)(THD *thd, void *sv);
 int (*savepoint_rollback)(THD *thd, void *sv);
 int (*savepoint_release)(THD *thd, void *sv);
 int (*commit)(THD *thd, bool all);
 int (*rollback)(THD *thd, bool all);
 int (*prepare)(THD *thd, bool all);
 int (*recover)(XID *xid_list, uint len);
 int (*commit_by_xid)(XID *xid);
 int (*rollback_by_xid)(XID *xid);
 void *(*create_cursor_read_view)();
 void (*set_cursor_read_view)(void *);
 void (*close_cursor_read_view)(void *);
 handler *(*create)(TABLE *table);
 void (*drop_database)(char* path);
 int (*panic)(enum ha_panic_function flag);
 int (*release_temporary_latches)(THD *thd);
 int (*update_statistics)();
 int (*start_consistent_snapshot)(THD *thd);
 bool (*flush_logs)();
 bool (*show_status)(THD *thd, stat_print_fn *print, enum ha_stat_type stat);
 int (*repl_report_sent_binlog)(THD *thd, char *log_file_name, my_off_t end_offset);
 uint32 flags;
 } handlerton;

 There are a total of 30 handlerton elements, only a few of which
 are mandatory (specifically the first four elements and the
 create() method).

	
 The name of the storage engine. This is the name that will be
 used when creating tables (CREATE TABLE ... ENGINE =
 FOO;).

	
 The value to be displayed in the status
 field when a user issues the SHOW STORAGE
 ENGINES command.

	
 The storage engine comment, a description of the storage
 engine displayed when using the SHOW STORAGE
 ENGINES command.

	
 An integer that uniquely identifies the storage engine within
 the MySQL server. The constants used by the built-in storage
 engines are defined in the handler.h file.
 Custom engines should use DB_TYPE_UNKOWN.

	
 A method pointer to the storage engine initializer. This
 method is only called once when the server starts to allow the
 storage engine class to perform any housekeeping that is
 necessary before handlers are instanced.

	
 The slot. Each storage engine has its own memory area
 (actually a pointer) in the thd, for
 storing per-connection information. It is accessed as
 thd->ha_data[foo_hton.slot]. The slot
 number is initialized by MySQL after
 foo_init() is called. For more information
 on the thd, see
 #Implementing
 ROLLBACK.

	
 The savepoint offset. To store per-savepoint data the storage
 engine is provided with an area of a requested size
 (0, if no savepoint memory is necessary).

 The savepoint offset must be initialized statically to the size of
 the needed memory to store per-savepoint information. After
 foo_init it is changed to be an offset to the
 savepoint storage area and need not be used by the storage engine.
 For more information, see
 #Specifying the
 Savepoint Offset.

	
 Used by transactional storage engines, clean up any memory
 allocated in their slot.

	
 A method pointer to the handler's
 savepoint_set() method. This is used to
 create a savepoint and store it in memory of the requested
 size.

 For more information, see
 #Implementing
 the savepoint_set Method.

	
 A method pointer to the handler's
 rollback_to_savepoint() method. This is
 used to return to a savepoint during a transaction. It's only
 populated for storage engines that support savepoints.

 For more information, see
 #Implementing
 the savepoint_rollback() Method.

	
 A method pointer to the handler's
 release_savepoint() method. This is used to
 release the resources of a savepoint during a transaction.
 It's optionally populated for storage engines that support
 savepoints.

 For more information, see
 Implementing
 the savepoint_release() Method.

	
 A method pointer to the handler's commit()
 method. This is used to commit a transaction. It's only
 populated for storage engines that support transactions.

 For more information, see
 #Implementing COMMIT.

	
 A method pointer to the handler's
 rollback() method. This is used to roll
 back a transaction. It's only populated for storage engines
 that support transactions.

 For more information, see
 #Implementing
 ROLLBACK.

	
 Required for XA transactional storage engines. Prepare
 transaction for commit.

	
 Required for XA transactional storage engines. Returns a list
 of transactions that are in the prepared state.

	
 Required for XA transactional storage engines. Commit
 transaction identified by XID.

	
 Required for XA transactional storage engines. Rollback
 transaction identified by XID.

	
 Called when a cursor is created to allow the storage engine to
 create a consistent read view.

	
 Called to switch to a specific consistent read view.

	
 Called to close a specific read view.

	
 MANDATORY - Construct and return a
 handler instance.

 For more information, see
 Handling Handler
 Instantiation.

	
 Used if the storage engine needs to perform special steps when
 a schema is dropped (such as in a storage engine that uses
 tablespaces).

	
 Cleanup method called during server shutdown and crashes.

	
 InnoDB -specific method.

	
 InnoDB -specific method called at start of
 SHOW ENGINE InnoDB STATUS.

	
 Method called to begin a consistent read.

	
 Called to indicate that logs should be flushed to reliable
 storage.

	
 Provides human readable status information on the storage
 engine for SHOW ENGINE foo STATUS.

	
 InnoDB -specific method used for
 replication.

	
 Handlerton flags that indicate the capabilities of the storage
 engine. Possible values are defined in
 sql/handler.h and copied here:

#define HTON_NO_FLAGS 0
 #define HTON_CLOSE_CURSORS_AT_COMMIT (1 << 0)
 #define HTON_ALTER_NOT_SUPPORTED (1 << 1)
 #define HTON_CAN_RECREATE (1 << 2)
 #define HTON_FLUSH_AFTER_RENAME (1 << 3)
 #define HTON_NOT_USER_SELECTABLE (1 << 4)

 HTON_ALTER_NOT_SUPPORTED is used to indicate
 that the storage engine cannot accept ALTER
 TABLE statements. The FEDERATED
 storage engine is an example.
 HTON_FLUSH_AFTER_RENAME indicates that
 FLUSH LOGS must be called after a table rename.
 HTON_NOT_USER_SELECTABLE indicates that the
 storage engine should not be shown when a user calls SHOW
 STORAGE ENGINES. Used for system storage engines such as
 the dummy storage engine for binary logs.

22.6 Handling Handler Instantiation

 The first method call your storage engine needs to support is the
 call for a new handler instance.

 Before the handlerton is defined in the storage
 engine source file, a method header for the instantiation method
 must be defined. Here is an example from the
 CSV engine:

static handler* tina_create_handler(TABLE *table);

 As you can see, the method accepts a pointer to the table the
 handler is intended to manage, and returns a handler object.

 After the method header is defined, the method is named with a
 method pointer in the
 create()handlerton element,
 identifying the method as being responsible for generating new
 handler instances.

 Here is an example of the MyISAM storage
 engine's instantiation method:

static handler *myisam_create_handler(TABLE *table)
 {
 return new ha_myisam(table);
 }

 This call then works in conjunction with the storage engine's
 constructor. Here is an example from the
 FEDERATED storage engine:

ha_federated::ha_federated(TABLE *table_arg)
 :handler(&federated_hton, table_arg),
 mysql(0), stored_result(0), scan_flag(0),
 ref_length(sizeof(MYSQL_ROW_OFFSET)), current_position(0)
 {}

 And here's one more example from the EXAMPLE
 storage engine:

ha_example::ha_example(TABLE *table_arg)
 :handler(&example_hton, table_arg)
 {}

 The additional elements in the FEDERATED
 example are extra initializations for the handler. The minimum
 implementation required is the handler()
 initialization shown in the EXAMPLE version.

22.7 Defining Filename Extensions

 Storage engines are required to provide the MySQL server with a
 list of extensions used by the storage engine with regard to a
 given table, its data and indexes.

 Extensions are expected in the form of a null-terminated string
 array. The following is the array used by the
 CSV engine:

static const char *ha_tina_exts[] = {
 ".CSV",
 NullS
};

 This array is returned when the
 [custom-engine.html#custom-engine-api-reference-bas_ext
 bas_ext()] method is called:

const char **ha_tina::bas_ext() const
{
 return ha_tina_exts;
}

 By providing extension information you can also omit implementing
 DROP TABLE functionality as the MySQL server
 will implement it for you by closing the table and deleting all
 files with the extensions you specify.

22.8 Creating Tables

 Once a handler is instanced, the first operation that will likely
 be required is the creation of a table.

 Your storage engine must implement the
 [custom-engine.html#custom-engine-api-reference-create
 create()] virtual method:

virtual int create(const char *name, TABLE *form, HA_CREATE_INFO *info)=0;

 This method should create all necessary files but does not need to
 open the table. The MySQL server will call for the table to be
 opened later on.

 The *name parameter is the name of the table.
 The *form parameter is a
 TABLE structure that defines the table and
 matches the contents of the
 tablename.frm file
 already created by the MySQL server. Storage engines must not
 modify the
 tablename.frm
 file.

 The *info parameter is a structure containing
 information on the CREATE TABLE statement used
 to create the table. The structure is defined in
 handler.h and copied here for your convenience:

typedef struct st_ha_create_information
{
 CHARSET_INFO *table_charset, *default_table_charset;
 LEX_STRING connect_string;
 const char *comment,*password;
 const char *data_file_name, *index_file_name;
 const char *alias;
 ulonglong max_rows,min_rows;
 ulonglong auto_increment_value;
 ulong table_options;
 ulong avg_row_length;
 ulong raid_chunksize;
 ulong used_fields;
 SQL_LIST merge_list;
 enum db_type db_type;
 enum row_type row_type;
 uint null_bits; /* NULL bits at start of record */
 uint options; /* OR of HA_CREATE_ options */
 uint raid_type,raid_chunks;
 uint merge_insert_method;
 uint extra_size; /* length of extra data segment */
 bool table_existed; /* 1 in create if table existed */
 bool frm_only; /* 1 if no ha_create_table() */
 bool varchar; /* 1 if table has a VARCHAR */
} HA_CREATE_INFO;

 A basic storage engine can ignore the contents of
 *form and *info, as all that
 is really required is the creation and possibly the initialization
 of the data files used by the storage engine (assuming the storage
 engine is file-based).

 For example, here is the implementation from the
 CSV storage engine:

int ha_tina::create(const char *name, TABLE *table_arg,
 HA_CREATE_INFO *create_info)
{
 char name_buff[FN_REFLEN];
 File create_file;
 DBUG_ENTER("ha_tina::create");

 if ((create_file= my_create(fn_format(name_buff, name, "", ".CSV",
 MY_REPLACE_EXT|MY_UNPACK_FILENAME),0,
 O_RDWR | O_TRUNC,MYF(MY_WME))) < 0)
 DBUG_RETURN(-1);

 my_close(create_file,MYF(0));

 DBUG_RETURN(0);
}

 In the preceding example, the CSV engine does
 not refer at all to the *table_arg or
 *create_info parameters, but simply creates the
 required data files, closes them, and returns.

 The my_create and my_close
 methods are helper methods defined in
 src/include/my_sys.h.

22.9 Opening a Table

 Before any read or write operations are performed on a table, the
 MySQL server will call the
 [custom-engine.html#custom-engine-api-reference-open
 handler::open()] method to open the table data and index files (if
 they exist).

int open(const char *name, int mode, int test_if_locked);

 The first parameter is the name of the table to be opened. The
 second parameter determines what file to open or what operation to
 take. The values are defined in handler.h and
 are copied here for your convenience:

O_RDONLY - Open read only
O_RDWR - Open read/write

 The final option dictates whether the handler should check for a
 lock on the table before opening it. The following options are
 available:

#define HA_OPEN_ABORT_IF_LOCKED 0 /* default */
 #define HA_OPEN_WAIT_IF_LOCKED 1
 #define HA_OPEN_IGNORE_IF_LOCKED 2
 #define HA_OPEN_TMP_TABLE 4 /* Table is a temp table */
 #define HA_OPEN_DELAY_KEY_WRITE 8 /* Don't update index */
 #define HA_OPEN_ABORT_IF_CRASHED 16
 #define HA_OPEN_FOR_REPAIR 32 /* open even if crashed */

 Typically your storage engine will need to implement some form of
 shared access control to prevent file corruption is a
 multi-threaded environment. For an example of how to implement
 file locking, see the get_share() and
 free_share() methods of
 sql/examples/ha_tina.cc.

22.10 Implementing Basic Table Scanning

 The most basic storage engines implement read-only table scanning.
 Such engines might be used to support SQL queries of logs and
 other data files that are populated outside of MySQL.

 The implementation of the methods in this section provide the
 first steps toward the creation of more advanced storage engines.

 The following shows the method calls made during a nine-row table
 scan of the CSV engine:

ha_tina::store_lock
ha_tina::external_lock
ha_tina::info
ha_tina::rnd_init
ha_tina::extra - ENUM HA_EXTRA_CACHE Cache record in HA_rrnd()
ha_tina::rnd_next
ha_tina::rnd_next
ha_tina::rnd_next
ha_tina::rnd_next
ha_tina::rnd_next
ha_tina::rnd_next
ha_tina::rnd_next
ha_tina::rnd_next
ha_tina::rnd_next
ha_tina::extra - ENUM HA_EXTRA_NO_CACHE End caching of records (def)
ha_tina::external_lock
ha_tina::extra - ENUM HA_EXTRA_RESET Reset database to after open

22.10.1 Implementing the store_lock() Method

 The [custom-engine.html#custom-engine-api-reference-store_lock
 store_lock()] method is called before any
 reading or writing is performed.

 Before adding the lock into the table lock handler
 mysqld calls store lock with
 the requested locks. Store lock can modify the lock level, for
 example change blocking write lock to non-blocking, ignore the
 lock (if we don't want to use MySQL table locks at all) or add
 locks for many tables (like we do when we are using a MERGE
 handler).

 When releasing locks, store_lock() is also
 called. In this case, one usually doesn't have to do anything.

 If the argument of store_lock is
 TL_IGNORE, it means that MySQL requests the
 handler to store the same lock level as the last time.

 The potential lock types are defined in
 includes/thr_lock.h and are copied here:

enum thr_lock_type
{
 TL_IGNORE=-1,
 TL_UNLOCK, /* UNLOCK ANY LOCK */
 TL_READ, /* Read lock */
 TL_READ_WITH_SHARED_LOCKS,
 TL_READ_HIGH_PRIORITY, /* High prior. than TL_WRITE. Allow concurrent insert */
 TL_READ_NO_INSERT, /* READ, Don't allow concurrent insert */
 TL_WRITE_ALLOW_WRITE, /* Write lock, but allow other threads to read / write. */
 TL_WRITE_ALLOW_READ, /* Write lock, but allow other threads to read / write. */
 TL_WRITE_CONCURRENT_INSERT, /* WRITE lock used by concurrent insert. */
 TL_WRITE_DELAYED, /* Write used by INSERT DELAYED. Allows READ locks */
 TL_WRITE_LOW_PRIORITY, /* WRITE lock that has lower priority than TL_READ */
 TL_WRITE, /* Normal WRITE lock */
 TL_WRITE_ONLY /* Abort new lock request with an error */
};

 Actual lock handling will vary depending on your locking
 implementation and you may choose to implement some or none of
 the requested lock types, substituting your own methods as
 appropriate. The following is the minimal implementation, for a
 storage engine that does not need to downgrade locks:

THR_LOCK_DATA **ha_tina::store_lock(THD *thd,
 THR_LOCK_DATA **to,
 enum thr_lock_type lock_type)
{
 if (lock_type != TL_IGNORE && lock.type == TL_UNLOCK)
 lock.type=lock_type;
 *to++= &lock;
 return to;
}

 See also ha_myisammrg::store_lock() for a
 more complex implementation.

22.10.2 Implementing the external_lock() Method

 The
 [custom-engine.html#custom-engine-api-reference-external_lock
 external_lock()] method is called at the
 start of a statement or when a LOCK TABLES
 statement is issued.

 Examples of using external_lock() can be
 found in the sql/ha_innodb.cc file, but most
 storage engines can simply return 0, as is
 the case with the EXAMPLE storage engine:

int ha_example::external_lock(THD *thd, int lock_type)
{
 DBUG_ENTER("ha_example::external_lock");
 DBUG_RETURN(0);
}

22.10.3 Implementing the rnd_init() Method

 The method called before any table scan is the
 [custom-engine.html#custom-engine-api-reference-rnd_init
 rnd_init()] method. The
 rnd_init() method is used to prepare for a
 table scan, resetting counters and pointers to the start of the
 table.

 The following example is from the CSV storage
 engine:

int ha_tina::rnd_init(bool scan)
{
 DBUG_ENTER("ha_tina::rnd_init");

 current_position= next_position= 0;
 records= 0;
 chain_ptr= chain;

 DBUG_RETURN(0);
}

 If the scan parameter is true, the MySQL
 server will perform a sequential table scan, if false the MySQL
 server will perform random reads by position.

22.10.4 Implementing the info(uinf flag) Method

 Prior to commencing a table scan, the
 [custom-engine.html#custom-engine-api-reference-info
 info()] method is called to provide extra
 table information to the optimizer.

 The information required by the optimizer is not given through
 return values but instead by populating certain properties of
 the stats member of the handler class, which the optimizer reads
 after the info() call returns. The stats
 member is an instance of the ha_statistics class which is also
 defined in handler.h

 In addition to being used by the optimizer, many of the values
 set during a call to the info() method are
 also used for the SHOW TABLE STATUS
 statement. The flag argument is a bitfield that conveys for
 which context the info method was called.

 The flags are defined in include/my_base.h. The ones that are
 used are:

	
 HA_STATUS_NO_LOCK - the handler may use outdated info if it
 can prevent locking the table shared

	
 HA_STATUS_TIME - only update of stats->update_time
 required

	
 HA_STATUS_CONST - update the immutable members of stats
 (max_data_file_length, max_index_file_length, create_time,
 sortkey, ref_length, block_size, data_file_name,
 index_file_name)

	
 HA_STATUS_VARIABLE - records, deleted, data_file_length,
 index_file_length, delete_length, check_time,
 mean_rec_length

	
 HA_STATUS_ERRKEY - status pertaining to last error key
 (errkey and dupp_ref)

	
 HA_STATUS_AUTO - update autoincrement value

 The public properties are listed in full in
 sql/handler.h; several of the more common
 ones are copied here:

ulonglong data_file_length; /* Length off data file */
ulonglong max_data_file_length; /* Length off data file */
ulonglong index_file_length;
ulonglong max_index_file_length;
ulonglong delete_length; /* Free bytes */
ulonglong auto_increment_value;
ha_rows records; /* Records in table */
ha_rows deleted; /* Deleted records */
ulong raid_chunksize;
ulong mean_rec_length; /* physical reclength */
time_t create_time; /* When table was created */
time_t check_time;
time_t update_time;

 For the purposes of a table scan, the most important property is
 records, which indicates the number of
 records in the table. The optimizer will perform differently
 when the storage engine indicates that there are zero or one
 rows in the table than it will when there are two or more. For
 this reason it is important to return a value of two or greater
 when you do not actually know how many rows are in the table
 before you perform the table scan (such as in a situation where
 the data may be externally populated).

 The bare minimum implementation for the info method is probably
 something like what is used for the CSV (tina) engine:

int ha_tina::info(uint flag)
 {
 DBUG_ENTER("ha_tina::info");
 /* This is a lie, but you don't want the optimizer to see zero or 1 */
 if (!records_is_known && stats.records < 2)
 stats.records= 2;
 DBUG_RETURN(0);
 }

22.10.5 Implementing the extra() Method

 Prior to some operations, the
 [custom-engine.html#custom-engine-api-reference-extra
 extra()] method is called to provide extra
 hints to the storage engine on how to perform certain
 operations.

 Implementation of the hints in the extra call
 is not mandatory, and most storage engines return
 0:

int ha_tina::extra(enum ha_extra_function operation)
{
 DBUG_ENTER("ha_tina::extra");
 DBUG_RETURN(0);
}

22.10.6 Implementing the rnd_next() Method

 After the table is initialized, the MySQL server will call the
 handler's
 [custom-engine.html#custom-engine-api-reference-rnd_next
 rnd_next()] method once for every row to be
 scanned until the server's search condition is satisfied or an
 end of file is reached, in which case the handler returns
 HA_ERR_END_OF_FILE.

 The rnd_next() method takes a single byte
 array parameter named *buf. The
 *buf parameter must be populated with the
 contents of the table row in the internal MySQL format.

 The server uses three data formats: fixed-length rows,
 variable-length rows, and variable-length rows with BLOB
 pointers. In each format, the columns appear in the order in
 which they were defined by the CREATE TABLE statement. (The
 table definition is stored in the .frm
 file, and the optimizer and the handler are both able to access
 table metadata from the same source, its
 TABLE structure).

 Each format begins with a NULL bitmap of one bit per nullable
 column. A table with as many as eight nullable columns will have
 a one-byte bitmap; a table with nine to sixteen nullable columns
 will have a two-byte bitmap, and so forth. One exception is
 fixed-width tables, which have an additional starting bit so
 that a table with eight nullable columns would have a two-byte
 bitmap.

 After the NULL bitmap come the columns, one by one. Each column
 is of the size indicated in Data Types. In the
 server, column data types are defined in the
 sql/field.cc file. In the fixed length row
 format, the columns are simply laid out one by one. In a
 variable-length row, VARCHAR columns are
 coded as a one or two-byte length, followed by a string of
 characters. In a variable-length row with
 BLOB columns, each blob is represented by two
 parts: first an integer representing the actual size of the
 BLOB, and then a pointer to the
 BLOB in memory.

 Examples of row conversion (or packing) can be found by starting
 at rnd_next() in any table handler. In
 ha_tina.cc, for example, the code in
 find_current_row() illustrates how the
 TABLE structure (pointed to by table) and a
 string object (named buffer) can be used to pack character data
 from a CSV file. Writing a row back to disk requires the
 opposite conversion, unpacking from the internal format.

 The following example is from the CSV storage
 engine:

int ha_tina::rnd_next(byte *buf)
{
 DBUG_ENTER("ha_tina::rnd_next");

 statistic_increment(table->in_use->status_var.ha_read_rnd_next_count, &LOCK_status);

 current_position= next_position;
 if (!share->mapped_file)
 DBUG_RETURN(HA_ERR_END_OF_FILE);
 if (HA_ERR_END_OF_FILE == find_current_row(buf))
 DBUG_RETURN(HA_ERR_END_OF_FILE);

 records++;
 DBUG_RETURN(0);
}

 The conversion from the internal row format to CSV row format is
 performed in the find_current_row() method:

int ha_tina::find_current_row(byte *buf)
{
 byte *mapped_ptr= (byte *)share->mapped_file + current_position;
 byte *end_ptr;
 DBUG_ENTER("ha_tina::find_current_row");

 /* EOF should be counted as new line */
 if ((end_ptr= find_eoln(share->mapped_file, current_position,
 share->file_stat.st_size)) == 0)
 DBUG_RETURN(HA_ERR_END_OF_FILE);

 for (Field **field=table->field ; *field ; field++)
 {
 buffer.length(0);
 mapped_ptr++; // Increment past the first quote
 for(;mapped_ptr != end_ptr; mapped_ptr++)
 {
 // Need to convert line feeds!
 if (*mapped_ptr == '"' &&
 (((mapped_ptr[1] == ',') && (mapped_ptr[2] == '"')) ||
 (mapped_ptr == end_ptr -1)))
 {
 mapped_ptr += Move past the , and the "
 break;
 }
 if (*mapped_ptr == '\\' && mapped_ptr != (end_ptr - 1))
 {
 mapped_ptr++;
 if (*mapped_ptr == 'r')
 buffer.append('\r');
 else if (*mapped_ptr == 'n')
 buffer.append('\n');
 else if ((*mapped_ptr == '\\') || (*mapped_ptr == '"'))
 buffer.append(*mapped_ptr);
 else /* This could only happed with an externally created file */
 {
 buffer.append('\\');
 buffer.append(*mapped_ptr);
 }
 }
 else
 buffer.append(*mapped_ptr);
 }
 (*field)->store(buffer.ptr(), buffer.length(), system_charset_info);
 }
 next_position= (end_ptr - share->mapped_file)+1;
 /* Maybe use \N for null? */
 memset(buf, 0, table->s->null_bytes); /* We do not implement nulls! */

 DBUG_RETURN(0);
}

22.11 Closing a Table

 When the MySQL server is finished with a table, it will call the
 [custom-engine.html#custom-engine-api-reference-close close()]
 method to close file pointers and release any other resources.

 Storage engines that use the shared access methods seen in the
 CSV engine and other example engines must
 remove themselves from the shared structure:

int ha_tina::close(void)
 {
 DBUG_ENTER("ha_tina::close");
 DBUG_RETURN(free_share(share));
 }

 Storage engines using their own share management systems should
 use whatever methods are needed to remove the handler instance
 from the share for the table opened in their handler.

22.12 Adding Support for INSERT to a Storage Engine

 Once you have read support in your storage engine, the next
 feature to implement is support for INSERT
 statements. With INSERT support in place, your
 storage engine can handle WORM (write once, read many)
 applications such as logging and archiving for later analysis.

 All INSERT operations are handled through the
 [custom-engine.html#custom-engine-api-reference-write_row
 write_row()] method:

int ha_foo::write_row(byte *buf)

 The *buf parameter contains the row to be
 inserted in the internal MySQL format. A basic storage engine
 could simply advance to the end of the data file and append the
 contents of the buffer directly (this would also make reading rows
 easier as you could read the row and pass it directly into the
 buffer parameter of the rnd_next() method.

 The process for writing a row is the opposite of the process for
 reading one: take the data from the MySQL internal row format and
 write it to the data file. The following example is from the
 MyISAM storage engine:

int ha_myisam::write_row(byte * buf)
{
 statistic_increment(table->in_use->status_var.ha_write_count,&LOCK_status);

 /* If we have a timestamp column, update it to the current time */
 if (table->timestamp_field_type & TIMESTAMP_AUTO_SET_ON_INSERT)
 table->timestamp_field->set_time();

 /*
 If we have an auto_increment column and we are writing a changed row
 or a new row, then update the auto_increment value in the record.
 */
 if (table->next_number_field && buf == table->record[0])
 update_auto_increment();
 return mi_write(file,buf);
}

 Three items of note in the preceding example include the updating
 of table statistics for writes, the setting of the timestamp prior
 to writing the row, and the updating of
 AUTO_INCREMENT values.

22.13 Adding Support for UPDATE to a Storage Engine

 The MySQL server executes UPDATE statements by
 performing a (table/index/range/etc.) scan until it locates a row
 matching the WHERE clause of the
 UPDATE statement, then calling the
 [custom-engine.html#custom-engine-api-reference-update_row
 update_row() method:]

int ha_foo::update_row(const byte *old_data, byte *new_data)

 The *old_data parameter contains the data that
 existed in the row prior to the update, while the
 *new_data parameter contains the new contents
 of the row (in the MySQL internal row format).

 Performing an update will depend on row format and storage
 implementation. Some storage engines will replace data in-place,
 while other implementations delete the existing row and append the
 new row at the end of the data file.

 Non-indexed storage engines can typically ignore the contents of
 the *old_data parameter and just deal with the
 *new_data buffer. Transactional engines may
 need to compare the buffers to determine what changes have been
 made for a later rollback.

 If the table being updated contains timestamp columns, the
 updating of the timestamp will have to be managed in the
 update_row() call. The following example is
 from the CSV engine:

int ha_tina::update_row(const byte * old_data, byte * new_data)
{
 int size;
 DBUG_ENTER("ha_tina::update_row");

 statistic_increment(table->in_use->status_var.ha_read_rnd_next_count,
 &LOCK_status);

 if (table->timestamp_field_type & TIMESTAMP_AUTO_SET_ON_UPDATE)
 table->timestamp_field->set_time();

 size= encode_quote(new_data);

 if (chain_append())
 DBUG_RETURN(-1);

 if (my_write(share->data_file, buffer.ptr(), size, MYF(MY_WME | MY_NABP)))
 DBUG_RETURN(-1);
 DBUG_RETURN(0);
}

 Note the setting of the timestamp in the previous example.

22.14 Adding Support for DELETE to a Storage Engine

 The MySQL server executes DELETE statements
 using the same approach as for UPDATE
 statements: It advances to the row to be deleted using the
 rnd_next() method and then calls the
 [custom-engine.html#custom-engine-api-reference-delete_row
 delete_row()] method to delete the row:

int ha_foo::delete_row(const byte *buf)

 The *buf parameter contains the contents of the
 row to be deleted. For non-indexed storage engines the parameter
 can be ignored, but transactional storage engines may need to
 store the deleted data for rollback purposes.

 The following example is from the CSV storage
 engine:

int ha_tina::delete_row(const byte * buf)
{
 DBUG_ENTER("ha_tina::delete_row");
 statistic_increment(table->in_use->status_var.ha_delete_count,
 &LOCK_status);

 if (chain_append())
 DBUG_RETURN(-1);

 --records;

 DBUG_RETURN(0);
}

 The steps of note in the preceding example are the update of the
 delete_count statistic and the record count.

22.15 Supporting Non-Sequential Reads

 In addition to table scanning, storage engines can implement
 methods for non-sequential reading. (Note: this is not "can" but
 rather a "must" because certain operations rely on proper
 implementation of position() and
 rnd_pos() calls. Two examples of such
 operations are multi-table UPDATE and SELECT ..
 table.blob_column ORDER BY something). The MySQL server
 uses these methods for certain sort operations.

22.15.1 Implementing the position() Method

 The [custom-engine.html#custom-engine-api-reference-position
 position()] method is called after every call
 to rnd_next() if the data needs to be
 reordered:

void ha_foo::position(const byte *record)

 It stores a "position" of a record in
 this->ref. The contents of this "position"
 is up to you, whatever value you provide will be returned in a
 later call to retrieve the row. The only rule - "position" or a
 row must contain enough information to allow you later to
 retrieve this very row. Most storage engines will store some
 form of offset or a primary key value.

22.15.2 Implementing the rnd_pos() Method

 The [custom-engine.html#custom-engine-api-reference-rnd_pos
 rnd_pos()] method behaves in a similar
 fashion to the rnd_next() method but takes an
 additional parameter:

int ha_foo::rnd_pos(byte * buf, byte *pos)

 The *pos parameter contains positioning
 information previously recorded using the
 position() method.

 A storage engine must locate the row specified by the position
 and return it through *buf in the internal
 MySQL row format.

22.16 Supporting Indexing

 Once basic read/write operations are implemented in a storage
 engine, the next stage is to add support for indexing. Without
 indexing, a storage engine's performance is quite limited.

 This section documents the methods that must be implemented to add
 support for indexing to a storage engine.

22.16.1 Indexing Overview

 Adding index support to a storage engine revolves around two
 tasks: providing information to the optimizer and implementing
 index-related methods. The information provided to the optimizer
 helps the optimizer to make better decisions about which index
 to use or even to skip using an index and instead perform a
 table scan.

 The indexing methods either read rows that match a key, scan a
 set of rows by index order, or read information directly from
 the index.

 The following example shows the method calls made during an
 UPDATE query that uses an index, such as
 UPDATE foo SET ts = now() WHERE id = 1:

ha_foo::index_init
ha_foo::index_read
ha_foo::index_read_idx
ha_foo::rnd_next
ha_foo::update_row

 In addition to index reading methods, your storage engine must
 support the creation of new indexes and be able to keep table
 indexes up to date as rows are added, modified, and removed from
 tables.

22.16.2 Getting Index Information During CREATE TABLE Operations

 It is preferable for storage engines that support indexing to
 read the index information provided during a CREATE
 TABLE operation and store it for future use. The
 reasoning behind this is that the index information is most
 readily available during table and index creation and is not as
 easily retrieved afterward.

 The table index information is contained within the
 key_info structure of the
 TABLE argument of the
 create() method.

 Within the key_info structure there is a
 flag that defines index behavior:

#define HA_NOSAME 1 /* Set if not duplicated records */
 #define HA_PACK_KEY 2 /* Pack string key to previous key */
 #define HA_AUTO_KEY 16
 #define HA_BINARY_PACK_KEY 32 /* Packing of all keys to prev key */
 #define HA_FULLTEXT 128 /* For full-text search */
 #define HA_UNIQUE_CHECK 256 /* Check the key for uniqueness */
 #define HA_SPATIAL 1024 /* For spatial search */
 #define HA_NULL_ARE_EQUAL 2048 /* NULL in key are cmp as equal */
 #define HA_GENERATED_KEY 8192 /* Automatically generated key */

 In addition to the flag, there is an
 enumerator named algorithm that specifies the
 desired index type:

enum ha_key_alg {
 HA_KEY_ALG_UNDEF= 0, /* Not specified (old file) */
 HA_KEY_ALG_BTREE= 1, /* B-tree, default one */
 HA_KEY_ALG_RTREE= 2, /* R-tree, for spatial searches */
 HA_KEY_ALG_HASH= 3, /* HASH keys (HEAP tables) */
 HA_KEY_ALG_FULLTEXT= 4 /* FULLTEXT (MyISAM tables) */
};

 In addition to the flag and
 algorithm, there is an array of
 key_part elements that describe the
 individual parts of a composite key.

 The key parts define the field associated with the key part,
 whether the key should be packed, and the data type and length
 of the index part. See ha_myisam.cc for an
 example of how this information is parsed.

 As an alternative, a storage engine can instead read index
 information from the TABLE structure of the
 handler during each operation.

22.16.3 Creating Index Keys

 As part of every table-write operation
 (INSERT, UPDATE,
 DELETE), the storage engine is required to
 update its internal index information.

 The method used to update indexes will vary from storage engine
 to storage engine, depending on the method used to store the
 index.

 In general, the storage engine will have to use row information
 passed in methods such as
 [custom-engine.html#custom-engine-api-reference-write_row
 write_row()],
 [custom-engine.html#custom-engine-api-reference-delete_row
 delete_row()], and
 [custom-engine.html#custom-engine-api-reference-update_row
 update_row()] in combination with index
 information for the table to determine what index data needs to
 be modified, and make the needed changes.

 The method of associating an index with its row will depend on
 your storage approach. Current storage engines store the row
 offset.

22.16.4 Parsing Key Information

 Many of the index methods pass a byte array named
 *key that identifies the index entry to be
 read in a standard format. Your storage engine will need to
 extract the information stored in the key and translate it into
 its internal index format to identify the row associated with
 the index.

 The information in the key is obtained by iterating through the
 key, which is formatted the same as the definition in
 table->key_info[index]->key_part[part_num].

 Along with the key, handler methods pass a
 keypart_map parameter to indicate which parts
 of the key are present in the key parameter.
 keypart_map is a ulonglong
 bitmap with one bit per key part: 1 for
 keypart[0], 2 for
 keypart[1], 4 for
 keypart[2], and so forth. If a bit in
 keypart_map is set, the value for this key
 part is present in the key buffer. Bits following the bit for
 the last key part don't matter,so ~0 can be used for all
 keyparts. Currently, only key prefixes are supported. That is,
 assert((keypart_map + 1) & keypart_map ==
 0).

 A keypart_map is part of the
 key_range structure used by
 records_in_range(), and a
 keypart_map value is passed directly to the
 index_read(),
 index_read_idx(), and
 index_read_last() methods.

 Older handlers have a key_len parameter
 instead of keypart_map. The
 key_len value is a uint
 that indicates the prefix length when matching by prefix.

22.16.5 Providing Index Information to the Optimizer

 In order for indexing to be used effectively, storage engines
 need to provide the optimizer with information about the table
 and its indexes. This information is used to choose whether to
 use an index, and if so, which index to use.

22.16.5.1 Implementing the info() Method

 The optimizer requests an update of table information by
 calling the
 [custom-engine.html#custom-engine-api-reference-info
 handler::info()] method. The
 info() method does not have a return value,
 instead it is expected that the storage engine will set a
 variety of public variables that the server will then read as
 needed. These values are also used to populate certain
 SHOW outputs such as SHOW TABLE
 STATUS and for queries of the
 INFORMATION_SCHEMA.

 All variables are optional but should be filled if possible:

	
 records - The number of rows in the
 table. If you cannot provide an accurate number quickly
 you should set the value to be greater than 1 so that the
 optimizer does not perform optimizations for zero or one
 row tables.

	
 deleted - Number of deleted rows in
 table. Used to identify table fragmentation, where
 applicable.

	
 data_file_length - Size of the data
 file, in bytes. Helps optimizer calculate the cost of
 reads.

	
 index_file_length - Size of the index
 file, in bytes. Helps optimizer calculate the cost of
 reads.

	
 mean_rec_length - Average length of a
 single row, in bytes.

	
 scan_time - Cost in I/O seeks to
 perform a full table scan.

	
 delete_length -

	
 check_time -

 When calculating values, speed is more important than
 accuracy, as there is no sense in taking a long time to give
 the optimizer clues as to what approach may be the fastest.
 Estimates within an order of magnitude are usually good
 enough.

22.16.5.2 Implementing the records_in_range Method

 The
 [custom-engine.html#custom-engine-api-reference-records_in_range
 records_in_range()] method is called by the
 optimizer to assist in choosing which index on a table to use
 for a query or join. It is defined as follows:

ha_rows ha_foo::records_in_range(uint inx, key_range *min_key, key_range *max_key)

 The inx parameter is the index to be
 checked. The *min_key and
 *max_key parameters are
 key_range structures that indicate the low
 and high ends of the range. The key_range
 structure looks like this:

typedef struct st_key_range
{
 const byte *key;
 uint length;
 key_part_map keypart_map;
 enum ha_rkey_function flag;
} key_range;

 key_range members are used as follows:

	
 key is a pointer to the key buffer.

	
 length is the key length.

	
 keypart_map is a bitmap that indicates
 which key parts are passed in key (as
 described in
 Parsing Key
 Information).

	
 flag indicates whether to include the
 key in the range. Its value differs for
 min_key and max_key,
 as described following.

 min_key.flag can have one of the following
 values:

	
 HA_READ_KEY_EXACT - Include the key in
 the range

	
 HA_READ_AFTER_KEY - Don't include key
 in range

 max_key.flag can have one of the following
 values:

	
 HA_READ_BEFORE_KEY - Don't include key
 in range

	
 HA_READ_AFTER_KEY - Include all
 'end_key' values in the range

 The following return values are allowed:

	
 0 - There are no matching keys in the
 given range

	
 number > 0 - There are
 approximately number matching rows in
 the range

	
 HA_POS_ERROR - Something is wrong with
 the index tree

 When calculating values, speed is more important than
 accuracy.

22.16.6 Preparing for Index Use with index_init()

 The [custom-engine.html#custom-engine-api-reference-index_init
 index_init()] method is called before an
 index is used to allow the storage engine to perform any
 necessary preparation or optimization:

int ha_foo::index_init(uint keynr, bool sorted)

 Most storage engines do not need to make special preparations,
 in which case a default implementation will be used if the
 method is not explicitly implemented in the storage engine:

int handler::index_init(uint idx) { active_index=idx; return 0; }

22.16.7 Cleaning up with index_end()

 The [custom-engine.html#custom-engine-api-reference-index_end
 index_end()] method is a counterpart to the
 index_init() method. The purpose of the
 index_end() method is to clean up any
 preparations made by the index_init() method.

 If a storage engine does not implement
 index_init() it does not need to implement
 index_end().

22.16.8 Implementing the index_read() Method

 The [custom-engine.html#custom-engine-api-reference-index_read
 index_read()] method is used to retrieve a
 row based on a key:

int ha_foo::index_read(byte * buf, const byte * key,
 ulonglong keypart_map,
 enum ha_rkey_function find_flag)

 The *buf parameter is a byte array that the
 storage engine populates with the row that matches the index key
 specified in *key. The
 keypart_map parameter is a bitmap that
 indicates which parts of the key are present in the
 key parameter. The
 find_flag parameter is an enumerator that
 dictates the search behavior to be used, as discussed in
 Parsing Key
 Information.

 The index to be used is previously defined in the
 [custom-engine.html#custom-engine-index-init
 index_init()] call and is stored in the
 active_index handler variable.

 The following values are allowed for
 find_flag:

HA_READ_AFTER_KEY
HA_READ_BEFORE_KEY
HA_READ_KEY_EXACT
HA_READ_KEY_OR_NEXT
HA_READ_KEY_OR_PREV
HA_READ_PREFIX
HA_READ_PREFIX_LAST
HA_READ_PREFIX_LAST_OR_PREV

 Storage engines must convert the *key
 parameter to a storage engine-specific format, use it to find
 the matching row according to the find_flag,
 and then populate *buf with the matching row
 in the MySQL internal row format. For more information on the
 internal row format, see
 #Implementing
 the rnd_next() Method.

 In addition to returning a matching row, the storage engine must
 also set a cursor to support sequential index reads.

 If the *key parameter is null, the storage
 engine should read the first key in the index.

22.16.9 Implementing the index_read_idx() Method

 The
 [custom-engine.html#custom-engine-api-reference-index_read_idx
 index_read_idx()] method is identical to
 [custom-engine.html#custom-engine-index-read
 index_read()] with the exception that
 index_read_idx() accepts an additional
 keynr parameter:

int ha_foo::index_read_idx(byte * buf, uint keynr, const byte * key,
 ulonglong keypart_map,
 enum ha_rkey_function find_flag)

 The keynr parameter specifies the index to be
 read, as opposed to index_read(), where the
 index is already set.

 As with the index_read() method, the storage
 engine must return the row that matches the key according to the
 find_flag and set a cursor for future reads.

22.16.10 Implementing the index_read_last() Method

 The
 [custom-engine.html#custom-engine-api-reference-index_read_last
 index_read_last()] method works like
 [custom-engine.html#custom-engine-index-read
 index_read()] but finds the last row with the
 current key value or prefix:

int ha_foo::index_read_last(byte * buf, const byte * key,
 key_part_map keypart_map)

 index_read_last() is used when optimizing
 away the ORDER BY clause for statements such
 as this:

SELECT * FROM t1 WHERE a=1 ORDER BY a DESC,b DESC;

22.16.11 Implementing the index_next() Method

 The [custom-engine.html#custom-engine-api-reference-index_next
 index_next()] method is used for index
 scanning:

int ha_foo::index_next(byte * buf)

 The *buf parameter is populated with the row
 that corresponds to the next matching key value according to the
 internal cursor set by the storage engine during operations such
 as index_read() and
 index_first().

22.16.12 Implementing the index_prev() Method

 The [custom-engine.html#custom-engine-api-reference-index_prev
 index_prev()] method is used for reverse
 index scanning:

 int ha_foo::index_prev(byte * buf)

 The *buf parameter is populated with the row
 that corresponds to the previous matching key value according to
 the internal cursor set by the storage engine during operations
 such as index_read() and
 index_last().

22.16.13 Implementing the index_first() Method

 The [custom-engine.html#custom-engine-api-reference-index_first
 index_first()] method is used for index
 scanning:

 int ha_foo::index_first(byte * buf)

 The *buf parameter is populated with the row
 that corresponds to the first key value in the index.

22.16.14 Implementing the index_last() Method

 The [custom-engine.html#custom-engine-api-reference-index_last
 index_last()] method is used for reverse
 index scanning:

 int ha_foo::index_last(byte * buf)

 The *buf parameter is populated with the row
 that corresponds to the last key value in the index.

22.17 Supporting Transactions

 This section documents the methods that must be implemented to add
 support for transactions to a storage engine.

 Please note that transaction management can be complicated and
 involve methods such as row versioning and redo logs, which is
 beyond the scope of this document. Instead coverage is limited to
 a description of required methods and not their implementation.
 For examples of implementation, please see
 ha_innodb.cc.

22.17.1 Transaction Overview

 Transactions are not explicitly started on the storage engine
 level, but are instead implicitly started through calls to
 either start_stmt() or
 external_lock(). If the preceding methods are
 called and a transaction already exists the transaction is not
 replaced.

 The storage engine stores transaction information in
 per-connection memory and also registers the transaction in the
 MySQL server to allow the server to later issue
 COMMIT and ROLLBACK
 operations.

 As operations are performed the storage engine will have to
 implement some form of versioning or logging to permit a
 rollback of all operations executed within the transaction.

 After work is completed, the MySQL server will call either the
 commit() method or the
 rollback() method defined in the storage
 engine's handlerton.

22.17.2 Starting a Transaction

 A transaction is started by the storage engine in response to a
 call to either the start_stmt() or
 external_lock() methods.

 If there is no active transaction, the storage engine must start
 a new transaction and register the transaction with the MySQL
 server so that ROLLBACK or
 COMMIT can later be called.

22.17.2.1 Starting a Transaction from a start_stmt() Call

 The first method call that can start a transaction is the
 [custom-engine.html#custom-engine-transactions-starting-start-stmt
 start_stmt()] method.

 The following example shows how a storage engine could
 register a transaction:

int my_handler::start_stmt(THD *thd, thr_lock_type lock_type)
{
 int error= 0;
 my_txn *txn= (my_txn *) thd->ha_data[my_handler_hton.slot];

 if (txn == NULL)
 {
 thd->ha_data[my_handler_hton.slot]= txn= new my_txn;
 }
 if (txn->stmt == NULL && !(error= txn->tx_begin()))
 {
 txn->stmt= txn->new_savepoint();
 trans_register_ha(thd, FALSE, &my_handler_hton);
 }
 return error;
}

 THD is the current client connection. It
 holds state relevant data for the current client, such as
 identity, network connection and other per-connection data.

 thd->ha_data[my_handler_hton.slot] is a
 pointer in thd to the connection-specific
 data of this storage engine. In this example we use it to
 store the transaction context.

 An additional example of implementing
 start_stmt() can be found in
 ha_innodb.cc.

22.17.2.2 Starting a Transaction from a external_lock() Method

 MySQL calls
 [custom-engine.html#custom-engine-api-reference-external_lock
 handler::external_lock()] for every table
 it is going to use at the beginning of every statement. Thus,
 if a table is touched for the first time, it implicitly starts
 a transaction.

 Note that because of pre-locking, all tables that can be
 potentially used between the beginning and the end of a
 statement are locked before the statement execution begins and
 handler::external_lock() is called for all
 these tables. That is, if an INSERT fires a
 trigger, which calls a stored procedure, that invokes a stored
 method, and so forth, all tables used in the trigger, stored
 procedure, method, etc., are locked in the beginning of the
 INSERT. Additionally, if there's a
 construct like

IF
.. use one table
ELSE
.. use another table

 both tables will be locked.

 Also, if a user calls LOCK TABLES, MySQL
 will call handler::external_lock only once.
 In this case, MySQL will call
 handler::start_stmt() at the beginning of
 the statement.

 The following example shows how a storage engine can start a
 transaction and take locking requests into account:

int my_handler::external_lock(THD *thd, int lock_type)
{
 int error= 0;
 my_txn *txn= (my_txn *) thd->ha_data[my_handler_hton.slot];

 if (txn == NULL)
 {
 thd->ha_data[my_handler_hton.slot]= txn= new my_txn;
 }

 if (lock_type != F_UNLCK)
 {
 bool all_tx= 0;
 if (txn->lock_count == 0)
 {
 txn->lock_count= 1;
 txn->tx_isolation= thd->variables.tx_isolation;

 all_tx= test(thd->options & (OPTION_NOT_AUTOCOMMIT | OPTION_BEGIN | OPTION_TABLE_LOCK));
 }

 if (all_tx)
 {
 txn->tx_begin();
 trans_register_ha(thd, TRUE, &my_handler_hton);
 }
 else
 if (txn->stmt == 0)
 {
 txn->stmt= txn->new_savepoint();
 trans_register_ha(thd, FALSE, &my_handler_hton);
 }
 }
 else
 {
 if (txn->stmt != NULL)
 {
 /* Commit the transaction if we're in auto-commit mode */
 my_handler_commit(thd, FALSE);

 delete txn->stmt; // delete savepoint
 txn->stmt= NULL;
 }
 }

 return error;
}

 Every storage engine must call
 trans_register_ha() every time it starts a
 transaction. The trans_register_ha() method
 registers a transaction with the MySQL server to allow for
 future COMMIT and
 ROLLBACK calls.

 An additional example of implementing
 external_lock() can be found in
 ha_innodb.cc.

22.17.3 Implementing ROLLBACK

 Of the two major transactional operations,
 ROLLBACK is the more complicated to
 implement. All operations that occurred during the transaction
 must be reversed so that all rows are unchanged from before the
 transaction began.

 To support ROLLBACK, create a method that
 matches this definition:

int (*rollback)(THD *thd, bool all);

 The method name is then listed in the
 rollback (thirteenth) entry of
 [custom-engine.html#custom-engine-handlerton the handlerton].

 The THD parameter is used to identify the
 transaction that needs to be rolled back, while the
 bool all parameter indicates whether the
 entire transaction should be rolled back or just the last
 statement.

 Details of implementing a ROLLBACK operation
 will vary by storage engine. Examples can be found in
 ha_innodb.cc.

22.17.4 Implementing COMMIT

 During a commit operation, all changes made during a transaction
 are made permanent and a rollback operation is not possible
 after that. Depending on the transaction isolation used, this
 may be the first time such changes are visible to other threads.

 To support COMMIT, create a method that
 matches this definition:

 int (*commit)(THD *thd, bool all);

 The method name is then listed in the commit
 (twelfth) entry of [custom-engine.html#custom-engine-handlerton
 the handlerton].

 The THD parameter is used to identify the
 transaction that needs to be committed, while the bool
 all parameter indicates if this is a full transaction
 commit or just the end of a statement that is part of the
 transaction.

 Details of implementing a COMMIT operation
 will vary by storage engine. Examples can be found in
 ha_innodb.cc.

 If the server is in auto-commit mode, the storage engine should
 automatically commit all read-only statements such as
 SELECT.

 In a storage engine, "auto-committing" works by counting locks.
 Increment the count for every call to
 external_lock(), decrement when
 external_lock() is called with an argument of
 F_UNLCK. When the count drops to zero,
 trigger a commit.

22.17.5 Adding Support for Savepoints

 First, the implementor should know how many bytes are required
 to store savepoint information. This should be a fixed size,
 preferably not large as the MySQL server will allocate space to
 store the savepoint for all storage engines with each named
 savepoint.

 The implementor should store the data in the space preallocated
 by mysqld - and use the contents from the preallocated space for
 rollback or release savepoint operations.

 When a COMMIT or ROLLBACK
 operation occurs (with bool all set to
 true), all savepoints are assumed to be
 released. If the storage engine allocates resources for
 savepoints, it should free them.

 The following handlerton elements need to be implemented to
 support savepoints (elements 7,9,10,11):

uint savepoint_offset;
int (*savepoint_set)(THD *thd, void *sv);
int (*savepoint_rollback)(THD *thd, void *sv);
int (*savepoint_release)(THD *thd, void *sv);

22.17.5.1 Specifying the Savepoint Offset

 The seventh element of the handlerton is the
 savepoint_offset:

uint savepoint_offset;

 The savepoint_offset must be initialized
 statically to the size of the needed memory to store
 per-savepoint information.

22.17.5.2 Implementing the savepoint_set Method

 The savepoint_set() method is called
 whenever a user issues the SAVEPOINT
 statement:

int (*savepoint_set)(THD *thd, void *sv);

 The *sv parameter points to an
 uninitialized storage area of the size defined by
 savepoint_offset.

 When savepoint_set() is called, the storage
 engine needs to store savepoint information into
 sv so that the server can later roll back
 the transaction to the savepoint or release the savepoint
 resources.

22.17.5.3 Implementing the savepoint_rollback() Method

 The savepoint_rollback() method is called
 whenever a user issues the ROLLBACK TO
 SAVEPOINT statement:

int (*savepoint_rollback) (THD *thd, void *sv);

 The *sv parameter points to the storage
 area that was previously passed to the
 savepoint_set() method.

22.17.5.4 Implementing the savepoint_release() Method

 The savepoint_release() method is called
 whenever a user issues the RELEASE
 SAVEPOINT statement:

int (*savepoint_release) (THD *thd, void *sv);

 The *sv parameter points to the storage
 area that was previously passed to the
 savepoint_set() method.

22.18 API Reference

22.18.1 bas_ext

Purpose

 Defines the file extensions used by the storage engine.

Synopsis

	
 virtual const char ** bas_ext (

	
);

	

	
	
 ;

Description

 This is the bas_ext method. It is called to
 provide the MySQL server with a list of file extensions used
 by the storage engine. The list returned is a null-terminated
 string array.

 By providing a list of extensions, storage engines can in many
 cases omit the
 [custom-engine.html#custom-engine-api-reference-delete_table
 delete_table()] method as the MySQL server
 will close all references to the table and delete all files
 with the specified extension.

Parameters

 There are no parameters for this method.

Return Values

	
 Return value is a null-terminated string array of storage
 engine extensions. The following is an example from the
 CSV engine:

static const char *ha_tina_exts[] =
 {
 ".CSV",
 NullS
 };

Usage

static const char *ha_tina_exts[] =
 {
 ".CSV",
 NullS
 };

const char **ha_tina::bas_ext() const
 {
 return ha_tina_exts;
 }

Default Implementation

static const char *ha_example_exts[] = {
 NullS
 };

const char **ha_example::bas_ext() const
 {
 return ha_example_exts;
 }

22.18.2 close

Purpose

 Closes an open table.

Synopsis

	
 virtual int close (

	
 void);

	

	
	
 void ;

Description

 This is the close method.

 Closes a table. A good time to free any resources that we have
 allocated.

 Called from sql_base.cc, sql_select.cc, and table.cc. In
 sql_select.cc it is only used to close up temporary tables or
 during the process where a temporary table is converted over
 to being a MyISAM table. For sql_base.cc
 look at close_data_tables().

Parameters

	
 void

Return Values

 There are no return values.

Usage

 Example from the CSV engine:

int ha_example::close(void)
{
 DBUG_ENTER("ha_example::close");
 DBUG_RETURN(free_share(share));
}

22.18.3 create

Purpose

 Creates a new table.

Synopsis

	
 virtual int create (

	
 name,

	

	
	
 form,

	

	
	
 info);

	

	
 const char *

	
 name ;

	
 TABLE *

	
 form ;

	
 HA_CREATE_INFO *

	
 info ;

Description

 This is the create method.

 create() is called to create a table. The
 variable name will have the name of the table. When
 create() is called you do not need to open
 the table. Also, the .frm file will have
 already been created so adjusting
 create_info is not recommended.

 Called from handler.cc by
 ha_create_table().

Parameters

	
 name

	
 form

	
 info

Return Values

 There are no return values.

Usage

 Example from the CSV storage engine:

int ha_tina::create(const char *name, TABLE *table_arg,
 HA_CREATE_INFO *create_info)
{
 char name_buff[FN_REFLEN];
 File create_file;
 DBUG_ENTER("ha_tina::create");

 if ((create_file= my_create(fn_format(name_buff, name, "", ".CSV",
 MY_REPLACE_EXT|MY_UNPACK_FILENAME),0,
 O_RDWR | O_TRUNC,MYF(MY_WME))) < 0)
 DBUG_RETURN(-1);

 my_close(create_file,MYF(0));

 DBUG_RETURN(0);
}

22.18.4 delete_row

Purpose

 Deletes a row.

Synopsis

	
 virtual int delete_row (

	
 buf);

	

	
 const byte *

	
 buf ;

Description

 This is the delete_row method.

 buf will contain a copy of the row to be
 deleted. The server will call this right after the current row
 has been called (from either a previous
 rnd_next() or index call). If you keep a
 pointer to the last row or can access a primary key it will
 make doing the deletion quite a bit easier. Keep in mind that
 the server does not guarantee consecutive deletions.
 ORDER BY clauses can be used.

 Called in sql_acl.cc and
 sql_udf.cc to manage internal table
 information. Called in sql_delete.cc,
 sql_insert.cc, and
 sql_select.cc. In
 sql_select it is used for removing
 duplicates, while in insert it is used for
 REPLACE calls.

Parameters

	
 buf

Return Values

 There are no return values.

Usage

 This section is yet to be written.

Default Implementation

{ return HA_ERR_WRONG_COMMAND; }

22.18.5 delete_table

Purpose

 Delete all files with extension from
 [custom-engine.html#custom-engine-api-reference-bas_ext
 bas_ext()].

Synopsis

	
 virtual int delete_table (

	
 name);

	

	
 const char *

	
 name ;

Description

 This is the delete_table method.

 Used to delete a table. By the time
 delete_table() has been called all opened
 references to this table will have been closed (and your
 globally shared references released). The variable name will
 be the name of the table. You will need to remove any files
 you have created at this point.

 If you do not implement this, the default
 delete_table() is called from
 handler.cc, and it will delete all files
 with the file extensions returned by
 bas_ext(). We assume that the handler may
 return more extensions than were actually used for the file.

 Called from handler.cc by
 delete_table and
 ha_create_table(). Only used during create
 if the
 table_flagHA_DROP_BEFORE_CREATE
 was specified for the storage engine.

Parameters

	
 name : Base name of table

Return Values

	
 0 if we successfully deleted at least
 one file from base_ext and didn't get
 any other errors than ENOENT

	
 # : Error

Usage

 Most storage engines can omit implementing this method.

22.18.6 external_lock

Purpose

 Handles table locking for transactions.

Synopsis

	
 virtual int external_lock (

	
 thd,

	

	
	
 lock_type);

	

	
 THD *

	
 thd ;

	
 int

	
 lock_type ;

Description

 This is the external_lock method.

 The locking methods for mysql section in
 lock.cc has additional comments on this
 topic that may be useful to read.

 This creates a lock on the table. If you are implementing a
 storage engine that can handle transactions, look at
 ha_innodb.cc to see how you will want to go
 about doing this. Otherwise you should consider calling
 flock() here.

 Called from lock.cc by
 lock_external() and
 unlock_external(). Also called from
 sql_table.cc by
 copy_data_between_tables().

Parameters

	
 thd

	
 lock_type

Return Values

 There are no return values.

Default Implementation

{ return 0; }

22.18.7 extra

Purpose

 Passes hints from the server to the storage engine.

Synopsis

	
 virtual int extra (

	
 operation);

	

	
 enum ha_extra_function

	
 operation ;

Description

 This is the extra method.

 extra() is called whenever the server
 wishes to send a hint to the storage engine. The
 MyISAM engine implements the most hints.
 ha_innodb.cc has the most exhaustive list
 of these hints.

Parameters

	
 operation

Return Values

 There are no return values.

Usage

 Most storage engines will simply return 0.

{ return 0; }

Default Implementation

 By default your storage engine can opt to implement none of
 the hints.

{ return 0; }

22.18.8 index_end

 This section is yet to be written.

Purpose

 Indicates end of index scan, clean up any resources used.

Synopsis

	
 virtual int index_end (

	
);

	

	
	
 ;

Description

 This is the index_end method. Generally it
 is used as a counterpart to the index_init
 method, cleaning up any resources allocated for index
 scanning.

Parameters

 This method has no parameters.

Return Values

 This method has no return values.

Usage

 Clean up all resources allocated, return 0.

Default Implementation

 { active_index=MAX_KEY; return 0; }

22.18.9 index_first

Purpose

 Retrieve first row in index and return.

Synopsis

	
 virtual int index_first (

	
 buf);

	

	
 byte *

	
 buf ;

Description

 This is the index_first method.

 index_first() asks for the first key in the
 index.

 Called from opt_range.cc, opt_sum.cc, sql_handler.cc, and
 sql_select.cc.

Parameters

	
 buf - byte array to be populated with
 row.

Return Values

 There are no return values.

Usage

 Implementation depends on indexing method used.

Default Implementation

 { return HA_ERR_WRONG_COMMAND; }

22.18.10 index_init

Purpose

 Signals the storage engine that an index scan is about to
 occur. Storage engine should allocate any resources needed.

Synopsis

	
 virtual int index_init (

	
 idx,

	

	
	
 sorted);

	

	
 uint

	
 idx ;

	
 bool

	
 sorted ;

Description

 This is the index_init method. This method
 is called before an index scan, allowing the storage engine to
 allocate resources and make preparations.

Parameters

	
 idx

	
 sorted

Return Values

	

Usage

 This method can typically just return 0 if there is no
 preparation needed.

Default Implementation

 { active_index=idx; return 0; }

22.18.11 index_last

Purpose

 Return the last row in the index.

Synopsis

	
 virtual int index_last (

	
 buf);

	

	
 byte *

	
 buf ;

Description

 This is the index_last method.

 index_last() asks for the last key in the
 index.

 Called from opt_range.cc, opt_sum.cc, sql_handler.cc, and
 sql_select.cc.

Parameters

	
 buf - byte array to be populated with
 matching row.

Return Values

 This method has no return values.

Usage

 Advance to last row in index and return row in buffer.

Default Implementation

 { return HA_ERR_WRONG_COMMAND; }

22.18.12 index_next

Purpose

 Return next row in index.

Synopsis

	
 virtual int index_next (

	
 buf);

	

	
 byte *

	
 buf ;

Description

 This is the index_next method.

 Used to read forward through the index.

Parameters

	
 buf

Return Values

 This method has no return values.

Usage

 Advance to next row in index using pointer or cursor, return
 row in buffer.

Default Implementation

 { return HA_ERR_WRONG_COMMAND; }

22.18.13 index_prev

Purpose

 Advance to previous row in index.

Synopsis

	
 virtual int index_prev (

	
 buf);

	

	
 byte *

	
 buf ;

Description

 This is the index_prev method.

 Used to read backward through the index.

Parameters

	
 buf

Return Values

 This method has no return values.

Usage

 Move to previous row in index, return in buffer.

Default Implementation

 { return HA_ERR_WRONG_COMMAND; }

22.18.14 index_read

Purpose

 Find a row based on a key and return.

Synopsis

	
 virtual int index_read (

	
 buf,

	

	
	
 key,

	

	
	
 keypart_map,

	

	
	
 find_flag);

	

	
 byte *

	
 buf ;

	
 const byte *

	
 key ;

	
 ulonglong

	
 keypart_map ;

	
 enum ha_rkey_function

	
 find_flag ;

Description

 This is the index_read method.

 Positions an index cursor to the index specified in the
 handle. Fetches the row if available. If the key value is
 null, begin at the first key of the index.

Parameters

	
 buf

	
 key

	
 keypart_map

	
 find_flag

Return Values

 This method has no return values.

Usage

 This section is still to be written.

Default Implementation

 { return HA_ERR_WRONG_COMMAND; }

22.18.15 index_read_idx

Purpose

 Find a row based on a key and return.

Synopsis

	
 virtual int index_read_idx (

	
 buf,

	

	
	
 index,

	

	
	
 key,

	

	
	
 keypart_map,

	

	
	
 find_flag);

	

	
 byte *

	
 buf ;

	
 uint

	
 index ;

	
 const byte *

	
 key ;

	
 ulonglong

	
 keypart_map ;

	
 enum ha_rkey_function

	
 find_flag ;

Description

 This is the index_read_idx method.

 Positions an index cursor to the index specified in key.
 Fetches the row if any. This is only used to read whole keys.

Parameters

	
 buf

	
 index

	
 key

	
 keypart_map

	
 find_flag

Return Values

 This method has no return values.

Usage

 Locate the row that matches the key passed and return it in
 the buffer provided.

22.18.16 index_read_last

Purpose

 This section is still to be written.

Synopsis

	
 virtual int index_read_last (

	
 buf,

	

	
	
 key,

	

	
	
 keypart_map);

	

	
 byte *

	
 buf ;

	
 const byte *

	
 key ;

	
 ulonglong

	
 keypart_map ;

Description

 This is the index_read_last method.

Parameters

	
 buf

	
 key

	
 keypart_map

Return Values

	

Usage

 This section is still to be written.

Default Implementation

 { return (my_errno=HA_ERR_WRONG_COMMAND); }

22.18.17 info

Purpose

 Prompts storage engine to report statistics.

Synopsis

	
 virtual int info (

	
 flag);

	

	
 uint

	
 flag ;

Description

 This is the info method.

	
	

	
	
 info() is used to return information to the
 optimizer. Currently, this table handler doesn't
 implement most of the fields really needed. SHOW
 also makes use of this data Another note, you
 will probably want to have the following in your
 code:

if (records < 2) records = 2

 The reason is that the server will optimize for
 cases of only a single record. If in a table
 scan you don't know the number of records it
 will probably be better to set records to two so
 you can return as many records as you need.
 Along with records a few more variables you may
 wish to set are: records deleted
 data_file_length index_file_length delete_length
 check_time See public variables in handler.h for
 more information.

 Called in: filesort.cc ha_heap.cc item_sum.cc opt_sum.cc
 sql_delete.cc sql_delete.cc sql_derived.cc sql_select.cc
 sql_select.cc sql_select.cc sql_select.cc sql_select.cc
 sql_show.cc sql_show.cc sql_show.cc sql_show.cc sql_table.cc
 sql_union.cc sql_update.cc

Parameters

	
 flag

Return Values

 0 for if no error occurred, HA_ERR_xxx if
 an error occurred.

Usage

 This example is from the CSV storage
 engine:

int ha_tina::info(uint flag)
{
 DBUG_ENTER("ha_tina::info");
 /* This is a lie, but you don't want the optimizer to see zero or 1 */
 if (!records_is_known && stats.records < 2)
 stats.records= 2;
 DBUG_RETURN(0);
}

22.18.18 open

Purpose

 Opens a table.

Synopsis

	
 virtual int open (

	
 name,

	

	
	
 mode,

	

	
	
 test_if_locked);

	

	
 const char *

	
 name ;

	
 int

	
 mode ;

	
 uint

	
 test_if_locked ;

Description

 This is the open method.

 Used for opening tables. The name will be the name of the
 file. A table is opened when it needs to be opened. For
 instance when a request comes in for a select on the table
 (tables are not open and closed for each request, they are
 cached).

 Called from handler.cc by handler::ha_open(). The server opens
 all tables by calling ha_open() which then calls the handler
 specific open().

 A handler object is opened as part of its initialization and
 before being used for normal queries (not before meta-data
 changes always.) If the object was opened it will also be
 closed before being deleted.

 This is the open method.
 open is called to open a database table.

 The first parameter is the name of the table to be opened. The
 second parameter determines what file to open or what
 operation to take. The values are defined in
 handler.h and are copied here for your
 convenience:

#define HA_OPEN_KEYFILE 1
#define HA_OPEN_RNDFILE 2
#define HA_GET_INDEX 4
#define HA_GET_INFO 8 /* do a ha_info() after open */
#define HA_READ_ONLY 16 /* File opened as readonly */
#define HA_TRY_READ_ONLY 32 /* Try readonly if can't open with read and write */
#define HA_WAIT_IF_LOCKED 64 /* Wait if locked on open */
#define HA_ABORT_IF_LOCKED 128 /* skip if locked on open.*/
#define HA_BLOCK_LOCK 256 /* unlock when reading some records */
#define HA_OPEN_TEMPORARY 512

 The final option dictates whether the handler should check for
 a lock on the table before opening it.

 Typically your storage engine will need to implement some form
 of shared access control to prevent file corruption is a
 multi-threaded environment. For an example of how to implement
 file locking, see the get_share() and
 free_share() methods of
 sql/examples/ha_tina.cc.

Parameters

	
 name

	
 mode

	
 test_if_locked

Return Values

 There are no return values.

Usage

 This example is from the CSV storage
 engine:

int ha_tina::open(const char *name, int mode, uint test_if_locked)
 {
 DBUG_ENTER("ha_tina::open");

 if (!(share= get_share(name, table)))
 DBUG_RETURN(1);
 thr_lock_data_init(&share->lock,&lock,NULL);
 ref_length=sizeof(off_t);

 DBUG_RETURN(0);
 }

22.18.19 position

Purpose

 Provide the MySQL server with position/offset information for
 last-read row.

Synopsis

	
 virtual void position (

	
 record);

	

	
 const byte *

	
 record ;

Description

 This is the position method.

 position() is called after each call to rnd_next() if the data
 needs to be ordered. You can do something like the following
 to store the position: my_store_ptr(ref, ref_length,
 current_position);

 The server uses ref to store data. ref_length in the above
 case is the size needed to store current_position. ref is just
 a byte array that the server will maintain. If you are using
 offsets to mark rows, then current_position should be the
 offset. If it is a primary key, then it needs to be a primary
 key.

 Called from filesort.cc, sql_select.cc, sql_delete.cc and
 sql_update.cc.

Parameters

	
 record

Return Values

 This method has no return values.

Usage

 Return offset or retrieval key information for last row.

22.18.20 records_in_range

Purpose

 For the given range how many records are estimated to be in
 this range.

Synopsis

	
 virtual ha_rows records_in_range
 (

	
 inx,

	

	
	
 min_key,

	

	
	
 max_key);

	

	
 uint

	
 inx ;

	
 key_range *

	
 min_key ;

	
 key_range *

	
 max_key ;

Description

 This is the records_in_range method.

 Given a starting key, and an ending key estimate the number of
 rows that will exist between the two. end_key may be empty
 which in case determine if start_key matches any rows.

 Used by optimizer to calculate cost of using a particular
 index.

 Called from opt_range.cc by check_quick_keys().

Parameters

	
 inx

	
 min_key

	
 max_key

Return Values

 Return the approxamite number of rows.

Usage

 Determine an approxamite count of the rows between the key
 values and return.

Default Implementation

 { return (ha_rows) 10; }

22.18.21 rnd_init

Purpose

 Initializes a handler for table scanning.

Synopsis

	
 virtual int rnd_init (scan);

	

	
 bool

	
 scan ;

Description

 This is the rnd_init method.

 rnd_init() is called when the system wants the storage engine
 to do a table scan.

 Unlike index_init(), rnd_init() can be called two times
 without rnd_end() in between (it only makes sense if scan=1).
 then the second call should prepare for the new table scan
 (e.g if rnd_init allocates the cursor, second call should
 position it to the start of the table, no need to deallocate
 and allocate it again

 Called from filesort.cc, records.cc, sql_handler.cc,
 sql_select.cc, sql_table.cc, and sql_update.cc.

Parameters

	
 scan

Return Values

 There are no return values.

Usage

 This example is from the CSV storage
 engine:

int ha_tina::rnd_init(bool scan)
{
 DBUG_ENTER("ha_tina::rnd_init");

 current_position= next_position= 0;
 records= 0;
 chain_ptr= chain;
 DBUG_RETURN(0);
}

22.18.22 rnd_next

Purpose

 Reads the next row from a table and returns it to the server.

Synopsis

	
 virtual int rnd_next (

	
 buf);

	

	
 byte *

	
 buf ;

Description

 This is the rnd_next method.

 This is called for each row of the table scan. When you run
 out of records you should return HA_ERR_END_OF_FILE. Fill buff
 up with the row information. The Field structure for the table
 is the key to getting data into buf in a manner that will
 allow the server to understand it.

 Called from filesort.cc, records.cc, sql_handler.cc,
 sql_select.cc, sql_table.cc, and sql_update.cc.

Parameters

	
 buf

Return Values

 There are no return values.

Usage

 This example is from the ARCHIVE storage
 engine:

int ha_archive::rnd_next(byte *buf)
{
 int rc;
 DBUG_ENTER("ha_archive::rnd_next");

 if (share->crashed)
 DBUG_RETURN(HA_ERR_CRASHED_ON_USAGE);

 if (!scan_rows)
 DBUG_RETURN(HA_ERR_END_OF_FILE);
 scan_rows--;

 statistic_increment(table->in_use->status_var.ha_read_rnd_next_count,
 &LOCK_status);
 current_position= gztell(archive);
 rc= get_row(archive, buf);

 if (rc != HA_ERR_END_OF_FILE)
 records++;

 DBUG_RETURN(rc);
}

22.18.23 rnd_pos

Purpose

 Return row based on position.

Synopsis

	
 virtual int rnd_pos (

	
 buf,

	

	
	
 pos);

	

	
 byte *

	
 buf ;

	
 byte *

	
 pos ;

Description

 This is the rnd_pos method.

 Used for finding row previously marked with position. This is
 useful for large sorts.

 This is like rnd_next, but you are given a position to use to
 determine the row. The position will be of the type that you
 stored in ref. You can use ha_get_ptr(pos,ref_length) to
 retrieve whatever key or position you saved when position()
 was called. Called from filesort.cc records.cc sql_insert.cc
 sql_select.cc sql_update.cc.

Parameters

	
 buf

	
 pos

Return Values

 This method has no return values.

Usage

 Locate row based on position value and return in buffer
 provided.

22.18.24 start_stmt

Purpose

 Called at the beginning of a statement for transaction
 purposes.

Synopsis

	
 virtual int start_stmt (

	
 thd,

	

	
	
 lock_type);

	

	
 THD *

	
 thd ;

	
 thr_lock_type

	
 lock_type ;

Description

 This is the start_stmt method.

 When table is locked a statement is started by calling
 start_stmt instead of external_lock

Parameters

	
 thd

	
 lock_type

Return Values

 This method has no return values.

Usage

 Make any preparations needed for a transaction start (if there
 is no current running transaction).

Default Implementation

 {return 0;}

22.18.25 store_lock

Purpose

 Creates and releases table locks.

Synopsis

	
 virtual THR_LOCK_DATA ** store_lock
 (

	
 thd,

	

	
	
 to,

	

	
	
 lock_type);

	

	
 THD *

	
 thd ;

	
 THR_LOCK_DATA **

	
 to ;

	
 enum thr_lock_type

	
 lock_type ;

Description

 This is the store_lock method.

 The idea with handler::store_lock() is the following:

 The statement decided which locks we should need for the table
 for updates/deletes/inserts we get WRITE locks, for SELECT...
 we get read locks.

 Before adding the lock into the table lock handler
 mysqld calls store lock with
 the requested locks. Store lock can modify the lock level, for
 example, change blocking write lock to non-blocking, ignore
 the lock (if we don't want to use MySQL table locks at all),
 or add locks for many tables (like we do when we are using a
 MERGE handler).

 When releasing locks, store_lock() are also called. In this
 case one usually doesn't have to do anything.

 If the argument of store_lock is TL_IGNORE, it means that
 MySQL requests the handler to store the same lock level as the
 last time.

 Called from lock.cc by get_lock_data().

Parameters

	
 thd

	
 to

	
 lock_type

Return Values

 There are no return values.

Usage

 The following example is from the ARCHIVE
 storage engine:

/*
 Below is an example of how to setup row level locking.
 */
 THR_LOCK_DATA **ha_archive::store_lock(THD *thd,
 THR_LOCK_DATA **to,
 enum thr_lock_type lock_type)
 {
 if (lock_type == TL_WRITE_DELAYED)
 delayed_insert= TRUE;
 else
 delayed_insert= FALSE;

 if (lock_type != TL_IGNORE && lock.type == TL_UNLOCK)
 {
 /*
 Here is where we get into the guts of a row level lock.
 If TL_UNLOCK is set
 If we are not doing a LOCK TABLE or DISCARD/IMPORT
 TABLESPACE, then allow multiple writers
 */

 if ((lock_type >= TL_WRITE_CONCURRENT_INSERT &&
 lock_type <= TL_WRITE) && !thd->in_lock_tables
 && !thd->tablespace_op)
 lock_type = TL_WRITE_ALLOW_WRITE;

 /*
 In queries of type INSERT INTO t1 SELECT ... FROM t2 ...
 MySQL would use the lock TL_READ_NO_INSERT on t2, and that
 would conflict with TL_WRITE_ALLOW_WRITE, blocking all inserts
 to t2. Convert the lock to a normal read lock to allow
 concurrent inserts to t2.
 */

 if (lock_type == TL_READ_NO_INSERT && !thd->in_lock_tables)
 lock_type = TL_READ;

 lock.type=lock_type;
 }

 *to++= &lock;

 return to;
 }

 The following is the minimal implementation, for a storage
 engine that does not need to downgrade locks:

THR_LOCK_DATA **ha_tina::store_lock(THD *thd,
 THR_LOCK_DATA **to,
 enum thr_lock_type lock_type)
{
 /* Note that if the lock type is TL_IGNORE we don't update lock.type,
 preserving the previous lock level */
 if (lock_type != TL_IGNORE && lock.type == TL_UNLOCK)
 lock.type=lock_type;
 /* the heart of the store_lock() method and it's main purpose -
 storing the (possibly changed) lock level into the provided
 memory */
 *to++= &lock;
 return to;
}

 See also ha_myisammrg::store_lock() for
 more complex implementation

22.18.26 update_row

Purpose

 Updates the contents of an existing row.

Synopsis

	
 virtual int update_row (

	
 old_data,

	

	
	
 new_data);

	

	
 const byte *

	
 old_data ;

	
 byte *

	
 new_data ;

Description

 This is the update_row method.

 old_data will have the previous row record in it, while
 new_data will have the newest data in it.

 The server can do updates based on ordering if an ORDER BY
 clause was used. Consecutive ordering is not guaranteed.

 Currently, new_data will not have an updated auto_increament
 record, or and updated timestamp field. You can do these for
 example by doing these: if (table->timestamp_field_type
 & TIMESTAMP_AUTO_SET_ON_UPDATE)
 table->timestamp_field->set_time(); if
 (table->next_number_field && record ==
 table->record[0]) update_auto_increment();

 Called from sql_select.cc, sql_acl.cc, sql_update.cc, and
 sql_insert.cc.

Parameters

	
 old_data

	
 new_data

Return Values

 There are no return values.

Usage

 This section is still to be written.

Default Implementation

 { return HA_ERR_WRONG_COMMAND; }

22.18.27 write_row

Purpose

 Adds a new row to a table.

Synopsis

	
 virtual int write_row (

	
 buf);

	

	
 byte *

	
 buf ;

Description

 This is the write_row method.

 write_row() inserts a row. No
 [custom-engine.html#custom-engine-api-reference-extra
 extra()] hint is given currently if a bulk
 load is happening. buf is a byte array of data with a size of
 table->s->reclength

 You can use the field information to extract the data from the
 native byte array type. Example of this would be: for (Field
 **field=table->field ; *field ; field++) { ... }

 BLOBs must be handled specially:

for (ptr= table->s->blob_field, end= ptr + table->s->blob_fields ; ptr != end ; ptr++)
 {
 char *data_ptr;
 uint32 size= ((Field_blob*)table->field[*ptr])->get_length();
 ((Field_blob*)table->field[*ptr])->get_ptr(&data_ptr);
 ...
 }

 See ha_tina.cc for an example of extracting all of the data as
 strings.

 See the note for update_row() on
 auto_increments and timestamps. This case also applied to
 write_row().

 Called from item_sum.cc, item_sum.cc, sql_acl.cc,
 sql_insert.cc, sql_insert.cc, sql_select.cc, sql_table.cc,
 sql_udf.cc, and sql_update.cc.

Parameters

	
 buf byte array of data

Return Values

 There are no return values.

Usage

 This section is still to be written.

Default Implementation

 { return HA_ERR_WRONG_COMMAND; }

22.19 FAQ

 Q: I've written my own storage engine, compiled it as shared
 object but when loading it I get an error like "undefined symbol:
 _ZTI7handler." What's wrong?

 A: Make sure you compile and link your extension using the same
 flags as the server uses. The usual reason for this error is that
 LDFLAGS are missing the -fno-rtti option.

Chapter 23 Test Synchronization

Table of Contents
	23.1 Sleep
	23.2 Wait Condition
	23.3 Dbug Sleep
	23.4 Error Injection
	23.5 User-Level Locks
	23.6 Debug Sync Facility
		23.6.1 Formal Syntax for DEBUG_SYNC Values
	23.6.2 Debug Sync Activation/Deactivation
	23.6.3 Debug Sync Implementation
	23.6.4 A Typical Synchronization Pattern
	23.6.5 Co-work With the DBUG Facility
	23.6.6 Debug Sync Further Reading

	23.7 Debug Sync Point (Obsolete)
		23.7.1 Backup Breakpoint

 There is a class of problems that require two or more cooperating
 threads to reproduce them.

 A subclass of these problems is known as "race conditions". They
 require one thread to execute a certain piece of code while another
 thread executes another certain piece of code.

 The vast majority of race conditions cannot be repeated reliably
 without some sort of synchronization of the involved threads. In
 most cases it is unlikely that the threads run through these code
 pieces at the right time. In this context 'synchronization' means to
 force the threads to meet at the critical code places.

 In this chapter I'll describe some synchronization mechanisms:

	
	

	
 Sleep

	
 Wait Condition

	
 Dbug Sleep

	
 Error Injection

	
 User-Level Locks

	
 Debug Sync Point

	
 Backup Breakpoint

	
 Debug Sync Facility

23.1 Sleep

 In some cases race conditions can be repeated when all but one
 thread are blocked (for example waiting for an SQL lock). Then the
 remaining thread has plenty of time to go through the critical
 piece of code.

 The problem here is to assure that the blocking threads run until
 they reach their blocking point before the remaining thread
 reaches the critical code.

 One solution is to use the 'sleep' command of 'mysqltest' in front
 of the SQL statement that drives the remaining thread into the
 critical code.

 Example:

--connection conn1
 LOCK TABLE t1 WRITE;
 --connection conn2
 # This will block in wait_for_lock().
 send INSERT INTO t1 VALUES (1);
 --connection conn1
 # Sleep until we can be sure that conn2 reached wait_for_lock().
 --sleep 2
 # Run through the critical code.
 FLUSH TABLE t1;

 The BIG, BIG problem with 'sleep' is that you need to specify a
 fixed time. It must be big enough so that the test works as
 intended even on a very slow machine that is under heavy load.
 Hence it is much too big for the average machine. A major waste of
 time.

 The bottom line is: AVOID 'SLEEP' WHEREVER POSSIBLE.

23.2 Wait Condition

 Like 'sleep', this method can also be used, when all but one
 thread reach a blocked state.

 If you are able to detect that the threads are in their blocked
 state by using SQL statements, then you can use this method. The
 remaining thread runs the statement(s) until the expected result
 is returned. Then it continues with the test.

 Example:

--connection conn1
 LOCK TABLE t1 WRITE;
 --connection conn2
 # Get the id of this thread.
 let $conn2_id= `SELECT CONNECTION_ID()`;
 # This will block in wait_for_lock().
 send INSERT INTO t1 VALUES (1);
 --connection conn1
 # Specify the condition that shows if conn2 reached wait_for_lock().
 let $wait_condition= SELECT 1 FROM INFORMATION_SCHEMA.PROCESSLIST
 WHERE ID = $conn2_id AND STATE = 'Locked';
 # Run the condition in a loop until it becomes true.
 --source include/wait_condition.inc
 # Run through the critical code.
 FLUSH TABLE t1;

 In conn2 we get the thread ID first. In conn1 we use a SELECT
 statement that returns '1' when the processlist shows that conn2
 reached the 'Locked' state. With this setup we call the
 wait_condition method. It runs the statement and checks the
 result. If the condition is not met, it sleeps for 0.1 second and
 retries.

 The maximum waste of time is 0.1 seconds. This is much better than
 the 'sleep' method, but could still waste a little time.

 Another problem is that the condition could be "fuzzy" in some
 situations. In the example above, the thread state (proc_info) is
 set to "Locked" right before the locking function is called. In
 theory it could happen that conn1 continues before conn2 did
 acquire the lock. The test would then fail to repeat what it was
 intended to do.

 The "Debug Sync Facility" should be able to replace most of the
 "wait condition" uses.

23.3 Dbug Sleep

 In cases where the normal server code does not have a block point
 at the critical place, one can insert an artificial
 synchronization point.

open_tables(...)

 DBUG_EXECUTE_IF("sleep_open_and_lock_after_open", {
 const char *old_proc_info= thd->proc_info;
 thd->proc_info= "DBUG sleep";
 my_sleep(6000000);
 thd->proc_info= old_proc_info;});

 lock_tables(...)

 In this case, if the 'debug' keyword
 'sleep_open_and_lock_after_open' is set, a thread sleeps for 6
 seconds after open_tables() and before lock_tables(). Before
 sleeping, it sets the thread state (proc_info) to 'DBUG sleep'.
 The test file that uses this synchronization point looks like so:

--connection conn1
 let $conn1_id= `SELECT CONNECTION_ID()`;
 # System variable 'debug' exists only in debug servers
 --error 0, ER_UNKNOWN_SYSTEM_VARIABLE
 SET SESSION debug="+d,sleep_open_and_lock_after_open";
 send INSERT INTO t1 VALUES (1);
 --connection conn2
 # Specify the condition that shows if conn1 reached the sync point.
 let $wait_condition= SELECT 1 FROM INFORMATION_SCHEMA.PROCESSLIST
 WHERE ID = $conn1_id AND STATE = 'DBUG sleep';
 # Run the condition in a loop until it becomes true.
 --source include/wait_condition.inc
 # Run through the critical code.
 FLUSH TABLE t1;

 So one can add synchronization points almost everywhere. But only
 at the cost of the wasted time of a sleep + a wait condition.

 This method requires that you modify and recompile the server
 code. Another problem is that the synchronization point does not
 exist in non-debug servers. Not even the system variable 'debug'
 exists in a non-debug server. Each test must be written so that it
 works on a debug server as well as on a non-debug server. If this
 is not possible, the test must be moved into a test file that
 includes 'have_debug.inc'. Setting the possibly not existing
 variable can be protected by the --error 0,
 ER_UNKNOWN_SYSTEM_VARIABLE command. It says that the next
 statement can either succeed (0) or fail
 (ER_UNKNOWN_SYSTEM_VARIABLE).

 Finally the method is bad when the execution should be traced with
 the DBUG facility. Setting one (or more) 'debug' keywords disables
 all other keywords. One would need to add a pretty long list for a
 meaningful trace.

 The bottom line is: Use the "Dbug Sleep" method when there is no
 other way to repeat a problem. However, the "Debug Sync Facility"
 should be able to replace all "Dbug Sleep" synchronization points.

23.4 Error Injection

 Note: The ERROR_INJECT framework has been removed in an early 6.0
 version. It is also not available from 5.5 upwards. It might be
 added back later.

 The error injection method is based on the DBUG framework just
 like the Dbug Sleep method. In the code you can use the following
 macros:

ERROR_INJECT_ACTION(keyword,action)
ERROR_INJECT_CRASH(keyword)
ERROR_INJECT(keyword)
SET_ERROR_INJECT_VALUE(value)
ERROR_INJECT_VALUE_ACTION(value,action)
ERROR_INJECT_VALUE_CRASH(value)
ERROR_INJECT_VALUE(value)

 'keyword' is the debug keyword that you set in the test file with:

 SET SESSION debug='+d,keyword1,keyword2,keyword3';

 'value' is an unsigned long integer value. It is stored in
 THD::error_inject_value by SET_ERROR_INJECT_VALUE(value) and
 examined by the other *_VALUE* macros.

 All of the ERROR_INJECT_* macros can/must be used in an
 expression. Their value is 0 (zero) in most cases. Exceptions are
 mentioned below.

 Most of the ERROR_INJECT_* macros remove the keyword from the
 debug keyword list or clear THD::error_inject_value respectively
 before they executes their action. This means each of them will
 never execute twice within one SQL statement. But if multiple
 non-VALUE macros are run through in a statement, each can execute
 once if they use distinct keywords. There is just one
 THD::error_inject_value, not a list. So when any *_VALUE* macro
 clears it, all other *_VALUE* macros are disabled. Unless a new
 value is set by SET_ERROR_INJECT_VALUE somewhere. Obvious
 exceptions of keyword/value removal are SET_ERROR_INJECT_VALUE and
 the CRASH macros.

 The ERROR_INJECT_ACTION macro is very similar to the
 DBUG_EXECUTE_IF macro (see the "Dbug Sleep section). But remember
 the removal of the keyword/value.

 The ERROR_INJECT_VALUE_ACTION is similar to ERROR_INJECT_ACTION.
 But it is controlled by the thread local value set by
 SET_ERROR_INJECT_VALUE. Also the action must be written as an
 expression. You can call a function that returns a value valid in
 the expression in which ERROR_INJECT_VALUE_ACTION appears. But if
 you want to open a block "{...}" you need to make an expression
 from it: "({...}, 0)". Also, if ERROR_INJECT_VALUE_ACTION is
 executed, it returns the value that the 'action' expression
 returns, not just 0 (zero) like ERROR_INJECT_ACTION does.

 ERROR_INJECT_CRASH and ERROR_INJECT_VALUE_CRASH are pretty
 self-explanatory.

 ERROR_INJECT and ERROR_INJECT_VALUE are for expression evaluation.
 They return 1 if the keyword is set or the value matches
 THD::error_inject_value respectively. Otherwise 0.

 SET_ERROR_INJECT_VALUE copies the argument to
 THD::error_inject_value.

 Downsides: The error injection method is NOT enabled in the server
 by default. You need to ./configure --with-error-inject

 The method is currently not used in the standard test suite
 anywhere. So you cannot copy and modify an example, but have to
 learn it the hard way.

 When controlling error injection from the test files, explicit
 debug keywords are required, which has the same downsides as
 mentioned under Dbug Sleep.

 If not using the ERROR_INJECT macros in an expression, expect the
 compiler warning "statement has no effect".

23.5 User-Level Locks

 User-level locks are controlled with the SQL functions

GET_LOCK(str,timeout)
IS_FREE_LOCK(str)
IS_USED_LOCK(str)
RELEASE_LOCK(str)

 They can be used at places where SQL statements accept SQL
 functions. Depending on their appearance in the select list, the
 where clause, the group by clause, etc, of select, update or other
 statements, these statements can be blocked at different code
 points. The set of blockable places is limited. Nevertheless, a
 couple of synchronization problems can be solved with user-level
 locks.

 Example:

Using InnoDB table with innodb_lock_wait_timeout=1 second.
 --connection conn1
 # Take an share lock on t1.
 LOCK TABLE t1 IN SHARE MODE;
 --connection conn2
 # Acquire the user level lock "mysqltest1".
 SELECT GET_LOCK("mysqltest1", 10);
 # INSERT must wait in background for the SQL lock on t1 to go away.
 send INSERT INTO t1 VALUES (1);
 --connection conn1
 # Wait in background until the insert times out and releases the
 # user level lock. conn1 will then own the lock.
 send SELECT GET_LOCK("mysqltest1", 10);
 --connection conn2
 # Wait for INSERT to timeout.
 --error ER_LOCK_WAIT_TIMEOUT
 reap;
 # Now let conn1 get the lock and continue.
 SELECT RELEASE_LOCK("mysqltest1");
 COMMIT;
 --connection conn1
 reap;
 # We do not need the lock any more.
 SELECT RELEASE_LOCK("mysqltest1");
 # Commit releases the share lock on t1.
 COMMIT;

 A good article about possible uses of user-level locks is from
 Martin Friebe. MySQL Internals mailing list, 10 Dec 2007:
 http://lists.mysql.com/internals/35220

 One limitation of user-level locks is that a thread can have one
 lock at a time only. This limits the method to relatively simple
 cases.

23.6 Debug Sync Facility

 The Debug Sync Facility is available as of MySQL 5.1.41, 5.5.0,
 and 6.0.6. Please note that - in spite of the "debug" in its name
 - this facility is completely independent from the DBUG facility
 (except that it uses DBUG to trace its operation, if DBUG is also
 configured in the server). The documentation here is derived from
 comments in the sql/debug_sync.cc source file.

 With a properly configured server (see
 Section 23.6.2, “Debug Sync Activation/Deactivation”), this
 facility allows placement of synchronization points in the server
 code by using the DEBUG_SYNC macro:

open_tables(...)
DEBUG_SYNC(thd, "after_open_tables");
lock_tables(...)

 When activated, a synchronization point can

	
 Emit a signal and/or

	
 Wait for a signal

 Nomenclature:

	
 signal

	
 An event identified by a name that a signal thread uses to
 notify the wait thread that waits on this event. When the
 signal thread notifies the wait thread, the signal name is
 copied into global list and the wait thread is signalled to
 wake up and proceed with further processing.

	
 emit a signal

	
 Signal thread wakes up wait thread or multiple wait threads
 that shall wait for the signal identified by a signal name.
 This signal thread copies the signal name into a global list
 and broadcasts the event which wakes the threads that wait
 for this event.

	
 wait for a signal

	
 Wait on a event indentified by the signal name until the
 signal thread signals the event.

 By default, all synchronization points are inactive. They do
 nothing (except burn a couple of CPU cycles for checking if they
 are active).

 A synchronization point becomes active when an action is requested
 for it. To do so, assign a value to the DEBUG_SYNC system
 variable:

 SET DEBUG_SYNC= 'after_open_tables SIGNAL opened WAIT_FOR flushed';

 This activates the synchronization point named
 'after_open_tables'. The activation requests the synchronization
 point to emit the signal 'opened' and wait for another thread to
 emit the signal 'flushed' when the thread's execution runs through
 the synchronization point.

 For every synchronization point there can be one action per thread
 only. Every thread can request multiple actions, but only one per
 synchronization point. In other words, a thread can activate
 multiple synchronization points.

 Here is an example how to activate and use the synchronization
 points:

--connection conn1
SET DEBUG_SYNC= 'after_open_tables SIGNAL opened WAIT_FOR flushed';
send INSERT INTO t1 VALUES(1);
 --connection conn2
 SET DEBUG_SYNC= 'now WAIT_FOR opened';
 SET DEBUG_SYNC= 'after_abort_locks SIGNAL flushed';
 FLUSH TABLE t1;

 When conn1 runs through the INSERT statement, it hits the
 synchronization point 'after_open_tables'. It notices that it is
 active and executes its action. It emits the signal 'opened' and
 waits for another thread to emit the signal 'flushed'.

 conn2 waits immediately at the special synchronization point 'now'
 for another thread to emit the 'opened' signal.

 If conn1 signals 'opened' before conn2 reaches 'now', conn2 will
 find the 'opened' signal. The wait thread shall not wait in this
 case.

 When conn2 reaches 'after_abort_locks', it signals 'flushed',
 which lets conn1 awake and clears the 'flushed' signal from the
 global list. In case the 'flushed' signal is to be notified to
 multiple wait threads, an attribute NO_CLEAR_EVENT need to be
 specified with the WAIT_FOR in addition to signal the name as:

SET DEBUG_SYNC= 'WAIT_FOR flushed NO_CLEAR_EVENT';

 It is up to the user to ensure once when all the wait threads have
 processed the 'flushed' signal to clear/deactivate the signal
 using the RESET action of DEBUG_SYNC accordingly.

 Normally the activation of a synchronization point is cleared when
 it has been executed. Sometimes it is necessary to keep the
 synchronization point active for another execution. You can add an
 execute count to the action:

SET DEBUG_SYNC= 'name SIGNAL sig EXECUTE 3';

 This sets the synchronization point's activation counter to 3.
 Each execution decrements the counter. After the third execution
 the synchronization point becomes inactive.

 One of the primary goals of this facility is to eliminate sleeps
 from the test suite. In most cases it should be possible to
 rewrite test cases so that they do not need to sleep. (Note that
 Debug Sync can synchronize only multiple threads within a single
 process. It cannot synchronize multiple processes.) However, to
 support test development, and as a last resort, synchronization
 point waiting times out. There is a default timeout, but it can be
 overridden:

SET DEBUG_SYNC= 'name WAIT_FOR sig TIMEOUT 10 EXECUTE 2';

 TIMEOUT 0 is special: If the signal is not present, the wait times
 out immediately.

 If a wait timeout occurs (even on TIMEOUT 0), a warning is
 generated so that it shows up in the test result.

 You can throw an error message and kill the query when a
 synchronization point is hit a certain number of times:

SET DEBUG_SYNC= 'name HIT_LIMIT 3';

 Or combine it with signal and/or wait:

SET DEBUG_SYNC= 'name SIGNAL sig EXECUTE 2 HIT_LIMIT 3';

 Here the first two hits emit the signal, the third hit returns the
 error message and kills the query.

 For cases where you are not sure that an action is taken and thus
 cleared in any case, you can forcibly clear (deactivate) a
 synchronization point:

SET DEBUG_SYNC= 'name CLEAR';

 If you want to clear all actions and clear the global signal, use:

SET DEBUG_SYNC= 'RESET';

 This is the only way to reset the global signal to an empty
 string.

 For testing of the facility itself you can execute a
 synchronization point just as if it had been hit:

SET DEBUG_SYNC= 'name TEST';
23.6.1 Formal Syntax for DEBUG_SYNC Values

 The string to "assign" to the DEBUG_SYNC variable can contain:

{RESET |
 <sync point name> TEST |
 <sync point name> CLEAR |
 <sync point name> {{SIGNAL <signal name> |
 WAIT_FOR <signal name> [TIMEOUT <seconds>]
 [NO_CLEAR_EVENT]}
 [EXECUTE <count>] &| HIT_LIMIT <count>}

 Here '&|' means 'and/or'. This means that one of the
 sections separated by '&|' must be present or both of them.

23.6.2 Debug Sync Activation/Deactivation

 The Debug Sync facility is an optional part of the MySQL server.
 It is enabled in a debug server by default.

 The Debug Sync Facility, when compiled in, is disabled by
 default. To enable it, start mysqld with the
 --debug-sync-timeout[=N] option, where N is a timeout value
 greater than 0. N becomes the default timeout for the WAIT_FOR
 action of individual synchronization points. If N is 0, Debug
 Sync stays disabled. If the option is given without a value, the
 timeout is set to 300 seconds.

 The DEBUG_SYNC system variable is the user interface to the
 Debug Sync facility. If Debug Sync is not compiled in, this
 variable is not available. If compiled in, the global DEBUG_SYNC
 value is read only and indicates whether the facility is
 enabled. By default, Debug Sync is disabled and the value of
 DEBUG_SYNC is "OFF". If the server is started with
 --debug-sync-timeout=N, where N is a timeout value greater than
 0, Debug Sync is enabled and the value of DEBUG_SYNC is "ON -
 current signal" followed by the signal name. Also, N becomes the
 default timeout for individual synchronization points.

 The session value can be read by any user and will have the same
 value as the global variable. The session value can be set by
 users that have the SUPER privilege to control synchronization
 points.

 Setting the DEBUG_SYNC system variable requires the 'SUPER'
 privilege. You cannot read back the string that you assigned to
 the variable, unless you assign the value that the variable does
 already have. But that would give a parse error. A syntactically
 correct string is parsed into a debug synchronization point
 action and stored apart from the variable value.

 The Debug Sync facility is enabled by default in the test suite,
 but can be disabled with:

mysql-test-run.pl ... --debug-sync-timeout=0 ...

 Likewise, the default wait timeout can be set:

mysql-test-run.pl ... --debug-sync-timeout=10 ...

 For test cases that require the Debug Sync facility, include the
 following line in the test case file:

 --source include/have_debug_sync.inc

23.6.3 Debug Sync Implementation

 Pseudo code for a synchronization point:

#define DEBUG_SYNC(thd, sync_point_name)
 if (unlikely(opt_debug_sync_timeout))
 debug_sync(thd, STRING_WITH_LEN(sync_point_name))

 The synchronization point performs a binary search in a sorted
 array of actions for this thread.

 The SET DEBUG_SYNC statement adds a requested action to the
 array or overwrites an existing action for the same
 synchronization point. When it adds a new action, the array is
 sorted again.

23.6.4 A Typical Synchronization Pattern

 There are quite a few places in MySQL, where we use a
 synchronization pattern like this:

pthread_mutex_lock(&mutex);
 thd->enter_cond(&condition_variable, &mutex, new_message);
 #if defined(ENABLE_DEBUG_SYNC)
 if (!thd->killed && !end_of_wait_condition)
 DEBUG_SYNC(thd, "sync_point_name");
 #endif
 while (!thd->killed && !end_of_wait_condition)
 pthread_cond_wait(&condition_variable, &mutex);
 thd->exit_cond(old_message);

 Here some explanations:

 thd->enter_cond() is used to register the condition variable
 and the mutex in thd->mysys_var. This is done to allow the
 thread to be interrupted (killed) from its sleep. Another thread
 can find the condition variable to signal and mutex to use for
 synchronization in this thread's THD::mysys_var.

 thd->enter_cond() requires the mutex to be acquired in
 advance.

 thd->exit_cond() unregisters the condition variable and mutex
 and releases the mutex.

 If you want to have a Debug Sync point with the wait, please
 place it behind enter_cond(). Only then you can safely decide,
 if the wait will be taken. Also you will have THD::proc_info
 correct when the sync point emits a signal. DEBUG_SYNC sets its
 own proc_info, but restores the previous one before releasing
 its internal mutex. As soon as another thread sees the signal,
 it does also see the proc_info from before entering the sync
 point. In this case it will be "new_message", which is
 associated with the wait that is to be synchronized.

 In the example above, the wait condition is repeated before the
 sync point. This is done to skip the sync point, if no wait
 takes place. The sync point is before the loop (not inside the
 loop) to have it hit once only. It is possible that the
 condition variable is signaled multiple times without the wait
 condition to be true.

 A bit off-topic: At some places, the loop is taken around the
 whole synchronization pattern:

while (!thd->killed && !end_of_wait_condition)
 {
 pthread_mutex_lock(&mutex);
 thd->enter_cond(&condition_variable, &mutex, new_message);
 if (!thd->killed [&& !end_of_wait_condition])
 {
 [DEBUG_SYNC(thd, "sync_point_name");]
 pthread_cond_wait(&condition_variable, &mutex);
 }
 thd->exit_cond(old_message);
}

 Note that it is important to repeat the test for thd->killed
 after enter_cond(). Otherwise the killing thread may kill this
 thread after it tested thd->killed in the loop condition and
 before it registered the condition variable and mutex in
 enter_cond(). In this case, the killing thread does not know
 that this thread is going to wait on a condition variable. It
 would just set THD::killed. But if we would not test it again,
 we would go asleep though we are killed. If the killing thread
 would kill us when we are after the second test, but still
 before sleeping, we hold the mutex, which is registered in
 mysys_var. The killing thread would try to acquire the mutex
 before signaling the condition variable. Since the mutex is only
 released implicitly in pthread_cond_wait(), the signaling
 happens at the right place. We have a safe synchronization.

23.6.5 Co-work With the DBUG Facility

 When running the MySQL test suite with a "debug" server (the
 DBUG facility is configured in) and the --debug command line
 option, the Debug Sync Facility writes trace messages to the
 DBUG trace. The following shell commands proved very useful in
 extracting relevant information:

egrep 'query:|debug_sync_exec:' mysql-test/var/log/mysqld.1.trace

 It shows all executed SQL statements and all actions executed by
 synchronization points.

 Sometimes it is also useful to see, which synchronization points
 have been run through (hit) with or without executing actions.
 Then add "|debug_sync_point:"
 to the egrep pattern.

23.6.6 Debug Sync Further Reading

 For complete syntax tests, functional tests, and examples see
 the test case debug_sync.test.

 See also worklog entry WL#4259 - Debug Sync Facility

 Reference manual 5.1

	
 2.3.2 Typical configure Options (--enable-debug-sync)

	
 5.1.2 Command Options (--debug-sync-timeout)

	
 5.1.4 System Variables (debug_sync)

 Test framework manual

	
 4.14 Thread Synchronization in Test Cases
 (have_debug_sync.inc)

	
 5.3 mysql-test-run.pl (--debug-sync-timeout)

23.7 Debug Sync Point (Obsolete)

Note

 Debug Sync Points were based on user-level locks. They were part
 of the MySQL code until the 6.0.5 and 5.1.46 versions. Debug
 Sync Points have been removed from the code in favor of the
 Debug Sync Facility.

 Debug Sync Points give user-level locks the ability to synchronize
 at arbitrary points in code.

open_tables(...)

DBUG_SYNC_POINT("debug_lock.after_open_tables", 10);

lock_tables(...)

 The synchronization points behave similar to

 RELEASE_LOCK(<whatever the thread has>);
IS_FREE_LOCK(str) OR (GET_LOCK(str,timeout) AND RELEASE_LOCK(str))

 This means that the synchronization point releases any lock that
 the thread may have, waits to acquire the lock if another thread
 has it, and releases it immediately. If the lock is free (not used
 by any thread), the synchronization point does nothing but release
 any user-level lock of the current thread.

 So the idea of DBUG_SYNC_POINT is that it does nothing when the
 user-level lock is not in use by any thread, and does wait for it
 to become free when it is in use. That way you can block a thread
 at a synchronization point by acquiring the user-level lock and
 let it continue by releasing the lock.

 This can be used as a "signal". The thread acquires a lock (the
 "signal" lock) and releases it implicitly when reaching the
 synchronization point. The other thread, which tried to get the
 "signal" lock after this thread, gets the lock at the same moment
 and can continue.

 It can be used as a "wait". The other thread has the
 "synchronization point" lock ("debug_lock.after_open_tables" in
 this example) and this thread blocks on it in the synchronization
 point.

 Unfortunately I was not able to figure out, how to use it for
 "signal" _plus_ "wait". While the other thread could have the
 "synchronization point" lock and this thread have the "signal"
 lock, and hence reaching the synchronization point would release
 the "signal" lock and wait on the "synchronization point" lock,
 the other thread would not be able to wait on the "signal" lock,
 because it has the "synchronization point" lock. A thread can have
 one user lock only. When the other thread tries to wait for the
 "signal" lock, it implicitly releases the "synchronization point"
 lock. This would be okay if one could be sure that this thread
 reached the synchronization point before the other thread releases
 the "synchronization point" lock. Otherwise no wait would happen
 at the synchronization point. The test would not test what it
 should test.

 A possible workaround might be a third thread, which takes the
 "synchronization point" lock in the beginning and releases it at
 the right moment. But this could easily lead to a big number of
 threads for more complex situations. Tests using this method are
 likely to become ununderstandable.

 It is probably a bug in the implementation that DBUG_SYNC_POINT
 releases any lock unconditionally. The method is not widely used.
 I found just one single use in sql_repl.cc. I guess lock releasing
 was added to prevent that a synchronization point could wait on
 the threads own lock. The behavior could be fixed easily if the
 method should find more use.

 The DBUG_SYNC_POINT method is available in debug servers only. If
 it is used in the test suite, similar precautions for writing
 tests have to be taken as mentioned in the "Dbug Sleep" section.

23.7.1 Backup Breakpoint

 Note: Backup Breakpoints were based on DBUG_SYNC_POINT. They
 were part of the MySQL code in some early 6.0 versions. Backup
 Breakpoints have been removed from the code in favor of the
 Debug Sync Facility.

open_tables(...)

BACKUP_BREAKPOINT("bp_after_open_tables");

lock_tables(...)

 The BACKUP_BREAKPOINT macro consists basically of:

DBUG_EXECUTE_IF("backup_debug", DBUG_SYNC_POINT((S), 300))

 Opportunities and downsides of the DBUG_SYNC_POINT method apply
 here too.

 In addition we had the downside that DBUG tracing was hampered
 as explained in the "Dbug Sleep" section.

Chapter 24 Injecting Test Faults

Table of Contents
	24.1 Test Fault Macros
	24.2 Test Fault Macro Usage

 Status of this section: up to date 2010-09-08

 The assessment of the replication code in the presence of faults is
 extremely important to increase reliability. In particular, one
 needs to know if servers will either correctly recover or print out
 appropriate error messages thus avoiding unexpected problems in a
 production environment. To fulfill this need, we use the macros
 presented in the following discussion.

24.1 Test Fault Macros

	
 DBUG_EXECUTE_IF (keyword,
 code) allows executing a
 piece of code if the appropriate dbug instruction is set. In
 this case, the dbug instruction should be
 +d,keyword.

	
 DBUG_EVALUATE_IF (keyword,
 val1,
 val2) is used in
 if expressions and returns
 val1 if the appropriate dbug
 instruction is set. Otherwise, it returns
 val2. In this case, the dbug
 instruction should be +d,keyword.

	
 DBUG_CRASH_ENTER
 (function) is equivalent
 to DBUG_ENTER, which registers the
 beginning of a function but in addition allows for crashing
 the server while entering the function if the appropriate dbug
 instruction is set. In this case, the dbug instruction should
 be +d,function_crash_enter.

	
 DBUG_CRASH_RETURN
 (value) is equivalent to
 DBUG_RETURN which notifies the end of a
 function but in addition to it allows for crashing the server
 while returning from the function if the appropriate dbug
 instruction is set. In this case, the dbug instruction should
 be +d,function_crash_return. Note that
 "function" should be the same string used by the
 DBUG_ENTER.

	
 DBUG_CRASH_VOID_RETURN is equivalent to
 DBUG_VOID_RETURN which notifies the end of
 a function but in addition to it allows for crashing the
 server while returning from the function if the appropriate
 dbug instruction is set. In this case, the dbug instruction
 should be +d,function_crash_return. Note
 that "function" should be the same string used by the
 DBUG_ENTER.

24.2 Test Fault Macro Usage

 Let us assume the following function:

void function(void)
{
 DBUG_CRASH_ENTER("function");
 if (DBUG_EVALUATE_IF("process_if", 1, 0))
 {
 DBUG_EXECUTE_IF("process_code", {
 const char *old_proc_info= thd->proc_info;
 thd->proc_info= "DBUG sleep";
 my_sleep(6000000);
 thd->proc_info= old_proc_info;});
 }
 DBUG_CRASH_VOID_RETURN;
}

 To crash the server in the fault points defined above, we need to
 be SUPER user and execute one of
 the following statements:

	
 SET SESSION
 debug="+d,function_crash_enter"; will crash the
 server while entering the function.

	
 SET SESSION
 debug="+d,function_crash_return"; will crash the
 server while returning from function.

	
 SET SESSION debug="+d,process_if"; will
 execute the code inside the if.

	
 SET SESSION debug="+d,process_code"; will
 execute the sleep code.

Chapter 25 How to Create Good Test Cases

Table of Contents
	25.1 Formal Stuff
		25.1.1 Coding Style
	25.1.2 SQL Statement Example
	25.1.3 Please Avoid too Dense Code
	25.1.4 Header of Scripts
	25.1.5 Header Example
	25.1.6 Comments Within Boxes

	25.2 Comments Everywhere
		25.2.1 Complicated test Architecture or Tricky Code
	25.2.2 A Subtest Case is Able to Reveal a Bug
	25.2.3 Subtests
	25.2.4 Make Test Protocols More Understandable
	25.2.5 Better Protocol Example

	25.3 Some Rules Outside of the Formal Stuff
		25.3.1 Error Masking
	25.3.2 Use of the Option --disable_abort_on_error
	25.3.3 Perfect Cleanup at the End of a Test
	25.3.4 Use of OS-Specific Commands

	25.4 Negative Tests
	25.5 Tests with Several Variants
		25.5.1 Variation of the Storage Engine
	25.5.2 Variation of the Protocol Option

	25.6 Miscellaneous Tips
		25.6.1 Stability Checks for Random Timing Problems
	25.6.2 Stability Checks for Hostname-Related Problems
	25.6.3 Stability Checks for Unexpected Problems
	25.6.4 Row Order Within Result Sets
	25.6.5 Test Case Behavior Should Depend on the Result of a SHOW
	25.6.6 Does a Test Execution Hang?
	25.6.7 If Your Test is Complicated, Support Debugging
	25.6.8 You Need to Know Some Syntax, an Option, Etc., but Hate Reading Manuals

	25.7 Notes on MTR2
	25.8 Examples of Suspicious Tests and Scripts
		25.8.1 Probably Mismatch of Focus of Test and Code Sequence
	25.8.2 Too Greedy Test
	25.8.3 Risky Handling Around Additional Sessions

 There are a lot of strict rules and rules of thumb which may
 increase the quality of tests written for the tool pair
 mysqltest/mysqltest-run.pl (MTR). The following presentation should
 give you some hints.

	
	

	
 This document should not replace reading our excellent
 manual about testing Writing Test Cases.

	
 Some of the examples might not work

	
 with MTR1 or

	
 on some operating system.

	
 MTR2 means the second version of
 mysql-test-run.pl/mysqltest. MTR2 replaced MTR1 ~ Jan
 2009 in MySQL 5.1 and 6.0.

	
 The term "protocol" means in most cases "output from a
 test case."

	
	
 October 2007 - Matthias Leich - Create this document for a
 MySQL University session

	
	
 March 2009 - Matthias Leich - Updates and corrections, add
 "Examples of suspicious scripts"

	
	
 March 2009 - Patrick Crews - Corrections, add "Notes on MTR"

	
 Section 25.1, “Formal Stuff”

	
 Section 25.1.1, “Coding Style”

	
 Section 25.1.2, “SQL Statement Example”

	
 Section 25.1.4, “Header of Scripts”

	
 Section 25.2, “Comments Everywhere”

	
 Section 25.2.1, “Complicated test Architecture or Tricky Code”

	
 Section 25.2.2, “A Subtest Case is Able to Reveal a Bug”

	
 Section 25.2.3, “Subtests”

	
 Section 25.2.4, “Make Test Protocols More Understandable”

	
 Section 25.2.5, “Better Protocol Example”

	
 Section 25.3, “Some Rules Outside of the Formal Stuff”

	
 Section 25.3.1, “Error Masking”

	
 Section 25.3.2, “Use of the Option --disable_abort_on_error”

	
 Section 25.3.3, “Perfect Cleanup at the End of a Test”

	
 Section 25.3.4, “Use of OS-Specific Commands”

	
 Section 25.4, “Negative Tests”

	
 Section 25.5, “Tests with Several Variants”

	
 Section 25.5.1, “Variation of the Storage Engine”

	
 Section 25.5.2, “Variation of the Protocol Option”

	
 Section 25.6, “Miscellaneous Tips”

	
 Section 25.6.1, “Stability Checks for Random Timing Problems”

	
 Section 25.6.2, “Stability Checks for Hostname-Related Problems”

	
 Section 25.6.3, “Stability Checks for Unexpected Problems”

	
 Section 25.6.4, “Row Order Within Result Sets”

	
 Section 25.6.5, “Test Case Behavior Should Depend on the Result of a SHOW”

	
 Section 25.6.6, “Does a Test Execution Hang?”

	
 Section 25.6.7, “If Your Test is Complicated, Support Debugging”

	
 Section 25.6.8, “You Need to Know Some Syntax, an Option, Etc., but Hate Reading Manuals”

	
 Section 25.7, “Notes on MTR2”

	
 Section 25.8, “Examples of Suspicious Tests and Scripts”

	
 Section 25.8.1, “Probably Mismatch of Focus of Test and Code Sequence”

	
 Section 25.8.2, “Too Greedy Test”

	
 Section 25.8.3, “Risky Handling Around Additional Sessions”

25.1 Formal Stuff

 Rules about formatting within scripts and similar stuff.

	
 Section 25.1.1, “Coding Style”

	
 Section 25.1.2, “SQL Statement Example”

	
 Section 25.1.4, “Header of Scripts”

25.1.1 Coding Style

 Please have a look at the
 C/C++ coding guidelines and apply them when they make
 sense.

 Some more or less strict rules:

	
 Try to have a good readable text flow. Lines with very
 different length are a pain.

	
 Avoid lines longer than ~ 100 characters unless there is no
 other choice.

	
	
 Think about a comparison of the new and the old version of
 a test script within a graphical diff tool.

	
	
 Having the difference frequent at the end of long lines is
 very uncomfortable.

	
 mysqltest only accepts comment lines starting with '#'.

	
 Use spaces, not tabs.

	
 Lines must have no trailing spaces.

	
 Write SQL statements in the style of the MySQL Reference
 Manual

	
 SQL keywords and reserved words: uppercase

	
 Identifiers (table names, column names, etc.): lowercase

	
	
 Ignore this guideline if your intent is to check the
 processing of mixed lettercases ;-)

	
	
 Please follow this guideline for new tests. Rewriting
 existing tests to use better formatting is good, but can
 be tedious - a rule of thumb: don't rewrite unless you
 intend to touch the entire subtest (not the entire .test
 file, but the statements that make up a complete testing
 'unit')

	
 If an SQL statement is long, add line breaks to reformat it
 and make it easier to read.

25.1.2 SQL Statement Example

SELECT f1 AS "my_column", f10
FROM mysqltest1.t5
WHERE (f2 BETWEEN 17 AND 25 OR f2 = 61)
 AND f3 IN (SELECT
 FROM mysqltest1.t4
 WHERE)
ORDER BY ...

25.1.3 Please Avoid too Dense Code

 except you intend to check the parser or the performance of the
 reader of the code ;-).

Unfortunate example:
 select 1+1,1-1,1+1*2,8/5,8%5,mod(8,5),mod(8,5)|0,-(1+1)*-2;
 Improved example:
 SELECT 1 + 1, 1 - 1, 1 + 1 * 2, 8 / 5, 8 % 5,
 MOD(8,5), MOD(8,5) | 0, -(1+1) * -2;

25.1.4 Header of Scripts

 For each test or auxiliary script, create a header that contains
 the following information:

	
 Purpose of the test or script

	
 Corresponding WL task, if there is any

	
 Creator of the test and date of creation

	
 Author of last significant change + date of change + what
 was changed

	
 Dates should be in ISO format (ISO 8601): YYYY-MM-DD

	
 In case that the script assigns values to some variables and
 sources some master test script, please explain the purpose
 of these variables and why you use these values

 Note: The header, like the rest
 of the test, should not mention confidential information.
 Remember, our tests are available publicly.

25.1.5 Header Example

########### suite/funcs_1/t/processlist_val_no_prot.test #############
#
Testing of values within INFORMATION_SCHEMA.PROCESSLIST
#
The prepared statement variant of this test is
suite/funcs_1/t/processlist_val_ps.test.
#
There is important documentation within
suite/funcs_1/datadict/processlist_val.inc
#
#
Creation:
2007-08-09 mleich Implement this test as part of
WL#3982 Test information_schema.processlist
#
##

25.1.6 Comments Within Boxes

 Please work 100% perfect when using boxes made of '#'. Such
 boxes "jump" into the eye of most readers. Bad example similar
 to what I found in some tests:

###
#
Some text
Some text
#
Author :
#
Some text
#
###

 Please note that this is caused by spaces, not tabs.

25.2 Comments Everywhere

 Write comments, they save the time of others.

	
 Section 25.2.1, “Complicated test Architecture or Tricky Code”

	
 Section 25.2.2, “A Subtest Case is Able to Reveal a Bug”

	
 Section 25.2.3, “Subtests”

	
 Section 25.2.4, “Make Test Protocols More Understandable”

	
 Section 25.2.5, “Better Protocol Example”

25.2.1 Complicated test Architecture or Tricky Code

 If your test is very complicated, write a sufficient explanation
 of the test architecture. This helps avoid having someone else
 come along and unintentially change the test in ways that:

	
 Shift the goal of the check

	
 Destroy your test architecture

	
 etc.

 Comment your code when you do or check something that someone
 else may think is not trivial. Please write what you intend to
 check if it is not obvious.

25.2.2 A Subtest Case is Able to Reveal a Bug

 Write a comment if the next subtest revealed a bug in history.
 Please mention number and title.

 Please use exact the formatting "# Bug#nnnnn <Title>"

Example: # Bug#3671 Stored procedure crash if function has "set @variable=param"

 because it does not look nice to see so many different variants
 like "BUG #nnnnn", "bug #nnnnn - Title" often even within the
 same test.

25.2.3 Subtests

 At least in cases where your file contains many subtests

	
 Mark these subtests for better readability of the script

	
 Write also a message into the protocol.

 And please explain what each subtest checks, unless it is
 obvious.

 Example:

--echo #----------------- Testcase 3.3.1.52 ---------------------#
###
Ensure that a view that is a subset of every column and some rows of a single
underlying table, contains the correct row-and-column data; such a view has
a definition that is semantically equivalent to CREATE VIEW <view_name>
AS SELECT * FROM <table_name> WHERE ...
###

25.2.4 Make Test Protocols More Understandable

 Please have the test write comments into the protocol if this
 makes the surrounding protocol content much more understandable.
 This is especially true for tests that do the following:

	
 Suppress the printing of SQL statements and result sets

	
 Work with more than one connection

25.2.5 Better Protocol Example

 Good script with message about switching the connection:

SET @aux = 1;
SELECT @aux AS "content of @aux is";
--echo # Establish session con1 (user=root)
connect (con1,localhost,root,,,,);
SELECT @aux AS "content of @aux is";

 Protocol of good script:

SET @aux = 1;
SELECT @aux AS "content of @aux is";
content of @aux is
1
Establish session con1 (user=root)
SELECT @aux AS "content of @aux is";
content of @aux is
NULL

 This is what the protocol looks like without the comment. The
 output becomes less clear because there is no indication that
 the connection has been changed.

SET @aux = 1;
SELECT @aux AS "content of @aux is";
content of @aux is
1
SELECT @aux AS "content of @aux is";
content of @aux is
NULL

25.3 Some Rules Outside of the Formal Stuff

	
 Prerequisites checks

	
 Section 25.3.1, “Error Masking”

	
 Section 25.3.2, “Use of the Option --disable_abort_on_error”

	
 Section 25.3.3, “Perfect Cleanup at the End of a Test”

	
 Section 25.3.4, “Use of OS-Specific Commands”

25.3.1 Error Masking

 Use error names instead of error numbers whenever possible.

 Example:

--error ER_BAD_DB_ERROR
USE <not existing database>;

 You can find the error names in the include/mysqld_error.h file
 of a MySQL source distribution, or in the
 Server Error Codes and Messages section of the MySQL
 Reference Manual]. NOTE: Don't do this with error numbers >
 2000. Use of the error name does not seem to work well in these
 cases.

25.3.2 Use of the Option --disable_abort_on_error

 This option is very useful when starting to write a new test
 because the test will not abort if your script contains some
 failing statements or SQL syntax errors. By disabling the abort,
 you get to see more of the errors per test run and can fix more
 of them at a time.

 But there are only rare situations where the final versions of a
 test should use "--disable_abort_on_error", either at all or
 during a sequence of several SQL statements.

25.3.3 Perfect Cleanup at the End of a Test

	
 Cleaning up becomes much more comfortable and less error
 prone if you create your "own" database and create all
 tables there. At the end of the test, you need to drop just
 this database.

	
 Do not forget to remove all users you created and all
 permissions you granted. Otherwise the next test might fail
 when checking grants in general.

	
 Close all connections which you have explicitly created and
 please ensure that the disconnect is finished = the sessions
 are no more visible within the processlist.

	
 Remove all auxiliary files created within your test.

 MTR2 runs now by default with "check-testcases" enabled. It
 checks if there are additional objects like user or tables,
 modifed system table etc. "check-testcases" will be soon
 improved. However, proper cleanup should still be a
 responsibility of both the test author and reviewer.

25.3.4 Use of OS-Specific Commands

 The exec and system commands enable tests to execute external
 commands. However, many of such commands are available only on
 certain platforms. (For example, rm is Unix-specific and not
 available on Windows.) Please avoid these commands if possible.
 They harm the portability and stability of tests.

 Have a look at the mysqltest manual and the t/mysqltest.test
 test file. There are now several mysqltest built-in commands
 such as

"--write_file", "--cat_file", "--remove_file", ...

 which are reliable on all operating systems. Sometimes OS
 commands could be also replaced by SQL statement sequences
 writing to and reading from files and some SQL string functions.

25.4 Negative Tests

 A "negative" test is a test for which you expect to see a failure.
 If an error does not occur, that itself indicates a problem.

 DO NOT FORGET "NEGATIVE" TESTS
 where we expect to see fine error messages from the server.

 This section contains just a few examples of what to test. Please
 be creative and imagine what could go wrong in rough reality.

 Column with numeric data type:

	
 NULL, 0

	
 Minimum - 1, Minimum, Minimum + 1

	
 Maximum - 1, Maximum, Maximum + 1

	
 Negative values if data type is unsigned

	
 Garbage like 'abc', '1a', 'a1'

 Column with string data type:

	
 Null, <empty string>, "exotic" characters like 'ä',
 single quotes, ...

	
 String longer than column

 Limited number of tables, columns, variables, ...

	
 Maximum - 1, Maximum, Maximum + 1

 Assume an SQL operation that affects the filesystem (LOAD DATA,
 CREATE SCHEMA or TABLE, backup/restore, ...). What will happen if
 the following conditions occur for a file or directory to be read,
 written, or implicitly created or deleted?

	
 Exists/does not exist

	
 Is writable/not writable(missing permission)

	
 Is empty/not empty

	
 Contains the expected content (Example: text)/unexpected
 content like maybe a JPG)

	
 Is a regular file/a directory/a softlink pointing to .../a
 pipe

	
 Is assigned via an extremely long path

	
 Becomes victim of file system full

25.5 Tests with Several Variants

 Please think twice before you create

	
 engine-specific variants of a test

 or

	
 let runs with
 ps-protocol/sp-protocol/cursor-protocol/view-protocol

 happen. They might be

	
 of low value and a permanent wasting of resources and/or

	
 fail (protocol variants only)

	
 Section 25.5.1, “Variation of the Storage Engine”

	
 Section 25.5.2, “Variation of the Protocol Option”

25.5.1 Variation of the Storage Engine

	
 Checks of the INFORMATION_SCHEMA

	
	
 The storage engines to be used for information_schema
 tables are hardcoded. Therefore tests focussed on
 permissions, optimizer strategies, column data types etc.
 when selecting on INFORMATION_SCHEMA tables should not run
 with storage engine variations.

	
 Please prepare the scripts at least for use with different
 storage engines.

	
	
 That means mostly:

	
	
 DO NOT use hardcoded storage
 engine assignments within CREATE TABLE
 statements.

	
 If you assume that there is no significant impact of storage
 engines on your testing object,

	
	
 create/run with storage engine variants and check this.

 Solution 1:

 Do not assign the storage engine within your CREATE TABLE
 statements at all. The default storage engine MyISAM will be
 used for your tables. Check your assumption with:

./myql-test-run.pl --mysqld="--default-storage-engine=<engine>" <test_case>

 Solution 2:

 Assign the storage engine to be used via $variable.

 Top level script:

let $engine_type= MyISAM;

 The same script or a sourced script:

eval CREATE TABLE ENGINE = $engine_type ...

 Check your assumption by creating and running storage engine
 variants of the top level test.

--source include/have_falcon.inc
let $engine_type= Falcon;

25.5.2 Variation of the Protocol Option

 It is usual to run tests with and without the mysql-test-run.pl
 startup option "--ps-protocol". And there are also attempts of
 System QA to run the other protocols.

	
 Effect of the "--ps-protocol" option: mysqltest will run as
 many SQL statements as possible as prepared statements.

	
 Effect of the
 "--sp-protocol"/"--cursor-protocol"/"--view-protocol"
 options: As far as I know, mysqltest takes many statements
 and transforms them into a statement sequence checking the
 corresponding feature (stored procedures, cursors, or
 views).

 We have a lot of tests running very similar and extremely simple
 SQL just for the creation of a situation to be tested, check of
 table content, etc. So it can be assumed that the n'th test
 running again simple statements does not improve the coverage.

 Conclusion:

 If your test contains

	
 Simple statements: Prevent the non valuable runs for
 "protocols".

	
 Storage engine variations: Prevent the protocol runs for all
 except one storage engine (my take would be MyISAM).

	
 "Unique" and complex statements:

	
 ps-protocol statements = all SQL

	
 sp-protocol statements = DML

	
 view/cursor-protocols statements = SELECTs

	
	
 Do not prevent the protocol runs.

 Another problem around runs with such protocols is that there
 are cases where we get different protocol content.

 Example:

 Script:

SELECT * FROM processlist ...

 Protocol content if running without any "--*-protocol":

ID USER ... COMMAND ... STATE INFO
1 root ... Query ... preparing SELECT * FROM processlist ...

 Protocol content if running with "--ps-protocol":

ID USER ... COMMAND ... STATE INFO
1 root ... Execute ... preparing SELECT * FROM processlist ...

 So please check whether every new test gives the same result
 with every protocol but at least with "--ps-protocol". If not,
 do something of the following:

	
 Exclude some protocol variants from execution.

	
 Disable the the use of the protocols for problematic
 statements.

	
 Write protocol variant specific tests.

 Example solution (code within the top level scripts):

The file with expected results fits only to a run without
if (`SELECT $PS_PROTOCOL + $SP_PROTOCOL
 + $CURSOR_PROTOCOL + $VIEW_PROTOCOL > 0`)
{
 --skip Test requires: ps-protocol/sp-protocol/cursor-protocol/view-protocol disabled
}
--source include/<whatever>.inc

 or

The file with expected results fits only to a run with "--ps-protocol".
if (`SELECT $SP_PROTOCOL + $CURSOR_PROTOCOL + $VIEW_PROTOCOL > 0
 OR $PS_PROTOCOL = 0`)
{
 --skip Test requires: ps-protocol enabled, other protocols disabled
}
--source include/<whatever>.inc

25.6 Miscellaneous Tips

	
 Section 25.6.1, “Stability Checks for Random Timing Problems”

	
 Section 25.6.2, “Stability Checks for Hostname-Related Problems”

	
 Section 25.6.3, “Stability Checks for Unexpected Problems”

	
 Section 25.6.4, “Row Order Within Result Sets”

	
 Section 25.6.5, “Test Case Behavior Should Depend on the Result of a SHOW”

	
 Section 25.6.6, “Does a Test Execution Hang?”

	
 Section 25.6.7, “If Your Test is Complicated, Support Debugging”

	
 Section 25.6.8, “You Need to Know Some Syntax, an Option, Etc., but Hate Reading Manuals”

25.6.1 Stability Checks for Random Timing Problems

	
 Recommended Several test
 runs (<number>), use an memory based (extreme fast)
 filesystem if available

./mysql-test-run.pl --mem --repeat=<number> <your test>
	
 Several test runs, use a "slow" disk based filesystem

rmdir var # "var" must not be a symlink pointing into a RAM based filesystem
./mysql-test-run.pl --repeat=<number> <your test>

	
 Recommended Generate
 parallel load on the CPUs and/or the disk where MTR2 reads
 and writes data (in most cases directory "var"). Examples:

	
	

	
 all OS: Compile a MySQL version from source

	
 Unix derivates (OpenSolaris,Linux,OSX,...): tar
 -chvf - <some path> > /dev/null

	
 Unix derivates: root: dd if=<area of disk
 containing the "var" directory> of=/dev/null

	
 Windows: Defragmentation

rmdir var # "var" must not be a symlink pointing into a RAM based filesystem
./mysql-test-run.pl --repeat=<number> <your test>
	
	

	
 all OS:

./mysql-test-run.pl --repeat=<number> --parallel=8 <your test>

25.6.2 Stability Checks for Hostname-Related Problems

sudo hostname <other hostname>
./mysql-test-run.pl --mem <name of test>

 Good values for <other hostname> to check are "0", "bbb",
 "mmm", "zzz".

25.6.3 Stability Checks for Unexpected Problems

 Ask a colleague to run your test or try another testing box
 (preferably one with a different operating system).

25.6.4 Row Order Within Result Sets

 Please keep in mind that the row order within a significant
 number of result sets depends on storage engine properties and
 in worst cases the current load (NDB!, partitioning?, parallel
 query?) on the testing box.

 Either use

--sorted_result
SELECT * FROM t1;

 or, if possible, "decorate" your SELECT with ORDER BY to make
 the row order static.

25.6.5 Test Case Behavior Should Depend on the Result of a SHOW

 Please have a look at the t/mysqltest.test file where
 "query_get_value()" is checked.

25.6.6 Does a Test Execution Hang?

 Symptom: No text flooding through the command window where a
 test is running.

 Run this command in a different window:

tail -f <var_dir>/mysqld.1/data/mysql/general_log.CSV

 If you see some changes, your test is alive.

25.6.7 If Your Test is Complicated, Support Debugging

 Top level test script:

...
Option, for debugging support
let $debug= 0;
...

 At various places within your scripts:

if ($debug)
{
 --echo # var1: $var1 , var2: $var2,
 SELECT
}

 or

--disable_query_log
if ($debug)
{
 --enable_query_log
}

25.6.8 You Need to Know Some Syntax, an Option, Etc., but Hate Reading Manuals

 Try this:

grep -i '<one keyword you know or guess>' t/* include/* | less

25.7 Notes on MTR2

 MTR2 has brought some new utility that can improve testing, but
 also some elements that can be pitfalls. This section attempts to
 describe both.

	
 Changes

	
	

	
 $MYSQLTEST_VARDIR/master-data -> $MYSQLD_DATADIR

	
	

	
 This change was introduced to work with
 parallel. Since MTR2 can run several instances
 of itself, one path is needed for each
 instance.

	
 You must also use let $MYSQLD_DATADIR= `SELECT
 @@datadir`;

	
 New options

	
	

	
 max-test-fail: The number of test cases that can fail
 before the test run aborts. Default=10, set to 0 to
 continue the run regardless of failure count.

	
	
 NOTE: --force alone is no longer sufficient to
 guarantee a full test suite run. If the number of
 failing tests == max-test-fail, then the test run
 will abort.

	
 parallel: Set n number of workers to run tests in
 parallel. The current recommendation is 2x the number
 of processors on your machine.

	
	
 NOTE: You can no longer be sure of executing test
 cases in a particular order due to this and other
 changes brought on by MTR2. *Do not* try to create
 multi-part tests (test_pt1.test, test_pt2.test,
 etc).

	
	
 NOTE: Be cautious when using a high (>2) value
 for parallel and --mem in combination. It is
 possible to use vast amounts of resources on your
 system and cause problematic performance till a
 crash of the operating system while MTR2 is running.

	
 repeat: Run the input test(s) n times in succession.
 Very good for diagnosing random failures - set a high
 value for 'n', create a high load on your machine, and
 see if you can duplicate the failure.

25.8 Examples of Suspicious Tests and Scripts

	
 Section 25.8.1, “Probably Mismatch of Focus of Test and Code Sequence”

	
 Section 25.8.2, “Too Greedy Test”

	
 Section 25.8.3, “Risky Handling Around Additional Sessions”

25.8.1 Probably Mismatch of Focus of Test and Code Sequence

CREATE TABLE t1 (
 id INT NOT NULL AUTO_INCREMENT,
 my_column VARCHAR(30),
 name LONGTEXT,
 PRIMARY KEY (id));

INSERT INTO t1(my_column,name) VALUES('2','two');
INSERT INTO t1(my_column,name) VALUES('1','one');
INSERT INTO t1(my_column,name) VALUES('4','four');
INSERT INTO t1(my_column,name) VALUES('2','two');
INSERT INTO t1(my_column,name) VALUES('3','three');

 This test will

	
 fail if the feature AUTO_INCREMENT is temporary broken

	
 will (depending on existence of prerequisite checks) fail or
 get skipped if the default storage engine does not support
 AUTO_INCREMENT or LONGTEXT

	
	
 ==> no coverage for other features or properties
 checked within this test

 Some questions with recommended action depending on the answer:

	
 Is the table t1 just an auxiliary table and not the test
 object?

	
	

	
	
 Yes: Please ensure that the test does not break or
 gets skipped if the default storage engine does
 not support AUTO_INCREMENT or LONGTEXT and you are
 done.

	
	
 No: no action

	
 Do we check AUTO_INCREMENT and the corresponding column is
 t1.id?

	
	

	
	
 Yes: no action

	
	
 No: Remove the use of AUTO_INCREMENT

	
 Do we check LONGTEXT and the corresponding column is
 t1.name?

	
	

	
	
 Yes: no action

	
	
 No: Remove the use of LONGTEXT

	
 Do we check AUTO_INCREMENT and LONGTEXT in combination?

	
	

	
	
 Yes: no action

	
	
 No: Split the test at least if it should be a test
 of basic functionality

25.8.2 Too Greedy Test

 Let's assume we have to check that every new created table
 causes a row in information_schema.tables.

 --replace_column 15 <CREATE_TIME> 16 <UPDATE_TIME> 17 <CHECK_TIME>
SELECT * FROM information_schema.tables;

 The SELECT above makes the test extreme "greedy" for changes in
 behaviour which is maybe good for general bug hunting but not
 for smart and frequent automatic tests. It is to be expected
 that such a test requires frequent maintenance like adjustment
 of expected results.

 The problems with the select above: We will (sometimes only
 maybe) get a result set difference whenever

	
 we get a new system table

	
	

	
	
 Completeness of result sets without WHERE are
 outside of the focus.

	
	
 Refined statement:

 --replace_column 15 <CREATE_TIME> 16 <UPDATE_TIME> 17 <CHECK_TIME>
SELECT * FROM information_schema.tables
 WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME = 't1';
	
 the number of columns within information_schema.tables
 changes

	
 the data type of a column within ... changes

	
 the content within one of the columns within ... changes

	
	

	
	
 Lets assume something intentional like VERSION is
 now 11 instead of 10.

	
	
 This means we should try to avoid "SELECT *".

 Final statement:

 Variant 1:
SELECT TABLE_SCHEMA,TABLE_NAME FROM information_schema.tables
 WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME = 't1';
	
	

	
	
 Are we really consequent? No, but we could

 Variant 2:
SELECT COUNT(*) FROM information_schema.tables
 WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME = 't1';

 It's on you which variant you choose. I decide depending on the
 situation.

25.8.3 Risky Handling Around Additional Sessions

 Disconnects are performed asynchronous. This is most probably
 good for the throughput of usual application but has some
 annoying consequences for the development of tests.

 If a

	
 disconnect <connection> or

	
 KILL <connection_id> or

	
 --exec <client program which connects to the server>

 occurs within a script for mysqltest than the next statements
 will be executed even if the disconnect or kill is not complete
 finished.

 I guess this also applies to the end (-> end of statements to
 be executed by mysqltest) of a test. It triggers some disconnect
 for any open session but this is also asynchronous.

 Not complete finished means that the session is visible within
 the processlist and the entry about the 'quit' of the session is
 not already appended to the general log.

 So it could happen that a succeeding test suffers by unexpected
 events like

	
 observing the session belonging to the previous test within
 the processlist

	
 being surprised by an entry (the 'quit' of the disconnected
 session) within the general log which was not caused by its
 own activity etc.

 According to my experiences the likelihood that some test could
 harm a successing test by unfinished disconnects increases with

	
 additional parallel load on the testing box

	
 "disconnect <connection>" is missing within the test

	
 "shorter" distance between "disconnect <connection>",
 "KILL <connection_id>" or "--exec ..." and end of test

	
 the session runs a "heavy" SQL statement just before its
 disconnect

 In my opinion the most robust solution is to add a

 --source include/wait_until_disconnected.inc

 just after the disconnect.

 In case you don't believe me, run the sniplet following later

./mtr --skip-ndb --no-check-testcases --repeat=100 <sniplet>

 and you will most probably observe something like

TEST RESULT TIME (ms)
--
...
<sniplet> [pass] 4
<sniplet> [fail]
...
CURRENT_TEST: <sniplet>
--- <result>
+++ <reject>
@@ -1,4 +1,4 @@
SELECT COUNT(*) FROM information_schema.processlist WHERE id < CONNECTION_ID();
COUNT(*)
-0
+1
SELECT SLEEP(10);
...
mysqltest: Result content mismatch

 Sniplet for demonstration purposes:

SELECT COUNT(*) FROM information_schema.processlist WHERE id < CONNECTION_ID(); # (1)
 connect (con1,localhost,root,,);
 send SELECT SLEEP(10); # (2)
 connection default;
 # Wait till the SQL statement of con1 is "in work"
 let $wait_condition= SELECT COUNT(*) = 1 FROM information_schema.processlist
 WHERE State = 'User sleep' AND Info = 'SELECT SLEEP(10)';
 --source include/wait_condition.inc # (3)
 SELECT COUNT(*) = 1 FROM information_schema.processlist
 WHERE State = 'User sleep' AND Info = 'SELECT SLEEP(10)'; # (4)
 disconnect con1; (5)
 <end of script>

 The sniplet is intended for demonstration purposes and contains
 code which is obvious "junk" but needed to enforce the intended
 effect. Some notes:

	
 (1) Such a statement at the begin of a test makes this test
 very sensitive to not finished disconnects.

	
 (2) The wait routine (3) prevents that our look on the
 process list (4) happens too early = before the server has
 started the processing of (2). Otherwise we get random
 result set differences for (4) under high parallel load.

	
 How to to prevent that this test harms the succeeding test?

(5) should be replaced by
connection con1;
disconnect con1;
--source include/wait_until_disconnected.inc
connection default;

	
 Where is the "junk"?

	
	

	
 There should be a 'reap' for every preceeding 'send
 <statement>'. This is not just for academic
 completeness it also ensures here that (2) is really
 finished.

	
 Do we really need 10 seconds within the SLEEP?
 According to my experiences sleep times <= 2
 seconds are critical under high load. What about
 SLEEP(5)?

Chapter 26 Error Messages

Table of Contents
	26.1 Adding New Error Messages to MySQL
		26.1.1 Adding an Error Message to Multiple MySQL Versions
	26.1.2 Adding Error Messages to MySQL 5.0.3 or Higher
	26.1.3 Adding Error Messages to Old (< MySQL 5.0) Versions

	26.2 Adding Storage Engine Error Messages

 This chapter describes how error messages are defined and how to add
 the capability of generating error messages to a table handler.

26.1 Adding New Error Messages to MySQL

 The procedure for adding error messages depends on which version
 of MySQL you are using:

	
 Before MySQL 5.0.3, error messages are stored in
 errmsg.txt files in the language
 directories under sql/share. That is, the
 files have names like czech/errmsg.txt,
 danish/errmsg.txt, and so forth, and each
 one is language-specific. Each of these language-specific
 files must contain a line for each error message, so adding a
 new message involves adding a line to the
 errmsg.txt file for every language. The
 procedure involves adding the English message to the
 english/errmsg.txt file and running a
 script that adds the message to the other language-specific
 files. Translators may translate the message in other
 errmsg.txt files later.

	
 Beginning with MySQL 5.0.3, error messages are stored in a
 single errmsg.txt file in the
 sql/share directory, and it contains the
 error messages for all languages. The messages are grouped by
 error symbol. For each symbol, there must be an English
 message, and messages can be present for other languages as
 well. If there is no message for a given language, the English
 version is used. Messages for a given language are written in
 the character set used for that language, so the file contains
 information in several character sets.

	
 From MySQL 5.5 on, error messages are stored in a single
 errmsg-utf8.txt file in the
 sql/share directory. The file format is
 similar to errmsg.txt, but the contents of
 the file are written in a single character set, utf8. An added
 feature is that error messages may contain positional
 arguments.

 The comp_err program compiles the
 text error message file or files into language-specific
 errmsg.sys files that each are located in the
 appropriate language directory under sql/share:

	
 Before MySQL 5.5, comp_err
 reads errmsg.txt and writes
 errmsg.sys files, each in the character set
 associated with the language for the file. For example,
 sql/share/korean/errmsg.sys is written
 using euckr.

	
 From MySQL 5.5 on, comp_err
 reads errmsg-utf8.txt and writes
 errmsg.sys files using
 utf8.

 comp_err also generates a number
 of header files in the include directory. The
 MySQL build process runs comp_err
 automatically.

 Note: You should observe some
 general considerations regarding error messages that apply no
 matter your version of MySQL:

	
 Always use parameter
 constructs such as "%.64s" to guard against
 buffer overflows. The maximum error message length is
 MYSQL_ERRMSG_SIZE.

	
 Never add new parameters
 (such as %s) to existing error messages. Error messages must
 always be backward compatible. If a parameter were added,
 older servers would crash when run with a newer error message
 file.

	
 If you need to add new parameters to an existing error
 message, you can introduce a new error message but
 continue to use the old error code. For example, in MySQL
 5.1, the handler::print_keydup_error()
 method is passed a message like
 ER(ER_DUP_ENTRY_WITH_KEY_NAME), but
 always uses the ER_DUP_ENTRY error
 code.

26.1.1 Adding an Error Message to Multiple MySQL Versions

 It is critical that error codes are identical in all versions.
 That is, the value of ER_SOME_ERROR must be the same in all
 versions for which it is defined. The following procedure
 follows from this requirement. (The discussion uses the name
 errmsg.txt, but when you cross the boundary
 from before MySQL 5.5 to 5.5 or higher, you should use
 errmsg-utf8.txt instead.)

 Let GA reference the most recent stable
 version. For example, if MySQL 5.1 is GA, and MySQL 5.2 is
 -beta, then GA refers to MySQL 5.1.

 To add a new error message in multiple versions, first add the
 specific error message to the GA version,
 at the end of errmsg.txt.

 Next, add the specific error message to all versions >
 GA, at the same
 position in errmsg.txt,
 not at the end of the file.
 This will ensure that the error code value is the same in
 GA and all later versions. This will have
 the side effect that any error codes which are not in
 GA will change their values in
 post-GA versions. This is acceptable, in
 non-stable versions. We consider pre-RC versions non-stable in
 this context.

 Finally, for any version < GA,
 do not add the specific error
 message. Instead, use the ER_UNKNOWN_ERROR
 error code, and print a helpful error text with code similar to
 this:

my_printf_error(ER_UNKNOWN_ERROR,
 "Some error text here, with the '%-.64s' parameter value"
 MYF(0), a_parameter);

 This will provide the user with useful information, while
 ensuring that all versions have consistent error codes.

 If you need to merge error messages up from 5.1 to 5.5, the
 merge operation will update the 5.5
 errmsg.txt file with information that then
 needs to be added to the errmsg-utf8.txt
 file. To handle this, you can use the
 errmsg-cnv.sh script, which
 converts errmsg.txt to
 errmsg-utf8.txt. However, you must be careful
 not to wipe out the existing 5.5-specific information in
 errmsg-utf8.txt.

 Suppose that you added a new error message into 5.1 and have
 merged this change into 5.5. You can do the following:

 1. Make a backup of errmgs-utf8.txt:

 cp errmsg-utf8.txt errmsg-utf8.txt.sav

 2. Convert 5.1 messages:

 sh errmsg-cnv.sh

 Note: This will add 5.1
 messages into errmsg-utf8.txt, but remove 5.5
 messages.

 3. Open errmsg-utf8.txt and
 errmsg-utf8.txt.sav in a text editor, then
 cut and paste 5.5-specific messages into
 errmsg-utf8.txt.

 4. Make sure everything went fine:

 git diff errmsg-utf8.txt

26.1.2 Adding Error Messages to MySQL 5.0.3 or Higher

 The file you edit to add a new error message depends on your
 version of MySQL:

	
 MySQL 5.0.3 up to 5.5: Edit errmsg.txt

	
 MySQL 5.5 and up: Edit errmsg-utf8.txt

 In either case, comp_err
 generates the header files automatically during the MySQL build
 process.

 The errmsg.txt (or
 errmsg-utf8.txt) file begins with some lines
 that define general characteristics of error messages, followed
 by sections for particular messages. The following example shows
 a partial listing of the file. (The languages
 line is wrapped here; it must be given all on one line.)

languages czech=cze latin2, danish=dan latin1, dutch=nla latin1,
english=eng latin1, estonian=est latin7, french=fre latin1, german=ger
latin1, greek=greek greek, hungarian=hun latin2, italian=ita latin1,
japanese=jpn ujis, japanese-sjis=jps sjis, korean=kor euckr,
norwegian-ny=norwegian-ny latin1, norwegian=nor latin1, polish=pol
latin2, portuguese=por latin1, romanian=rum latin2, russian=rus
koi8r, serbian=serbian cp1250, slovak=slo latin2, spanish=spa latin1,
swedish=swe latin1, ukrainian=ukr koi8u;

default-language eng

start-error-number 1000

ER_HASHCHK
 eng "hashchk"
ER_NISAMCHK
 eng "isamchk"
ER_NO
 cze "NE"
 dan "NEJ"
 nla "NEE"
 eng "NO"
 est "EI"
 ...

 A line beginning with a '#' character is
 taken as a comment. Comments and blank lines are ignored.

 Indentation is significant. Unless otherwise specified, leading
 whitespace should not be used.

 The grammar of the errmsg.txt file looks like
 this:

languages langspec [, langspec] ... ;

start-error-number number

default-language langcode

error-message-section
error-message-section
...

 The languages line lists the languages for
 which language-specific errmsg.sys files
 should be generated. A language specification
 langspec in the
 languages line has this syntax:

langspec: langname=langcodelangcharset

 langname is the long language name,
 langcode is the short language code, and
 langcharset is the character set to use for
 error messages in the language. langcharset
 is irrelevant as of MySQL 5.5 because all
 errmsg.sys files are written using
 utf8.

 The default-language line specifies the short
 language code for the default language. (If there is no
 translation into a given language for a given error message, the
 message from the default language will be used.)

 The start-error-number line indicates the
 number to be assigned to the first error message. Messages that
 follow the first one are numbered consecutively from this value.

Note

 Beginning with MySQL 5.7.6, the file can contain multiple
 start-error-number lines, with each one
 resetting the numbering. This enables the file to contain
 multiple ranges of error numbers. For example, this capability
 is used to cause 5.7-specific error numbers to begin at 3000.

 Each error-message-section begins with a
 line that lists an error (or warning) symbol, optionally
 followed by one or two SQLSTATE values. The error symbol must
 begin with ER_ for an error or
 WARN_ for a warning. Lines following the
 error symbol line provide language-specific error messages that
 correspond to the error symbol. Each message line consists of a
 tab, a short language code, a space, and the text of the error
 message within double quote ('"') characters.
 Presumably, there must be a message in the default language.
 There may be message translations for other languages. Order of
 message lines within a section does not matter. If no
 translation is given for a given language, the default language
 message will be used. The following example defines several
 language translations for the
 ER_BAD_FIELD_ERROR symbol:

ER_BAD_FIELD_ERROR 42S22 S0022
 dan "Ukendt kolonne '%-.64s' i tabel %s"
 nla "Onbekende kolom '%-.64s' in %s"
 eng "Unknown column '%-.64s' in '%-.64s'"
 est "Tundmatu tulp '%-.64s' '%-.64s'-s"
 fre "Champ '%-.64s' inconnu dans %s"
 ger "Unbekanntes Tabellenfeld '%-.64s' in %-.64s"

 In the preceding example, two SQLSTATE values are given
 following the error symbol (42S22,
 S0022). Internally (in
 sql/sql_state.c), these are known as
 odbc_state and jdbc_state.
 Currently, only the first appears ever to be used.

 In errmsg-utf8.txt, the entire file is
 written in utf8. As long as your editor can
 handle utf8, there should be no problem
 editing the file.

 In errmsg.txt, message strings for
 a given language must be written in the character set indicated
 for that language in the languages
 line. For example, the language information for
 Japanese in that line is japanese=jpn ujis,
 so messages with a language code of jpn must
 be written in the ujis character set. You
 might need to be careful about the editor you use for editing
 the errmsg.txt file. For example, there is a
 report that using Emacs will
 mangle the file, whereas vi
 will not.

 Within a message string, C-style escape sequences are allowed:

\\ \
\" "
\n newline
\N N, where N is an octal number
\X X, for any other X

 In MySQL 5.5 and up, error messages can contain positional
 constructs for arguments. This is convenient when arguments are
 most naturally specified in different orders in different
 languages. Positional arguments enable and error-message writer
 to avoid awkward language or unnecessarily long messages that
 result from having the arguments in the same order in all
 languages.

	
 To specify a positional argument, include a single digit 0
 to 9 and a dollar sign in the formatting specifier for each
 argument in the error message:
 "%1$.32s %2$.64s" includes the first
 argument, then the second, in that order.
 "%2$.64s %1$.32s" includes the second
 argument, then the first.

	
 If any argument is positional, all must be positional. This
 is illegal: "%1$.32s %.64s"

	
 Duplicates are allowed. This is legal even though it
 includes the first argument twice:
 "%1$.32s %2$.64s %1$.32s"

	
 Gaps in positional number are not allowed. This is illegal
 because $2 is missing:
 "%1$.32s %3$.64s"

 Use the following procedure to add new error messages:

	
 To add a new language translation for an existing error
 message, find the section for the appropriate error symbol.
 Then add a new message line to the section. For example:

 Before:

ER_UNKNOWN_COLLATION
 eng "Unknown collation: '%-.64s'"
 ger "Unbekannte Kollation: '%-.64s'"
 por "Collation desconhecida: '%-.64s'"

 After (with a new Spanish translation):

ER_UNKNOWN_COLLATION
 eng "Unknown collation: '%-.64s'"
 ger "Unbekannte Kollation: '%-.64s'"
 por "Collation desconhecida: '%-.64s'"
 spa "Collation desconocida: '%-.64s'"

	
 To add an entirely new error message, go to the end of the
 errmsg.txt file. Add a new error symbol
 line, followed by a message line for the default language,
 and message lines for any translations that you can supply.

	
 Make a full build (configure +
 make). A make all is
 insufficient to build the
 sql/share/*/errmsg.sys files.

 comp_err will generate the
 errmsg.sys files, as well as the header
 files mysqld_error.h,
 mysqld_ername.h, and
 sql_state.h in the
 include directory.

 Be aware that if you make a mistake editing a message text file,
 comp_err prints a cryptic error
 message and gives you no other feedback. For example, it does
 not print the input line number where it found a problem. It's
 up to you to figure this out and correct the file. Perhaps that
 is not a serious difficulty: errmsg.txt (or
 errmsg-utf8.txt) tends to grow by gradual
 accretion, so if an error occurs when
 comp_err processes it, the
 problem is likely due to whatever change you just made.

26.1.3 Adding Error Messages to Old (< MySQL 5.0) Versions

 Note: This section is included
 for historical purposes. In practice, no new error messages
 should be added to error message files for versions of MySQL
 prior to 5.0.3. Doing so and merging the messages upward would
 cause error numbers to change in more recent versions.

 Before MySQL 5.0.3, error messages are stored in
 errmsg.txt files in the language directories
 under sql/share. The files have names like
 czech/errmsg.txt,
 danish/errmsg.txt, and so forth, and each one
 is language-specific. Each of these language-specific files must
 contain a line for each error message, so adding a new message
 involves adding a line to the errmsg.txt file
 for every language. The procedure involves adding the English
 message to the english/errmsg.txt file and
 running a script that adds the message to the other
 language-specific files. Translators may translate the message
 in other errmsg.txt files later.

	
 Open the file
 sql/share/english/errmsg.txt in an
 editor.

	
 Add new error messages at the end of this file. Each message
 should be on a separate line, and it must be quoted within
 double quote ('"') characters. By
 convention, every message line except the last should end
 with a comma (',') following the second
 double quote.

	
 For each new error message, add a #define
 line to the include/mysqld_error.h file
 before the last line (#define
 ER_ERROR_MESSAGES).

	
 Adjust the value of ER_ERROR_MESSAGES to
 the new number of error messages.

	
 Add the defined error symbols to
 include/sql_state.h. This file contains
 the SQL states for the error messages. If the new errors
 don't have SQL states, add a comment instead. Note that this
 file must be kept sorted according to the value of the error
 number. That is, although the sql_state.h
 file might not contain an entry for every symbol in
 mysqld_error.h, those entries that are
 present in sql_state.h must appear in the
 same order as those for the corresponding entries in
 mysqld_error.h.

	
 Go to the sql directory in a terminal
 window and type ./add_errmsg
 N. This will copy the last
 N error messages from
 share/english.txt to all the other
 language files in share/.

	
 Translate the error message for those languages that you
 know by editing the files
 share/language/errmsg.txt.

	
 Make a full build
 (configure +
 make). A
 make all is insufficient to
 build the sql/share/*/errmsg.sys files.

26.2 Adding Storage Engine Error Messages

 To add error messages for table handlers, the following example
 may be helpful.

 Purpose: Implement the
 handler::get_error_message function as
 ha_federated::get_error_message to return the
 handler-specific error message.

 Example:

	
 When an error occurs you return an error code. (It should not
 be in the range of those that HA_ERR uses,
 which currently is 120-159.)

	
 When handler::print_error is called to
 convert the handler error code to a MySQL error code, it will
 enter the default label of the
 switch(error) statement:

handler.cc:1721
 default:
 {
 /* The error was "unknown" to this function.
 Ask handler if it has got a message for this error */
 bool temporary= FALSE;
 String str;
 temporary= get_error_message(error, &str);
 if (!str.is_empty())
 {
 const char* engine= table_type();
 if (temporary)
 my_error(ER_GET_TEMPORARY_ERRMSG, MYF(0), error, str.ptr(), engine);
 else
 my_error(ER_GET_ERRMSG, MYF(0), error, str.ptr(), engine);
 }
 else
 my_error(ER_GET_ERRNO,errflag,error);
 DBUG_VOID_RETURN;
 }
 }

	
 Thus the handler::get_error_message is
 called and you can return the handler-specific error message,
 which is either a static error message that you retrieve from
 an error/string array, or a a dynamic one that you format when
 the error occurs.

 When you have returned the error message it will be passed to
 MySQL and formatted as Got error %d '%-.100s'
 from %s. For example:

Got error 788 'Could not connect to remote server fed.bb.pl' from FEDERATED

 The Got error %d part will be returned in the
 user's selected language, but the handler-specific one will use
 English (unless the handler supports returning the handler error
 message in the user's selected language).

Appendix A MySQL Source Code Distribution

Table of Contents
	A.1 Directory Listing
		A.1.1 The BUILD Directory
	A.1.2 The client Directory
	A.1.3 The config Directory
	A.1.4 The cmd-line-utils Directory
	A.1.5 The dbug Directory
	A.1.6 The Docs Directory
	A.1.7 The extra Directory
	A.1.8 The heap Directory
	A.1.9 The include Directory
	A.1.10 The innobase Directory
	A.1.11 The libmysql Directory
	A.1.12 The libmysql_r Directory
	A.1.13 The libmysqld Directory
	A.1.14 The man Directory
	A.1.15 The myisam Directory
	A.1.16 The myisammrg Directory
	A.1.17 The mysql-test Directory
	A.1.18 The mysys Directory
	A.1.19 The ndb Directory
	A.1.20 The netware Directory
	A.1.21 The NEW-RPMS Directory
	A.1.22 The os2 Directory
	A.1.23 The pstack Directory
	A.1.24 The regex Directory
	A.1.25 The SCCS Directory
	A.1.26 The scripts Directory
	A.1.27 The server-tools Directory
	A.1.28 The sql Directory
	A.1.29 The sql-bench Directory
	A.1.30 The sql-common Directory
	A.1.31 The SSL Directory
	A.1.32 The strings Directory
	A.1.33 The support-files Directory
	A.1.34 The tests Directory
	A.1.35 The tools Directory
	A.1.36 The VC++Files Directory
	A.1.37 The vio Directory
	A.1.38 The zlib Directory

 This is a description of the files that you get when you download
 the source code of MySQL. This description begins with a list of the
 main directories and a short comment about each one. Then, for each
 directory, in alphabetical order, a longer description is supplied.
 When a directory contains significant program files, a list of each
 C program is given along with an explanation of its intended
 function.

A.1 Directory Listing

 Directory — Short Comment

	
 bdb — The Berkeley Database table handler

	
 BitKeeper — BitKeeper administration (not part of the
 source distribution)

	
 BUILD — Frequently used build scripts

	
 client — Client library

	
 cmd-line-utils — Command-line utilities (libedit and
 readline)

	
 config — Some files used during build

	
 dbug — Fred Fish's dbug library

	
 Docs — documentation files

	
 extra — Some minor standalone utility programs

	
 heap — The HEAP table handler

	
 include — Header (*.h) files for most libraries;
 includes all header files distributed with the MySQL binary
 distribution

	
 innobase — The Innobase (InnoDB) table handler

	
 libmysql — For producing MySQL as a library (for
 example, a Windows .DLL)

	
 libmysql_r — For building a thread-safe libmysql library

	
 libmysqld — The MySQL Server as an embeddable library

	
 man — Some user-contributed manual pages

	
 myisam — The MyISAM table handler

	
 myisammrg — The MyISAM Merge table
 handler

	
 mysql-test — A test suite for mysqld

	
 mysys — MySQL system library (Low level routines for
 file access etc.)

	
 ndb — MySQL Cluster

	
 netware — Files related to the Novell NetWare version of
 MySQL

	
 NEW-RPMS — Directory to place RPMs while making a
 distribution

	
 os2 — Routines for working with the OS/2 operating
 system

	
 pstack — Process stack display (not currently used)

	
 regex — Henry Spencer's Regular Expression library for
 support of REGEXP function

	
 SCCS — Source Code Control System (not part of source
 distribution)

	
 scripts — SQL batches, for example, mysqlbug and
 mysql_install_db

	
 server-tools — instance manager

	
 sql — Programs for handling SQL commands; the "core" of
 MySQL

	
 sql-bench — The MySQL benchmarks

	
 sql-common — Some .c files related to sql directory

	
 SSL — Secure Sockets Layer; includes an example
 certification one can use to test an SSL (secure) database
 connection

	
 strings — Library for C string routines, for example,
 atof, strchr

	
 support-files — Files used to build MySQL on different
 systems

	
 tests — Tests in Perl and in C

	
 tools — mysqlmanager.c (tool under development, not yet
 useful)

	
 VC++Files — Includes this entire directory, repeated for
 VC++ (Windows) use

	
 vio — Virtual I/O Library

	
 zlib — Data compression library, used on Windows

A.1.1 The BUILD Directory

 Frequently used build scripts.

 This directory contains the build switches for compilation on
 various platforms. There is a subdirectory for each set of
 options. The main ones are:

	
 alpha

	
 ia64

	
 pentium (with and without debug or bdb, etc.)

	
 solaris

A.1.2 The client Directory

 Client library.

 The client library includes mysql.cc (the
 source of the mysql executable) and other
 utilities. Most of the utilities are mentioned in the MySQL
 Reference Manual. Generally these are standalone C programs
 which one runs in "client mode", that is, they call the server.

 The C program files in the directory are:

	
 get_password.c --- ask for a password from the console

	
 mysql.cc --- "The MySQL command tool"

	
 mysqladmin.cc --- maintenance of MySQL databases

	
 mysqlcheck.c --- check all databases, check connect, etc.

	
 mysqldump.c --- dump table's contents as SQL statements,
 suitable to backup a MySQL database

	
 mysqlimport.c --- import text files in different formats
 into tables

	
 mysqlmanager-pwgen.c --- pwgen stands for "password
 generation" (not currently maintained)

	
 mysqlmanagerc.c --- entry point for mysql manager (not
 currently maintained)

	
 mysqlshow.c --- show databases, tables or columns

	
 mysqltest.c --- test program used by the mysql-test suite,
 mysql-test-run

A.1.3 The config Directory

 Macros for use during build.

 There is a single subdirectory: \ac-macros.
 All the files in it have the extension .m4, which is a normal
 expectation of the GNU autoconf tool.

A.1.4 The cmd-line-utils Directory

 Command-line utilities (libedit and readline).

 There are two subdirectories: \readline and
 \libedit. All the files here are
 "non-MySQL" files, in the sense that MySQL AB didn't produce
 them, it just uses them. It should be unnecessary to study the
 programs in these files unless you are writing or debugging a
 tty-like client for MySQL, such as mysql.exe.

 The \readline subdirectory contains the
 files of the GNU Readline Library, "a library for reading lines
 of text with interactive input and history editing". The
 programs are copyrighted by the Free Software Foundation.

 The \libedit (library of edit functions)
 subdirectory has files written by Christos Zoulas. They are
 distributed and modifed under the BSD License. These files are
 for editing the line contents.

 These are the program files in the \libedit subdirectory:

	
 chared.c --- character editor

	
 common.c --- common editor functions

	
 el.c --- editline interface functions

	
 emacs.c --- emacs functions

	
 fgetln.c --- get line

	
 hist.c --- history access functions

	
 history.c --- more history access functions

	
 key.c --- procedures for maintaining the extended-key map

	
 map.c --- editor function definitions

	
 parse.c --- parse an editline extended command

	
 prompt.c --- prompt printing functions

	
 read.c --- terminal read functions

	
 readline.c --- read line

	
 refresh.c --- "lower level screen refreshing functions"

	
 search.c --- "history and character search functions"

	
 sig.c --- for signal handling

	
 strlcpy.c --- string copy

	
 term.c --- "editor/termcap-curses interface"

	
 tokenizer.c --- Bourne shell line tokenizer

	
 tty.c --- for a tty interface

	
 unvis.c --- reverse effect of vis.c

	
 vi.c --- commands used when in the vi (editor) mode

	
 vis.c --- encode characters

A.1.5 The dbug Directory

 Fred Fish's dbug library.

 This is not really part of the MySQL package. Rather, it's a set
 of public-domain routines which are useful for debugging MySQL
 programs. The MySQL Server and all .c and .cc programs support
 the use of this package.

 How it works: One inserts a function call that begins with
 DBUG_* in one of the regular MYSQL programs. For example, in
 get_password.c, you will find this line:

DBUG_ENTER("get_tty_password");

 at the start of a routine, and this line:

DBUG_RETURN(my_strdup(to,MYF(MY_FAE)));

 at the end of the routine. These lines don't affect production
 code. Features of the dbug library include extensive reporting
 and profiling (the latter has not been used by the MySQL team).

 The C programs in this directory are:

	
 dbug.c --- The main module

	
 dbug_analyze.c --- Reads a file produced by trace functions

	
 example1.c --- A tiny example

	
 example2.c --- A tiny example

	
 example3.c --- A tiny example

	
 factorial.c --- A tiny example

	
 main.c --- A tiny example

	
 my_main.c --- MySQL-specific main.c variant

	
 sanity.c --- Declaration of a variable

A.1.6 The Docs Directory

 With the BitKeeper downloads, /Docs is nearly empty. Binary and
 source distributions include some pre-formatted documentation
 files, such as the MySQL Reference manual in Info format (for
 Unix) or CHM format (for Windows).

A.1.7 The extra Directory

 Some minor standalone utility programs.

 These programs are all standalone utilities, that is, they have
 a main() function and their main role is to show information
 that the MySQL server needs or produces. Most are unimportant.
 They are as follows:

	
 comp_err.c --- makes error-message files from a
 multi-language source

	
 my_print_defaults.c --- print parameters from my.ini files.
 Can also be used in scripts to enable processing of my.ini
 files.

	
 mysql_waitpid.c --- wait for a program to terminate. Useful
 for shell scripts when one needs to wait until a process
 terminates.

	
 perror.c --- "print error" --- given error number, display
 message

	
 replace.c --- replace strings in text files or pipe

	
 resolve_stack_dump.c --- show symbolic information from a
 MySQL stack dump, normally found in the mysql.err file

	
 resolveip.c --- convert an IP address to a hostname, or vice
 versa

A.1.8 The heap Directory

 The HEAP (MEMORY) table handler.

 All the MySQL table handlers (that is, the handlers that MySQL
 itself produces) have files with similar names and functions.
 Thus, this (heap) directory contains a lot of duplication of the
 myisam directory (for the MyISAM table
 handler). Such duplicates have been marked with an "*" in the
 following list. For example, you will find that
 \heap\hp_extra.c has a close equivalent in
 the myisam directory (\myisam\mi_extra.c)
 with the same descriptive comment. (Some of the differences
 arise because HEAP has different structures.
 HEAP does not need to use the sort of B-tree
 indexing that ISAM and
 MyISAM use; instead there is a hash index.
 Most importantly, HEAP is entirely in memory.
 File-I/O routines lose some of their vitality in such a
 context.)

	
 hp_block.c --- Read/write a block (that is, a page)

	
 hp_clear.c --- Remove all records in the table

	
 hp_close.c --- * close database

	
 hp_create.c --- * create a table

	
 hp_delete.c --- * delete a row

	
 hp_extra.c --- * for setting options and buffer sizes when
 optimizing

	
 hp_hash.c --- Hash functions used for saving keys

	
 hp_info.c --- * Information about database status

	
 hp_open.c --- * open database

	
 hp_panic.c --- * the hp_panic routine, for shutdowns and
 flushes

	
 hp_rename.c --- * rename a table

	
 hp_rfirst.c --- * read first row through a specific key
 (very short)

	
 hp_rkey.c --- * read record using a key

	
 hp_rlast.c --- * read last row with same key as
 previously-read row

	
 hp_rnext.c --- * read next row with same key as
 previously-read row

	
 hp_rprev.c --- * read previous row with same key as
 previously-read row

	
 hp_rrnd.c --- * read a row based on position

	
 hp_rsame.c --- * find current row using positional read or
 key-based read

	
 hp_scan.c --- * read all rows sequentially

	
 hp_static.c --- * static variables (very short)

	
 hp_test1.c --- * testing basic functions

	
 hp_test2.c --- * testing database and storing results

	
 hp_update.c --- * update an existing row

	
 hp_write.c --- * insert a new row

 There are fewer files in the heap directory than in the myisam
 directory, because fewer are necessary. For example, there is no
 need for a \myisam\mi_cache.c equivalent (to cache reads) or a
 \myisam\mi_log.c equivalent (to log statements).

A.1.9 The include Directory

 Header (*.h) files for most libraries; includes all header files
 distributed with the MySQL binary distribution.

 These files may be included in C program files. Note that each
 individual directory will also have its own *.h files, for
 including in its own *.c programs. The *.h files in the include
 directory are ones that might be included from more than one
 place.

 For example, the mysys directory contains a C file named
 rijndael.c, but does not include rijndael.h. The include
 directory contains rijndael.h. Looking further, you'll find that
 rijndael.h is also included in other places: by my_aes.c and
 my_aes.h.

 The include directory contains 55 *.h (header) files.

A.1.10 The innobase Directory

 The Innobase (InnoDB) table handler.

 A full description of these files can be found elsewhere in this
 document.

A.1.11 The libmysql Directory

 The MySQL Library, Part 1.

 The files here are for producing MySQL as a library (for
 example, a Windows DLL). The idea is that, instead of producing
 separate mysql (client) and
 mysqld (server) programs, one produces a
 library. Instead of sending messages, the client part merely
 calls the server part.

 The libmysql files are split into three
 directories: libmysql (this one),
 libmysql_r (the next one), and
 libmysqld (the next one after that).

 The "library of mysql" has some client-connection modules. For
 example, as described in an earlier section of this manual,
 there is a discussion of
 libmysql/libmysql.c which sends packets
 from the client to the server. Many of the entries in the
 libmysql directory (and in the following
 libmysqld directory) are 'symlinks' on
 Linux, that is, they are in fact pointers to files in other
 directories.

 The program files on this directory are:

	
 conf_to_src.c --- has to do with charsets

	
 dll.c --- initialization of the dll library

	
 errmsg.c --- English error messages, compare \mysys\errors.c

	
 get_password.c --- get password

	
 libmysql.c --- the code that implements the MySQL API, that
 is, the functions a client that wants to connect to MySQL
 will call

	
 manager.c --- initialize/connect/fetch with MySQL manager

A.1.12 The libmysql_r Directory

 The MySQL Library, Part 2.

 There is only one file here, used to build a thread-safe
 libmysql library:

	
 makefile.am

A.1.13 The libmysqld Directory

 The MySQL library, Part 3.

 The Embedded MySQL Server Library. The product of
 libmysqld is not a client/server affair, but
 a library. There is a wrapper to emulate the client calls. The
 program files on this directory are:

	
 libmysqld.c --- The called side, compare the mysqld.exe
 source

	
 lib_sql.c --- Emulate the vio directory's communication
 buffer

A.1.14 The man Directory

 Some user-contributed manual pages

 These are user-contributed "man" (manual) pages in a special
 markup format. The format is described in a document with a
 heading like "man page for man" or "macros to format man pages"
 which you can find in a Linux directory or on the Internet.

A.1.15 The myisam Directory

 The MyISAM table handler.

 The C files in this subdirectory come in six main groups:

	
 ft*.c files --- ft stands for "Full Text", code contributed
 by Sergei Golubchik

	
 mi*.c files --- mi stands for "My Isam", these are the main
 programs for Myisam

	
 myisam*.c files --- for example, "myisamchk" utility routine
 functions source

	
 rt*.c files --- rt stands for "rtree", some code was written
 by Alexander Barkov

	
 sp*.c files --- sp stands for "spatial", some code was
 written by Ramil Kalimullin

	
 sort.c --- this is a single file that sorts keys for
 index-create purposes

 The "full text" and "rtree" and "spatial" program sets are for
 special purposes, so this document focuses only on the mi*.c
 "myisam" C programs. They are:

	
 mi_cache.c --- for reading records from a cache

	
 mi_changed.c --- a single routine for setting a "changed"
 flag (very short)

	
 mi_check.c --- for checking and repairing tables. Used by
 the myisamchk program and by the MySQL server.

	
 mi_checksum.c --- calculates a checksum for a row

	
 mi_close.c --- close database

	
 mi_create.c --- create a table

	
 mi_dbug.c --- support routines for use with "dbug" (see
 \dbug description)

	
 mi_delete.c --- delete a row

	
 mi_delete_all.c --- delete all rows

	
 mi_delete_table.c --- delete a table (very short)

	
 mi_dynrec.c --- functions to handle space-packed records and
 blobs

	
 mi_extra.c --- setting options and buffer sizes when
 optimizing

	
 mi_info.c --- return useful base information for an open
 table

	
 mi_key.c --- for handling keys

	
 mi_keycache.c --- for handling key caches

	
 mi_locking.c --- lock database

	
 mi_log.c --- save commands in a log file which myisamlog
 program can read. Can be used to exactly replay a set of
 changes to a table.

	
 mi_open.c --- open database

	
 mi_packrec.c --- read from a data file compressed with
 myisampack

	
 mi_page.c --- read and write pages containing keys

	
 mi_panic.c --- the mi_panic routine, probably for sudden
 shutdowns

	
 mi_preload.c --- preload indexes into key cache

	
 mi_range.c --- approximate count of how many records lie
 between two keys

	
 mi_rename.c --- rename a table

	
 mi_rfirst.c --- read first row through a specific key (very
 short)

	
 mi_rkey.c --- read a record using a key

	
 mi_rlast.c --- read last row with same key as
 previously-read row

	
 mi_rnext.c --- read next row with same key as
 previously-read row

	
 mi_rnext_same.c --- same as mi_rnext.c, but abort if the key
 changes

	
 mi_rprev.c --- read previous row with same key as
 previously-read row

	
 mi_rrnd.c --- read a row based on position

	
 mi_rsame.c --- find current row using positional read or
 key-based read

	
 mi_rsamepos.c --- positional read

	
 mi_scan.c --- read all rows sequentially

	
 mi_search.c --- key-handling functions

	
 mi_static.c --- static variables (very short)

	
 mi_statrec.c --- functions to handle fixed-length records

	
 mi_test1.c --- testing basic functions

	
 mi_test2.c --- testing database and storing results

	
 mi_test3.c --- testing locking

	
 mi_unique.c --- functions to check if a row is unique

	
 mi_update.c --- update an existing row

	
 mi_write.c --- insert a new row

A.1.16 The myisammrg Directory

 MyISAM Merge table handler.

 As with other table handlers, you'll find that the
 *.c files in the
 myissammrg directory have counterparts in
 the myisam directory. In fact, this general
 description of a myisammrg program is almost
 always true: The myisammrg function checks
 an argument, the myisammrg function
 formulates an expression for passing to a
 myisam function, the
 myisammrg calls a
 myisam function, the
 myisammrg function returns.

 These are the 22 files in the myisammrg
 directory, with notes about the myisam
 functions or programs they're connected with:

	
 myrg_close.c --- mi_close.c

	
 myrg_create.c --- mi_create.c

	
 myrg_delete.c --- mi_delete.c / delete last-read record

	
 myrg_extra.c --- mi_extra.c / "extra functions we want to do
 ..."

	
 myrg_info.c --- mi_info.c / display information about a
 mymerge file

	
 myrg_locking.c --- mi_locking.c / lock databases

	
 myrg_open.c --- mi_open.c / open a MyISAM
 MERGE table

	
 myrg_panic.c --- mi_panic.c / close in a hurry

	
 myrg_queue.c --- read record based on a key

	
 myrg_range.c --- mi_range.c / find records in a range

	
 myrg_rfirst.c --- mi_rfirst.c / read first record according
 to specific key

	
 myrg_rkey.c --- mi_rkey.c / read record based on a key

	
 myrg_rlast.c --- mi_rlast.c / read last row with same key as
 previous read

	
 myrg_rnext.c --- mi_rnext.c / read next row with same key as
 previous read

	
 myrg_rnext_same.c --- mi_rnext_same.c / read next row with
 same key

	
 myrg_rprev.c --- mi_rprev.c / read previous row with same
 key

	
 myrg_rrnd.c --- mi_rrnd.c / read record with random access

	
 myrg_rsame.c --- mi_rsame.c / call mi_rsame function, see
 \myisam\mi_rsame.c

	
 myrg_static.c --- mi_static.c / static variable declaration

	
 myrg_update.c --- mi_update.c / call mi_update function, see
 \myisam\mi_update.c

	
 myrg_write.c --- mi_write.c / call mi_write function, see
 \myisam\mi_write.c

A.1.17 The mysql-test Directory

 A test suite for mysqld.

 The directory has a README file which
 explains how to run the tests, how to make new tests (in files
 with the filename extension *.test), and
 how to report errors.

 There are four subdirectories:

	
 \misc --- contains one minor Perl program

	
 \ndb --- for MySQL Cluster tests

	
 \r --- contains *.result, that is, "what happened" files and
 *.required, that is, "what should happen" file

	
 \std_data --- contains standard data for input to tests

	
 \t --- contains tests

 There are 400 *.test files in the
 \t subdirectory. Primarily these are SQL
 scripts which try out a feature, output a result, and compare
 the result with what's required. Some samples of what the test
 files check are: latin1_de comparisons, date additions, the
 HAVING clause, outer joins, openSSL, load
 data, logging, truncate, and UNION.

 There are other tests in these directories:

	
 sql-bench

	
 tests

A.1.18 The mysys Directory

 MySQL system library. Low level routines for file access and so
 on.

 There are 125 *.c programs in this directory:

	
 array.c --- Dynamic array handling

	
 charset.c --- Using dynamic character sets, set default
 character set, ...

	
 charset-def.c --- Include character sets in the client using

	
 checksum.c --- Calculate checksum for a memory block, used
 for pack_isam

	
 default.c --- Find defaults from *.cnf or *.ini files

	
 default_modify.c --- edit option file

	
 errors.c --- English text of global errors

	
 hash.c --- Hash search/compare/free functions "for saving
 keys"

	
 list.c --- Double-linked lists

	
 make-conf.c --- "Make a charset .conf file out of a
 ctype-charset.c file"

	
 md5.c --- MD5 ("Message Digest 5") algorithm from RSA Data
 Security

	
 mf_brkhant.c --- Prevent user from doing a Break during
 critical execution (not used in MySQL; can be used by
 standalone MyISAM applications)

	
 mf_cache.c --- "Open a temporary file and cache it with
 io_cache"

	
 mf_dirname.c --- Parse/convert directory names

	
 mf_fn_ext.c --- Get filename extension

	
 mf_format.c --- Format a filename

	
 mf_getdate.c --- Get date, return in yyyy-mm-dd hh:mm:ss
 format

	
 mf_iocache.c --- Cached read/write of files in fixed-size
 units

	
 mf_iocache2.c --- Continuation of mf_iocache.c

	
 mf_keycache.c --- Key block caching for certain file types

	
 mf_keycaches.c --- Handling of multiple key caches

	
 mf_loadpath.c --- Return full path name (no ..\ stuff)

	
 mf_pack.c --- Packing/unpacking directory names for create
 purposes

	
 mf_path.c --- Determine where a program can find its files

	
 mf_qsort.c --- Quicksort

	
 mf_qsort2.c --- Quicksort, part 2 (allows the passing of an
 extra argument to the sort-compare routine)

	
 mf_radix.c --- Radix sort

	
 mf_same.c --- Determine whether filenames are the same

	
 mf_sort.c --- Sort with choice of Quicksort or Radix sort

	
 mf_soundex.c --- Soundex algorithm derived from EDN Nov. 14,
 1985 (pg. 36)

	
 mf_strip.c --- Strip trail spaces from a string

	
 mf_tempdir.c --- Initialize/find/free temporary directory

	
 mf_tempfile.c --- Create a temporary file

	
 mf_unixpath.c --- Convert filename to UNIX-style filename

	
 mf_util.c --- Routines, #ifdef'd, which may be missing on
 some machines

	
 mf_wcomp.c --- Comparisons with wildcards

	
 mf_wfile.c --- Finding files with wildcards

	
 mulalloc.c --- Malloc many pointers at the same time

	
 my_access.c --- Check if file or path is accessible

	
 my_aes.c --- AES encryption

	
 my_alarm.c --- Set a variable value when an alarm is
 received

	
 my_alloc.c --- malloc of results which will be freed
 simultaneously

	
 my_append.c --- one file to another

	
 my_bit.c --- smallest X where 2^X ≥ value, maybe useful
 for divisions

	
 my_bitmap.c --- Handle uchar arrays as large bitmaps

	
 my_chsize.c --- Truncate file if shorter, else fill with a
 filler character

	
 my_clock.c --- Time-of-day ("clock()") function, with
 OS-dependent #ifdef's

	
 my_compress.c --- Compress packet (see also description of
 \zlib directory)

	
 my_copy.c --- Copy files

	
 my_crc32.c --- Include \zlib\crc32.c

	
 my_create.c --- Create file

	
 my_delete.c --- Delete file

	
 my_div.c --- Get file's name

	
 my_dup.c --- Open a duplicated file

	
 my_error.c --- Return formatted error to user

	
 my_file.c --- See how many open files we want

	
 my_fopen.c --- File open

	
 my_fstream.c --- Streaming file read/write

	
 my_gethostbyname.c --- Thread-safe version of standard net
 gethostbyname() func

	
 my_gethwaddr.c --- Get hardware address for an interface

	
 my_getopt.c --- Find out what options are in effect

	
 my_getsystime.c --- Time-of-day functions, portably

	
 my_getwd.c --- Get working directory

	
 my_handler.c --- Compare two keys in various possible
 formats

	
 my_init.c --- Initialize variables and functions in the
 mysys library

	
 my_largepage.c --- Gets the size of large pages from the OS

	
 my_lib.c --- Compare/convert directory names and file names

	
 my_lock.c --- Lock part of a file

	
 my_lockmem.c --- "Allocate a block of locked memory"

	
 my_lread.c --- Read a specified number of bytes from a file
 into memory

	
 my_lwrite.c --- Write a specified number of bytes from
 memory into a file

	
 my_malloc.c --- Malloc (memory allocate) and dup functions

	
 my_messnc.c --- Put out a message on stderr with "no curses"

	
 my_mkdir.c --- Make directory

	
 my_mmap.c --- Memory mapping

	
 my_net.c --- Thread-safe version of net inet_ntoa function

	
 my_netware.c --- Functions used only with the Novell Netware
 version of MySQL

	
 my_once.c --- Allocation / duplication for "things we don't
 need to free"

	
 my_open.c --- Open a file

	
 my_os2cond.c --- OS2-specific: "A simple implementation of
 posix conditions"

	
 my_os2dirsrch.c --- OS2-specific: Emulate a Win32 directory
 search

	
 my_os2dlfcn.c --- OS2-specific: Emulate UNIX dynamic loading

	
 my_os2file64.c --- OS2-specific: For File64bit setting

	
 my_os2mutex.c --- OS2-specific: For mutex handling

	
 my_os2thread.c --- OS2-specific: For thread handling

	
 my_os2tls.c --- OS2-specific: For thread-local storage

	
 my_port.c --- OS/machine-dependent porting functions, for
 example, AIX-specific my_ulonglong2double()

	
 my_pread.c --- Read a specified number of bytes from a file

	
 my_pthread.c --- A wrapper for thread-handling functions in
 different OSs

	
 my_quick.c --- Read/write (labeled a "quicker" interface,
 perhaps obsolete)

	
 my_read.c --- Read a specified number of bytes from a file,
 possibly retry

	
 my_realloc.c --- Reallocate memory allocated with my_alloc.c
 (probably)

	
 my_redel.c --- Rename and delete file

	
 my_rename.c --- Rename without delete

	
 my_seek.c --- Seek, that is, point to a spot within a file

	
 my_semaphore.c --- Semaphore routines, for use on OS that
 doesn't support them

	
 my_sleep.c --- Wait n microseconds

	
 my_static.c --- Static variables used by the mysys library

	
 my_symlink.c --- Read a symbolic link (symlinks are a UNIX
 thing, I guess)

	
 my_symlink2.c --- Part 2 of my_symlink.c

	
 my_sync.c --- Sync data in file to disk

	
 my_thr_init.c --- initialize/allocate "all mysys & debug
 thread variables"

	
 my_wincond.c --- Windows-specific: emulate Posix conditions

	
 my_windac.c --- Windows NT/2000 discretionary access control
 functions

	
 my_winsem.c --- Windows-specific: emulate Posix threads

	
 my_winthread.c --- Windows-specific: emulate Posix threads

	
 my_write.c --- Write a specified number of bytes to a file

	
 ptr_cmp.c --- Point to an optimal byte-comparison function

	
 queues.c --- Handle priority queues as in Robert Sedgewick's
 book

	
 raid2.c --- RAID support (the true implementation is in
 raid.cc)

	
 rijndael.c --- "Optimized ANSI C code for the Rijndael
 cipher (now AES")

	
 safemalloc.c --- A version of the standard malloc() with
 safety checking

	
 sha1.c --- Implementation of Secure Hashing Algorithm 1

	
 string.c --- Initialize/append/free dynamically-sized
 strings; see also sql_string.cc in the /sql directory

	
 testhash.c --- Standalone program: test the hash library
 routines

	
 test_charset.c --- Standalone program: display character set
 information

	
 test_dir.c --- Standalone program: placeholder for "test all
 functions" idea

	
 test_fn.c --- Standalone program: apparently tests a
 function

	
 test_xml.c --- Standalone program: test XML routines

	
 thr_alarm.c --- Thread alarms and signal handling

	
 thr_lock.c --- "Read and write locks for Posix threads"

	
 thr_mutex.c --- A wrapper for mutex functions

	
 thr_rwlock.c --- Synchronizes the readers' thread locks with
 the writer's lock

	
 tree.c --- Initialize/search/free binary trees

	
 typelib.c --- Find a string in a set of strings; returns the
 offset to the string found

 You can find documentation for the main functions in these files
 elsewhere in this document. For example, the main functions in
 my_getwd.c are described thus:

"int my_getwd _A((string buf, uint size, myf MyFlags));
 int my_setwd _A((const char *dir, myf MyFlags));
 Get and set working directory."

A.1.19 The ndb Directory

 The ndb (MySQL Cluster) source code.

 MySQL's shared-nothing in-memory feature is practically a DBMS
 by itself. We generally use the term "ndb" when referring to the
 storage engine, and the term "MySQL Cluster" when referring to
 the combination of the storage engine and the rest of the MySQL
 facilities.

 The sub-directories within ndb are:

	
 bin --- Two script files

	
 config --- Files needed for building

	
 demos --- Demonstration scripts

	
 docs --- A doxygen output and a .txt file

	
 home --- Some scripts and .pl files

	
 include --- The .h files

	
 lib --- empty

	
 ndbapi-examples --- Examples for the API

	
 src --- The .cpp files

	
 test --- Files for testing

	
 tools --- Programs for testing select, drop, and so on

A.1.20 The netware Directory

 Files related to the Novell NetWare version of MySQL.

 There are 43 files on this directory. Most have filename
 extensions of *.def,
 *.sql, or *.c.

 The twenty-eight *.def files are all from
 Novell Inc. They contain import or export symbols.
 (.def is a common filename extension for
 "definition".)

 The three *.sql files are short scripts of
 SQL statements used in testing.

 These are the five *.c files, all from Novell Inc.:

	
 libmysqlmain.c --- Only one function:
 init_available_charsets()

	
 my_manage.c --- Standalone management utility

	
 mysql_install_db.c --- Compare \scripts\mysql_install_db.sh

	
 mysql_test_run.c --- Short test program

	
 mysqld_safe.c --- Compare \scripts\mysqld_safe.sh

 Perhaps the most important files are:

	
 netware/BUILD/*patch --- NetWare-specific build instructions
 and switches (compare the files in the BUILD directory)

 For instructions about basic installation, see "Deployment Guide
 For NetWare AMP" at:
 http://developer.novell.com/ndk/whitepapers/namp.htm

A.1.21 The NEW-RPMS Directory

 Directory to place RPMs while making a distribution.

 This directory is not part of the Windows distribution. It is a
 temporary directory used during RPM builds with Linux
 distributions. You only see it after you've done a "build".

A.1.22 The os2 Directory

 Routines for working with the OS2 operating system.

 The files in this directory are the product of the efforts of
 three people from outside MySQL: Yuri Dario, Timo Maier, and
 John M Alfredsson. There are no .C program
 files in this directory.

 The contents of \os2 are:

	
 A Readme.Txt file

	
 An \include subdirectory containing .h files which are for
 OS/2 only

	
 Files used in the build process (configuration, switches,
 and one .obj)

 The README file refers to MySQL version 3.23, which suggests
 that there have been no updates for MySQL 4.0 for this section.

A.1.23 The pstack Directory

 Process stack display (not currently used).

 This is a set of publicly-available debugging aids which all do
 pretty well the same thing: display the contents of the stack,
 along with symbolic information, for a running process. There
 are versions for various object file formats (such as ELF and
 IEEE-695). Most of the programs are copyrighted by the Free
 Software Foundation and are marked as "part of GNU Binutils".

 In other words, the pstack files are not really part of the
 MySQL library. They are merely useful when you re-program some
 MYSQL code and it crashes.

A.1.24 The regex Directory

 Henry Spencer's Regular Expression library for support of REGEXP
 function.

 This is the copyrighted product of Henry Spencer from the
 University of Toronto. It's a fairly-well-known implementation
 of the requirements of POSIX 1003.2 Section 2.8. The library is
 bundled with Apache and is the default implementation for
 regular-expression handling in BSD Unix. MySQL's Monty Widenius
 has made minor changes in three programs (debug.c, engine.c,
 regexec.c) but this is not a MySQL package. MySQL calls it only
 in order to support two MySQL functions: REGEXP and RLIKE.

 Some of Mr Spencer's documentation for the regex library can be
 found in the README and WHATSNEW files.

 One MySQL program which uses regex is
 \cmd-line-utils\libedit\search.c

 This program calls the 'regcomp' function, which is the entry
 point in \regex\regexp.c.

A.1.25 The SCCS Directory

 Source Code Control System (not part of source distribution).

 You will see this directory if and only if you used BitKeeper
 for downloading the source. The files here are for BitKeeper
 administration and are not of interest to application
 programmers.

A.1.26 The scripts Directory

 SQL batches, for example, mysqlbug and mysql_install_db.

 The *.sh filename extension stands for
 "shell script". Linux programmers use it where Windows
 programmers would use a *.bat (batch
 filename extension).

 Some of the *.sh files on this directory
 are:

	
 fill_help_tables.sh --- Create help-information tables and
 insert

	
 make_binary_distribution.sh --- Get configure information,
 make, produce tar

	
 msql2mysql.sh --- Convert (partly) mSQL programs and scripts
 to MySQL

	
 mysqlbug.sh --- Create a bug report and mail it

	
 mysqld_multi.sh --- Start/stop any number of mysqld
 instances

	
 mysqld_safe-watch.sh --- Start/restart in safe mode

	
 mysqld_safe.sh --- Start/restart in safe mode

	
 mysqldumpslow.sh --- Parse and summarize the slow query log

	
 mysqlhotcopy.sh --- Hot backup

	
 mysql_config.sh --- Get configuration information that might
 be needed to compile a client

	
 mysql_convert_table_format.sh --- Conversion, for example,
 from ISAM to MyISAM

	
 mysql_explain_log.sh --- Put a log (made with
 --log) into a MySQL table

	
 mysql_find_rows.sh --- Search for queries containing
 <regexp>

	
 mysql_fix_extensions.sh --- Renames some file extensions,
 not recommended

	
 mysql_fix_privilege_tables.sh --- Fix
 mysql.user etc. when upgrading. Can be
 safely run during any upgrade to get the newest MySQL
 privilege tables

	
 mysql_install_db.sh --- Create privilege tables and func
 table

	
 mysql_secure_installation.sh --- Disallow remote root login,
 eliminate test, etc.

	
 mysql_setpermission.sh --- Aid to add users or databases,
 sets privileges

	
 mysql_tableinfo.sh --- Puts info re MySQL tables into a
 MySQL table

	
 mysql_zap.sh --- Kill processes that match pattern

A.1.27 The server-tools Directory

 The instance manager.

 Quoting from the README file within this directory: "Instance
 Manager - manage MySQL instances locally and remotely. File
 description: mysqlmanager.cc - entry point to the manager, main,
 options.{h,cc} - handle startup options. manager.{h,cc} -
 manager process. mysql_connection.{h,cc} - handle one connection
 with mysql client. See also instance manager architecture
 description in mysqlmanager.cc.

A.1.28 The sql Directory

 Programs for handling SQL commands. The "core" of MySQL.

 These are the .c and
 .cc files in the sql
 directory:

	
 derror.cc --- read language-dependent message file

	
 des_key_file.cc --- load DES keys from plaintext file

	
 discover.cc --- Functions for discovery of
 .frm file from handler

	
 field.cc --- "implement classes defined in
 field.h" (long); defines all storage
 methods MySQL uses to store field information into records
 that are then passed to handlers

	
 field_conv.cc --- functions to copy data between fields

	
 filesort.cc --- sort a result set, using memory or temporary
 files

	
 frm_crypt.cc --- contains only one short function:
 get_crypt_for_frm

	
 gen_lex_hash.cc --- Knuth's algorithm from Vol 3 Sorting and
 Searching, Chapter 6.3; used to search for SQL keywords in a
 query

	
 gstream.cc --- GTextReadStream, used to read GIS objects

	
 handler.cc --- handler-calling functions

	
 hash_filo.cc --- static-sized hash tables, used to store
 info like hostname -> ip tables in a FIFO manner

	
 ha_berkeley.cc --- Handler: BDB

	
 ha_blackhole.cc --- Handler: Black Hole

	
 ha_federated.cc --- Handler: Federated

	
 ha_heap.cc --- Handler: Heap

	
 ha_innodb.cc --- Handler: InnoDB

	
 ha_myisam.cc --- Handler: MyISAM

	
 ha_myisammrg.cc --- Handler: (MyISAM MERGE)

	
 ha_ndbcluster.cc --- Handler: NDB

	
 hostname.cc --- Given IP, return hostname

	
 init.cc --- Init and dummy functions for interface with
 unireg

	
 item.cc --- Item functions

	
 item_buff.cc --- Buffers to save and compare item values

	
 item_cmpfunc.cc --- Definition of all compare functions

	
 item_create.cc --- Create an item. Used by
 lex.h.

	
 item_func.cc --- Numerical functions

	
 item_geofunc.cc --- Geometry functions

	
 item_row.cc --- Row items for comparing rows and for
 IN on rows

	
 item_strfunc.cc --- String functions

	
 item_subselect.cc --- Subqueries

	
 item_sum.cc --- Set functions (SUM(),
 AVG(), etc.)

	
 item_strfunc.cc --- String functions

	
 item_subselect.cc --- Item subquery

	
 item_timefunc.cc --- Date/time functions, for example, week
 of year

	
 item_uniq.cc --- Empty file, here for compatibility reasons

	
 key.cc --- Functions to create keys from records and compare
 a key to a key in a record

	
 lock.cc --- Locks

	
 log.cc --- Logs

	
 log_event.cc --- Log event (a binary log consists of a
 stream of log events)

	
 matherr.c --- Handling overflow, underflow, etc.

	
 mf_iocache.cc --- Caching of (sequential) reads and writes

	
 mysqld.cc --- Source for mysqld.exe;
 includes the main() program that starts
 mysqld, handling of signals and
 connections

	
 mf_decimal.cc --- New decimal and numeric code

	
 my_lock.c --- Lock part of a file (like
 /mysys/my_lock.c, but with timeout
 handling for threads)

	
 net_serv.cc --- Read/write of packets on a network socket

	
 nt_servc.cc --- Initialize/register/remove an NT service

	
 opt_range.cc --- Range of keys

	
 opt_sum.cc --- Optimize functions in presence of (implied)
 GROUP BY

	
 parse_file.cc --- Text .frm files
 management routines

	
 password.c --- Password checking

	
 procedure.cc --- Procedure interface, as used in
 SELECT * FROM Table_name PROCEDURE
 ANALYSE()

	
 protocol.cc --- Low level functions for PACKING data that is
 sent to client; actual sending done with
 net_serv.cc

	
 protocol_cursor.cc --- Low level functions for storing data
 to be sent to the MySQL client

	
 records.cc --- Functions for easy reading of records,
 possible through a cache

	
 repl_failsafe.cc --- Replication fail-save (not yet
 implemented)

	
 set_var.cc --- Set and retrieve MySQL user variables

	
 slave.cc --- Procedures for a slave in a master/slave
 (replication) relation

	
 sp.cc --- DB storage of stored procedures and functions

	
 sp_cache.cc --- For stored procedures

	
 sp_head.cc --- For stored procedures

	
 sp_pcontext.cc --- For stored procedures

	
 sp_rcontext.cc --- For stored procedures

	
 spatial.cc --- Geometry stuff (lines, points, etc.)

	
 sql_acl.cc --- Functions related to ACL security; checks,
 stores, retrieves, and deletes MySQL user level privileges

	
 sql_analyse.cc --- Implements the PROCEDURE
 ANALYSE(), which analyzes a query result and
 returns the 'optimal' data type for each result column

	
 sql_base.cc --- Basic functions needed by many modules, like
 opening and closing tables with table cache management

	
 sql_cache.cc --- SQL query cache, with long comments about
 how caching works

	
 sql_class.cc --- SQL class; implements the SQL base classes,
 of which THD (THREAD object) is the most important

	
 sql_client.cc --- A function called by my_net_init() to set
 some check variables

	
 sql_crypt.cc --- Encode / decode, very short

	
 sql_db.cc --- Create / drop database

	
 sql_delete.cc --- The DELETE statement

	
 sql_derived.cc --- Derived tables, with long comments

	
 sql_do.cc --- The DO statement

	
 sql_error.cc --- Errors and warnings

	
 sql_handler.cc --- Implements the HANDLER
 interface, which gives direct access to rows in
 MyISAM and InnoDB

	
 sql_help.cc --- The HELP statement

	
 sql_insert.cc --- The INSERT statement

	
 sql_lex.cc --- Does lexical analysis of a query; that is,
 breaks a query string into pieces and determines the basic
 type (number, string, keyword, etc.) of each piece

	
 sql_list.cc --- Only list_node_end_of_list, short (the rest
 of the list class is implemented in
 sql_list.h)

	
 sql_load.cc --- The LOAD DATA statement

	
 sql_manager.cc --- Maintenance tasks, for example, flushing
 the buffers periodically; used with BDB
 table logs

	
 sql_map.cc --- Memory-mapped files (not yet in use)

	
 sql_olap.cc --- ROLLUP

	
 sql_parse.cc --- Parse an SQL statement; do initial checks
 and then jump to the function that should execute the
 statement

	
 sql_prepare.cc --- Prepare an SQL statement, or use a
 prepared statement

	
 sql_rename.cc --- Rename table

	
 sql_repl.cc --- Replication

	
 sql_select.cc --- Select and join optimization

	
 sql_show.cc --- The SHOW statement

	
 sql_state.c --- Functions to map mysqld errno to sqlstate

	
 sql_string.cc --- String functions: alloc, realloc, copy,
 convert, etc.

	
 sql_table.cc --- The DROP TABLE and
 ALTER TABLE statements

	
 sql_test.cc --- Some debugging information

	
 sql_trigger.cc --- Triggers

	
 sql_udf.cc --- User-defined functions

	
 sql_union.cc --- The UNION operator

	
 sql_update.cc --- The UPDATE statement

	
 sql_view.cc --- Views

	
 stacktrace.c --- Display stack trace (Linux/Intel only)

	
 strfunc.cc --- String functions

	
 table.cc --- Table metadata retrieval; read the table
 definition from a .frm file and store
 it in a TABLE object

	
 thr_malloc.cc --- Thread-safe interface to
 /mysys/my_alloc.c

	
 time.cc --- Date and time functions

	
 udf_example.cc --- Example file of user-defined functions

	
 uniques.cc --- Function to handle quick removal of
 duplicates

	
 unireg.cc --- Create a unireg format file
 (.frm) from a FIELD
 and field-info struct

A.1.29 The sql-bench Directory

 The MySQL Benchmarks.

 This directory has the programs and input files which MySQL uses
 for its comparisons of MySQL, PostgreSQL, mSQL, Solid, etc.
 Since MySQL publishes the comparative results, it's only right
 that it should make available all the material necessary to
 reproduce all the tests.

 There are five subdirectories and sub-subdirectories:

	
 \Comments --- Comments about results from tests of Access,
 Adabas, etc.

	
 \Data\ATIS --- .txt files containing
 input data for the "ATIS" tests

	
 \Data\Wisconsin --- .txt files
 containing input data for the "Wisconsin" tests

	
 \Results --- old test results

	
 \Results-win32 --- old test results from Windows 32-bit
 tests

 There are twenty-four *.sh (shell script)
 files, which involve Perl programs.

 There are three *.bat (batch) files.

 There is one README file and one TODO file.

A.1.30 The sql-common Directory

 Three files: client.c, my_time.c, pack.c. You will file symlinks
 to these files in other directories.

A.1.31 The SSL Directory

 Secure Sockets Layer; includes an example certification one can
 use test an SSL (secure) database connection.

 This isn't a code directory. It contains a short note from Tonu
 Samuel (the NOTES file) and seven *.pem
 files. PEM stands for "Privacy Enhanced Mail" and is an Internet
 standard for adding security to electronic mail. Finally, there
 are two short scripts for running clients and servers over SSL
 connections.

A.1.32 The strings Directory

 The string library.

 Many of the files in this subdirectory are equivalent to
 well-known functions that appear in most C string libraries. For
 those, there is documentation available in most compiler
 handbooks.

 On the other hand, some of the files are MySQL additions or
 improvements. Often the MySQL changes are attempts to optimize
 the standard libraries. It doesn't seem that anyone tried to
 optimize for recent Pentium class processors, though.

 The .C files are:

	
 bchange.c --- short replacement routine written by Monty
 Widenius in 1987

	
 bcmp.c --- binary compare, rarely used

	
 bcopy-duff.c --- block copy: attempt to copy memory blocks
 faster than cmemcpy

	
 bfill.c --- byte fill, to fill a buffer with (length) copies
 of a byte

	
 bmove.c --- block move

	
 bmove512.c --- "should be the fastest way to move a multiple
 of 512 bytes"

	
 bmove_upp.c --- bmove.c variant, starting with last byte

	
 bzero.c --- something like bfill with an argument of 0

	
 conf_to_src.c --- reading a configuration file

	
 ctype*.c --- string handling programs for each char type
 MySQL handles

	
 decimal.c --- for decimal and numeric conversions

	
 do_ctype.c --- display case-conversion and sort-conversion
 tables

	
 dump_map.c --- standalone file

	
 int2str.c --- integer-to-string

	
 is_prefix.c --- checks whether string1 starts with string2

	
 llstr.c --- convert long long to temporary-buffer string,
 return pointer

	
 longlong2str.c --- ditto, but to argument-buffer

	
 memcmp.c --- memory compare

	
 memcpy.c --- memory copy

	
 memset.c --- memory set

	
 my_strtoll10.c --- longlong2str for radix 10

	
 my_vsnprintf.c --- variant of printf

	
 r_strinstr.c --- see if one string is within another

	
 str2int.c --- convert string to integer

	
 strappend.c --- fill up a string to n characters

	
 strcat.c --- concatenate strings

	
 strcend.c --- point to where a character C occurs within
 str, or NULL

	
 strchr.c --- point to first place in string where character
 occurs

	
 strcmp.c --- compare two strings

	
 strcont.c --- point to where any one of a set of characters
 appears

	
 strend.c --- point to the '\0' byte which terminates str

	
 strfill.c --- fill a string with n copies of a byte

	
 strinstr.c --- find string within string

	
 strlen.c --- return length of string in bytes

	
 strmake.c --- create new string from old string with fixed
 length, append end \0 if needed

	
 strmov.c --- move source to dest and return pointer to end

	
 strnlen.c --- return min(length of string, n)

	
 strnmov.c --- move source to dest for source size, or for n
 bytes

	
 strrchr.c --- find a character within string, searching from
 end

	
 strstr.c --- find an instance of pattern within source

	
 strto.c --- string to long, to long long, to unsigned long,
 etc.

	
 strtod.c --- string to double

	
 strtol.c --- string to long

	
 strtoll.c --- string to long long

	
 strtoul.c --- string to unsigned long

	
 strtoull.c --- string to unsigned long long

	
 strxmov.c --- move a series of concatenated source strings
 to dest

	
 strxnmov.c --- like strxmov.c but with a maximum length n

	
 str_test.c --- test of all the string functions encoded in
 assembler

	
 uca-dump.c --- shows unicode collation algorithm dump

	
 udiv.c --- unsigned long divide, for operating systems that
 don't support these

	
 utr11-dump.c --- dump east Asian wide text file

	
 xml.c --- read and parse XML strings; used to read character
 definition information stored in /sql/share/charsets

 There are also four .ASM files --- macros.asm, ptr_cmp.asm,
 strings.asm, and strxmov.asm --- which can replace some of the
 C-program functions. But again, they look like optimizations for
 old members of the Intel processor family.

A.1.33 The support-files Directory

 Files used to build MySQL on different systems.

 The files here are for building ("making") MySQL given a package
 manager, compiler, linker, and other build tools. The support
 files provide instructions and switches for the build processes.
 They include example my.cnf files one can use as a default setup
 for MySQL.

A.1.34 The tests Directory

 Tests in Perl and in C.

 The files in this directory are test programs that can be used
 as a base to write a program to simulate problems in MySQL in
 various scenarios: forks, locks, big records, exporting,
 truncating, and so on. Some examples are:

	
 connect_test.c --- test that a connect is possible

	
 insert_test.c --- test that an insert is possible

	
 list_test.c --- test that a select is possible

	
 select_test.c --- test that a select is possible

	
 showdb_test.c --- test that a show-databases is possible

	
 ssl_test.c --- test that SSL is possible

	
 thread_test.c --- test that threading is possible

A.1.35 The tools Directory

 Tools --- well, actually, one tool.

 The only file is:

	
 mysqlmanager.c --- A "server management daemon" by Sasha
 Pachev. This is a tool under development and is not yet
 useful. Related to fail-safe replication.

A.1.36 The VC++Files Directory

 Visual C++ Files.

 Includes this entire directory, repeated for VC++ (Windows) use.

 VC++Files includes a complete environment to compile MySQL with
 the VC++ compiler. To use it, just copy the files on this
 directory; the make_win_src_distribution.sh script uses these
 files to create a Windows source installation.

 This directory has subdirectories which are copies of the main
 directories. For example, there is a subdirectory
 \VC++Files\heap, which has the Microsoft developer studio
 project file to compile \heap with VC++. So for a description of
 the files in \VC++Files\heap, see the description of the files
 in \heap. The same applies for almost all of VC++Files's
 subdirectories (bdb, client, isam, libmysql, etc.). The
 difference is that the \VC++Files variants are specifically for
 compilation with Microsoft Visual C++ in 32-bit Windows
 environments.

 In addition to the "subdirectories which are duplicates of
 directories", VC++Files contains these subdirectories, which are
 not duplicates:

	
 comp_err --- (nearly empty)

	
 contrib --- (nearly empty)

	
 InstallShield --- script files

	
 isamchk --- (nearly empty)

	
 libmysqltest --- one small non-MySQL test program: mytest.c

	
 myisamchk --- (nearly empty)

	
 myisamlog --- (nearly empty)

	
 myisammrg --- (nearly empty)

	
 mysqlbinlog --- (nearly empty)

	
 mysqlmanager --- MFC foundation class files created by
 AppWizard

	
 mysqlserver --- (nearly empty)

	
 mysqlshutdown --- one short program, mysqlshutdown.c

	
 mysqlwatch.c --- Windows service initialization and
 monitoring

	
 my_print_defaults --- (nearly empty)

	
 pack_isam --- (nearly empty)

	
 perror --- (nearly empty)

	
 prepare --- (nearly empty)

	
 replace --- (nearly empty)

	
 SCCS --- source code control system

	
 test1 --- tests connecting via X threads

	
 thr_insert_test --- (nearly empty)

	
 thr_test --- one short program used to test for
 memory-allocation bug

	
 winmysqladmin --- the winmysqladmin.exe source

 The "nearly empty" subdirectories noted above (for example,
 comp_err and isamchk) are needed because VC++ requires one
 directory per project (that is, executable). We are trying to
 keep to the MySQL standard source layout and compile only to
 different directories.

A.1.37 The vio Directory

 Virtual I/O Library.

 The VIO routines are wrappers for the various network I/O calls
 that happen with different protocols. The idea is that in the
 main modules one won't have to write separate bits of code for
 each protocol. Thus vio's purpose is somewhat like the purpose
 of Microsoft's winsock library.

 The underlying protocols at this moment are: TCP/IP, Named Pipes
 (for WindowsNT), Shared Memory, and Secure Sockets (SSL).

 The C programs are:

	
 test-ssl.c --- Short standalone test program: SSL

	
 test-sslclient.c --- Short standalone test program: clients

	
 test-sslserver.c --- Short standalone test program: server

	
 vio.c --- Declarations + open/close functions

	
 viosocket.c --- Send/retrieve functions

	
 viossl.c --- SSL variations for the above

	
 viosslfactories.c --- Certification / Verification

	
 viotest.cc --- Short standalone test program: general

	
 viotest-ssl.c --- Short standalone test program: SSL

	
 viotest-sslconnect.cc --- Short standalone test program: SSL
 connect

 The older functions --- raw_net_read, raw_net_write --- are now
 obsolete.

A.1.38 The zlib Directory

 Data compression library, used on Windows.

 zlib is a data compression library used to support the
 compressed protocol and the COMPRESS/UNCOMPRESS functions under
 Windows. On Unix, MySQL uses the system libgz.a library for this
 purpose.

 Zlib --- which presumably stands for "Zip Library" --- is not a
 MySQL package. It was produced by the GNU Zip (gzip.org) people.
 Zlib is a variation of the famous "Lempel-Ziv" method, which is
 also used by "Zip". The method for reducing the size of any
 arbitrary string of bytes is as follows:

	
 Find a substring which occurs twice in the string.

	
 Replace the second occurrence of the substring with (a) a
 pointer to the first occurrence, plus (b) an indication of
 the length of the first occurrence.

 There is a full description of the library's functions in the
 gzip manual at
 http://www.gzip.org/zlib/manual.html. There is
 therefore no need to list the modules in this document.

 The MySQL program \mysys\my_compress.c uses zlib for packet
 compression. The client sends messages to the server which are
 compressed by zlib. See also:
 \sql\net_serv.cc.

Appendix B InnoDB Source Code Distribution

 The InnoDB source files are the best place to
 look for information about internals of the file structure that
 MySQLers can optionally use for transaction support. But when you
 first look at all the subdirectories and file names you'll wonder:
 Where Do I Start? It can be daunting.

 Well, I've been through that phase, so I'll pass on what I had to
 learn on the first day that I looked at InnoDB
 source files. I am very sure that this will help you grasp, in
 overview, the organization of InnoDB modules. I'm
 also going to add comments about what is going on -- which you
 should mistrust! These comments are reasonable working hypotheses;
 nevertheless, they have not been subjected to expert peer review.

 Here's how I'm going to organize the discussion. I'll take each of
 the 31 InnoDB subdirectories that come with the
 MySQL 5.0 source code in \innobase (on my
 Windows directory). The format of each section will be like this
 every time:

 \subdirectory-name (LONGER EXPLANATORY
 NAME)

	File Name	What Name Stands For	Size	Comment Inside File
	file-name	my-own-guess	in-bytes	from-the-file-itself

 ... My-Comments

 For example:

"\ha (HASHING)
 File Name What Name Stands For Size Comment Inside File
 --------- -------------------- ------ -------------------
 ha0ha.c Hashing/Hashing 8,145 Hash table with external chains

 Comments about hashing will be here.
"

 The "Comment Inside File" column is a direct copy from the first /*
 comment */ line inside the file. All other comments are mine. After
 I've discussed each directory, I'll finish with some notes about
 naming conventions and a short list of URLs that you can use for
 further reference.

 Now let's begin.

 \btr (B-TREE)

 File Name What Name Stands For Size Comment Inside File
 --------- -------------------- ------ -------------------
 btr0btr.c B-tree / B-tree 82,400 B-tree
 btr0cur.c B-tree / Cursor 103,233 index tree cursor
 btr0sea.c B-tree / Search 41,788 index tree adaptive search
 btr0pcur.c B-tree / persistent cursor 16,720 index tree persistent cursor

 If you total up the sizes of the C files, you'll see that \btr is
 the second-largest file group in InnoDB. This is understandable
 because maintaining a B-tree is a relatively complex task. Luckily,
 there has been a lot of work done to describe efficient management
 of B-tree and B+-tree structures, much of it open-source or
 public-domain, since their original invention over thirty years ago.

 InnoDB likes to put everything in B-trees. This
 is what I'd call a "distinguishing characteristic" because in all
 the major DBMSs (like IBM DB2, Microsoft SQL Server, and Oracle),
 the main or default or classic structure is the heap-and-index. In
 InnoDB the main structure is just the index. To put it another way:
 InnoDB keeps the rows in the leaf node of the index, rather than in
 a separate file. Compare Oracle's Index Organized Tables, and
 Microsoft SQL Server's Clustered Indexes.

 This, by the way, has some consequences. For example, you may as
 well have a primary key since otherwise InnoDB will make one anyway.
 And that primary key should be the shortest of the candidate keys,
 since InnoDB will use it as a pointer if there
 are secondary indexes.

 Most importantly, it means that rows have no fixed address.
 Therefore the routines for managing file pages should be good. We'll
 see about that when we look at the \row (ROW) program group later.

 \buf (BUFFERING)

 File Name What Name Stands For Size Comment Inside File
 --------- -------------------- ------ -------------------
 buf0buf.c Buffering / Buffering 65,582 The database buffer buf_pool
 buf0flu.c Buffering / Flush 29,583 ... flush algorithm
 buf0lru.c / least-recently-used 27,515 ... replacement algorithm
 buf0rea.c Buffering / read 21,504 ... read

 There is a separate file group (\mem MEMORY) which handles memory
 requests in general. A "buffer" usually has a more specific
 definition, as a memory area which contains copies of pages that
 ordinarily are in the main data file. The "buffer pool" is the set
 of all buffers (there are lots of them because InnoDB doesn't depend
 on the operating system's caching to make things faster).

 The pool size is fixed (at the time of this writing) but the rest of
 the buffering architecture is sophisticated, involving a host of
 control structures. In general: when InnoDB needs to access a new
 page it looks first in the buffer pool; InnoDB reads from disk to a
 new buffer when the page isn't there; InnoDB chucks old buffers
 (basing its decision on a conventional Least-Recently-Used
 algorithm) when it has to make space for a new buffer.

 There are routines for checking a page's validity, and for
 read-ahead. An example of "read-ahead" use: if a sequential scan is
 going on, then a DBMS can read more than one page at a time, which
 is efficient because reading 32,768 bytes (two pages) takes less
 than twice as long as reading 16,384 bytes (one page).

 \data (DATA)

 File Name What Name Stands For Size Comment Inside File
 --------- -------------------- ------ -------------------
 data0data.c Data / Data 15,344 SQL data field and tuple
 data0type.c Data / Type 7,417 Data types

 This is a collection of minor utility routines affecting rows.

 \db (DATABASE)

 There are no .c files in \db, just one .h file with some definitions
 for error codes.

 \dict (DICTIONARY)

 File Name What Name Stands For Size Comment Inside File
 --------- -------------------- ------ -------------------
 dict0dict.c Dictionary / Dictionary 114,263 Data dictionary system
 dict0boot.c Dictionary / boot 11,704 ... booting
 dict0crea.c Dictionary / Create 37,278 ... creation
 dict0load.c Dictionary / load 34,049 ... load to memory cache
 dict0mem.c Dictionary / memory 7,470 ... memory object creation

 The data dictionary (known in some circles as the catalog) has the
 metadata information about objects in the database --- column sizes,
 table names, and the like.

 \dyn (DYNAMICALLY ALLOCATED ARRAY)

 File Name What Name Stands For Size Comment Inside File
 --------- -------------------- ------ -------------------
 dyn0dyn.c Dynamic / Dynamic 994 dynamically allocated array

 There is a single function in the dyn0dyn.c program, for adding a
 block to the dynamically allocated array. InnoDB might use the array
 for managing concurrency between threads.

 At the moment, the \dyn program group is trivial.

 \eval (EVALUATING)

 File Name What Name Stands For Size Comment Inside File
 --------- -------------------- ------ -------------------
 eval0eval.c Evaluating/Evaluating 17,061 SQL evaluator
 eval0proc.c Evaluating/Procedures 5,001 Executes SQL procedures

 The evaluating step is a late part of the process of interpreting an
 SQL statement --- parsing has already occurred during \pars
 (PARSING).

 The ability to execute SQL stored procedures is an InnoDB feature,
 but MySQL handles stored procedures in its own way, so the
 eval0proc.c program is unimportant.

 \fil (FILE)

 File Name What Name Stands For Size Comment Inside File
 --------- -------------------- ------ -------------------
 fil0fil.c File / File 118,312 The low-level file system

 The reads and writes to the database files happen here, in
 coordination with the low-level file i/o routines (see os0file.c in
 the \os program group).

 Briefly: a table's contents are in pages, which are in files, which
 are in tablespaces. Files do not grow; instead one can add new files
 to the tablespace. As we saw earlier (discussing the \btr program
 group) the pages are nodes of B-trees. Since that's the case, new
 additions can happen at various places in the logical file
 structure, not necessarily at the end. Reads and writes are
 asynchronous, and go into buffers, which are set up by routines in
 the \buf program group.

 \fsp (FILE SPACE)

 File Name What Name Stands For Size Comment Inside File
 --------- -------------------- ------ -------------------
 fsp0fsp.c File Space Management 110,495 File space management

 I would have thought that the \fil (FILE) and \fsp (FILE SPACE)
 MANAGEMENT programs would fit together in the same program group;
 however, I guess the InnoDB folk are splitters rather than lumpers.

 It's in fsp0fsp.c that one finds some of the descriptions and
 comments of extents, segments, and headers. For example, the
 "descriptor bitmap of the pages in the extent" is in here, and you
 can find as well how the free-page list is maintained, what's in the
 bitmaps, and what various header fields' contents are.

 \fut (FILE UTILITY)

 File Name What Name Stands For Size Comment Inside File
 --------- -------------------- ------ -------------------
 fut0fut.c File Utility / Utility 293 File-based utilities
 fut0lst.c File Utility / List 14,176 File-based list utilities

 Mainly these small programs affect only file-based lists, so maybe
 saying "File Utility" is too generic. The real work with data files
 goes on in the \fsp program group.

 \ha (HASHING)

 File Name What Name Stands For Size Comment Inside File
 --------- -------------------- ------ -------------------
 ha0ha.c Hashing / Hashing 8,145 Hash table with external chains
 hash0hash.c Hashing / Hashing 3,283 Simple hash table utility

 The two C programs in the \ha directory --- ha0ha.c and hash0hash.c
 --- both refer to a "hash table" but hash0hash.c is specialized, it
 is mostly about accessing points in the table under mutex control.

 When a "database" is so small that InnoDB can load it all into
 memory at once, it's more efficient to access it via a hash table.
 After all, no disk i/o can be saved by using an index lookup, if
 there's no disk.

 \ibuf (INSERT BUFFER)

 File Name What Name Stands For Size Comment Inside File
 --------- -------------------- ------ -------------------
 ibuf0ibuf.c Insert Buffer / 91,397 Insert buffer

 The words "Insert Buffer" mean not "buffer used for INSERT" but
 "insertion of a buffer into the buffer pool" (see the \buf BUFFER
 program group description). The matter is complex due to
 possibilities for deadlocks, a problem to which the comments in the
 ibuf0ibuf.c program devote considerable attention.

 \include (INCLUDE)

 All .h and .ic files are in the \include directory. It's habitual to
 put comments along with the descriptions, so if (for example) you
 want to see comments about operating system file activity, the place
 to look is \include\os0file.h.

 \lock (LOCKING)

 File Name What Name Stands For Size Comment Inside File
 --------- -------------------- ------ -------------------
 lock0lock.c Lock / Lock 139,207 The transaction lock system

 If you've used DB2 or SQL Server, you might think that locks have
 their own in-memory table, that row locks might need occasional
 escalation to table locks, and that there are three lock types:
 Shared, Update, Exclusive.

 All those things are untrue with InnoDB! Locks
 are kept in the database pages. A bunch of row locks can't be rolled
 together into a single table lock. And most importantly there's only
 one lock type. I call this type "Update" because it has the
 characteristics of DB2 / SQL Server Update locks, that is, it blocks
 other updates but doesn't block reads. Unfortunately,
 InnoDB comments refer to them as "x-locks" etc.

 To sum it up: if your background is Oracle you won't find too much
 surprising, but if your background is DB2 or SQL Server the locking
 concepts and terminology will probably confuse you at first.

 You can find my online article about the differences between
 Oracle-style and DB2/SQL-Server-style locks at:
 http://dbazine.com/gulutzan6.html

 Now here is a notice from Heikki Tuuri of InnoDB. It concerns lock
 categories rather than lock0lock.c, but I place it in this section
 because this is the place that people are most likely to look for
 it.

 Errata notice about InnoDB row locks:

 #define LOCK_S 4 /* shared */
 #define LOCK_X 5 /* exclusive */
...
/* Waiting lock flag */
 #define LOCK_WAIT 256
/* this wait bit should be so high that it can be ORed to the lock
mode and type; when this bit is set, it means that the lock has not
yet been granted, it is just waiting for its turn in the wait queue */
...
/* Precise modes */
 #define LOCK_ORDINARY 0
/* this flag denotes an ordinary next-key lock in contrast to LOCK_GAP
or LOCK_REC_NOT_GAP */
 #define LOCK_GAP 512
/* this gap bit should be so high that it can be ORed to the other
flags; when this bit is set, it means that the lock holds only on the
gap before the record; for instance, an x-lock on the gap does not
give permission to modify the record on which the bit is set; locks of
this type are created when records are removed from the index chain of
records */
 #define LOCK_REC_NOT_GAP 1024
/* this bit means that the lock is only on the index record and does
NOT block inserts to the gap before the index record; this is used in
the case when we retrieve a record with a unique key, and is also used
in locking plain SELECTs (not part of UPDATE or DELETE) when the user
has set the READ COMMITTED isolation level */
 #define LOCK_INSERT_INTENTION 2048
/* this bit is set when we place a waiting gap type record lock
request in order to let an insert of an index record to wait until
there are no conflicting locks by other transactions on the gap; note
that this flag remains set when the waiting lock is granted, or if the
lock is inherited to a neighboring record */

 Errata notice about InnoDB row locks ends.

 \log (LOGGING)

 File Name What Name Stands For Size Comment Inside File
 --------- -------------------- ------ -------------------
 log0log.c Logging / Logging 86,043 Database log
 log0recv.c Logging / Recovery 91,352 Recovery

 I've already written about the \log program group, so here's a link
 to my previous article: "How Logs work with MySQL and InnoDB":
 http://www.devarticles.com/c/a/MySQL/How-Logs-Work-On-MySQL-With-InnoDB-Tables

 \mach (MACHINE FORMAT)

 File Name What Name Stands For Size Comment Inside File
 --------- -------------------- ------ -------------------
 mach0data.c Machine/Data 2,335 Utilities for converting

 The mach0data.c program has two small routines for reading
 compressed ulints (unsigned long integers).

 \mem (MEMORY)

 File Name What Name Stands For Size Comment Inside File
 --------- -------------------- ------ -------------------
 mem0mem.c Memory / Memory 10,310 The memory management
 mem0dbg.c Memory / Debug 22,054 ... the debug code
 mem0pool.c Memory / Pool 16,511 ... the lowest level

 There is a long comment at the start of the mem0pool.c program,
 which explains what the memory-consumers are, and how InnoDB tries
 to satisfy them. The main thing to know is that there are really
 three pools: the buffer pool (see the \buf program group), the log
 pool (see the \log program group), and the common pool, which is
 where everything that's not in the buffer or log pools goes (for
 example the parsed SQL statements and the data dictionary cache).

 \mtr (MINI-TRANSACTION)

 File Name What Name Stands For Size Comment Inside File
 --------- -------------------- ------ -------------------
 mtr0mtr.c Mini-transaction / 12,620 Mini-transaction buffer
 mtr0log.c Mini-transaction / Log 8,090 ... log routines

 The mini-transaction routines are called from most of the other
 program groups. I'd describe this as a low-level utility set.

 \os (OPERATING SYSTEM)

 File Name What Name Stands For Size Comment Inside File
 --------- -------------------- ------ -------------------
 os0file.c OS / File 104,081 To i/o primitives
 os0thread.c OS / Thread 7,754 To thread control primitives
 os0proc.c OS / Process 16,919 To process control primitives
 os0sync.c OS / Synchronization 14,256 To synchronization primitives

 This is a group of utilities that other modules may call whenever
 they want to use an operating-system resource. For example, in
 os0file.c there is a public InnoDB function named
 os_file_create_simple(), which simply calls the Windows-API function
 CreateFile. Naturally the call is within an "#ifdef __WIN__ ...
 #endif" block; the effective routines are somewhat different for
 other operating systems.

 \page (PAGE)

 File Name What Name Stands For Size Comment Inside File
 --------- -------------------- ------ -------------------
 page0page.c Page / Page 51,731 Index page routines
 page0cur.c Page / Cursor 38,127 The page cursor

 It's in the page0page.c program that you'll
 learn as follows: index pages start with a header, entries in the
 page are in order, at the end of the page is a sparse "page
 directory" (what I would have called a slot table) which makes
 binary searches easier.

 Incidentally, the program comments refer to "a page size of 8 kB"
 which seems obsolete. In univ.i (a file
 containing universal constants) the page size is now #defined as
 16KB.

 \pars (PARSING)

 File Name What Name Stands For Size Comment Inside File
 --------- -------------------- ------ -------------------
 pars0pars.c Parsing/Parsing 45,376 SQL parser
 pars0grm.c Parsing/Grammar 62,685 A Bison parser
 pars0opt.c Parsing/Optimizer 31,268 Simple SQL Optimizer
 pars0sym.c Parsing/Symbol Table 5,239 SQL parser symbol table
 lexyy.c Parsing/Lexer 62,071 Lexical scanner

 The job is to input a string containing an SQL statement and output
 an in-memory parse tree. The EVALUATING (subdirectory \eval)
 programs will use the tree.

 As is common practice, the Bison and Flex tools were used ---
 pars0grm.c is what the Bison parser produced
 from an original file named pars0grm.y (also
 supplied), and lexyy.c is what Flex produced.

 Since InnoDB is a DBMS by itself, it's natural to
 find SQL parsing in it. But in the MySQL/InnoDB combination, MySQL
 handles most of the parsing. These files are unimportant.

 \que (QUERY GRAPH)

 File Name What Name Stands For Size Comment Inside File
 --------- -------------------- ------ -------------------
 que0que.c Query Graph / Query 30,774 Query graph

 The program que0que.c ostensibly is about the execution of stored
 procedures which contain commit/rollback statements. I took it that
 this has little importance for the average MySQL user.

 \read (READ)

 File Name What Name Stands For Size Comment Inside File
 --------- -------------------- ------ -------------------
 read0read.c Read / Read 9,935 Cursor read

 The read0read.c program opens a "read view" of
 a query result, using some functions in the \trx program group.

 \rem (RECORD MANAGER)

 File Name What Name Stands For Size Comment Inside File
 --------- -------------------- ------ -------------------
 rem0rec.c Record Manager 38,573 Record Manager
 rem0cmp.c Record Manager / 26,617 Comparison services for records
 Comparison

 There's an extensive comment near the start of rem0rec.c title
 "Physical Record" and it's recommended reading. At some point you'll
 ask what are all those bits that surround the data in the rows on a
 page, and this is where you'll find the answer.

 \row (ROW)

 File Name What Name Stands For Size Comment Inside File
 --------- -------------------- ------ -------------------
 row0row.c Row / Row 18,375 General row routines
 row0uins.c Row / Undo Insert 6,799 Fresh insert undo
 row0umod.c Row / Undo Modify 19,712 Undo modify of a row
 row0undo.c Row / Undo 10,512 Row undo
 row0vers.c Row / Version 14,385 Row versions
 row0mysql.c Row / MySQL 112,462 Interface [to MySQL]
 row0ins.c Row / Insert 42,829 Insert into a table
 row0sel.c Row / Select 111,719 Select
 row0upd.c Row / Update 51,824 Update of a row
 row0purge.c Row / Purge 15,609 Purge obsolete records

 Rows can be selected, inserted, updated/deleted, or purged (a
 maintenance activity). These actions cause following actions, for
 example after insert there can be an index-update test, but it seems
 to me that sometimes the following action has no MySQL equivalent
 (yet) and so is inoperative.

 Speaking of MySQL, notice that one of the larger programs in the
 \row program group is the "interface between Innobase row operations
 and MySQL" (row0mysql.c) --- information interchange happens at this
 level because rows in InnoDB and in MySQL are analogous, something
 which can't be said for pages and other levels.

 \srv (Server)

 File Name What Name Stands For Size Comment Inside File
 --------- -------------------- ------ -------------------
 srv0srv.c Server / Server 75,633 Server main program
 srv0que.c Server / Query 2,463 Server query execution
 srv0start.c Server / Start 50,154 Starts the server

 This is where the server reads the initial configuration files,
 splits up the threads, and gets going. There is a long comment deep
 in the program (you might miss it at first glance) titled
 "IMPLEMENTATION OF THE SERVER MAIN PROGRAM" in which you'll find
 explanations about thread priority, and about what the
 responsibilities are for various thread types.

 InnoDB has many threads, for example "user
 threads" (which wait for client requests and reply to them),
 "parallel communication threads" (which take part of a user thread's
 job if a query process can be split), "utility threads" (background
 priority), and a "master thread" (high priority, usually asleep).

 \sync (SYNCHRONIZATION)

 File Name What Name Stands For Size Comment Inside File
 --------- -------------------- ------ -------------------
 sync0sync.c Synchronization / 37,940 Mutex, the basic sync primitive
 sync0arr.c ... / array 26,455 Wait array used in primitives
 sync0rw.c ... / read-write 22,846 read-write lock for thread sync

 A mutex (Mutual Exclusion) is an object which only one
 thread/process can hold at a time. Any modern operating system API
 has some functions for mutexes; however, as the comments in the
 sync0sync.c code indicate, it can be faster to write one's own
 low-level mechanism. In fact the old assembly-language XCHG trick is
 in sync0sync.c's helper file, \include\sync0sync.ic. This is the
 only program that contains any assembly code.

 The i/o and thread-control primitives are called extensively. The
 word "synchronization" in this context refers to the mutex-create
 and mutex-wait functionality.

 \thr (Thread Local Storage)

 File Name What Name Stands For Size Comment Inside File
 --------- -------------------- ------ -------------------
 thr0loc.c Thread / Local 5,334 The thread local storage

 InnoDB doesn't use the Windows-API
 thread-local-storage functions, perhaps because they're not portable
 enough.

 \trx (Transaction)

 File Name What Name Stands For Size Comment Inside File
 --------- -------------------- ------ -------------------
 trx0trx.c Transaction / 50,480 The transaction
 trx0purge.c Transaction / Purge 29,133 ... Purge old versions
 trx0rec.c Transaction / Record 37,346 ... Undo log record
 trx0roll.c / Rollback 31,448 ... Rollback
 trx0sys.c Transaction / System 27,018 ... System
 trx0rseg.c / Rollback segment 6,445 ... Rollback segment
 trx0undo.c Transaction / Undo 51,519 ... Undo log

 InnoDB's transaction management is supposedly "in
 the style of Oracle" and that's close to true but can mislead you.

	
 First: InnoDB uses rollback segments like
 Oracle8i does — but Oracle9i uses a different name.

	
 Second: InnoDB uses multi-versioning like
 Oracle does — but I see nothing that looks like an Oracle
 ITL being stored in the InnoDB data pages.

	
 Third: InnoDB and Oracle both have short
 (back-to-statement-start) versioning for the READ
 COMMITTED isolation level and long
 (back-to-transaction-start) versioning for higher levels —
 but InnoDB and Oracle have different
 "default" isolation levels.

	
 Finally: InnoDB's documentation says it has
 to lock "the gaps before index keys" to prevent phantoms —
 but any Oracle user will tell you that phantoms are impossible
 anyway at the SERIALIZABLE isolation level,
 so key-locks are unnecessary.

 The main idea, though, is that InnoDB has
 multi-versioning. So does Oracle. This is very different from the
 way that DB2 and SQL Server do things.

 \usr (USER)

 File Name What Name Stands For Size Comment Inside File
 --------- -------------------- ------ -------------------
 usr0sess.c User / Session 1,740 Sessions

 One user can have multiple sessions (the session being all the
 things that happen between a connect and disconnect). This is where
 InnoDB used to track session IDs, and
 server/client messaging. It's another of those items which is
 usually MySQL's job, though. So now usr0sess.c merely closes.

 \ut (UTILITIES)

 File Name What Name Stands For Size Comment Inside File
 --------- -------------------- ------ -------------------
 ut0ut.c Utilities / Utilities 9,728 Various utilities
 ut0byte.c Utilities / Debug 793 Byte utilities
 ut0rnd.c Utilities / Random 1,474 Random numbers and hashing
 ut0mem.c Utilities / Memory 10,358 Memory primitives
 ut0dbg.c Utilities / Debug 2,579 Debug utilities

 The two functions in ut0byte.c are just for lower/upper case
 conversion and comparison. The single function in ut0rnd.c is for
 finding a prime slightly greater than the given argument, which is
 useful for hash functions, but unrelated to randomness. The
 functions in ut0mem.c are wrappers for "malloc" and "free" calls
 — for the real "memory" module see section \mem (MEMORY).
 Finally, the functions in ut0ut.c are a miscellany that didn't fit
 better elsewhere: get_high_bytes, clock, time, difftime,
 get_year_month_day, and "sprintf" for various diagnostic purposes.

 In short: the \ut group is trivial.

 This is the end of the section-by-section account of
 InnoDB subdirectories.

 Some Notes About Structures

 InnoDB's job, as a storage engine for MySQL, is to provide:
 commit-rollback, crash recovery, row-level locking, and consistent
 non-blocking reads. How? With locks, a paged-file structure with
 buffer pooling, and undo/redo logs,

 The locks are kept in bit maps in main memory. Thus InnoDB differs
 from Oracle in one respect: instead of storing lock information on
 the page as Oracle does with Interested Transaction Lists, InnoDB
 keeps it in a separate and more volatile structure. But both Oracle
 and InnoDB try to achieve a similar goal: "writers don't block
 readers". So a typical InnoDB row-read involves: (a) if the reading
 is for writing, then check if the row is locked and if so wait; (b)
 if according to the information in the row header the row has been
 changed by some newer transaction, then get the older version from
 the log. We call the (b) part "versioning" because it means that a
 reader can get the older version of a row and thus will have a
 temporally consistent view of all rows.

 The InnoDB workspace consists of: tablespace and log files. A
 tablespace consists of: segments, as many as necessary. A segment is
 usually a file, but might be a raw disk partition. A segment
 consists of: extents. An extent consists of: 64 pages. A page's
 length is always 16KB, for both data and index. A page consists of:
 a page header, and some rows. The page and row formats are the
 subjects of later chapters.

 InnoDB keeps two logs, the redo log and the undo log.

 The redo log is for re-doing data changes that had not been written
 to disk when a crash occurred. There is one redo log for the entire
 workspace, it contains multiple files (the number depends on
 innodb_log_files_in_group), it is circular (that is, after writing
 to the last file InnoDB starts again on the first file). The file
 header includes the last successful checkpoint. A redo log record's
 contents are: Page Number (4 bytes = page number within tablespace),
 Offset of change within page (2 bytes), Log Record Type (insert,
 update, delete, "fill space with blanks", etc.), and the changes on
 that page (only redo values, not old values).

 The undo log is primarily for removing data changes that had been
 written to disk when a crash occurred, but should not have been
 written, because they were for uncommitted transactions. Sometimes
 InnoDB calls the undo log the "rollback segment". The undo log is
 inside the tablespace. The "insert" section of the undo log is
 needed only for transaction rollback and can be discarded at COMMIT
 time. The "update/delete" section of the undo log is also useful for
 consistent reads, and can be discarded when InnoDB has ended all
 transactions that might need the undo log records to reconstruct
 earlier versions of rows. An undo log record's contents are: Primary
 Key Value (not a page number or physical address), Old Transaction
 ID (of the transaction that updated the row), and the changes (only
 old values).

 COMMIT will write the contents of the log buffer to disk, and put
 undo log records in a history list. ROLLBACK will delete undo log
 records that are no longer needed. PURGE (an internal operation that
 occurs outside user control) will no-longer-necessary undo log
 records and, for data records that have been marked for deletion and
 are no longer necessary for consistent read, will remove the
 records. CHECKPOINT causes -- well, see the article "How Logs Work
 On MySQL With InnoDB Tables".

 A Note About File Naming

 There appears to be a naming convention. The first letters of the
 file name are the same as the subdirectory name, then there is a '0'
 separator, then there is an individual name. For the main program in
 a subdirectory, the individual name may be a repeat of the
 subdirectory name. For example, there is a file named ha0ha.c (the
 first two letters ha mean "it's in subdirectory ..\ha", the next
 letter 0 means "0 separator", the next two letters mean "this is the
 main ha program"). This naming convention is not strict, though: for
 example the file lexyy.c is in the \pars subdirectory.

 A Note About Copyrights

 Most of the files begin with a copyright notice or a creation date,
 for example "Created 10/25/1995 Heikki Tuuri". I don't know a great
 deal about the history of InnoDB, but found it
 interesting that most creation dates were between 1994 and 1998.

 References

	
 Ryan Bannon, Alvin Chin, Faryaaz Kassam and Andrew Roszko.
 "InnoDB Concrete Architecture"
 http://www.swen.uwaterloo.ca/~mrbannon/cs798/assignment_02/innodb.pdf

 A student paper. It's an interesting attempt to figure out
 InnoDB's architecture using tools, but I
 didn't end up using it for the specific purposes of this
 article.

	
 Peter Gulutzan. "How Logs Work With MySQL And InnoDB"
 http://www.devarticles.com/c/a/MySQL/How-Logs-Work-On-MySQL-With-InnoDB-Tables

	
 Heikki Tuuri. "InnoDB Engine in MySQL-Max-3.23.54 / MySQL-4.0.9:
 The Up-to-Date Reference Manual of InnoDB"
 http://www.innodb.com/ibman.html

 This is the natural starting point for all InnoDB information.
 Mr Tuuri also appears frequently on MySQL forums.

Index

C
	CC environment variable, How to Specify Compilers and Compiler Flags
	CXX environment variable, How to Specify Compilers and Compiler Flags

D
	dispatch_command (C function), MySQL Server

E
	environment variable
		CC, How to Specify Compilers and Compiler Flags
	CXX, How to Specify Compilers and Compiler Flags

	error messages, Error Messages
		defining, Adding New Error Messages to MySQL

F
	Field_year::send_binary (C++ function), Binary Protocol Type Implementation
	filesort optimization, How MySQL Does Sorting (filesort)

M
	mysqld_stmt_close (C function), MySQL Server
	mysqld_stmt_execute (C function), MySQL Server
	mysqld_stmt_fetch (C function), MySQL Server
	mysqld_stmt_prepare (C function), MySQL Server
	mysqld_stmt_reset (C function), MySQL Server
	mysql_binlog_send (C function), MySQL Server
	mysql_stmt_get_longdata (C function), MySQL Server

O
	optimizing
		filesort, How MySQL Does Sorting (filesort)

P
	parse_com_change_user_packet (C function), MySQL Server
	Protocol::send_result_set_metadata (C++ function), MySQL Server
	Protocol_binary::store (C++ function), Binary Protocol Type Implementation
	Protocol_binary::store_short (C++ function), Binary Protocol Type Implementation
	Protocol_binary::store_time (C++ function), Binary Protocol Type Implementation
	Purify, Building Debug Configurations

R
	RFC; RFC 1951, Compressed Payload
	RFC; RFC 2743#page-81, SPNEGO
	RFC; RFC 4178#page-7, SPNEGO

S
	send_prep_stmt (C function), MySQL Server
	send_server_handshake_packet (C function), MySQL Server
	session state information, OK_Packet

V
	Valgrind, Building Debug Configurations

W
	WITH_DEBUG
		CMake option, Building Debug Configurations

	WITH_VALGRIND
		CMake option, Building Debug Configurations

OEBPS/images/mscgen-91874270b600b72a810084cdba4a71ce31d04f8f.png
COM QUERY

OEBPS/images/mscgen-585255ce810c4f3b899d74485801f5b3180839ca.png
c s
connect >
< Initial Handshake Packet
Handshake Response Packet >
< Auth Switch Request Packet

client disconnects

OEBPS/images/mscgen-ecf2c2113597dabeca24428e27ffdf5f1eddf9eb.png
COM QUERY

field-count

OEBPS/images/graphviz-ec88bc310020c1bb00fe2f43e9cdaaa83c6c6793.png
column_count > 0

status & SERVER_MORE_RESULTS_EXISTS

OEBPS/images/mscgen-66defca82e290f403b5b98f8ee77932d7a936ebf.png
20-byte random data

e scrambled password

OEBPS/images/mscgen-fb12f279c0f42194457867164ceed319a60646c5.png
c s

connect >
< Initial Handshake Packet
Handshake Response Packet >
< Auth Switch Request Packet

packets exchanged, depending on Auth Metho

< ERR packet or OK packet

OEBPS/images/mscgen-deeb8b1efd5fc621dfed431050ccfe6dc012b4f4.png
Initial Handshake Packet

Handshake Response Packet

check diient cap‘abmues and authentication method to be used| —————__

OEBPS/images/mscgen-00ebcadb36dcdca0a6fb122c2b48844cbd3e863f.png
c s

GSS-API + SPNEGO NeqTokenlnit
«—0x01 + SPNEGO NegTokenResponse

SPNEGO NegTokenResponse >
«—0x01 + SPNEGO NegTokenResponse

repeat until done-

< oK

OEBPS/images/mscgen-0d6866613d7e97e2c394d24d58fbe66f93ed13e8.png
COM CHANGE USER

packets exchanged, depending on Auth Metho
ERR packet or OK packet

OEBPS/images/mscgen-af0785bda133ece0a1fabfd7cf9b4d0c1607c657.png
c s
connect >
< Initial Handshake Packet
Handshake Response Packet >
< ERR packet

server disconnects

OEBPS/images/mscgen-12147e706fd6caf21a16584bd2c6b02d96e4e638.png
c s
connect >
< Initial Handshake Packet
Handshake Response Packet >
< Old Switch Request Packet
Old Handshake Response >
< ERR packet or OK packet

OEBPS/images/mscgen-312df136b1eba41d3d4057282be1327b663e85ff.png
8-byte random data.

8-byte scrambled password

OEBPS/images/mscgen-445c9ee0e9d88fbc18242557f909591eee6840cc.png
c s

COM QUERY >
< 0xfb + filename
content of filename >
empty packet >
< oK

OEBPS/images/graphviz-db6c3eaf9f35f362259756b257b670e75174c29b.png
Initial Handshake Packet

SSL Exchange
Client Response

Authentication method
switch

client does not know

insufficient client
requested auth method

capabilities

DISCONNECT Authentication exchange

continuation

OEBPS/images/mscgen-96d9e6dcd37ed2444e6fafef351f0daadcb339f5.png
c s

COM CHANGE USER with encrypted password
< Old Switch Request Packet

Old Password Auth Response >
< ERR packet or OK packet

OEBPS/images/graphviz-3ab2ba81081a7f3cc556d11fd09f50341bba6f15.png
COM_QUERY_RESPONSE

length encoded int

GET_MORE_CLIENT_DATA

SEND_MORE_CLIENT_DATA

EOF ERR oK

OEBPS/images/mscgen-dc566cbacc4ab763cc6f8a77e61646fdebfd2136.png
c s
connect >

< Initial Handshake Packet
Handshake Response Packet >

ient and server possibly exchange further packets

< ERR packet

client and server close the connection

d

OEBPS/images/mscgen-1479819532a577607738a0113b693a85c123f92e.png
c s

NTLM request
0x01 + NTLM response

repeat until done-

NTLM request
e

OEBPS/images/mscgen-2737aec6747fb2ebc548014fbc338ad814e30c72.png
dleartext password

OEBPS/images/mscgen-40d1d185e824f494d6a7dd57f366efd1e84751e8.png
c s

< Initial Handshake Packet
SSL Connection Request Packet

SSL exchange

Handshake Response Packet >

cheok client capabiliies and authentication method to be used| —————

OEBPS/images/mscgen-138775404ad74f36216182e837786a824fa70553.png
aul

connect()

< initial handshake packet

handshake response
h-method-switch to win-auth, may contain a Ul’

OEBPS/images/mscgen-56607376c463ee17d9b311cdedce38839a0ca896.png
c s
connect >

< Initial Handshake Packet
Handshake Response Packet >

ient and server possibly exchange further packets

< OK packet

client and server enter Command Phase-

d

OEBPS/images/mscgen-c36290f7394cc34e578f5cafd178519b7d55cf81.png
c s

