<~ Prawn
by exanpl €

Last Update: 2020-08-01
Prawn Version: 2.3.0
git commit: 62f5f4a5

How to read this manual

This manual is a collection of examples categorized by theme and organized from the least to the
most complex. While it covers most of the common use cases it is not a comprehensive guide.

The best way to read it depends on your previous knowledge of Prawn and what you need to
accomplish.

If you are beginning with Prawn the first chapter will teach you the most basic concepts and how to
create pdf documents. For an overview of the other features each chapter beyond the first either
has a Basics section (which offer enough insight on the feature without showing all the advanced
stuff you might never use) or is simple enough with only a few examples.

Once you understand the basics you might want to come back to this manual looking for examples
that accomplish tasks you need.

Advanced users are encouraged to go beyond this manual and read the source code directly if any
doubt is not directly covered on this manual.

Reading the examples

The title of each example is the relative path from the Prawn source manual/ folder.

The first body of text is the introductory text for the example. Generally it is a short description of
the features illustrated by the example.

Next comes the example source code block in fixed width font.

Most of the example snippets illustrate features that alter the page in place. The effect of these
snippets is shown right below a dashed line. If it doesn't make sense to evaluate the snippet inline,
a box with the link for the example file is shown instead.

Note that the st roke_axi s method used throughout the manual is part of standard Prawn. It is
defined in this file:

https://github.com/prawnpdf/prawn/blob/master/lib/prawn/graphics.rb

https://github.com/prawnpdf/prawn/blob/master/lib/prawn/graphics.rb

Basic concepts

This chapter covers the minimum amount of functionality you'll need to start using Prawn.

If you are new to Prawn this is the first chapter to read. Once you are comfortable with the
concepts shown here you might want to check the Basics section of the Graphics, Bounding Box
and Text sections.

The examples show:
* How to create new pdf documents in every possible way

* Where the origin for the document coordinates is. What are Bounding Boxes and how they
interact with the origin

e How the cursor behaves
* How to start new pages

e What the base unit for measurement and coordinates is and how to use other convenient
measures

» How to build custom view objects that use Prawn's DSL

basic_concepts /

There are three ways to create a PDF Document in Prawn: creating a new Prawn: : Docunent
instance, or using the Pr awn: : Docunent . gener at e method with and without block arguments.

The following snippet showcase each way by creating a simple document with some text drawn.

When we instantiate the Prawn: : Docunent object the actual pdf document will only be created
after we callrender _file.

The generate method will render the actual pdf object after exiting the block. When we use it
without a block argument the provided block is evaluated in the context of a newly created
Prawn: : Docunent instance. When we use it with a block argument a Prawn: : Docunent
instance is created and passed to the block.

The generate method without block arguments requires less typing and defines and renders the
pdf document in one shot. Almost all of the examples are coded this way. Assignment Implicit
Block Explicit Block

frozen_string_ literal: true

There are three ways to create a PDF Docunment in Prawn: creating a new
<code>Pr awn: : Docunent </ code> i nstance, or using the
<code>Pr awn: : Docunent . gener at e</ code> nmethod with and w t hout bl ock argunents.

The foll owi ng sni ppet showcase each way by creating a sinple docunent wth
sone text drawn.

Wien we instantiate the <code>Prawn:: Docunent </ code> obj ect the actual pdf
docunment will only be created after we call <code>render fil e</code>.

The generate nethod will render the actual pdf object after exiting the bl ock.
Wien we use it without a bl ock argunent the provided block is evaluated in the
context of a newy created <code>Prawn:: Docunent </ code> i nstance. \Wen we use
it with a block argunent a <code>Prawn:: Docunent </ code> i nstance is created
and passed to the bl ock.

The generate nethod w t hout bl ock argunents requires
| ess typing and defines and renders the pdf docunent in one shot.
Al nost all of the exanples are coded this way.

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

require_relative '../exanpl e_hel per'

Assi gnnment

pdf = Prawn:: Docunent. new
pdf.text 'Hello World'

pdf .render _file 'assignnent. pdf’

Inmplicit Bl ock

Prawn: : Docunent . generate('inplicit.pdf') do
text 'Hello World'

end

Explicit Bl ock

Prawn: : Docunent . generate(' explicit.pdf') do | pdf|
pdf .text 'Hello World'

end

This code snippet was not evaluated inline. You may see its output by running the example file located here:

http://github.com/prawnpdf/prawn/tree/master/manual/basic_concepts/creation.rb

http://github.com/prawnpdf/prawn/tree/master/manual/basic_concepts/creation.rb

basic_concepts /

This is the most important concept you need to learn about Prawn:
PDF documents have the origin [0, 0] at the bottom-left corner of the page.

A bounding box is a structure which provides boundaries for inserting content. A bounding box
also has the property of relocating the origin to its relative bottom-left corner. However, be aware
that the location specified when creating a bounding box is its top-left corner, not bottom-left
(hence the [100, 300] coordinates below).

Even if you never create a bounding box explictly, each document already comes with one called
the margin box. This initial bounding box is the one responsible for the document margins.

So practically speaking the origin of a page on a default generated document isn't the absolute
bottom left corner but the bottom left corner of the margin box.

The following snippet strokes a circle on the margin box origin. Then strokes the boundaries of a
bounding box and a circle on its origin.

stroke_axi s

stroke circle [0, 0], 10

boundi ng_box([100, 300], wi dth: 300, height: 200) do
st r oke_bounds
stroke circle [0, 0], 10

end

300 -

200 «

100 - O

basic_concepts /

We normally write our documents from top to bottom and it is no different with Prawn. Even if the
origin is on the bottom left corner we still fill the page from the top to the bottom. In other words the
cursor for inserting content starts on the top of the page.

Most of the functions that insert content on the page will start at the current cursor position and
proceed to the bottom of the page.

The following snippet shows how the cursor behaves when we add some text to the page and
demonstrates some of the helpers to manage the cursor position. The cur sor method returns the
current cursor position.

stroke_axi s

text "the cursor is here: #{cursor}"
text "now it is here: #{cursor}"

nove_down 200
text "on the first nove the cursor went down to: #{cursor}"

nmove_up 100
text "on the second nove the cursor went up to: #{cursor}"

nmove_cursor_to 50
text "on the | ast nove the cursor went directly to: #{cursor}"

the cursor is here: 383.9795
now it is here: 370.10749999999996

300 -

fon the second move the cursor went up to: 242.36349999999993
200 -

fon the first move the cursor went down to: 156.23549999999994
mo;

on the last move the cursor went directly to: 50.0

basic_concepts /

Another group of helpers for changing the cursor position are the pad methods. They accept a
numeric value and a block. pad will use the numeric value to move the cursor down both before
and after the block content. pad top will only move the cursor before the block while
pad_bot t omwill only move after.

f I oat is a method for not changing the cursor. Pass it a block and the cursor will remain on the
same place when the block returns.

stroke_horizontal rule
pad(20) { text 'Text padded both before and after.

stroke_horizontal _rule
pad_top(20) { text 'Text padded on the top.' }

stroke_horizontal _rule
pad_bottom(20) { text 'Text padded on the bottom'

stroke_horizontal rule
move_down 30

text 'Text witten before the fl oat bl ock.

float do
nove_down 30
boundi ng_box([0, cursor], w dth: 200) do
text 'Text witten inside the float bl ock.'
st roke_bounds
end
end

text 'Text witten after the float bl ock.

Text padded both before and after.

Text padded on the top.
Text padded on the bottom.

Text written before the float block.
Text written after the float block.

|Text written inside the float block. |

basic_concepts /

A PDF document is a collection of pages. When we create a new document be it with
Docunent . newor on a Docunent . gener at e block one initial page is created for us.

Some methods might create new pages automatically like t ext which will create a new page
whenever the text string cannot fit on the current page.

But what if you want to go to the next page by yourself? That is easy.

Just use the st art _new_page method and a shiny new page will be created for you just like in
the following snippet.

text "We are still on the initial page for this exanple. Now I'l|l ask " \
"Prawn to gently start a new page. Please follow ne to the next page.

start _new _page

text "See. We've left the previous page behind."

We are still on the initial page for this example. Now I'll ask Prawn to gently start a new page. Please
follow me to the next page.

See. We've left the previous page behind.

basic_concepts /

The base unit in Prawn is the PDF Point. One PDF Point is equal to 1/72 of an inch.

There is no need to waste time converting this measure. Prawn provides helpers for converting
from other measurements to PDF Points.

Just require "prawn/ neasurenent _extensions" and it will mix some helpers onto
Nurrer i ¢ for converting common measurement units to PDF Points.

require ' prawn/ neasur enment _ext ensi ons'

%W[mMmcmdmmin yd ft].each do | measurenent |

text "1 #{nmeasurement} in PDF Points: #{1.send(measurenment)} pt"
nmove_down 5. nm
end

1 mm in PDF Points: 2.834645669291339 pt
1 cm in PDF Points: 28.34645669291339 pt
1 dm in PDF Points: 283.46456692913387 pt
1 m in PDF Points: 2834.645669291339 pt

1 inin PDF Points: 72 pt

1 yd in PDF Points: 2592 pt

1 ft in PDF Points: 864 pt

basic_concepts /

The recommended way to extend Prawn's functionality is to include the Prawn: : Vi ew mixin in
your own class, which will make all Pr awn: : Docunent methods available to your custom objects.

This approach is preferred over inheriting from Prawn: : Docunent , as your state will be kept
completely separate from Pr awn: : Docunent 's, thus avoiding accidental method collisions.

Note that Pr awn: : Vi ewlazily instantiates a Pr awn: : Documnrent with default initialization settings,
such as page size, layout, margins, etc.

By defining your own docunent method, as shown in the example, you will be able to override
those settings and initialize a Prawn: : Docunent to your heart's content. This method will be
called repeatedly by Prawn: : Vi ew, so be sure to memoize the object by assigning it to an
instance variable via the | | = operator.

H

frozen_string literal: true

The recomrended way to extend Prawn's functionality is to include the
<code>Prawn: : Vi ew</ code> mi xin in your own class, which will make al
<code>Pr awn: : Docunment </ code> net hods avail abl e to your custom objects

Thi s approach is preferred over inheriting from
<code>Pr awn: : Docunent </ code>, as your state will|l be kept conpletely separate
from <code>Pr awn: : Docunent </ code>'s, thus avoi di ng acci dental nethod

col l'i sions

Not e that <code>Prawn:: Vi ew</code> |lazily instantiates a
<code>Prawn: : Docunent </ code> with default initialization settings, such as
page si ze, |layout, margins, etc

By defining your own <code>docunent </ code> net hod, as shown in the exanple,
you will be able to override those settings and initialize a
<code>Pr awn: : Docunent </ code> to your heart's content. This nmethod wll be
call ed repeatedly by <code>Prawn:: Vi ew</ code>, so be sure to nenoize the
obj ect by assigning it to an instance variable via the <code>||=</code>
oper at or

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

require_relative '../exanpl e_hel per'

cl ass Greeter
i ncl ude Prawn::View

def initialize(nane)
@anme = nane
end

def say_hello
text "Hello, #{@ane}!"
end

def say_goodbye
font (' Courier') do
text "Goodbye, #{@ane}!"
end
end
end

greeter = Geeter.new' G egory')

greeter.say_hello
greeter.say_goodbye

This code snippet was not evaluated inline. You may see its output by running the example file located here:

http://github.com/prawnpdf/prawn/tree/master/manual/basic_concepts/view.rb

http://github.com/prawnpdf/prawn/tree/master/manual/basic_concepts/view.rb

Graphics

Here we show all the drawing methods provided by Prawn. Use them to draw the most beautiful
imaginable things.

Most of the content that you'll add to your pdf document will use the graphics package. Even text is
rendered on a page just like a rectangle so even if you never use any of the shapes described here
you should at least read the basic examples.

The examples show:
 All the possible ways that you can fill or stroke shapes on a page

» How to draw all the shapes that Prawn has to offer from a measly line to a mighty polygon or
ellipse

* The configuration options for stroking lines and filling shapes

» How to apply transformations to your drawing space

graphics /

To produce this manual we use the st r oke_axi s helper method within the examples.

stroke_axi s prints the x and y axis for the current bounding box with markers in 100
increments. The defaults can be changed with various options.

Note that the examples define a custom : hei ght option so that only the example canvas is used
(as seen with the output of the first line of the example code).

stroke_axi s

st roke_axi s(
at: [70, 70], height: 200, step_l ength: 50,
negati ve_axes_l ength: 5, color: '0000FF

)

stroke_axi s(
at: [140, 140], width: 200, height: cursor.to_i - 140,
step_l ength: 20, negative_axes_|length: 40, color: 'FF0O000'

)

320

300 «

280 +

400 260 «
: 240 +

220 «

200 -

180

300 160 «
: 140 +

200 . :

120 «

100

150§ 80 o

200 « . 60 o
100 -

20 40 60 80 100 120 140 160 180 200
50

100 +

graphics /

There are two drawing primitives in Prawn: fi | | and st r oke.

These are the methods that actually draw stuff on the document. All the other drawing shapes like
rectangl e, circleorline_to define drawing paths. These paths need to be either stroked or
filled to gain form on the document.

Calling these methods without a block will act on the drawing path that has been defined prior to
the call.

Calling with a block will act on the drawing path set within the block.

Most of the methods which define drawing paths have methods of the same name starting with
stroke_ and fill_ which create the drawing path and then stroke or fill it.

stroke_axis

No bl ock
line [0, 200], [100, 150]
st roke

rectangle [0, 100], 100, 100
fill

Wth block
stroke { line [200, 200], [300, 150] }
fill { rectangle [200, 100], 100, 100 }

Met hod hook
stroke_l|ine [400, 200], [500, 150]
fill_rectangle [400, 100], 100, 100

200 «

100 |

graphics /

Prawn supports drawing both lines and curves starting either at the current position, or from a
specified starting position.

line_to and curve_t o set the drawing path from the current drawing position to the specified
point. The initial drawing position can be set with nove_t o. They are useful when you want to
chain successive calls because the drawing position will be set to the specified point afterwards.

I i ne and cur ve set the drawing path between the two specified points.

Both curve methods define a Bezier curve bounded by two aditional points provided as the
: bounds param.

stroke_axi s

line_to and curve_to
stroke do
move _to 0, O

line_to 100, 100
line_to 0, 100

curve_to [150, 250], bounds: [[20, 200], [120, 200]]
curve_to [200, 0], bounds: [[150, 200], [450, 10]]
end

line and curve
st roke do

line [300, 200], [400, 50]

curve [500, 0], [400, 200], bounds: [[600, 300], [300, 390]]
end

200 «

100 £

graphics /

Prawn provides helpers for drawing some commonly used lines:

vertical _|ine and horizontal _|ine do just what their names imply. Specify the start and
end point at a fixed coordinate to define the line.

hori zontal rul e draws a horizontal line on the current bounding box from border to border,
using the current y position.

stroke_axi s
stroke_col or ' ff0000

stroke do
just lower the current y position
nove_down 50
hori zontal rule

vertical _line 100, 300, at: 50

hori zontal _l i ne 200, 500, at: 150
end

400 -

300 -

200 «

100 +

graphics /

To draw a rectangle, just provide the upper-left corner, width and height to the rect angl e
method.

There's also rounded_rect angl e. Just provide an additional radius value for the rounded
corners.

stroke_axi s

stroke do
rectangle [100, 300], 100, 200

rounded_rectangl e [300, 300], 100, 200, 20
end

500 o

400 -

200 «

N Y,

graphics /

Drawing polygons in Prawn is easy, just pass a sequence of points to one of the polygon family of
methods.

Just like rounded _rectangl e we also have r ounded_pol ygon. The only difference is the
radius param comes before the polygon points.

stroke_axi s

Triangle
stroke_pol ygon [50, 200], [50, 300], [150, 300]

Hexagon
fill_polygon [50, 150], [150, 200], [250, 150], [250, 50], [150, 0], [50, 50]

Pent agram
pent agon_points = [500, 100], [430, 5], [319, 41], [319, 159], [430, 195]
pentagrampoints = [0, 2, 4, 1, 3].map { |i| pentagon_points[i] }

stroke_rounded_pol ygon(20, *pentagram points)

400 -

300 -

200 «

100 +

graphics /

To define a ci r cl e all you need is the center point and the radius.

To define an el | i pse you provide the center point and two radii (or axes) values. If the second
radius value is ommitted, both radii will be equal and you will end up drawing a circle.

stroke_axi s

stroke_circle [100, 300], 100
fill_ellipse [200, 100], 100, 50

fill_ellipse [400, 100], 50

500 e

400 -

300

200 «

100 +

graphics /

The | i ne_wi dt h= method sets the stroke width for subsequent stroke calls.

Since Ruby assumes that an unknown variable on the left hand side of an assignment is a local
temporary, rather than a setter method, if you are wusing the block call to
Prawn: : Docunent . gener at e without passing params you will need to call I i ne_wi dth on
self. rubocop: disable Lint/UselessAssignment rubocop: enable Lint/UselessAssignment

st roke_axi s

250

3.tines do |i]
case |
when 0 then line_width = 10 # This call will have no effect
when 1 then self.line_w dth 10
when 2 then self.line_wdth 25
end

stroke do
hori zontal _|ine 50, 150, at: y
rectangle [275, y + 25], 50, 50
circle [500, y], 25

end

y -= 100
end

300 -

200 «

100 +

graphics /

The cap style defines how the edge of a line or curve will be drawn. There are three types: : but t
(the default), : round and : proj ecti ng_square

The difference is better seen with thicker lines. With : but t lines are drawn starting and ending at
the exact points provided. With both : round and : proj ecti ng_squar e the line is projected
beyond the start and end points.

Just like I i ne_wi dt h=the cap_st yl e= method needs an explicit receiver to work.

st roke_axi s

self.line_width

% [butt round projecting_square].each_w th_index do |cap, i]
self.cap_style = cap

y = 250 - i * 100
stroke_horizontal |ine 100, 300, at: y
stroke_circle [400, y], 15

end

400 -

300 -

200 «

100 +

graphics /

The join style defines how the intersection between two lines is drawn. There are three types:
:mter (the default), : r ound and : bevel

Just like cap_st yl e, the difference between styles is better seen with thicker lines.

stroke_axi s

self.line_width

% [mter round bevel].each _with_ index do |style, i
self.join_style = style

y =200 - i * 100
stroke do
nmove_t o(100
line_to(200
line_to(300
end
stroke_rectangle [400, y + 75], 50, 50
end

400 -

300 -

200 «

100 +

graphics /

This sets the dashed pattern for lines and curves. The (dash) length defines how long each dash
will be.

The : space option defines the length of the space between the dashes.
The : phase option defines the start point of the sequence of dashes and spaces.

Complex dash patterns can be specified by using an array with alternating dash/gap lengths for
the first parameter (note that the : space option is ignored in this case).

stroke_axi s

dash([1, 2, 3, 2, 1, 5], phase: 6)
stroke_horizontal |ine 50, 500, at: 230
dash([1, 2, 3, 4, 5, 6, 7, 8])
stroke_hori zontal _|ine 50, 500, at: 220

base_ y = 210

24.tines do |i
length = (i / 4) + 1
space = length # space between dashes sanme | ength as dash
phase = 0 # start with dash

case i %4
when O then base y -= 5
when 1 then phase = |l ength # start with space between dashes
when 2 then space = length * 0.5 # space between dashes half as |ong as dash
when 3
space = length * 0.5 # space between dashes half as |ong as dash
phase = |l ength # start with space between dashes
end
base y -= 5

dash(l ength, space: space, phase: phase)
stroke_horizontal |ine 50, 500, at: base y - (2 * i)
end

200 «

T I e

graphics /

We can change the stroke and fill colors providing an HTML rgb 6 digit color code string
("AB1234") or 4 values for CMYK.

stroke_axi s

Fill with Yellow using RG (Unlike css, there is no | eadi ng #)
fill_color 'FFFFCC
fill_polygon [50, 150], [150, 200], [250, 150], [250, 50], [150, O], [50, 50]

Stroke with Purple using CMYK
stroke _col or 50, 100, 0, O
stroke_rectangl e [300, 300], 200, 100

Bot h t oget her
fill _and_stroke circle [400, 100], 50

400 -

300 -

200 «

100 +

graphics /

Note that because of the way PDF renders radial gradients in order to get solid fill your start circle
must be fully inside your end circle. Otherwise you will get triangle fill like illustrated in the example
below.

self.line_w dth

Linear Gradients
fill _gradient [0, 250], [100, 150], 'ff0000', 'O0O0O0Off
fill _rectangle [0, 250], 100, 100

stroke_gradi ent [150, 150], [250, 250], 'o0oOffff"', "ffff0O
stroke_rectangl e [150, 250], 100, 100

fill _gradient [300, 250], [400, 150], 'ff0000", '0000ff"
stroke_gradi ent [300, 150], [400, 250], '00ffff', 'ffff00’
fill_and_stroke rectangle [300, 250], 100, 100

rotate 45, origin: [500, 200] do
stops = { 0 => '"ff0000', 0.6 => '999900', 0.8 => '00cc00', 1 => '4444ff"' }
fill _gradient from [460, 240], to: [540, 160], stops: stops
fill _rectangle [460, 240], 80, 80

end

Radi al gradients
fill _gradient [50, 50], O, [50, 50], 70.71, 'ff0000', 'O000Off
fill _rectangle [0, 100], 100, 100

stroke_gradi ent [200, 50], 45, [200, 50], 70.71, '0Offff", "ffff0OO
stroke_rectangl e [150, 100], 100, 100

stroke_gradi ent [350, 50], 45, [350, 50], 70.71, '0Offff", "ffff0OO
fill _gradient [350, 50], 0, [350, 50], 70.71, 'ff0000', '0000ff
fill _and_stroke_rectangle [300, 100], 100, 100

fill __gradient [500, 100], 50, [500, 0], O, 'ff0O000', '0O000ff
fill_rectangle [450, 100], 100, 100

graphics /

Although the name of the method is t r anspar ency, what we are actually setting is the opacity for
fill and stroke. So 0 means completely transparent and 1. 0 means completely opaque

You may call it providing one or two values. The first value sets fill opacity and the second value
sets stroke opacity. If the second value is omitted fill and stroke will have the same opacity.

stroke_axi s

self.linewidth =5
fill _color 'ff0000
fill_rectangle [0, 100], 500, 100

fill _color '000000
stroke_color 'ffffff’

base x = 100
[[0.5, 1], 0.5, [1, 0.5]].each do |args|
transparent (*args) do
fill _circle [base_x, 100], 50
stroke_rectangl e [base_x - 20, 100], 40, 80
end

base x += 150
end

300 -

200 «

100 |

100 200 300 400 500

graphics /

Soft masks are used for more complex alpha channel manipulations. You can use arbitrary
drawing functions for creation of soft masks. The resulting alpha channel is made of greyscale
version of the drawing (luminosity channel to be precise). So while you can use any combination of
colors for soft masks it's easier to use greyscales. Black will result in full transparency and white
will make region fully opaque.

Soft mask is a part of page graphic state. So if you want to apply soft mask only to a part of page
you need to enclose drawing instructions in save_gr aphi cs_st at e block.

save_graphi cs_state do
soft _nmask do
0.upto 15 do |i|
fill color 0, O, O, 100.0 / 16.0 * (15 - i)
fill _circle [75 + i * 25, 100], 60
end
end

fill _color '009ddc
fill _rectangle [0, 60], 600, 20

fill _color '963d97
fill _rectangle [0, 80], 600, 20

fill _color 'e03a3e
fill _rectangle [0, 100], 600,

fill _color 'f5821f
fill _rectangle [0, 120], 600,

fill _color 'fdh827
fill _rectangle [0, 140], 600,

fill _color '61bb46
fill _rectangle [0, 160], 600,
end

graphics /

Blend modes can be used to change the way two layers (images, graphics, text, etc.) are blended
together. The bl end_node method accepts a single blend mode or an array of blend modes. PDF
viewers should blend the layers based on the first recognized blend mode.

Valid blend modes in v1.4 of the PDF spec include :Normal, :Multiply, :Screen, :Overlay, :Darken,
:Lighten, :ColorDodge, :ColorBurn, :HardLight, :SoftLight, :Difference, :Exclusion, :Hue,
:Saturation, :Color, and :Luminosity.

start _new _page

https://comons. w ki medi a. org/wi ki/Fil e: Bl end_nodes_2. -bottom
| ayer. | pg#/ medi a/ Fi | e: Bl end_nodes_2. - bottom | ayer. | pg
bottom | ayer = "#{Prawn: : DATADI R}/ i nages/ bl end_nodes_bottom | ayer. j pg"

https://comons. w ki medi a. org/wi ki/Fil e: Bl end_nodes_1. -t op-
| ayer. | pg#/ medi a/ Fi |l e: Bl end_nodes_1. -t op-1| ayer.j pg
top_l ayer = "#{Prawn:: DATADI R} /i mages/ bl end_nodes_t op_| ayer. j pg"

bl end_nodes = % [
Normal Multiply Screen Overlay Darken Lighten Col or Dodge
Col or Burn HardLi ght SoftLight D fference Exclusion Hue
Sat uration Col or Lumi nosity

]

bl end_nodes. each_wi t h_i ndex do | bl end_node, i ndex
X = index %4 * 135
y cursor - (index / 4 * 200)

i mage bottom|layer, at: [x, y], fit: [125, 125]
bl end_node(bl end_node) do

i mage top_layer, at: [x, y], fit: [125, 125]
end

y -= 130

fill _color '009ddc
fill _rectangle [x, y], 75, 25
bl end_node(bl end_node) do
fill _color 'fdb827
fill _rectangle [x + 50, y], 75, 25
end

y -= 30
fill _color '000000

text _box blend node.to_s, at: [x, Y]
end

Lighten ColorDodge ColorBurn

Hue Saturation Color Luminosity

graphics /

Prawn's fill operators (fill and fill _and_str oke both accept a:fill _rul e option. These
rules determine which parts of the page are counted as "inside" vs. "outside" the path. There are
two fill rules:

* :nonzer o_wi ndi ng_nunber (default): a point is inside the path if a ray from that point to
infinity crosses a nonzero "net number" of path segments, where path segments intersecting in
one direction are counted as positive and those in the other direction negative.

*: even_odd: A point is inside the path if a ray from that point to infinity crosses an odd number of
path segments, regardless of direction.

The differences between the fill rules only come into play with complex paths; they are identical for
simple shapes.

pentagram = [[181, 95], [O, 36], [2111, 190], [111, O], [O, 154]]

stroke_col or ' ff0000
line width 2

text _box ' Nonzero W ndi ng Nunber', at: [50, 215],
wi dt h: 170,
align: :center

pol ygon(*pentagram map { |x, y| [x + 50, y] })

fill_and_stroke

text _box 'Even-Odd', at: [330, 215], width: 170, align: :center
pol ygon(*pentagrammap { [x, y| [x + 330, y] })
fill _and_stroke(fill _rule: :even_odd)

Nonzero Winding Number Even-Odd

graphics /

This transformation is used to rotate the user space. Give it an angle and an : ori gi n point about
which to rotate and a block. Everything inside the block will be drawn with the rotated coordinates.

The angle is in degrees.

If you omit the : or i gi n option the page origin will be used.

stroke_axi s

fill _circle [250, 200], 2

12.tinmes do |i|
rotate(i * 30, origin: [250, 200]) do
stroke_rectangl e [350, 225], 100, 50
draw text "Rotated #{i * 30}°", size: 10, at: [360, 205]
end
end

400 -

o
(@]
8 S
© >
I @
. x é@’
300 - <&
o
50
o
: Rotated 0°
200 [)
: -08T pareloy
100 +

0042 Pale1oy

graphics /

This transformation is used to translate the user space. Just provide the x and y coordinates for
the new origin.

stroke_axi s

1.upto(3) do |i]
X =i * 50
y =i * 100
translate(x, y) do
Draw a point on the new origin
fill _circle [0, 0], 2
draw_text "New origin after translation to [#{x}, #{y}]"

at: [5, -2], size: 8

stroke_rectangle [100, 75], 100, 50
text _box 'Top left corner at [100,75]",
at: [110, 65],
wi dt h: 80
size: 8
end
end

400 -
Top left corner at
[100,75]
300 e New origin after translation to [150, 300]
Top left corner at
[100,75]
200 - o New origin after translation to [100, 200]
Top left corner at
[100,75]
100 - e New origin after translation to [50, 100]

graphics /

This transformation is used to scale the user space. Give it an scale factor and an : ori gi n point
and everything inside the block will be scaled using the origin point as reference.

If you omit the : or i gi n option the page origin will be used.

stroke_axi s

w dth = 100
hei ght = 50

X 50
\ 200

stroke_rectangle [x, y], w dth, height
text _box '‘reference rectangle', at: [x + 10, y - 10], wi dth:

scale(2, origin: [x, y]) do
stroke_rectangle [x, y], w dth, height
text _box 'rectangle scaled from upper-left corner',
at: [x, y - height - 5],
wi dth: width
end

x = 350

stroke_rectangle [x, y], w dth, height
text _box 'reference rectangle', at: [x + 10, y - 10], width: width - 20

scale(2, origin: [x + width / 2, y - height / 2]) do
stroke_rectangle [x, y], width, height
text _box 'rectangle scaled fromcenter',
at: [x, y - height - 5],
width: width

end

200 -
: reference reference
rectangle rectangle

rectangle scaled
' rectangle scaled from center
from upper-left
corner

Text

This is probably the feature people will use the most. There is no shortage of options when it
comes to text. You'll be hard pressed to find a use case that is not covered by one of the text
methods and configurable options.

The examples show:

» Text that flows from page to page automatically starting new pages when necessary
» How to use text boxes and place them on specific positions

* What to do when a text box is too small to fit its content

* Flowing text in columns

» How to change the text style configuring font, size, alignment and many other settings
» How to style specific portions of a text with inline styling and formatted text

» How to define formatted callbacks to reuse common styling definitions

» How to use the different rendering modes available for the text methods

» How to create your custom text box extensions

e How to use external fonts on your pdfs

* What happens when rendering text in different languages

text /

Text rendering can be as simple or as complex as you want.

This example covers the most basic method: t ext . It is meant for free flowing text. The provided
string will flow according to the current bounding box width and height. It will also flow onto the
next page if the bottom of the bounding box is reached.

The text will start being rendered on the current cursor position. When it finishes rendering, the
cursor is left directly below the text.

This example also shows text flowing across pages following the margin box and other bounding
boxes.

nmove_cursor_to 50
text '"This text will flow to the next page

y_position = cursor - 50
boundi ng_box([0, y _position], w dth: 200, height: 150) do

transparent (0.5) { stroke_bounds }

text '"This text will flow along this bounding box we created for it
end

boundi ng_box([300, y position], w dth: 200, height: 150) do
transparent (0.5) { stroke_bounds } # This will stroke on one page

text 'Now | ook what happens when the free flow ng text reaches the end
"of a bounding box that is narrower than the margin box.' +
* 200 +
"It continues on the next page as if the previous bounding box ' \
‘was cloned. If we want it to have the sane border as the one on
"the previous page we will need to stroke the boundaries again.'

transparent (0.5) { stroke_bounds } # And this will stroke on the next
end

nmove_cursor_to 200
span(350, position: :center) do
text 'Span is a different kind of bounding box as it lets the text

"flow gracefully onto the next page. It doesn't matter if the text
"started on the nmiddle of the previous page, when it flows to the
'"next page it will start at the beginning." +"' _ ' * 500 +
‘"I told you it would start on the begi nning of this page.

end

This text will flow to the next page. This text will flow to the next page. This text will flow to the next
page. This text will flow to the next page. This text will flow to the next page. This text will flow to the
next page. This text will flow to the next page. This text will flow to the next page. This text will flow to

the next page. This text will flow to the next page. This text will flow to the next page. This text will flow
to the next page. This text will flow to the next page. This text will flow to the next page. This text will
flow to the next page. This text will flow to the next page. This text will flow to the next page. This text
will flow to the next page. This text will flow to the next page. This text will flow to the next page.

his text will flow along this bounding
box we created for it. This text will
flow along this bounding box we
created for it. This text will flow along
this bounding box we created for it.
This text will flow along this bounding
box we created for it. This text will
flow along this bounding box we
created for it.

Now look what happens when the
free flowing text reaches the end of a
bounding box that is narrower than
the marginbox..

........ It continues on the
next page as if the previous bounding
box was cloned. If we want it to have
the same border as the one on the
previous page we will need to stroke
the boundaries again.

Span is a different kind of bounding box as it lets the text flow
gracefully onto the next page. It doesn't matter if the text started
on the middle of the previous page, when it flows to the next page
it will start at the beginning.

on the beginning of this page.

text /

Sometimes we want the text on a specific position on the page. The t ext method just won't help

us.

There are two other methods for this task: dr aw_t ext and t ext _box.

dr aw_t ext is very simple. It will render text starting at the position provided to the : at option. It
won't flow to a new line even if it hits the document boundaries so it is best suited for short text.

t ext _box gives us much more control over the output. Just provide : wi dt h and : hei ght
options and the text will flow accordingly. Even if you don't provide a : wi dt h option the text will
flow to a new line if it reaches the right border.

Given that, t ext _box is the better option available.

draw_text "This draw_text
‘expect it
at: [200, 300]

text _box 'This is a text
"speci fying the :height
at: [100, 250],
hei ght: 100,
wi dt h: 100

text _box ' Anot her text
"flowto a new | i ne whenever

at: [200, 100]

This is a text box,
you can control
where it will flow
by specifying the
‘height and :width
options

line is absol ute positioned.
to flow even if

box,
and :wi dth options',

box with no :w dth option passed,

However don't

it hits the docunent border"',

you can control where it will flow by '

so it wll
it reaches the right margin. ',

This draw_text line is absolute positioned. However don't expect it to flc

Another text box with no :width option passed, so it will flow to a
new line whenever it reaches the right margin.

text /

The t ext _box method accepts both : wi dt h and : hei ght options. So what happens if the text
doesn't fit the box?

The default behavior is to truncate the text but this can be changed with the : over f | ow option.
Available modes are : expand (the box will increase to fit the text) and : shrink_to_fit (the text
font size will be shrunk to fit).

If : shrink_to_fit mode is used with the : mi n_f ont _si ze option set, the font size will not be
reduced to less than the value provided even if it means truncating some text.

If the : di sabl e_wrap_by_char is set to t rue then any text wrapping done while using the
:shrink_to_fit mode will not break up the middle of words.

string = "This is the sanple text used for the text boxes. See how it
'behave with the various overfl ow options used.'

text string

y_position = cursor - 20
% [truncate expand shrink to fit].each_with_index do | node, i|
text _box string, at: [i * 150, y_position],
wi dt h: 100,
hei ght : 50,
overfl ow node
end

string = '"If the box is too small for the text, :shrink_to_ fit
‘can render the text in areally small font size.'

move_down 120
text string
y_position = cursor - 20
[nil, 8, 10, 12].each_with_i ndex do |val ue, index|
text _box string, at: [index * 150, y_position],
wi dt h: 50,
hei ght : 50,
overflow :shrink to fit,
m n_font_size: val ue

This is the sample text used for the text boxes. See how it behave with the various overflow options

used.
This is the sample This is the sample Thisdi? thi sampls text
used for the text boxes.
text used for the text used for the See how it behave with
text boxes. See text boxes. See the various overflow
how it behave with options used.
the various
overflow options
used.

If the box is too small for the text, :shrink_to_fit can render the text in a really small font size.

If the box is too If the box is
small for the text, If the box lf the bOX
. : too small for t .
:shrink_to_fit can IS 100 IS t0O
render the text in the text,
cahri . small for
a really small :shrink_to_fit small for

font size. can render the text,

text /

Whenever the t ext _box method truncates text, this truncated bit is not lost, it is the method
return value and we can take advantage of that.

We just need to take some precautions.

This example renders as much of the text as will fit in a larger font inside one text_box and then
proceeds to render the remaining text in the default size in a second text_box.

string = 'This is the beginning of the text. It will be cut somewhere and ' \
"the rest of the text will procede to be rendered this time by ' \
‘calling another nethod." +"' . ' * 50

y_position = cursor - 20
excess_text = text_box(
string,
wi dt h: 300,
hei ght : 50,
overflow :truncate,
at: [100, y_position],
size: 18

)

t ext _box(
excess_text,
wi dt h: 300,
at: [100, y_position - 100]

This is the beginning of the text. It will
be cut somewhere and the rest of the

text will procede to be rendered this time by calling
anothermethod.

text /

The col unm_box method allows you to define columns that flow their contents from one section
to the next. You can have a number of columns on the page, and only when the last column

overflows will a new page be created.

text 'The Prince'
text 'Niccol 0 Machi avel li"',
nmove_down 12

al i gn:
al i gn:

col um_box([0, cursor], colums:

t ext ((<<- TEXT.gsub(/\s+/,)+
have been and are either
hereditary,
of ancestors,
that of Mlan to Francesco Sforza
the hereditary possessi ons of

Ki ngdom of Napl es to the doni ni ons of

been used to live
and he who acquires them does so either
by good fortune or

acqui red have either

ot hers, and either
TEXT

end

.center,
.center,

size: 18
size: 14

2, width: bounds.w dth) do
“\'n\n")
All the States and Governnents by which nen are or ever
Republ i cs or
in which the sovereignty is derived through an anci ent

*3)

have been rul ed
Pri ncedons are either
i ne

Pri ncedons.

or they are new. New Princedons are either wholly new, as
r they are like linbs joined on to
the Prince who acquires them

as the

the King of Spain. The States thus
under a Prince or have been free
by his own arns or by the arns of
by nerit.

The Prince
Niccoldo Machiavelli

All the States and Governments by which men
are or ever have been ruled, have been and are
either Republics or Princedoms. Princedoms are
either hereditary, in which the sovereignty is
derived through an ancient line of ancestors, or
they are new. New Princedoms are either wholly
new, as that of Milan to Francesco Sforza; or they
are like limbs joined on to the hereditary
possessions of the Prince who acquires them, as
the Kingdom of Naples to the dominions of the
King of Spain. The States thus acquired have
either been used to live under a Prince or have
been free; and he who acquires them does so
either by his own arms or by the arms of others,
and either by good fortune or by merit.

All the States and Governments by which men
are or ever have been ruled, have been and are
either Republics or Princedoms. Princedoms are
either hereditary, in which the sovereignty is
derived through an ancient line of ancestors, or
they are new. New Princedoms are either wholly
new, as that of Milan to Francesco Sforza; or they
are like limbs joined on to the hereditary
possessions of the Prince who acquires them, as
the Kingdom of Naples to the dominions of the

King of Spain. The States thus acquired have
either been used to live under a Prince or have
been free; and he who acquires them does so
either by his own arms or by the arms of others,
and either by good fortune or by merit.

All the States and Governments by which men
are or ever have been ruled, have been and are
either Republics or Princedoms. Princedoms are
either hereditary, in which the sovereignty is
derived through an ancient line of ancestors, or
they are new. New Princedoms are either wholly
new, as that of Milan to Francesco Sforza; or they
are like limbs joined on to the hereditary
possessions of the Prince who acquires them, as
the Kingdom of Naples to the dominions of the
King of Spain. The States thus acquired have
either been used to live under a Prince or have
been free; and he who acquires them does so
either by his own arms or by the arms of others,
and either by good fortune or by merit.

text /

The f ont method can be used in three different ways.
If we don't pass it any arguments it will return the current font being used to render text.
If we just pass it a font name it will use that font for rendering text through the rest of the document.

It can also be used by passing a font name and a block. In this case the specified font will only be
used to render text inside the block.

The default font is Helvetica.

text "Let's see which font we are using: #{font.inspect}"

nmove_down 20
font ' Ti nes- Roman'
text "Witten in Tines.

move_down 20
font (' Courier') do

text '"Witten in Courier because we are inside the bl ock.
end

nmove_down 20
text "Witten in Times again as we |eft the previous bl ock.

nmove_down 20
text "Let's see which font we are using again: #{font.inspect}"

nmove_down 20
font 'Hel vetica
text 'Back to normal .’

Let's see which font we are using: Prawn::Fonts::AFM< Helvetica: 12 >
Written in Times.

Witten in Courier because we are inside the bl ock.
Written in Times again as we | eft the previous block.

Let's see which font we are using again: Prawn::Fonts::AFM< Times-Roman: 12 >

Back to normal.

text /

The f ont _si ze method works just like the f ont method.
In fact we can even use f ont with the : si ze option to declare which size we want.
Another way to change the font size is by supplying the : si ze option to the text methods.

The default font size is 12.

text "Let's see which is the current font_size: #{font_size.inspect}"

move_down 10
font _size 16
text 'Yeah, sonething bigger!

nmove_down 10
font_size(25) { text 'Even bigger!' }

nmove_down 10
text 'Back to 16 agai n.

move_down 10
text 'Single line on 20 using the :size option.

nmove_down 10
text 'Back to 16 once nore.

nmove_down 10
font (' Courier', size: 10) do

text ' Yeah, using Courier 10 courtesy of the font nethod.
end

move_down 10
font (' Helvetica', size: 12)
text 'Back to normal

Let's see which is the current font_size: 12

Yeah, something bigger!

Even bigger!

Back to 16 again.
Single line on 20 using the :size option.

Back to 16 once more.
Yeah, using Courier 10 courtesy of the font nethod.

Back to normal

text /

Most font families come with some styles other than normal. Most common are bol d, i tal i ¢ and
bold italic.

The style can be set the using the : st yl e option, with either the f ont method which will set the
font and style for rest of the document, or with the inline text methods.

9%\ Courier Hel vetica Ti nes- Roman].each do | exanpl e_f ont |
nove_down 20

% [bold bold italic italic normal].each do |style|

font exanple_font, style: style
text "I"'mwiting in #{exanple_font} (#{style})"
end
end

I"mwiting in Courier (bold)
I"'mwiting in Courier (bold_italic)
l"mwiting in Courier (italic)
|"mwiting in Courier (normal)

I'm writing in Helvetica (bold)

I'm writing in Helvetica (bold_italic)
I'm writing in Helvetica (italic)

I'm writing in Helvetica (normal)

I'm writing in Times-Roman (bold)

I'm writing in Times-Roman (bold _italic)
I'mwriting in Times-Roman (italic)

I'm writing in Times-Roman (normal)

text /

The : col or attribute can give a block of text a default color, in RGB hex format or 4-value CMYK.

text 'Default color is bl ack'
move_down 25

text 'Changed to red', color: 'FF0000
nmove_down 25

text 'CWK color', color: [22, 55, 79, 30]

nmove_down 25

t ext (
"Also works with <color rgb="ff0000">i nline</color> formatti ng"
col or: ' 0000FF',
inline format: true

)

Default color is black

Changed to red

CMYK color

Also works with inline formatting

text /

Horizontal text alignment can be achieved by supplying the : al i gn option to the text methods.
Available options are : | ef t (default), : ri ght,: center,and:justify.

Vertical text alignment can be achieved using the : val i gn option with the text methods. Available
options are : t op (default), : cent er, and : bott om

Both forms of alignment will be evaluated in the context of the current bounding_box.

text 'This text should be left aligned
text 'This text should be centered', align: :center
text 'This text should be right aligned , align: :right

boundi ng_box([0, 220], wi dth: 250, height: 220) do
text '"This text is flowing fromthe left. ' * 4

nove_down 15
text '"This text is flowing fromthe center. ' * 3, align: :center

nove_down 15
text 'This text is flowing fromthe right. ' * 4, align: :right

nove_down 15
text 'This text is justified. ' * 6, align: :justify
transparent (0.5) { stroke_bounds }

end

boundi ng_box([300, 220], wi dth: 250, height: 220) do
text 'This text should be vertically top aligned
text 'This text should be vertically centered', val ign: :center
text 'This text should be vertically bottomaligned , valign: :bottom
transparent (0.5) { stroke_bounds }

end

This text should be left aligned
This text should be centered
This text should be right aligned

his text Is flowing from the left. This text is his text should be vertically top aligned
flowing from the left. This text is flowing from
the left. This text is flowing from the left.

This text is flowing from the center. This text is
flowing from the center. This text is flowing
from the center.

This text is flowing from the right. This text is This text should be vertically centered
flowing from the right. This text is flowing from
the right. This text is flowing from the right.

This text is justified. This text is justified. This
text is justified. This text is justified. This text is
justified. This text is justified.

This text should be vertically bottom aligned

text /

Leading is the additional space between lines of text.

The leading can be set using the def aul t _| eadi ng method which applies to the rest of the
document or until it is changed, or inline in the text methods with the : | eadi ng option.

The default leading is 0.

string = 'Hey, what did you do with the space between ny lines? ' * 10
text string, leading: O

nmove_down 20
default | eading 5

text string

nmove_down 20
text string, |eading: 10

Hey, what did you do with the space between my lines? Hey, what did you do with the space between
my lines? Hey, what did you do with the space between my lines? Hey, what did you do with the
space between my lines? Hey, what did you do with the space between my lines? Hey, what did you
do with the space between my lines? Hey, what did you do with the space between my lines? Hey,
what did you do with the space between my lines? Hey, what did you do with the space between my
lines? Hey, what did you do with the space between my lines?

Hey, what did you do with the space between my lines? Hey, what did you do with the space between
my lines? Hey, what did you do with the space between my lines? Hey, what did you do with the
space between my lines? Hey, what did you do with the space between my lines? Hey, what did you
do with the space between my lines? Hey, what did you do with the space between my lines? Hey,
what did you do with the space between my lines? Hey, what did you do with the space between my
lines? Hey, what did you do with the space between my lines?

Hey, what did you do with the space between my lines? Hey, what did you do with the space between
my lines? Hey, what did you do with the space between my lines? Hey, what did you do with the
space between my lines? Hey, what did you do with the space between my lines? Hey, what did you
do with the space between my lines? Hey, what did you do with the space between my lines? Hey,
what did you do with the space between my lines? Hey, what did you do with the space between my

lines? Hey, what did you do with the space between my lines?

text /

Kerning is the process of adjusting the spacing between characters in a proportional font. It is
usually done with specific letter pairs. We can switch it on and off if it is available with the current
font. Just pass a boolean value to the : ker ni ng option of the text methods.

Character Spacing is the space between characters. It can be increased or decreased and will
have effect on the whole text. Just pass a number to the : char act er _spaci ng option from the
text methods.

font _size(30) do
text _box 'Wth kerning:', kerning: true, at: [0, y - 40]
text _box 'Wthout kerning:', kerning: false, at: [0, y - 80]

text _box 'Tonmto', kerning: true, at: [250, y - 40]
text _box 'Tomato', kerning: false, at: [250, y - 80]

text _box 'WAR , kerning: true, at: [400, y - 40]
text _box 'WAR , kerning: false, at: [400, y - 80]

text_box 'F.', kerning: true, at: [500, y - 40]
text _box 'F.', kerning: false, at: [500, y - 80]
end

nmove_down 80

string = 'Wat have you done to the space between the characters?
[-2, -1, 0, 0.5, 1, 2].each do |spacing
nove_down 20
text "#{string} (character_spacing: #{spacing})",
char act er _spaci ng: spaci ng
end

With kerning: Tomato WAR FE
Without kerning: Tomato WAR F.

Whethareyoudmebhegpecebetveenthedraracers? (daieder a0 g-2)

What have you done to the space between the characters? (character_spacing: -1)

What have you done to the space between the characters? (character_spacing: 0)

What have you done to the space between the characters? (character_spacing: 0.5)
What have you done to the space between the characters? (character_spacing: 1)

What have you done to the space between the characters? (character_spacing:
2)

text /

Prawn strips all whitespace from the beginning and the end of strings so there are two ways to
indent paragraphs:

One is to use non-breaking spaces which Prawn won't strip. One shortcut to using them is the
Prawn: : Text : : NBSP.

The other is to use the : i ndent _par agr aphs option with the text methods. Just pass a number
with the space to indent the first line in each paragraph.

Usi ng non-breaki ng spaces
text ' ' * 10 + "This paragraph won't be indented. " * 10 +
"\ n#{Prawn: : Text:: NBSP * 10}" + 'This one will w th NBSP. '

nmove_down 20

text 'This paragraph will be indented. ' * 10 +
"\n" + "This one will too. ' * 10
i ndent _par agr aphs: 60

move_down 20

text ' FROM RI GHT TO LEFT:

text 'This paragraph will be indented. ' * 10 +
"\n* + '"This one will too. ' * 10
i ndent _par agraphs: 60, direction: :rtl

This paragraph won't be indented. This paragraph won't be indented. This paragraph won't be
indented. This paragraph won't be indented. This paragraph won't be indented. This paragraph won't
be indented. This paragraph won't be indented. This paragraph won't be indented. This paragraph
won't be indented. This paragraph won't be indented.

This one will with NBSP. This one will with NBSP. This one will with NBSP. This one will with
NBSP. This one will with NBSP. This one will with NBSP. This one will with NBSP. This one will with
NBSP. This one will with NBSP. This one will with NBSP.

This paragraph will be indented. This paragraph will be indented. This paragraph will be
indented. This paragraph will be indented. This paragraph will be indented. This paragraph will be
indented. This paragraph will be indented. This paragraph will be indented. This paragraph will be
indented. This paragraph will be indented.

This one will too. This one will too. This one will too. This one will too. This one will too.
This one will too. This one will too. This one will too. This one will too. This one will too.

FROM RIGHT TO LEFT:
eb lliw hpargarap sihT .detnedni eb lliw hpargarap sihT .detnedni eb lliw hpargarap sihT
eb lliw hpargarap sihT .detnedni eb lliw hpargarap sihT .detnedni eb lliw hpargarap sihT .detnedni
eb lliw hpargarap sihT .detnedni eb lliw hpargarap sihT .detnedni eb lliw hpargarap sihT .detnedni
.detnedni eb lliw hpargarap sihT .detnedni
.oot lliw eno sihT .oot lliw eno sihT .oot lliw eno sihT .oot lliw eno sihT .oot lliw eno sihT
.00t lliw eno sihT .oot lliw eno sihT .oot Illiw eno sihT .oot lliw eno sihT .oot lliw eno sihT

text /

Rotating text is best avoided on free flowing text, so this example will only use the t ext _box
method as we can have much more control over its output.

To rotate text all we need to do is use the : r ot at e option passing an angle in degrees and an
optional : r ot at e_ar ound to indicate the origin of the rotation (the default is : upper _| eft).

wi dth = 100

hei ght = 60
angle = 30

X = 200

y = cursor - 30

stroke_rectangle [0, y], wi dth, height
t ext _box(

"This text was not rotated',

at: [0, y], width: width, height: height
)

stroke_rectangle [0, y - 100], w dth, height

t ext _box(
"This text was rotated around the center',
at: [0, y - 100], width: width, height: height,
rotate: angle, rotate_around: :center

)

% [l ower | eft upper_left |ower_right upper_right]
.each_with_index do | corner, index|
y -= 100 if index ==
stroke rectangle [x + (index %2) * 200, y], w dth, height
t ext _box(
"This text was rotated around the #{corner} corner.",
at: [x + (index %2) * 200, y],
wi dth: wi dth,
hei ght: hei ght,
rotate: angle,
rot ate_around: corner

S <
W g @l»‘“@\)(\d«;‘-
RS Text T , sxo‘ﬁ\ Omo(\\ne\' ,\V;\s‘e,\ 3‘2\‘:0&(\
iS text was no W LA OV T\
rotated A 0\’5‘8 N <O Qe‘)
c. i\o
NS
A \)
. \G"‘ (00 c, \Z
=) o XN
A 0 2 (X® O
X N Q" . e oV
< < © @ o e o.,‘ol\e‘ {\0)\(\
X |\ A\ e\~
© X2 QO o
o \)00‘“6

text /

Inline formatting gives you the option to format specific portions of a text. It uses HTML-esque
syntax inside the text string. Supported tags are: b (bold), i (italic), u (underline),
stri ket hrough, sub (subscript), sup (superscript)

The following tags accept specific attributes: font accepts size, nanme, and
char act er _spaci ng; col or acceptsrgb and cnyk; I i nk accepts hr ef for external links.

%\ b i u strikethrough sub sup].each do |tag
text "Just your regular text <#{tag}>except this portion</#{tag}> "
"is using the #{tag} tag",
inline format: true
nove_down 10
end

text "This line uses " \
"all the font tag attributes in "
"a single |line "
inline_format: true

nmove_down 10

text "Coloring in <col or rgb='"FFOOFF >bot h RGB</col or> "
"<color c="100" m=' 0" y='0" k='0'>and CMYK</col or>"
inline format: true

nmove_down 10

text 'This an external link to the ' \
"<u><link href="https://github. cont prawnpdf/prawn/w ki ' >Prawn w ki " \
"</ |i nk></u>'
inline format: true

Just your regular text except this portion is using the b tag

Just your regular text except this portion is using the i tag

Just your regular text except this portion is using the u tag

Just your regular text exceptthisportion is using the strikethrough tag
Just your regular text except is portion IS USING the sub tag

Just your regular text exceptthis porion jg sing the sup tag

This liN€ uses al | the font t ag attributesina single line.

Coloring in both RGB and CMYK

This an external link to the Prawn wiki

https://github.com/prawnpdf/prawn/wiki

	Cover
	How to read this manual
	Basic concepts
	Creation
	Origin
	Cursor
	Other cursor helpers
	Adding pages
	Measurement
	View

	Graphics
	Basics
	Helper
	Fill and stroke

	Shapes
	Lines and curves
	Common lines
	Rectangle
	Polygon
	Circle and ellipse

	Fill and Stroke settings
	Line width
	Stroke cap
	Stroke join
	Stroke dash
	Color
	Gradients
	Transparency
	Soft masks
	Blend mode
	Fill rules

	Transformations
	Rotate
	Translate
	Scale

	Text
	Basics
	Free flowing text
	Positioned text
	Text box overflow
	Text box excess
	Column box

	Styling
	Font
	Font size
	Font style
	Color
	Alignment
	Leading
	Kerning and character spacing
	Paragraph indentation
	Rotation

	Advanced Styling
	Inline

