<~ Prawn
by exanpl €

Last Update: 2020-08-01
Prawn Version: 2.3.0
git commit: 62f5f4a5

How to read this manual

This manual is a collection of examples categorized by theme and organized from the least to the
most complex. While it covers most of the common use cases it is not a comprehensive guide.

The best way to read it depends on your previous knowledge of Prawn and what you need to
accomplish.

If you are beginning with Prawn the first chapter will teach you the most basic concepts and how to
create pdf documents. For an overview of the other features each chapter beyond the first either
has a Basics section (which offer enough insight on the feature without showing all the advanced
stuff you might never use) or is simple enough with only a few examples.

Once you understand the basics you might want to come back to this manual looking for examples
that accomplish tasks you need.

Advanced users are encouraged to go beyond this manual and read the source code directly if any
doubt is not directly covered on this manual.

Reading the examples

The title of each example is the relative path from the Prawn source manual/ folder.

The first body of text is the introductory text for the example. Generally it is a short description of
the features illustrated by the example.

Next comes the example source code block in fixed width font.

Most of the example snippets illustrate features that alter the page in place. The effect of these
snippets is shown right below a dashed line. If it doesn't make sense to evaluate the snippet inline,
a box with the link for the example file is shown instead.

Note that the st roke_axi s method used throughout the manual is part of standard Prawn. It is
defined in this file:

https://github.com/prawnpdf/prawn/blob/master/lib/prawn/graphics.rb

https://github.com/prawnpdf/prawn/blob/master/lib/prawn/graphics.rb

Basic concepts

This chapter covers the minimum amount of functionality you'll need to start using Prawn.

If you are new to Prawn this is the first chapter to read. Once you are comfortable with the
concepts shown here you might want to check the Basics section of the Graphics, Bounding Box
and Text sections.

The examples show:
* How to create new pdf documents in every possible way

* Where the origin for the document coordinates is. What are Bounding Boxes and how they
interact with the origin

e How the cursor behaves
* How to start new pages

e What the base unit for measurement and coordinates is and how to use other convenient
measures

» How to build custom view objects that use Prawn's DSL

basic_concepts/

There are three ways to create a PDF Document in Prawn: creating a new Prawn: : Docunent
instance, or using the Pr awn: : Docunent . gener at e method with and without block arguments.

The following snippet showcase each way by creating a simple document with some text drawn.

When we instantiate the Prawn: : Docunent object the actual pdf document will only be created
after we callrender _file.

The generate method will render the actual pdf object after exiting the block. When we use it
without a block argument the provided block is evaluated in the context of a newly created
Prawn: : Docunent instance. When we use it with a block argument a Prawn: : Docunent
instance is created and passed to the block.

The generate method without block arguments requires less typing and defines and renders the
pdf document in one shot. Almost all of the examples are coded this way. Assignment Implicit
Block Explicit Block

frozen_string_ literal: true

There are three ways to create a PDF Docunment in Prawn: creating a new
<code>Pr awn: : Docunent </ code> i nstance, or using the
<code>Pr awn: : Docunent . gener at e</ code> nmethod with and w t hout bl ock argunents.

The foll owi ng sni ppet showcase each way by creating a sinple docunent wth
sone text drawn.

Wien we instantiate the <code>Prawn:: Docunent </ code> obj ect the actual pdf
docunment will only be created after we call <code>render fil e</code>.

The generate nethod will render the actual pdf object after exiting the bl ock.
Wien we use it without a bl ock argunent the provided block is evaluated in the
context of a newy created <code>Prawn:: Docunent </ code> i nstance. \Wen we use
it with a block argunent a <code>Prawn:: Docunent </ code> i nstance is created
and passed to the bl ock.

The generate nethod w t hout bl ock argunents requires
| ess typing and defines and renders the pdf docunent in one shot.
Al nost all of the exanples are coded this way.

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

require_relative '../exanpl e_hel per'

Assi gnnment

pdf = Prawn:: Docunent. new
pdf.text 'Hello World'

pdf .render _file 'assignnent. pdf’

Inmplicit Bl ock

Prawn: : Docunent . generate('inplicit.pdf') do
text 'Hello World'

end

Explicit Bl ock

Prawn: : Docunent . generate(' explicit.pdf') do | pdf|
pdf .text 'Hello World'

end

This code snippet was not evaluated inline. You may see its output by running the example file located here:

http://github.com/prawnpdf/prawn/tree/master/manual/basic_concepts/creation.rb

http://github.com/prawnpdf/prawn/tree/master/manual/basic_concepts/creation.rb

basic_concepts/

This is the most important concept you need to learn about Prawn:
PDF documents have the origin [0, 0] at the bottom-left corner of the page.

A bounding box is a structure which provides boundaries for inserting content. A bounding box
also has the property of relocating the origin to its relative bottom-left corner. However, be aware
that the location specified when creating a bounding box is its top-left corner, not bottom-left
(hence the [100, 300] coordinates below).

Even if you never create a bounding box explictly, each document already comes with one called
the margin box. This initial bounding box is the one responsible for the document margins.

So practically speaking the origin of a page on a default generated document isn't the absolute
bottom left corner but the bottom left corner of the margin box.

The following snippet strokes a circle on the margin box origin. Then strokes the boundaries of a
bounding box and a circle on its origin.

stroke_axi s

stroke circle [0, 0], 10

boundi ng_box([100, 300], wi dth: 300, height: 200) do
st r oke_bounds
stroke circle [0, 0], 10

end

300 -

200 «

100 - O

basic_concepts/

We normally write our documents from top to bottom and it is no different with Prawn. Even if the
origin is on the bottom left corner we still fill the page from the top to the bottom. In other words the
cursor for inserting content starts on the top of the page.

Most of the functions that insert content on the page will start at the current cursor position and
proceed to the bottom of the page.

The following snippet shows how the cursor behaves when we add some text to the page and
demonstrates some of the helpers to manage the cursor position. The cur sor method returns the

current cursor position.

stroke_axi s

text "the cursor is here: #{cursor}"
text "now it is here: #{cursor}"

nove_down 200
text "on the first nove the cursor went down to: #{cursor}"

nmove_up 100
text "on the second nove the cursor went up to: #{cursor}"

nmove_cursor_to 50
text "on the | ast nove the cursor went directly to: #{cursor}"

the cursor is here: 383.9795
now it is here: 370.10749999999996

300 -

fon the second move the cursor went up to: 242.36349999999993
200 -

fon the first move the cursor went down to: 156.23549999999994
mo;

on the last move the cursor went directly to: 50.0

basic_concepts/

Another group of helpers for changing the cursor position are the pad methods. They accept a
numeric value and a block. pad will use the numeric value to move the cursor down both before
and after the block content. pad top will only move the cursor before the block while
pad_bot t omwill only move after.

f I oat is a method for not changing the cursor. Pass it a block and the cursor will remain on the
same place when the block returns.

stroke_horizontal rule
pad(20) { text 'Text padded both before and after.

stroke_horizontal _rule
pad_top(20) { text 'Text padded on the top.' }

stroke_horizontal _rule
pad_bottom(20) { text 'Text padded on the bottom'

stroke_horizontal rule
move_down 30

text 'Text witten before the fl oat bl ock.

float do
nove_down 30
boundi ng_box([0, cursor], w dth: 200) do
text 'Text witten inside the float bl ock.'
st roke_bounds
end
end

text 'Text witten after the float bl ock.

Text padded both before and after.

Text padded on the top.
Text padded on the bottom.

Text written before the float block.
Text written after the float block.

|Text written inside the float block. |

basic_concepts/

A PDF document is a collection of pages. When we create a new document be it with
Docunent . newor on a Docunent . gener at e block one initial page is created for us.

Some methods might create new pages automatically like t ext which will create a new page
whenever the text string cannot fit on the current page.

But what if you want to go to the next page by yourself? That is easy.

Just use the st art _new_page method and a shiny new page will be created for you just like in
the following snippet.

text "We are still on the initial page for this exanple. Now I'l|l ask " \
"Prawn to gently start a new page. Please follow ne to the next page.

start _new _page

text "See. We've left the previous page behind."

We are still on the initial page for this example. Now I'll ask Prawn to gently start a new page. Please
follow me to the next page.

See. We've left the previous page behind.

basic_concepts/

The base unit in Prawn is the PDF Point. One PDF Point is equal to 1/72 of an inch.

There is no need to waste time converting this measure. Prawn provides helpers for converting
from other measurements to PDF Points.

Just require "prawn/ neasurenent _extensions" and it will mix some helpers onto
Nurrer i ¢ for converting common measurement units to PDF Points.

require ' prawn/ neasur enment _ext ensi ons'

%W[mMmcmdmmin yd ft].each do | measurenent |

text "1 #{nmeasurement} in PDF Points: #{1.send(measurenment)} pt"
nmove_down 5. nm
end

1 mm in PDF Points: 2.834645669291339 pt
1 cm in PDF Points: 28.34645669291339 pt
1 dm in PDF Points: 283.46456692913387 pt
1 m in PDF Points: 2834.645669291339 pt

1 inin PDF Points: 72 pt

1 yd in PDF Points: 2592 pt

1 ft in PDF Points: 864 pt

basic_concepts/

The recommended way to extend Prawn's functionality is to include the Prawn: : Vi ew mixin in
your own class, which will make all Pr awn: : Docunent methods available to your custom objects.

This approach is preferred over inheriting from Prawn: : Docunent , as your state will be kept
completely separate from Pr awn: : Docunent 's, thus avoiding accidental method collisions.

Note that Pr awn: : Vi ewlazily instantiates a Pr awn: : Documnrent with default initialization settings,
such as page size, layout, margins, etc.

By defining your own docunent method, as shown in the example, you will be able to override
those settings and initialize a Prawn: : Docunent to your heart's content. This method will be
called repeatedly by Prawn: : Vi ew, so be sure to memoize the object by assigning it to an
instance variable via the | | = operator.

H

frozen_string literal: true

The recomrended way to extend Prawn's functionality is to include the
<code>Prawn: : Vi ew</ code> mi xin in your own class, which will make al
<code>Pr awn: : Docunment </ code> net hods avail abl e to your custom objects

Thi s approach is preferred over inheriting from
<code>Pr awn: : Docunent </ code>, as your state will|l be kept conpletely separate
from <code>Pr awn: : Docunent </ code>'s, thus avoi di ng acci dental nethod

col l'i sions

Not e that <code>Prawn:: Vi ew</code> |lazily instantiates a
<code>Prawn: : Docunent </ code> with default initialization settings, such as
page si ze, |layout, margins, etc

By defining your own <code>docunent </ code> net hod, as shown in the exanple,
you will be able to override those settings and initialize a
<code>Pr awn: : Docunent </ code> to your heart's content. This nmethod wll be
call ed repeatedly by <code>Prawn:: Vi ew</ code>, so be sure to nenoize the
obj ect by assigning it to an instance variable via the <code>||=</code>
oper at or

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

require_relative '../exanpl e_hel per'

cl ass Greeter
i ncl ude Prawn::View

def initialize(nane)
@anme = nane
end

def say_hello
text "Hello, #{@ane}!"
end

def say_goodbye
font (' Courier') do
text "Goodbye, #{@ane}!"
end
end
end

greeter = Geeter.new' G egory')

greeter.say_hello
greeter.say_goodbye

This code snippet was not evaluated inline. You may see its output by running the example file located here:

http://github.com/prawnpdf/prawn/tree/master/manual/basic_concepts/view.rb

http://github.com/prawnpdf/prawn/tree/master/manual/basic_concepts/view.rb

Graphics

Here we show all the drawing methods provided by Prawn. Use them to draw the most beautiful
imaginable things.

Most of the content that you'll add to your pdf document will use the graphics package. Even text is
rendered on a page just like a rectangle so even if you never use any of the shapes described here
you should at least read the basic examples.

The examples show:
 All the possible ways that you can fill or stroke shapes on a page

» How to draw all the shapes that Prawn has to offer from a measly line to a mighty polygon or
ellipse

* The configuration options for stroking lines and filling shapes

» How to apply transformations to your drawing space

graphics/

To produce this manual we use the st r oke_axi s helper method within the examples.

stroke_axi s prints the x and y axis for the current bounding box with markers in 100
increments. The defaults can be changed with various options.

Note that the examples define a custom : hei ght option so that only the example canvas is used
(as seen with the output of the first line of the example code).

stroke_axi s

st roke_axi s(
at: [70, 70], height: 200, step_l ength: 50,
negati ve_axes_l ength: 5, color: '0000FF

)

stroke_axi s(
at: [140, 140], width: 200, height: cursor.to_i - 140,
step_l ength: 20, negative_axes_|length: 40, color: 'FF0O000'

)

320

300 «

280 +

400 260 «
: 240 +

220 «

200 -

180

300 160 «
: 140 +

200 . :

120 «

100

150§ 80 o

200 « . 60 o
100 -

20 40 60 80 100 120 140 160 180 200
50

100 +

graphics/

There are two drawing primitives in Prawn: fi | | and st r oke.

These are the methods that actually draw stuff on the document. All the other drawing shapes like
rectangl e, circleorline_to define drawing paths. These paths need to be either stroked or
filled to gain form on the document.

Calling these methods without a block will act on the drawing path that has been defined prior to
the call.

Calling with a block will act on the drawing path set within the block.

Most of the methods which define drawing paths have methods of the same name starting with
stroke_ and fill_ which create the drawing path and then stroke or fill it.

stroke_axis

No bl ock
line [0, 200], [100, 150]
st roke

rectangle [0, 100], 100, 100
fill

Wth block
stroke { line [200, 200], [300, 150] }
fill { rectangle [200, 100], 100, 100 }

Met hod hook
stroke_l|ine [400, 200], [500, 150]
fill_rectangle [400, 100], 100, 100

200 «

100 |

graphics/

Prawn supports drawing both lines and curves starting either at the current position, or from a
specified starting position.

line_to and curve_t o set the drawing path from the current drawing position to the specified
point. The initial drawing position can be set with nove_t o. They are useful when you want to
chain successive calls because the drawing position will be set to the specified point afterwards.

I i ne and cur ve set the drawing path between the two specified points.

Both curve methods define a Bezier curve bounded by two aditional points provided as the
: bounds param.

stroke_axi s

line_to and curve_to
stroke do
move _to 0, O

line_to 100, 100
line_to 0, 100

curve_to [150, 250], bounds: [[20, 200], [120, 200]]
curve_to [200, 0], bounds: [[150, 200], [450, 10]]
end

line and curve
st roke do

line [300, 200], [400, 50]

curve [500, 0], [400, 200], bounds: [[600, 300], [300, 390]]
end

200 «

100 £

graphics/

Prawn provides helpers for drawing some commonly used lines:

vertical _|ine and horizontal _|ine do just what their names imply. Specify the start and
end point at a fixed coordinate to define the line.

hori zontal rul e draws a horizontal line on the current bounding box from border to border,
using the current y position.

stroke_axi s
stroke_col or ' ff0000

stroke do
just lower the current y position
nove_down 50
hori zontal rule

vertical _line 100, 300, at: 50

hori zontal _l i ne 200, 500, at: 150
end

400 -

300 -

200 «

100 +

graphics/

To draw a rectangle, just provide the upper-left corner, width and height to the rect angl e
method.

There's also rounded_rect angl e. Just provide an additional radius value for the rounded
corners.

stroke_axi s

stroke do
rectangle [100, 300], 100, 200

rounded_rectangl e [300, 300], 100, 200, 20
end

500 o

400 -

200 «

100 +

graphics/

Drawing polygons in Prawn is easy, just pass a sequence of points to one of the polygon family of
methods.

Just like rounded _rectangl e we also have r ounded_pol ygon. The only difference is the
radius param comes before the polygon points.

stroke_axi s

Triangle
stroke_pol ygon [50, 200], [50, 300], [150, 300]

Hexagon
fill_polygon [50, 150], [150, 200], [250, 150], [250, 50], [150, 0], [50, 50]

Pent agram
pent agon_points = [500, 100], [430, 5], [319, 41], [319, 159], [430, 195]
pentagrampoints = [0, 2, 4, 1, 3].map { |i| pentagon_points[i] }

stroke_rounded_pol ygon(20, *pentagram points)

400 -

300 -

200 «

100 +

graphics/

To define a ci r cl e all you need is the center point and the radius.

To define an el | i pse you provide the center point and two radii (or axes) values. If the second
radius value is ommitted, both radii will be equal and you will end up drawing a circle.

stroke_axi s

stroke_circle [100, 300], 100

fill _ellipse [200, 100], 100, 50

fill_ellipse [400, 100], 50

500 e

400 -

300

200 «

100 +

graphics/

The | i ne_wi dt h= method sets the stroke width for subsequent stroke calls.

Since Ruby assumes that an unknown variable on the left hand side of an assignment is a local
temporary, rather than a setter method, if you are wusing the block call to
Prawn: : Docunent . gener at e without passing params you will need to call I i ne_wi dth on
self. rubocop: disable Lint/UselessAssignment rubocop: enable Lint/UselessAssignment

st roke_axi s

250

3.tines do |i]
case |
when 0 then line_width = 10 # This call will have no effect
when 1 then self.line_w dth 10
when 2 then self.line_wdth 25
end

stroke do
hori zontal _|ine 50, 150, at: y
rectangle [275, y + 25], 50, 50
circle [500, y], 25

end

y -= 100
end

300 -

200 «

100 +

graphics/

The cap style defines how the edge of a line or curve will be drawn. There are three types: : but t
(the default), : round and : proj ecti ng_square

The difference is better seen with thicker lines. With : but t lines are drawn starting and ending at
the exact points provided. With both : round and : proj ecti ng_squar e the line is projected
beyond the start and end points.

Just like I i ne_wi dt h=the cap_st yl e= method needs an explicit receiver to work.

st roke_axi s

self.line_width

% [butt round projecting_square].each_w th_index do |cap, i]
self.cap_style = cap

y = 250 - i * 100
stroke_horizontal |ine 100, 300, at: y
stroke_circle [400, y], 15

end

400 -

300 -

200 «

100 +

graphics/

The join style defines how the intersection between two lines is drawn. There are three types:
:mter (the default), : r ound and : bevel

Just like cap_st yl e, the difference between styles is better seen with thicker lines.

stroke_axi s

self.line_width

% [mter round bevel].each _with_ index do |style, i
self.join_style = style

y =200 - i * 100
stroke do
nmove_t o(100
line_to(200
line_to(300
end
stroke_rectangle [400, y + 75], 50, 50
end

400 -

300 -

200 «

100 +

graphics/

This sets the dashed pattern for lines and curves. The (dash) length defines how long each dash
will be.

The : space option defines the length of the space between the dashes.
The : phase option defines the start point of the sequence of dashes and spaces.

Complex dash patterns can be specified by using an array with alternating dash/gap lengths for
the first parameter (note that the : space option is ignored in this case).

stroke_axi s

dash([1, 2, 3, 2, 1, 5], phase: 6)
stroke_horizontal |ine 50, 500, at: 230
dash([1, 2, 3, 4, 5, 6, 7, 8])
stroke_hori zontal _|ine 50, 500, at: 220

base_ y = 210

24.tines do |i
length = (i / 4) + 1
space = length # space between dashes sanme | ength as dash
phase = 0 # start with dash

case i %4
when O then base y -= 5
when 1 then phase = |l ength # start with space between dashes
when 2 then space = length * 0.5 # space between dashes half as |ong as dash
when 3
space = length * 0.5 # space between dashes half as |ong as dash
phase = |l ength # start with space between dashes
end
base y -= 5

dash(l ength, space: space, phase: phase)
stroke_horizontal |ine 50, 500, at: base y - (2 * i)
end

200 «

T I e

graphics/

We can change the stroke and fill colors providing an HTML rgb 6 digit color code string
("AB1234") or 4 values for CMYK.

stroke_axi s

Fill with Yellow using RG (Unlike css, there is no | eadi ng #)
fill_color 'FFFFCC
fill_polygon [50, 150], [150, 200], [250, 150], [250, 50], [150, O], [50, 50]

Stroke with Purple using CMYK
stroke _col or 50, 100, 0, O
stroke_rectangl e [300, 300], 200, 100

Bot h t oget her
fill _and_stroke circle [400, 100], 50

400 -

300 -

200 «

100 +

graphics/

Note that because of the way PDF renders radial gradients in order to get solid fill your start circle
must be fully inside your end circle. Otherwise you will get triangle fill like illustrated in the example
below.

self.line_w dth

Linear Gradients
fill _gradient [0, 250], [100, 150], 'ff0000', 'O0O0O0Off
fill _rectangle [0, 250], 100, 100

stroke_gradi ent [150, 150], [250, 250], 'o0oOffff"', "ffff0O
stroke_rectangl e [150, 250], 100, 100

fill _gradient [300, 250], [400, 150], 'ff0000", '0000ff"
stroke_gradi ent [300, 150], [400, 250], '00ffff', 'ffff00’
fill_and_stroke rectangle [300, 250], 100, 100

rotate 45, origin: [500, 200] do
stops = { 0 => '"ff0000', 0.6 => '999900', 0.8 => '00cc00', 1 => '4444ff"' }
fill _gradient from [460, 240], to: [540, 160], stops: stops
fill _rectangle [460, 240], 80, 80

end

Radi al gradients
fill _gradient [50, 50], O, [50, 50], 70.71, 'ff0000', 'O000Off
fill _rectangle [0, 100], 100, 100

stroke_gradi ent [200, 50], 45, [200, 50], 70.71, '0Offff", "ffff0OO
stroke_rectangl e [150, 100], 100, 100

stroke_gradi ent [350, 50], 45, [350, 50], 70.71, '0Offff", "ffff0OO
fill _gradient [350, 50], 0, [350, 50], 70.71, 'ff0000', '0000ff
fill _and_stroke_rectangle [300, 100], 100, 100

fill __gradient [500, 100], 50, [500, 0], O, 'ff0O000', '0O000ff
fill_rectangle [450, 100], 100, 100

graphics/

Although the name of the method is t r anspar ency, what we are actually setting is the opacity for
fill and stroke. So 0 means completely transparent and 1. 0 means completely opaque

You may call it providing one or two values. The first value sets fill opacity and the second value
sets stroke opacity. If the second value is omitted fill and stroke will have the same opacity.

stroke_axi s

self.linewidth =5
fill _color 'ff0000
fill_rectangle [0, 100], 500, 100

fill _color '000000
stroke_color 'ffffff’

base x = 100
[[0.5, 1], 0.5, [1, 0.5]].each do |args|
transparent (*args) do
fill _circle [base_x, 100], 50
stroke_rectangl e [base_x - 20, 100], 40, 80
end

base x += 150
end

300 -

200 «

100 |

100 200 300 400 500

graphics/

Soft masks are used for more complex alpha channel manipulations. You can use arbitrary
drawing functions for creation of soft masks. The resulting alpha channel is made of greyscale
version of the drawing (luminosity channel to be precise). So while you can use any combination of
colors for soft masks it's easier to use greyscales. Black will result in full transparency and white
will make region fully opaque.

Soft mask is a part of page graphic state. So if you want to apply soft mask only to a part of page
you need to enclose drawing instructions in save_gr aphi cs_st at e block.

save_graphi cs_state do
soft _nmask do
0.upto 15 do |i|
fill color 0, O, O, 100.0 / 16.0 * (15 - i)
fill _circle [75 + i * 25, 100], 60
end
end

fill _color '009ddc
fill _rectangle [0, 60], 600, 20

fill _color '963d97
fill _rectangle [0, 80], 600, 20

fill _color 'e03a3e
fill _rectangle [0, 100], 600,

fill _color 'f5821f
fill _rectangle [0, 120], 600,

fill _color 'fdh827
fill _rectangle [0, 140], 600,

fill _color '61bb46
fill _rectangle [0, 160], 600,
end

graphics/

Blend modes can be used to change the way two layers (images, graphics, text, etc.) are blended
together. The bl end_node method accepts a single blend mode or an array of blend modes. PDF
viewers should blend the layers based on the first recognized blend mode.

Valid blend modes in v1.4 of the PDF spec include :Normal, :Multiply, :Screen, :Overlay, :Darken,
:Lighten, :ColorDodge, :ColorBurn, :HardLight, :SoftLight, :Difference, :Exclusion, :Hue,
:Saturation, :Color, and :Luminosity.

start _new _page

https://comons. w ki medi a. org/wi ki/Fil e: Bl end_nodes_2. -bottom
| ayer. | pg#/ medi a/ Fi | e: Bl end_nodes_2. - bottom | ayer. | pg
bottom | ayer = "#{Prawn: : DATADI R}/ i nages/ bl end_nodes_bottom | ayer. j pg"

https://comons. w ki medi a. org/wi ki/Fil e: Bl end_nodes_1. -t op-
| ayer. | pg#/ medi a/ Fi |l e: Bl end_nodes_1. -t op-1| ayer.j pg
top_l ayer = "#{Prawn:: DATADI R} /i mages/ bl end_nodes_t op_| ayer. j pg"

bl end_nodes = % [
Normal Multiply Screen Overlay Darken Lighten Col or Dodge
Col or Burn HardLi ght SoftLight D fference Exclusion Hue
Sat uration Col or Lumi nosity

]

bl end_nodes. each_wi t h_i ndex do | bl end_node, i ndex
X = index %4 * 135
y cursor - (index / 4 * 200)

i mage bottom|layer, at: [x, y], fit: [125, 125]
bl end_node(bl end_node) do

i mage top_layer, at: [x, y], fit: [125, 125]
end

y -= 130

fill _color '009ddc
fill _rectangle [x, y], 75, 25
bl end_node(bl end_node) do
fill _color 'fdb827
fill _rectangle [x + 50, y], 75, 25
end

y -= 30
fill _color '000000

text _box blend node.to_s, at: [x, Y]
end

Lighten ColorDodge ColorBurn

Hue Saturation Color Luminosity

graphics/

Prawn's fill operators (fill and fill _and_str oke both accept a:fill _rul e option. These
rules determine which parts of the page are counted as "inside" vs. "outside" the path. There are
two fill rules:

* :nonzer o_wi ndi ng_nunber (default): a point is inside the path if a ray from that point to
infinity crosses a nonzero "net number" of path segments, where path segments intersecting in
one direction are counted as positive and those in the other direction negative.

*: even_odd: A point is inside the path if a ray from that point to infinity crosses an odd number of
path segments, regardless of direction.

The differences between the fill rules only come into play with complex paths; they are identical for
simple shapes.

pentagram = [[181, 95], [O, 36], [2111, 190], [111, O], [O, 154]]

stroke_col or ' ff0000
line width 2

text _box ' Nonzero W ndi ng Nunber', at: [50, 215],
wi dt h: 170,
align: :center

pol ygon(*pentagram map { |x, y| [x + 50, y] })

fill_and_stroke

text _box 'Even-Odd', at: [330, 215], width: 170, align: :center
pol ygon(*pentagrammap { [x, y| [x + 330, y] })
fill _and_stroke(fill _rule: :even_odd)

Nonzero Winding Number Even-Odd

graphics/

This transformation is used to rotate the user space. Give it an angle and an : ori gi n point about
which to rotate and a block. Everything inside the block will be drawn with the rotated coordinates.

The angle is in degrees.

If you omit the : or i gi n option the page origin will be used.

stroke_axi s

fill _circle [250, 200], 2

12.tinmes do |i|
rotate(i * 30, origin: [250, 200]) do
stroke_rectangl e [350, 225], 100, 50
draw text "Rotated #{i * 30}°", size: 10, at: [360, 205]
end
end

400 -

o
(@]
8 S
© >
I @
. x é@’
300 - <&
o
50
o
: Rotated 0°
200 [)
: -08T pareloy
100 +

0042 Pale1oy

graphics/

This transformation is used to translate the user space. Just provide the x and y coordinates for
the new origin.

stroke_axi s

1.upto(3) do |i]
X =i * 50
y =i * 100
translate(x, y) do
Draw a point on the new origin
fill _circle [0, 0], 2
draw_text "New origin after translation to [#{x}, #{y}]"

at: [5, -2], size: 8

stroke_rectangle [100, 75], 100, 50
text _box 'Top left corner at [100,75]",
at: [110, 65],
wi dt h: 80
size: 8
end
end

400 -
Top left corner at
[100,75]
300 e New origin after translation to [150, 300]
Top left corner at
[100,75]
200 - o New origin after translation to [100, 200]
Top left corner at
[100,75]
100 - e New origin after translation to [50, 100]

graphics/

This transformation is used to scale the user space. Give it an scale factor and an : ori gi n point
and everything inside the block will be scaled using the origin point as reference.

If you omit the : or i gi n option the page origin will be used.

stroke_axi s

w dth = 100
hei ght = 50

X 50
\ 200

stroke_rectangle [x, y], w dth, height
text _box '‘reference rectangle', at: [x + 10, y - 10], wi dth:

scale(2, origin: [x, y]) do
stroke_rectangle [x, y], w dth, height
text _box 'rectangle scaled from upper-left corner',
at: [x, y - height - 5],
wi dth: width
end

x = 350

stroke_rectangle [x, y], w dth, height
text _box 'reference rectangle', at: [x + 10, y - 10], width: width - 20

scale(2, origin: [x + width / 2, y - height / 2]) do
stroke_rectangle [x, y], width, height
text _box 'rectangle scaled fromcenter',
at: [x, y - height - 5],
width: width
end

200 -
: reference reference
rectangle rectangle

rectangle scaled
' rectangle scaled from center
from upper-left
corner

Text

This is probably the feature people will use the most. There is no shortage of options when it
comes to text. You'll be hard pressed to find a use case that is not covered by one of the text
methods and configurable options.

The examples show:

» Text that flows from page to page automatically starting new pages when necessary
» How to use text boxes and place them on specific positions

* What to do when a text box is too small to fit its content

* Flowing text in columns

» How to change the text style configuring font, size, alignment and many other settings
» How to style specific portions of a text with inline styling and formatted text

» How to define formatted callbacks to reuse common styling definitions

» How to use the different rendering modes available for the text methods

» How to create your custom text box extensions

e How to use external fonts on your pdfs

* What happens when rendering text in different languages

text/

Text rendering can be as simple or as complex as you want.

This example covers the most basic method: t ext . It is meant for free flowing text. The provided
string will flow according to the current bounding box width and height. It will also flow onto the
next page if the bottom of the bounding box is reached.

The text will start being rendered on the current cursor position. When it finishes rendering, the
cursor is left directly below the text.

This example also shows text flowing across pages following the margin box and other bounding
boxes.

nmove_cursor_to 50
text '"This text will flow to the next page

y_position = cursor - 50
boundi ng_box([0, y _position], w dth: 200, height: 150) do

transparent (0.5) { stroke_bounds }

text '"This text will flow along this bounding box we created for it
end

boundi ng_box([300, y position], w dth: 200, height: 150) do
transparent (0.5) { stroke_bounds } # This will stroke on one page

text 'Now | ook what happens when the free flow ng text reaches the end
"of a bounding box that is narrower than the margin box.' +
* 200 +
"It continues on the next page as if the previous bounding box ' \
‘was cloned. If we want it to have the sane border as the one on
"the previous page we will need to stroke the boundaries again.'

transparent (0.5) { stroke_bounds } # And this will stroke on the next
end

nmove_cursor_to 200
span(350, position: :center) do
text 'Span is a different kind of bounding box as it lets the text

"flow gracefully onto the next page. It doesn't matter if the text
"started on the nmiddle of the previous page, when it flows to the
'"next page it will start at the beginning." +"' _ ' * 500 +
‘"I told you it would start on the begi nning of this page.

end

This text will flow to the next page. This text will flow to the next page. This text will flow to the next
page. This text will flow to the next page. This text will flow to the next page. This text will flow to the
next page. This text will flow to the next page. This text will flow to the next page. This text will flow to

the next page. This text will flow to the next page. This text will flow to the next page. This text will flow
to the next page. This text will flow to the next page. This text will flow to the next page. This text will
flow to the next page. This text will flow to the next page. This text will flow to the next page. This text
will flow to the next page. This text will flow to the next page. This text will flow to the next page.

his text will flow along this bounding
box we created for it. This text will
flow along this bounding box we
created for it. This text will flow along
this bounding box we created for it.
This text will flow along this bounding
box we created for it. This text will
flow along this bounding box we
created for it.

Now look what happens when the
free flowing text reaches the end of a
bounding box that is narrower than
the marginbox..

........ It continues on the
next page as if the previous bounding
box was cloned. If we want it to have
the same border as the one on the
previous page we will need to stroke
the boundaries again.

Span is a different kind of bounding box as it lets the text flow
gracefully onto the next page. It doesn't matter if the text started
on the middle of the previous page, when it flows to the next page
it will start at the beginning.

on the beginning of this page.

text/

Sometimes we want the text on a specific position on the page. The t ext method just won't help

us.

There are two other methods for this task: dr aw_t ext and t ext _box.

dr aw_t ext is very simple. It will render text starting at the position provided to the : at option. It
won't flow to a new line even if it hits the document boundaries so it is best suited for short text.

t ext _box gives us much more control over the output. Just provide : wi dt h and : hei ght
options and the text will flow accordingly. Even if you don't provide a : wi dt h option the text will
flow to a new line if it reaches the right border.

Given that, t ext _box is the better option available.

draw_text "This draw_text
‘expect it
at: [200, 300]

text _box 'This is a text
"speci fying the :height
at: [100, 250],
hei ght: 100,
wi dt h: 100

text _box ' Anot her text
"flowto a new | i ne whenever

at: [200, 100]

This is a text box,
you can control
where it will flow
by specifying the
‘height and :width
options

line is absol ute positioned.
to flow even if

box,
and :wi dth options',

box with no :w dth option passed,

However don't

it hits the docunent border"',

you can control where it will flow by '

so it wll
it reaches the right margin. ',

This draw_text line is absolute positioned. However don't expect it to flc

Another text box with no :width option passed, so it will flow to a
new line whenever it reaches the right margin.

text/

The t ext _box method accepts both : wi dt h and : hei ght options. So what happens if the text
doesn't fit the box?

The default behavior is to truncate the text but this can be changed with the : over f | ow option.
Available modes are : expand (the box will increase to fit the text) and : shrink_to_fit (the text
font size will be shrunk to fit).

If : shrink_to_fit mode is used with the : mi n_f ont _si ze option set, the font size will not be
reduced to less than the value provided even if it means truncating some text.

If the : di sabl e_wrap_by_char is set to t rue then any text wrapping done while using the
:shrink_to_fit mode will not break up the middle of words.

string = "This is the sanple text used for the text boxes. See how it
'behave with the various overfl ow options used.'

text string

y_position = cursor - 20
% [truncate expand shrink to fit].each_with_index do | node, i|
text _box string, at: [i * 150, y_position],
wi dt h: 100,
hei ght : 50,
overfl ow node
end

string = '"If the box is too small for the text, :shrink_to_ fit
‘can render the text in areally small font size.'

move_down 120
text string
y_position = cursor - 20
[nil, 8, 10, 12].each_with_i ndex do |val ue, index|
text _box string, at: [index * 150, y_position],
wi dt h: 50,
hei ght : 50,
overflow :shrink to fit,
m n_font_size: val ue

This is the sample text used for the text boxes. See how it behave with the various overflow options

used.
This is the sample This is the sample Thisdi? thi sampls text
used for the text boxes.
text used for the text used for the See how it behave with
text boxes. See text boxes. See the various overflow
how it behave with options used.
the various
overflow options
used.

If the box is too small for the text, :shrink_to_fit can render the text in a really small font size.

If the box is too If the box is
small for the text, If the box lf the bOX
. : too small for t .
:shrink_to_fit can IS 100 IS t0O
render the text in the text,
cahri . small for
a really small :shrink_to_fit small for

font size. can render the text,

text/

Whenever the t ext _box method truncates text, this truncated bit is not lost, it is the method
return value and we can take advantage of that.

We just need to take some precautions.

This example renders as much of the text as will fit in a larger font inside one text_box and then
proceeds to render the remaining text in the default size in a second text_box.

string = 'This is the beginning of the text. It will be cut somewhere and ' \
"the rest of the text will procede to be rendered this time by ' \
‘calling another nethod." +"' . ' * 50

y_position = cursor - 20
excess_text = text_box(
string,
wi dt h: 300,
hei ght : 50,
overflow :truncate,
at: [100, y_position],
size: 18

)

t ext _box(
excess_text,
wi dt h: 300,
at: [100, y_position - 100]

This is the beginning of the text. It will
be cut somewhere and the rest of the

text will procede to be rendered this time by calling
anothermethod.

text/

The col unm_box method allows you to define columns that flow their contents from one section
to the next. You can have a number of columns on the page, and only when the last column

overflows will a new page be created.

text 'The Prince'
text 'Niccol 0 Machi avel li"',
nmove_down 12

al i gn:
al i gn:

col um_box([0, cursor], colums:

t ext ((<<- TEXT.gsub(/\s+/,)+
have been and are either
hereditary,
of ancestors,
that of Mlan to Francesco Sforza
the hereditary possessi ons of

Ki ngdom of Napl es to the doni ni ons of

been used to live
and he who acquires them does so either
by good fortune or

acqui red have either

ot hers, and either
TEXT

end

.center,
.center,

size: 18
size: 14

2, width: bounds.w dth) do
“\'n\n")
All the States and Governnents by which nen are or ever
Republ i cs or
in which the sovereignty is derived through an anci ent
or they are new. New Princedons are either wholly new, as
r they are like linbs joined on to
the Prince who acquires them

*3)

have been rul ed
Pri ncedons are either
i ne

Pri ncedons.

as the

the King of Spain. The States thus
under a Prince or have been free
by his own arns or by the arns of
by nerit.

The Prince
Niccoldo Machiavelli

All the States and Governments by which men
are or ever have been ruled, have been and are
either Republics or Princedoms. Princedoms are
either hereditary, in which the sovereignty is
derived through an ancient line of ancestors, or
they are new. New Princedoms are either wholly
new, as that of Milan to Francesco Sforza; or they
are like limbs joined on to the hereditary
possessions of the Prince who acquires them, as
the Kingdom of Naples to the dominions of the
King of Spain. The States thus acquired have
either been used to live under a Prince or have
been free; and he who acquires them does so
either by his own arms or by the arms of others,
and either by good fortune or by merit.

All the States and Governments by which men
are or ever have been ruled, have been and are
either Republics or Princedoms. Princedoms are
either hereditary, in which the sovereignty is
derived through an ancient line of ancestors, or
they are new. New Princedoms are either wholly
new, as that of Milan to Francesco Sforza; or they
are like limbs joined on to the hereditary
possessions of the Prince who acquires them, as
the Kingdom of Naples to the dominions of the

King of Spain. The States thus acquired have
either been used to live under a Prince or have
been free; and he who acquires them does so
either by his own arms or by the arms of others,
and either by good fortune or by merit.

All the States and Governments by which men
are or ever have been ruled, have been and are
either Republics or Princedoms. Princedoms are
either hereditary, in which the sovereignty is
derived through an ancient line of ancestors, or
they are new. New Princedoms are either wholly
new, as that of Milan to Francesco Sforza; or they
are like limbs joined on to the hereditary
possessions of the Prince who acquires them, as
the Kingdom of Naples to the dominions of the
King of Spain. The States thus acquired have
either been used to live under a Prince or have
been free; and he who acquires them does so
either by his own arms or by the arms of others,
and either by good fortune or by merit.

text/

The f ont method can be used in three different ways.
If we don't pass it any arguments it will return the current font being used to render text.
If we just pass it a font name it will use that font for rendering text through the rest of the document.

It can also be used by passing a font name and a block. In this case the specified font will only be
used to render text inside the block.

The default font is Helvetica.

text "Let's see which font we are using: #{font.inspect}"

nmove_down 20
font ' Ti nes- Roman'
text "Witten in Tines.

move_down 20
font (' Courier') do

text '"Witten in Courier because we are inside the bl ock.
end

nmove_down 20
text "Witten in Times again as we |eft the previous bl ock.

nmove_down 20
text "Let's see which font we are using again: #{font.inspect}"

nmove_down 20
font 'Hel vetica
text 'Back to normal .’

Let's see which font we are using: Prawn::Fonts::AFM< Helvetica: 12 >
Written in Times.

Witten in Courier because we are inside the bl ock.
Written in Times again as we | eft the previous block.

Let's see which font we are using again: Prawn::Fonts::AFM< Times-Roman: 12 >

Back to normal.

text/

The f ont _si ze method works just like the f ont method.
In fact we can even use f ont with the : si ze option to declare which size we want.
Another way to change the font size is by supplying the : si ze option to the text methods.

The default font size is 12.

text "Let's see which is the current font_size: #{font_size.inspect}"

move_down 10
font _size 16
text 'Yeah, sonething bigger!

nmove_down 10
font_size(25) { text 'Even bigger!' }

nmove_down 10
text 'Back to 16 agai n.

move_down 10
text 'Single line on 20 using the :size option.

nmove_down 10
text 'Back to 16 once nore.

nmove_down 10
font (' Courier', size: 10) do

text ' Yeah, using Courier 10 courtesy of the font nethod.
end

move_down 10
font (' Helvetica', size: 12)
text 'Back to normal

Let's see which is the current font_size: 12

Yeah, something bigger!

Even bigger!

Back to 16 again.
Single line on 20 using the :size option.

Back to 16 once more.
Yeah, using Courier 10 courtesy of the font nethod.

Back to normal

text/

Most font families come with some styles other than normal. Most common are bol d, i tal i ¢ and
bold italic.

The style can be set the using the : st yl e option, with either the f ont method which will set the
font and style for rest of the document, or with the inline text methods.

9%\ Courier Hel vetica Ti nes- Roman].each do | exanpl e_f ont |
nove_down 20

% [bold bold italic italic normal].each do |style|

font exanple_font, style: style
text "I"'mwiting in #{exanple_font} (#{style})"
end
end

I"mwiting in Courier (bold)
I"'mwiting in Courier (bold_italic)
l"mwiting in Courier (italic)
|"mwiting in Courier (normal)

I'm writing in Helvetica (bold)

I'm writing in Helvetica (bold_italic)
I'm writing in Helvetica (italic)

I'm writing in Helvetica (normal)

I'm writing in Times-Roman (bold)

I'm writing in Times-Roman (bold _italic)
I'mwriting in Times-Roman (italic)

I'm writing in Times-Roman (normal)

text/

The : col or attribute can give a block of text a default color, in RGB hex format or 4-value CMYK.

text 'Default color is bl ack'
move_down 25

text 'Changed to red', color: 'FF0000
nmove_down 25

text 'CWK color', color: [22, 55, 79, 30]

nmove_down 25

t ext (
"Also works with <color rgb="ff0000">i nline</color> formatti ng"
col or: ' 0000FF',
inline format: true

)

Default color is black

Changed to red

CMYK color

Also works with inline formatting

text/

Horizontal text alignment can be achieved by supplying the : al i gn option to the text methods.
Available options are : | ef t (default), : ri ght,: center,and:justify.

Vertical text alignment can be achieved using the : val i gn option with the text methods. Available
options are : t op (default), : cent er, and : bott om

Both forms of alignment will be evaluated in the context of the current bounding_box.

text 'This text should be left aligned
text 'This text should be centered', align: :center
text 'This text should be right aligned , align: :right

boundi ng_box([0, 220], wi dth: 250, height: 220) do
text '"This text is flowing fromthe left. ' * 4

nove_down 15
text '"This text is flowing fromthe center. ' * 3, align: :center

nove_down 15
text 'This text is flowing fromthe right. ' * 4, align: :right

nove_down 15
text 'This text is justified. ' * 6, align: :justify
transparent (0.5) { stroke_bounds }

end

boundi ng_box([300, 220], wi dth: 250, height: 220) do
text 'This text should be vertically top aligned
text 'This text should be vertically centered', val ign: :center
text 'This text should be vertically bottomaligned , valign: :bottom
transparent (0.5) { stroke_bounds }

end

This text should be left aligned
This text should be centered
This text should be right aligned

his text Is flowing from the left. This text is his text should be vertically top aligned
flowing from the left. This text is flowing from
the left. This text is flowing from the left.

This text is flowing from the center. This text is
flowing from the center. This text is flowing
from the center.

This text is flowing from the right. This text is This text should be vertically centered
flowing from the right. This text is flowing from
the right. This text is flowing from the right.

This text is justified. This text is justified. This
text is justified. This text is justified. This text is
justified. This text is justified.

This text should be vertically bottom aligned

text/

Leading is the additional space between lines of text.

The leading can be set using the def aul t _| eadi ng method which applies to the rest of the
document or until it is changed, or inline in the text methods with the : | eadi ng option.

The default leading is 0.

string = 'Hey, what did you do with the space between ny lines? ' * 10
text string, leading: O

nmove_down 20
default | eading 5

text string

nmove_down 20
text string, |eading: 10

Hey, what did you do with the space between my lines? Hey, what did you do with the space between
my lines? Hey, what did you do with the space between my lines? Hey, what did you do with the
space between my lines? Hey, what did you do with the space between my lines? Hey, what did you
do with the space between my lines? Hey, what did you do with the space between my lines? Hey,
what did you do with the space between my lines? Hey, what did you do with the space between my
lines? Hey, what did you do with the space between my lines?

Hey, what did you do with the space between my lines? Hey, what did you do with the space between
my lines? Hey, what did you do with the space between my lines? Hey, what did you do with the
space between my lines? Hey, what did you do with the space between my lines? Hey, what did you
do with the space between my lines? Hey, what did you do with the space between my lines? Hey,
what did you do with the space between my lines? Hey, what did you do with the space between my
lines? Hey, what did you do with the space between my lines?

Hey, what did you do with the space between my lines? Hey, what did you do with the space between
my lines? Hey, what did you do with the space between my lines? Hey, what did you do with the
space between my lines? Hey, what did you do with the space between my lines? Hey, what did you
do with the space between my lines? Hey, what did you do with the space between my lines? Hey,
what did you do with the space between my lines? Hey, what did you do with the space between my

lines? Hey, what did you do with the space between my lines?

text/

Kerning is the process of adjusting the spacing between characters in a proportional font. It is
usually done with specific letter pairs. We can switch it on and off if it is available with the current
font. Just pass a boolean value to the : ker ni ng option of the text methods.

Character Spacing is the space between characters. It can be increased or decreased and will
have effect on the whole text. Just pass a number to the : char act er _spaci ng option from the
text methods.

font _size(30) do
text _box 'Wth kerning:', kerning: true, at: [0, y - 40]
text _box 'Wthout kerning:', kerning: false, at: [0, y - 80]

text _box 'Tonmto', kerning: true, at: [250, y - 40]
text _box 'Tomato', kerning: false, at: [250, y - 80]

text _box 'WAR , kerning: true, at: [400, y - 40]
text _box 'WAR , kerning: false, at: [400, y - 80]

text_box 'F.', kerning: true, at: [500, y - 40]

text _box 'F.', kerning: false, at: [500, y - 80]
end

nmove_down 80

string = 'Wat have you done to the space between the characters?
[-2, -1, 0, 0.5, 1, 2].each do |spacing
nove_down 20
text "#{string} (character_spacing: #{spacing})",
char act er _spaci ng: spaci ng
end

With kerning: Tomato WAR FE
Without kerning: Tomato WAR F.

Whethareyoudmebhegpecebetveenthedraracers? (daieder a0 g-2)

What have you done to the space between the characters? (character_spacing: -1)

What have you done to the space between the characters? (character_spacing: 0)

What have you done to the space between the characters? (character_spacing: 0.5)
What have you done to the space between the characters? (character_spacing: 1)

What have you done to the space between the characters? (character_spacing:
2)

text/

Prawn strips all whitespace from the beginning and the end of strings so there are two ways to
indent paragraphs:

One is to use non-breaking spaces which Prawn won't strip. One shortcut to using them is the
Prawn: : Text : : NBSP.

The other is to use the : i ndent _par agr aphs option with the text methods. Just pass a number
with the space to indent the first line in each paragraph.

Usi ng non-breaki ng spaces
text ' ' * 10 + "This paragraph won't be indented. " * 10 +
"\ n#{Prawn: : Text:: NBSP * 10}" + 'This one will w th NBSP. '

nmove_down 20

text 'This paragraph will be indented. ' * 10 +
"\n" + "This one will too. ' * 10
i ndent _par agr aphs: 60

move_down 20

text ' FROM RI GHT TO LEFT:

text 'This paragraph will be indented. ' * 10 +
"\n* + '"This one will too. ' * 10
i ndent _par agraphs: 60, direction: :rtl

This paragraph won't be indented. This paragraph won't be indented. This paragraph won't be
indented. This paragraph won't be indented. This paragraph won't be indented. This paragraph won't
be indented. This paragraph won't be indented. This paragraph won't be indented. This paragraph
won't be indented. This paragraph won't be indented.

This one will with NBSP. This one will with NBSP. This one will with NBSP. This one will with
NBSP. This one will with NBSP. This one will with NBSP. This one will with NBSP. This one will with
NBSP. This one will with NBSP. This one will with NBSP.

This paragraph will be indented. This paragraph will be indented. This paragraph will be
indented. This paragraph will be indented. This paragraph will be indented. This paragraph will be
indented. This paragraph will be indented. This paragraph will be indented. This paragraph will be
indented. This paragraph will be indented.

This one will too. This one will too. This one will too. This one will too. This one will too.
This one will too. This one will too. This one will too. This one will too. This one will too.

FROM RIGHT TO LEFT:
eb lliw hpargarap sihT .detnedni eb lliw hpargarap sihT .detnedni eb lliw hpargarap sihT
eb lliw hpargarap sihT .detnedni eb lliw hpargarap sihT .detnedni eb lliw hpargarap sihT .detnedni
eb lliw hpargarap sihT .detnedni eb lliw hpargarap sihT .detnedni eb lliw hpargarap sihT .detnedni
.detnedni eb lliw hpargarap sihT .detnedni
.oot lliw eno sihT .oot lliw eno sihT .oot lliw eno sihT .oot lliw eno sihT .oot lliw eno sihT
.00t lliw eno sihT .oot lliw eno sihT .oot Illiw eno sihT .oot lliw eno sihT .oot lliw eno sihT

text/

Rotating text is best avoided on free flowing text, so this example will only use the t ext _box
method as we can have much more control over its output.

To rotate text all we need to do is use the : r ot at e option passing an angle in degrees and an
optional : r ot at e_ar ound to indicate the origin of the rotation (the default is : upper _| eft).

wi dth = 100

hei ght = 60
angle = 30

X = 200

y = cursor - 30

stroke_rectangle [0, y], wi dth, height
t ext _box(

"This text was not rotated',

at: [0, y], width: width, height: height
)

stroke_rectangle [0, y - 100], w dth, height

t ext _box(
"This text was rotated around the center',
at: [0, y - 100], width: width, height: height,
rotate: angle, rotate_around: :center

)

% [l ower | eft upper_left |ower_right upper_right]
.each_with_index do | corner, index|
y -= 100 if index ==
stroke rectangle [x + (index %2) * 200, y], w dth, height
t ext _box(
"This text was rotated around the #{corner} corner.",
at: [x + (index %2) * 200, y],
wi dth: wi dth,
hei ght: hei ght,
rotate: angle,
rot ate_around: corner

S <
W g @l»‘“@\)(\d«;‘-
RS Text T , sxo‘ﬁ\ Omo(\\ne\' ,\V;\s‘e,\ 3‘2\‘:0&(\
iS text was no W LA OV T\
rotated A 0\’5‘8 N <O Qe‘)
c. i\o
NS
A \)
. \G"‘ (00 c, \Z
=) o XN
A 0 2 (X® O
X N Q" . e oV
< < © @ o e o.,‘ol\e‘ {\0)\(\
X |\ A\ e\~
© X2 QO o
o \)00‘“6

text/

Inline formatting gives you the option to format specific portions of a text. It uses HTML-esque
syntax inside the text string. Supported tags are: b (bold), i (italic), u (underline),
stri ket hrough, sub (subscript), sup (superscript)

The following tags accept specific attributes: font accepts size, nanme, and
char act er _spaci ng; col or acceptsrgb and cnyk; I i nk accepts hr ef for external links.

%\ b i u strikethrough sub sup].each do |tag
text "Just your regular text <#{tag}>except this portion</#{tag}> "
"is using the #{tag} tag",
inline format: true
nove_down 10
end

text "This line uses " \
"all the font tag attributes in "
"a single |line "
inline_format: true

nmove_down 10

text "Coloring in <col or rgb='"FFOOFF >bot h RGB</col or> "
"<color c="100" m=' 0" y='0" k='0'>and CMYK</col or>"
inline format: true

nmove_down 10

text 'This an external link to the ' \
"<u><link href="https://github. cont prawnpdf/prawn/w ki ' >Prawn w ki " \
"</ |i nk></u>'
inline format: true

Just your regular text except this portion is using the b tag
Just your regular text except this portion is using the i tag

Just your regular text except this portion is using the u tag
Just your regular text exceptthisportion is using the strikethrough tag

Just your regular text except is portion IS USING the sub tag
Just your regular text exceptthis porion jg sing the sup tag
This liN€ uses al | the font t ag attributesina single line.

Coloring in both RGB and CMYK

This an external link to the Prawn wiki

https://github.com/prawnpdf/prawn/wiki

text/

There are two other text methods available: f ornatt ed text and formatted t ext box.

These are useful when the provided text has numerous portions that need to be formatted
differently. As you might imply from their names the first should be used for free flowing text just
like the t ext method and the last should be used for positioned text just like t ext _box.

The main difference between these methods and the t ext and t ext _box methods is how the
text is provided. The fornmatt ed_t ext and f ornatt ed_t ext _box methods accept an array of
hashes. Each hash must provide a :t ext option which is the text string and may provide the
following options: : st yl es (an array of symbols), : si ze (the font size), : char act er _spaci ng
(additional space between the characters), : f ont (the name of a registered font), : col or (the
same input accepted by fi | | _col or and stroke_col or), : | i nk (an URL to create a link), and
.l ocal (alinkto alocalfile).

formatted_text [
{ text: 'Sone bold. ', styles: [:bold] },

text: "Sonme italic. ', styles: [:italic] },
text: 'Bold italic. ', styles: %[bold italic] },
text: 'Bigger Text. ', size: 20},
text: 'More spacing. ', character_spacing: 3},
text: 'Different Font. ', font: 'Courier' },
text: 'Sone coloring. ', color: 'FFOOFF 1},

text: 'Link to the w ki.
col or: ' O00OFF,
link: "https://github. conl prawnpdf/prawn/ wi ki'

text: 'Link to a local file.
col or: ' OO00OFF',
local: '"./local file.txt'

]

formatted_text box(

[

text: 'Just your regular' },
text: ' text_box ', font: 'Courier' },

text: 'with some additional formatting options added to the mx."',
color: [50, 100, 0, 0], styles: [:italic]

[100, 100], width: 200, height: 100

Some bold. Some italic. Bold italic. Blgger Text. more spacing. Different
Font. Some colofer ydtk fRghRMIKe NG local file.

with some additional formatting
options added to the mix.

https://github.com/prawnpdf/prawn/wiki

text/

The : cal | back option is also available for the formatted text methods.

This option accepts an object (or array of objects) on which two methods will be called if defined:
render _behi nd and render _i n_front. They are called before and after rendering the text
fragment and are passed the fragment as an argument.

This example defines two new callback classes and provide callback objects for the formatted_text

cl ass Hi ghli ght Cal | back
def initialize(options)
@ol or = options[:color]
@locunent = options[:docunent]
end

def render_behi nd(fragnment)
original _color = @ocunent.fill_col or
@locunent . fill _col or = @ol or
@locunent . fill _rectangl e(
fragnment.top_l eft,
fragnment . wi dt h,
fragnment . hei ght
)
@ocunent . fill _color = original _col or
end
end

cl ass Connect edBor der Cal | back
def initialize(options)
@ adi us = options[:radi us]
@ocunent = options[: docunent]
end

def render_in_front(fragnent)
@l ocunent . st roke_pol ygon(
fragnent.top_left, fragment.top_right,
fragnent. bottomright, fragnment.bottom]| eft

)

@ocunent.fill _circle(fragnent.top_left, @ adi us)
@locunent.fill _circle(fragnent.top_right, @ adi us)
@ocunent.fill_circle(fragnent.bottomright, @ adius)
@ocunent.fill _circle(fragnment.bottomleft, @ adius)
end
end

hi ghl i ght = HighlightCall back. new(color: 'ffff00", document: self)
border = Connect edBor der Cal | back. new(radi us: 2.5, docunent: self)

formatted_text [

{ text: "hello', callback: highlight },

{ text: ' B

{ text: "world', callback: border },

{ text: ' B

{ text: "hello world', callback: [highlight, border] }
], size: 20

text/

You have already seen how to set the text color using both inline formatting and the format text
methods. There is another way by using the graphics methods fi || _col or and stroke_col or.

When reading the graphics reference you learned about fill and stroke. If you haven't read it before,
read it now before continuing.

Text can be rendered by being filled (the default mode) or just stroked or both filled and stroked.
This can be set using the t ext _renderi ng_node method or the : node option on the text
methods.

fill _color ' 00f f 00
stroke_col or ' 0000f f

font _size(40) do
normal rendering node: fill
text "This text is filled with green.
nove_down 20

inline rendering node: stroke
text 'This text is stroked with blue', node: :stroke
nove_down 20

bl ock rendering node: fill and stroke
text _rendering _node(:fill_stroke) do
text "This text is filled with green and stroked with bl ue
end
end

This text iIs filled with green.
This text Is stroked with blue

This text is filled with green
and stroked with blue

text/

We've already seen one way of using text boxes with the t ext box method. Turns out this
method is just a convenience for using the Prawn: : Text : : Box class as it creates a new object
and call r ender oniit.

Knowing that any extensions we add to Prawn: : Text : : Box will take effect when we use the
text _box method. To add an extension all we need to do is append the
Prawn: : Text : : Box. ext ensi ons array with a module.

nmodul e Tri angl eBox
def avail able_wi dth
hei ght + 25
end
end

y_position = cursor - 10
w dth = 100
hei ght = 100

Prawn: : Text: : Box. ext ensi ons << Tri angl eBox
stroke_rectangl e([0, y_position], w dth, height)
t ext _box(

"A * 100

at: [0, y_position],

wi dt h: width,

hei ght : hei ght
)

Prawn: : Text:: Formatt ed: : Box. ext ensi ons << Tri angl eBox
stroke_rectangl e([200, y _position], w dth, height)
formatted_text box(

[text: "A" * 100, color: '009900'],

at: [200, y_position],

wi dt h: wi dth,

hei ght : hei ght
)

Here we clear the extensions array
Prawn: : Text :: Box. ext ensi ons. cl ear
Prawn: : Text:: For nat t ed: : Box. ext ensi ons. cl ear

AAA AAA

AAAA AAAA

AAAAAA AAAAAA
AAAAAAA AAAAAAA
AAAAAAAAA AAAAAAAAA
AAAAAAAAAAA AAAAAAAAAAA
AAAAAAAAAAAA/ AAAAAAAAAAAAA

text/

The PDF format has some built-in font support. If you want to use other fonts in Prawn you need to
embed the font file.

Doing this for a single font is extremely simple. Remember the Styling font example? Another use
of the f ont method is to provide a font file path and the font will be embedded in the document
and set as the current font.

This is reasonable if a font is used only once, but, if a font used several times, providing the path
each time it is used becomes cumbersome. The example on the next page shows a better way to
deal with fonts which are used several times in a document.

Using a TTF font file

font ("#{ Prawn: : DATADI R}/ f ont s/ Dej aVuSans. ttf") do
text '"Witten with the DejaVu Sans TTF font."'

end

nmove_down 20

text "Witten with the default font.'
move_down 20

Using an DFONT font file

font ("#{Prawn: : DATADI R}/ f ont s/ Pani c+Sans. df ont") do
text "Witten with the Panic Sans DFONT font'

end

move_down 20

text "Witten with the default font once nore.'

Written with the DejaVu Sans TTF font.
Written with the default font.
Written with the Panic Sans DFONT font

Written with the default font once more.

text/

Registering font families will help you when you want to use a font over and over or if you would
like to take advantage of the : st yl e option of the text methods and the b and i tags when using
inline formatting.

To register a font family update the font _fam | i es hash with the font path for each style you
want to use.

Registering a single external font
font _families. update(
‘Dej aVu Sans' => {
normal : "#{Prawn: : DATADI R}/ f ont s/ Dej aVuSans. ttf"
}
)

font (' Dej aVu Sans') do

text 'Using the DejaVu Sans font providing only its name to the font nethod
end
move_down 20

Regi stering a DFONT package
font _path = "#{Prawn: : DATADI R}/ f ont s/ Pani c+Sans. df ont "
font _famlies. update(
"Pani ¢ Sans' => {
normal : { file: font_path, font: 'PanicSans' },
italic: { file: font_path, font: 'PanicSans-Italic' },
bold: { file: font_path, font: 'PanicSans-Bold" },
bold_italic: { file: font_path, font: 'PanicSans-Boldltalic' }

}
)

font ' Panic Sans
text 'Also using Panic Sans by providing only its name
nmove_down 20

text ' Taki ng advantage of the <i>inline formatting</i>',
inline format: true
nmove_down 20

% [bold bold_ italic italic normal].each do |style|
text "Using the #{style} style option.",
style: style
nove_down 10
end

Using the DejaVu Sans font providing only its name to the font method
Also using Panic Sans by providing only its name
Taking advantage of the inline formatting

Using the bold style option.
Using the bold_italic style option.

Using the italic style option.

Using the normal style option.

text/

Multilingualization isn't much of a problem on Prawn as its default encoding is UTF-8. The only
thing you need to worry about is if the font support the glyphs of your language.

text 'Take this exanple, a sinple Euro sign:'
text '€, size: 32
move_down 20

text 'This works, because € is one of the few' \
"non- ASCI | gl yphs supported in PDF built-in fonts.

nmove_down 20

text 'For full internationalized text support, we need to use external fonts:'
move_down 20

font ("#{Prawn:: DATADI R}/ f ont s/ Dej aVuSans.ttf") do
text ' OaAov ¢ayelv dOvauar todTo 00 pE PAAmTEL '
text ' There you go.

end

Take this example, a simple Euro sign:

€

This works, because € is one of the few non-ASCII glyphs supported in PDF built-in fonts.
For full internationalized text support, we need to use external fonts:

UDaAov payelv dovapat: TodTo 00 pe BAAMTEL.
There you go.

text/

Line wrapping happens on white space or hyphens. Soft hyphens can be used to indicate where
words can be hyphenated. Non-breaking spaces can be used to display space without allowing for
a break.

For writing styles that do not make use of spaces, the zero width space serves to mark word
boundaries. Zero width spaces are available only with external fonts.

text "Hard hyphens:\n" \
"Slip-sliding away, slip sliding anaaaay. You know the ' \
"nearer your destination the nore you're slip-sliding away."
move_down 20

shy = Prawn:: Text:: SHY
text "Soft hyphens:\n" \
"Slip slid#{shy}ing away, slip slid#{shy}ing away. You know the " \
"nearer your destinat#{shy}ion the nore you're slip slid#{shy}ing away."
move_down 20

nbsp = Prawn:: Text:: NBSP
text "Non-breaking spaces:\n" \
"Sli p#{nbsp}sliding away, slip#{nbsp}sliding awaaaay. You know the "
“"nearer your destination the nore you're slip#{nbsp}sliding away."
nmove_down 20

font ("#{ Prawn: : DATADI R}/ f ont s/ gkai 00np. ttf size: 16) do
| ong_text = No wor d boundari es: \n‘ : ;"

text | ong_text
nove_down 20

zwsp = Prawn:: Text:: ZWSP
| ong_text = "I nV| sibl e wor d boundar ies:\n P# zwsp} Tl eg#{ zwsp} £, "
"#{ zwsp} Fl i T F
" URL#{ zwsp} *F : :
" 1#{ zwsp} DB#{ zwsp} F 89#{ zwsp} 5 #{zwsp} 5 M zwsp} IR J’#{ ZwWsp} 42"
"#{ zwsp} R 89# zwsp} T @#{ zwsp} L a9#{ zwsp} K#{ zwsp} 424 zwsp} 12#{ zwsp} B\
”#{ zwsp} T F#{ zZwsp} #{ zwsp} FoE#{ zwsp} 1 #{ zvvsp} "\
: 37 #{ zwWsp} 7
"#{ zvvsp} ZH#{ zwsp} * - e #{zvvsp} Fl i fe#{ zws p} 58 F#{ zwsp} "\
"#{zwsp} TH#{ zwsp} 7T A#{ zwsp} 4% B#{ zwsp} URL#{ zwsp} F#{ zwsp} /= @#{ zwsp} "\
" A zwsp) | D#{ zwsp} %#{zvvsp m#{ zwsp} & a#{ zwsp} DB#{ zwsp} F #9#{ zwsp} "\
. #{zwsp} B M #{ zwsp} MR 2#] zwsp} BH#{ zwsp} 1R E9#{ zwsp} T @#{ zwsp} "\
"B ey zwsp} <H#{ zwsp} f?E#{zvvsp} S#{ zwsp} &I#{ zwsp} K#{ zwsp} Je#{ zwsp} T F \
" zwsp} EH# zwsp} T EH#] zwsp) T A#{ zwsp)} HEF . #{ zwsp) EAF1E, #{ zwsp) R"
"#{zwsp} #H{ zwsp} dEFH{ zwsp} EFA T . "
text |ong_text
end

Hard hyphens:
Slip-sliding away, slip sliding awaaaay. You know the nearer your destination the more you're slip-
sliding away.

Soft hyphens:

Slip sliding away, slip sliding away. You know the nearer your destination the more you're slip sliding
away.

Non-breaking spaces:
Slip sliding away, slip sliding awaaaay. You know the nearer your destination the more you're
slip sliding away.

No word boundaries:

ﬁﬁ’ﬂéé’vﬂz Bl 7 A 35 4 2 5 7T A 4% BURL ¥ J& @ X M Dk 3 7 15 éﬁDB“PéﬁJi]
%, AR 2deiReg @ 6 X4z SRR T kLR Z AT Aﬂ]’if’?‘

8 1E %féz%;ﬂli’”%"z‘ﬂiiﬂ . BEMAGE, Bl RAEEFASF T AR BURLY & @3\
ANIDkiR R EIDBF B9 R A, 5 /\J mmm 0T | b6y R4E1E IR KRR T
RAWFZAT A2EF, XA E, RAEFTHEST .

Invisible word boundaries:

P E, BRALFE St F T 23 BURL T & @ X AN IDK R 7 /& 69DB & 64
N2, B~ Jehiefitg @ ey k4813 8)']ﬁfk)T\TZt\ﬂLZ‘iE4+AJ&$
LA 6 1E m%#%ﬁWT F MG E, Bl ALE R 2t F T 2l BURL F
Ja & & ANID 2k i 7 18 é’JDB“Fé’JI’\]a’ »/\J)T\ﬂ?\ém 69 & k&g X421z &M
RIRT R R AT A2 F, ZAHEGE, IRKIEFTHFHT -

text/

Prawn can be used with right-to-left text. The direction can be set document-wide, on particular
text, or on a text-box. Setting the direction to : rt | automatically changes the default alignment to
‘right

You can even override direction on an individual fragment. The one caveat is that two fragments
going against the main direction cannot be placed next to each other without appearing in the
wrong order.

Writing bidirectional text that combines both left-to-right and right-to-left languages is easy using
the bi di Ruby Gem and its r ender _vi sual function. See https://github.com/elad/ruby-bidi for
instructions and an example using Prawn.

set the direction docunent-w de
self.text _direction = :rtl

font (" #{ Prawn: : DATADI R}/font s/ gkal OOmJ tef"
long_text = 'E 1] 3
C R R ARy T
RGBT e
text |ong_text
nove_down 20

text 'You can override the docunent direction.', direction:
nove_down 20

formatted_text |
{ text: ' £ T1A8E, FAMESEF TR 1,
text: '"URL', direction: :ltr },
text: ' FiE@EA },

text: 'ID, direction: :ltr },
text: ' 1%

text: :
text: ' 4 e Rip ke T d ke X R T kAT AT A\
CFE, 3 5, 1 7.0}

]

nove_down 20

formatted_ text [
{ text: ' ET1A8E, FAMEEFFTRZR 1},
text: "this', direction: :Itr },
text: "won't", direction: :ltr, size: 24},
text: 'work', direction: :ltr },
text: ' FOOAZE, FA R RGN @ gk R T RERZEF2EF)

BRANANE FE A X TLRTRRRGFEAKX S Ld T Re kR ANE
& R ey fRfe ke A5 Faf Aﬂ'ﬂs?f)daz’%'ﬂf\ R & AZ 42 éﬁi:rﬁl) M‘a
IAE Bt 4R Rk TR B A4 % 89 &

You can override the document direction.

M & P DBEY 1R)5 iR K IDAN X @& PURLE I A F 2t & FLRE, LB TE

https://github.com/elad/ruby-bidi

HX, FHE2AMAERELETIRNAEFZ42EXG L@ R iRk] ANE, &
- TEhAE AR, 1EE

fe A, BAE PworkWON TthisBi AT Fxt 4 E/E R, LT E
FfE AR RE R TIRRINEZ42 %09 Ed R a9iRie &

text/

Prawn enables the declaration of fallback fonts for those glyphs that may not be present in the
desired font. Use the : fal | back_f ont s option with any of the text or text box methods, or set
fallback fonts document-wide.

file = "#{Prawn: : DATADI R}/ f ont s/ gkai OOnp. ttf"
font_famlies[' Kai'] = {
normal : { file: file, font: 'Kai' }

}

file = "#{Prawn:: DATADI R}/ f ont s/ Pani c+Sans. df ont "
font families['Panic Sans'] = {
normal : { file: file, font: 'PanicSans' }

}

font (' Panic Sans') do
t ext (
"When fall back fonts are included, each glyph will be rendered ' \
‘using the first font that includes the glyph, starting with the '
"current font and then noving through the fallback fonts fromleft
‘“to right." \
“\'n\n" \
"hello f R4\ n& L f goodbye",
fall back_fonts: 9% Ti nes- Roman Kai]
)
end
nmove_down 20

formatted_text(

[

{ text: 'Fallback fonts can even override' },
{ text: 'fragnent fonts (f&%4F)', font: 'Ti nes-Roman' }

] ’
fall back_fonts: %\ Ti nes- Ronan Kai]

)

When fallback fonts are included, each glyph will be rendered using the
first font that includes the glyph, starting with the current font and
then moving through the fallback fonts from left to right.

hello f &%F
&N f goodbye

Fallback fonts can even overridefragment fonts (77 4¥)

Prints a list of all of the glyphs that can be rendered by Adobe's built in fonts, along with their
character widths and WinAnsi codes. Be sure to pass these glyphs as UTF-8, and Prawn will
transcode them for you.

FONT_SIZE = 9.5

X (0]
y bounds. t op

fields = [
[20, :right], [8, :left], [12, :center], [30, :right], [8, :left],
[0, :left]

]

font 'Helvetica', size: FONT_SIZE
start_new_page

Prawn: : Encodi ng: : W nAnsi : : CHARACTERS. each_wi t h_i ndex do | nanme, i ndex
next if name == '.notdef’

y -= FONT_SI ZE

if y < FONT_SI ZE
y = bounds.top - FONT_SI ZE
X += 170

end

code = format (' %i ndex>d."', index: index)
char = index. chr.force_encodi ng(:: Encodi ng: : Wndows_1252)

wi dth = 1000 * wi dth_of (char, size: FONT_SIZE) / FONT_SI ZE
size = format (' %w dt h>d', width: w dth)

data = [code, nil, char, size, nil, nane]
dx = x
fields.zip(data).each do |(total _width, align), field|
if field
width = width_of (field, size: FONT_SIZE)

case align

when : |l eft t hen of f set 0]

when :right then offset total width - width

when :center then offset (total _width - width) / 2
end

t ext _box(
field.dup.force_encodi ng(' wi ndows-1252"). encode(' UTF-8"),
at: [dx + offset, y]

)

end

dx += total _width
end
end

32.
33.
34.
35.
36.
37.
38.
39.
40.
41,
42.
43.
44,
45,
46.
47.
48.
49.
50.
51.
52.
53.
54.
565.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.

+ ——~ - XROH

OCONOUITAWNRF O~

5= —— N<XXSE<CHNTOTVOZZEr XC—IOTMUOWS@ OV Il A----

gl

XE<KC~A~NW=-QTOI3—Xx——TQ—-+-0DQOT®

278
278
355
556
556
889
667
191
333
333
389
584
278
333
278
278
556
556
556
556
556
556
556
556
556
556
278
278
584
584
584
556
1015
667
667
722
722
667
611
778
722
278
500
667
556
833
722
778
667
778
722
667
611
722
667
944
667
667
611
278
278
278
469
556
333
556
556
500
556
556
278
556
556
222
222
500
222
833
556
556
556
556
333
500
278
556
500
722
500

space
exclam
guotedbl
numbersign
dollar
percent
ampersand
guotesingle
parenleft
parenright
asterisk
plus
comma
hyphen
period
slash

zero

one

two

three

four

five

Six

seven
eight

nine

colon
semicolon
less

equal
greater
guestion

at

N<Xs<CHnITOTVOZZITr A" IOMMOO®>

bracketleft
backslash
bracketright
asciicircum
underscore
grave

><§<C""U)_‘_Q'0033_7_"_'_'3(Q_"'(D OO0OTOD

121.
122.
123.
124,
125.
126.
128.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
142,
145.
146.
147.
148.
149.
150.
151.
152.
153.
154,
155.
156.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174,
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.

~he @ N

- "N(HA (/‘)(8\° > H —+ -

2

<N v o 2

rw v o @l A PO w--KOthe-—

S

x O:O0000O' 2 — ———TETPTHMTICO ff D3> >I> > D> L

500
500
334
259
334
584
556
222
556
333
1000
556
556
333
1000
667
333
1000
611
222
222
333
333
349
556
1000
333
1000
500
333
944
500
500
278
333
556
556
556
556
259
556
333
737
370
556
584
333
737
333
400
584
333
333
333
556
537
278
333
333
365
556
834
834
834
611
667
667
667
667
667
667
1000
722
667
667
667
667
278
278
278
278
722
722
778
778
778
778
778
584

y

z
braceleft

bar

braceright
asciitilde

Euro
quotesinglbase
florin
quotedblbase
ellipsis

dagger
daggerdbl
circumflex
perthousand
Scaron
guilsinglleft
OE

Zcaron
quoteleft
quoteright
quotedblleft
quotedblright
bullet
endash
emdash

tilde
trademark
scaron
guilsinglright
oe

zcaron
ydieresis
space
exclamdown
cent

sterling
currency

yen
brokenbar
section
dieresis
copyright
ordfeminine
guillemotleft
logicalnot
hyphen
registered
macron
degree
plusminus
twosuperior
threesuperior
acute

mu
paragraph
periodcentered
cedilla
onesuperior
ordmasculine
guillemotright
onequarter
onehalf
threequarters
guestiondown
Agrave
Aacute
Acircumflex
Atilde
Adieresis
Aring

AE

Ccedilla
Egrave
Eacute
Ecircumflex
Edieresis
Igrave

lacute
Icircumflex
Idieresis

Eth

Ntilde
Ograve
Oacute
Ocircumflex
Otilde
Odieresis
multiply

216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.
228.
229.
230.
231.
232.
233.
234,
235.
236.
237.
238.
239.
240.
241.
242.
243.
244,
245.
246.
247.
248.
249.
250.
251.
252.
253.
254.
255.

KT OCOR - OO0 O RO — = — — D (D D DO P Do W WD W R T <C:OCCR

778
722
722
722
722
667
667
611
556
556
556
556
556
556
889
500
556
556
556
556
278
278
278
278
556
556
556
556
556
556
556
584
611
556
556
556
556
500
556
500

Oslash
Ugrave
Uacute
Ucircumflex
Udieresis
Yacute
Thorn
germandbls
agrave
aacute
acircumflex
atilde
adieresis
aring

ae

ccedilla
egrave
eacute
ecircumflex
edieresis
igrave
iacute
icircumflex
idieresis
eth

ntilde
ograve
oacute
ocircumflex
otilde
odieresis
divide
oslash
ugrave
uacute
ucircumflex
udieresis
yacute
thorn
ydieresis

Bounding box

Bounding boxes are the basic containers for structuring the content flow. Even being low level
building blocks sometimes their simplicity is very welcome.

The examples show:
» How to create bounding boxes with specific dimensions

» How to inspect the current bounding box for its coordinates

Stretchy bounding boxes

Nested bounding boxes

Indent blocks

bounding_box/

If you've read the basic concepts examples you probably know that the origin of a page is on the
bottom left corner and that the content flows from top to bottom.

You also know that a Bounding Box is a structure for helping the content flow.

A bounding box can be created with the boundi ng_box method. Just provide the top left corner,
a required : wi dt h option and an optional : hei ght .

boundi ng_box([200, cursor - 100], wi dth: 200, height: 100) do
text 'Just your regul ar boundi ng box'

transparent (0.5) { stroke_bounds }
end

Just your regular bounding box

bounding_box/

The bounds method returns the current bounding box. This is useful because the
Prawn: : Boundi ngBox exposes some nice boundary helpers.

top, bottom left and ri ght methods return the bounding box boundaries relative to its
translated origin. top_left, top_right, bottomleft and bottomright return those
boundaries pairs inside arrays.

All these methods have an "absolute" version like absol ute_ri ght. The absolute version
returns the same boundary relative to the page absolute coordinates.

The following snippet shows the boundaries for the margin box side by side with the boundaries for
a custom bounding box.

def print_coordi nates
text "top: #{bounds.top}"
text "bottom #{bounds. bottont"
text "left: #{bounds.left}"
text "right: #{bounds.right}"

nove_down 10

text "absolute top: #{bounds.absolute_top.to_f.round(2)}"

text "absolute bottom #{bounds.absolute_bottomto_f.round(2)}"

text "absolute |eft: #{bounds.absolute |left.to _f.round(2)}"

text "absolute right: #{bounds.absolute right.to_f.round(2)}"
end

text ' Margin box bounds:
nove_down 5
print _coordi nat es

boundi ng_box([250, cursor + 140], wi dth: 200, height: 150) do
text ' This boundi ng box bounds:
nove_down 5
print_coordi nat es
transparent (0.5) { stroke_bounds }
end

Margin box bounds: his bounding box bounds:
top: 864.0 top: 150

bottom: O bottom: 0

left: O left: O

right: 540.0 right: 200

absolute top: 900.0 absolute top: 263.17
absolute bottom: 36.0 absolute bottom: 113.17
absolute left: 36.0 absolute left: 286.0
absolute right: 576.0 absolute right: 486.0

bounding_box/

Bounding Boxes accept an optional : hei ght parameter. Unless it is provided the bounding box
will be stretchy. It will expand the height to fit all content generated inside it.

y_position = cursor
boundi ng_box([0, y_position], w dth: 200, height: 100) do
text 'This boundi ng box has a height of 100. If this text gets too |arge
it will flowto the next page.'

transparent (0.5) { stroke_bounds }
end

boundi ng_box([300, y_position], w dth: 200) do

text 'This boundi ng box has variable height. No matter how nuch text is
"witten here, the height will expand to fit.

text * ' * 100
text ' *' * 100

transparent (0.5) { stroke_bounds }
end

his bounding box has a height of his bounding box has variable
100. If this text gets too large it will height. No matter how much text is
flow to the next page. written here, the height will expand to
fit.

kkkhkkhkkhkhkkkikhkhkkhkkhkkhkkhkhkkikhhkhkhkkhkkkhkk*k
rE I S S b e e b i S S S S SRR R S i S S
ik I S S b b b b e S S S S R R S S S

Lk S I R I I

bounding_box/

Normally when we provide the top left corner of a bounding box we express the coordinates
relative to the margin box. This is not the case when we have nested bounding boxes. Once
nested the inner bounding box coordinates are relative to the outter bounding box.

This example shows some nested bounding boxes with fixed and stretchy heights. Note how the
cur sor method returns coordinates relative to the current bounding box.

def box_content (string)

text string

transparent (0.5) { stroke_bounds }
end

gap = 20
boundi ng_box([50, cursor], w dth: 400, height: 200) do
box_cont ent (' Fi xed hei ght")

boundi ng_box([gap, cursor - gap], w dth: 300) do
text 'Stretchy hei ght

boundi ng_box([gap, bounds.top - gap], w dth: 100) do
text 'Stretchy height
transparent (0.5) do
dash(1)
st roke_bounds
undash
end
end

boundi ng_box([gap * 7, bounds.top - gap], w dth: 100, height: 50) do
box_content (' Fi xed hei ght")
end

transparent (0.5) do
dash(1)
st r oke_bounds
undash
end
end

boundi ng_box([gap, cursor - gap], w dth: 300, height: 50) do
box_content (' Fi xed hei ght")
end
end

Stretchy height ¢ [Fixed height

...

Fixed height

bounding_box/

Sometimes you just need to indent a portion of the contents of a bounding box, and using a nested
bounding box is pure overkill. The i ndent method is what you might need.

Just provide a number for it to indent all content generated inside the block.

text 'No indentation on the margin box.
i ndent (20) do
text ' Sone indentation inside an indent bl ock.
end
nmove_down 20

boundi ng_box([50, cursor], w dth: 400, height: cursor) do
transparent (0.5) { stroke_bounds }

nove_down 10
text 'No indentation inside this bounding box."'
i ndent (40) do
text 'Inside an indent block. And so is this horizontal |ine:

stroke_horizontal _rule
end
nmove_down 10
text 'No indentation

nove_down 20
i ndent (60) do
text ' Anot her indent block.'

boundi ng_box([0, cursor], wi dth: 200) do
text 'Note that this bounding box coordinates are relative to the

"i ndent bl ock'

transparent (0.5) { stroke_bounds }
end
end
end

No indentation on the margin box.
Some indentation inside an indent block.

No indentation inside this bounding box.
Inside an indent block. And so is this horizontal line:

No indentation

Another indent block.

Note that this bounding box
coordinates are relative to the indent
block

bounding_box/

The origin example already mentions that a new document already comes with a margin box
whose bottom left corner is used as the origin for calculating coordinates.

What has not been told is that there is one helper for "bypassing" the margin box: canvas. This
method is a shortcut for creating a bounding box mapped to the absolute coordinates and

evaluating the code inside it.

The following snippet draws a circle on each of the four absolute corners.

canvas do
fill _circle [bounds.|eft, bounds.top], 30
fill _circle [bounds.right, bounds.top], 30

fill _circle [bounds.right, bounds.bottom, 30
fill _circle [0, O], 30
end

bounding_box/

This example is mostly just for fun, and shows how nested bounding boxes can simplify
calculations. See the "Bounding Box" section of the manual for more basic uses.

def conbi ne(horizontal _span, vertical _span)
out put = []
hori zont al _span. each do | x
vertical _span. each do |y|
output += [[x, y]]
end
end
out put
end

def recurse_boundi ng_box(max_depth = 4, depth =
width = (bounds.wi dth - 15) / 2
hei ght = (bounds. hei ght - 15) / 2
| eft _top_corners = conbi ne(
[5, bounds.right - width - 5],
[bounds.top - 5, height + 5]
)
| eft _top_corners.each do |It]|
boundi ng_box(lt, width: w dth, height: height) do
st roke_bounds
recur se_boundi ng_box(max_depth, depth + 1) if depth < max_depth
end
end
end

Set up a bbox fromthe dashed Iine to the bottom of the page

boundi ng_box([0, cursor], w dth: bounds.w dth, height: cursor) do
recur se_boundi ng_box

end

Layout

Prawn has support for two-dimensional grid based layouts out of the box.
The examples show:

» How to define the document grid

» How to configure the grid rows and columns gutters

* How to create boxes according to the grid

layout/

The document grid on Prawn is just a table-like structure with a defined number of rows and
columns. There are some helpers to create boxes of content based on the grid coordinates.

define_grid accepts the following options which are pretty much self-explanatory: : r ows,
:columms,:gutter,:row gutter,:colum_gutter

The grid only need to be defined once, but since all the exanples should be
able to run alone we are repeating it on every exanple

define_grid(colums: 5, rows: 8, gutter: 10)

text 'We defined the grid, roll over to the next page to see its outline'

start _new_page
grid.show all

We defined the grid, roll over to the next page to see its outline

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

0,1

11

2,1

3,1

4,1

5,1

6,1

7,1

0,2

1,2

2,2

3,2

4,2

5,2

6,2

7,2

0,3

1,3

2,3

3,3

4,3

5,3

6,3

7,3

0,4

1,4

2,4

3,4

4,4

5,4

6,4

7,4

layout/

After defined the grid is there but nothing happens. To start taking effect we need to use the grid
boxes.

gri d has three different return values based on the arguments received. With no arguments it will
return the grid itself. With integers it will return the grid box at those indices. With two arrays it will
return a multi-box spanning the region of the two grid boxes at the arrays indices.

The grid only need to be defined once, but since all the exanples should be
able to run alone we are repeating it on every exanple
define_grid(colums: 5, rows: 8, gutter: 10)

grid(4, 0).show
grid(5, 1).show

grid([6, 2], [7, 3]).show

grid([4, 4], [7, 4]).show
grid([7, O], [7, 1]).show

4,0 4,4:7,4

5,1

6,2:7,3

7,0:7,1

layout/

Now that we know how to access the boxes we might as well add some content to them.

This can be done by taping into the bounding box for a given grid box or multi-box with the
boundi ng_box method.

The grid only need to be defined once, but since all the exanples should be
able to run alone we are repeating it on every exanple
define_grid(colums: 5, rows: 8, gutter: 10)

grid([5, 0], [7, 1]).boundi ng_box do
text "Adding sonme content to this nulti_box.\n" +
end

grid(6, 3).bounding_box do
text "Just a little snippet here.\n" +
end

Adding some content to this multi_box.

Just a little snippet
here.

Prawn::Table

As of Prawn 1.2.0, Prawn::Table has been extracted into its own semi-officially supported gem.

Please see https://github.com/prawnpdf/prawn-table for more details.

https://github.com/prawnpdf/prawn-table

Images

Embedding images on PDF documents is fairly easy. Prawn supports both JPG and PNG images.
The examples show:

* How to add an image to a page

* How place the image on a specific position

» How to configure the image dimensions by setting the width and height or by scaling it

images/plain_image.rb

To embed images onto your PDF file use the i mage method. It accepts the file path of the image
to be loaded and some optional arguments.

If only the image path is provided the image will be rendered starting on the cursor position. No
manipulation is done with the image even if it doesn't fit entirely on the page like the following
snippet.

images/absolute_position.rb

One of the options that the i nage method accepts is : at . If you've read some of the graphics
examples you are probably already familiar with it. Just provide it the upper-left corner where you
want the image placed.

While sometimes useful this option won't be practical. Notice that the cursor won't be moved after
the image is rendered and there is nothing forbidding the text to overlap with the image.

y_position = cursor
t ext

i mage s , at: [200, y_position]

t ext

The image won't go below this line of .
And this line of text will go just below the previo

images/

The image may be positioned relatively to the current bounding box. The horizontal position may
be set with the : posi ti on option.

ltmay be : 1 eft,: center,:right oranumber representing an x-offset from the left boundary.

boundi ng_box([50, cursor], w dth: 400, height: 450) do
st r oke_bounds

% [left center right].each do | position|
text "lmage aligned to the #{position}."
i mage "#{Prawn:: DATADI R}/ i nages/stef.]pg", position: position

end

text 'The next image has a 50 point offset fromthe | eft boundary’
i mage "#{Prawn:: DATADI R}/ i mages/ stef.jpg", position: 50
end

Image aligned to the left.

Image aligned to the center.

Image aligned to the right.

The next image has a 50 point offset from the left boundary

images/

To set the vertical position of an image use the : vposi t i on option.

It may be : t op, : cent er, : bott omor a number representing the y-offset from the top boundary.

boundi ng_box([0, cursor], w dth: 500, height: 450) do
st roke_bounds

% [top center bottoni.each do |vposition|
text "I mage vertically aligned to the #{vposition}.", valign: vposition
i mage "#{Prawn:: DATADI R}/i nages/ stef.jpg",
posi tion: 250, vposition: vposition
end

text _box 'The next image has a 100 point offset fromthe top boundary',
at: [bounds.wi dth - 110, bounds.top - 10], wi dth: 100

i mge "#{Prawn:: DATADI R}/ i mages/ stef.jpg",
position: :right, vposition: 100

end

Image vertically aligned to the top. h "

e next image
has a 100 point
offset from the top
boundary

Image vertically aligned to the center.

Image vertically aligned to the bottom.

images/width_and_height.rb

The image size can be set with the : wi dt h and : hei ght options.

If only one of those is provided, the image will be scaled proportionally. When both are provided,
the image will be stretched to fit the dimensions without maintaining the aspect ratio.

text 'Scale by setting only the w dth'
i mage "#{Prawn:: DATADI R}/ i nages/ pi gs.j pg", wi dth: 150
nmove_down 20

text 'Scale by setting only the height'
i mage "#{Prawn:: DATADI R}/ i nages/ pi gs.] pg", height: 100
move_down 20

text 'Stretch to fit the width and hei ght provided
i mage "#{Prawn:: DATAD R}/i nages/ pi gs.] pg", wi dth: 500, height: 100

Stretch to fit the width and height provided
= =

images/

To scale an image use the : scal e option.

It scales the image proportionally given the provided value.

text ' Normal size'
i mage "#{Prawn:: DATADI R}/ i nmages/ st ef . j pg"
move_down 20

text 'Scaled to 50%

i mage "#{Prawn:: DATADI R}/i nages/stef.jpg", scale: 0.5
nmove_down 20

text 'Scaled to 200%
i mage "#{Prawn:: DATADI R}/ i nmages/stef.jpg", scale: 2

Normal size

Scaled to 50%

Scaled to 200%

images/fit.rb

:fit option is useful when you want the image to have the maximum size within a container
preserving the aspect ratio without overlapping.

Just provide the container width and height pair.

size = 300

text "Using the fit option'

boundi ng_box([0, cursor], wi dth: size, height: size) do
i mge "#{Prawn:: DATADI R}/ i mages/ pigs.) pg", fit: [size, size]
st r oke_bounds

end

Document and page options

So far we've already seen how to create new documents and start new pages. This chapter
expands on the previous examples by showing other options avialable. Some of the options are
only available when creating new documents.

The examples show:

» How to configure page size

» How to configure page margins
* How to use a background image

» How to add metadata to the generated PDF

document _and_page options/

Prawn comes with support for most of the common page sizes so you'll only need to provide
specific values if your intended format is not supported. To see a list with all supported sizes take a
look at PDF::Core::PageGeometry

To define the size use : page_si ze when creating new documents and : si ze when starting
new pages. The default page size for new documents is LETTER (612.00 x 792.00).

You may also define the orientation of the page to be either portrait (default) or landscape. Use
: page_| ayout when creating new documents and : | ayout when starting new pages.

H*

frozen_string_ literal: true

Prawn cones with support for nost of the commbn page sizes so you'll only need
to provide specific values if your intended format is not supported. To see a
list with all supported sizes take a | ook at PDF:: Core:: PageCGeonetry

To define the size use <code>: page_si ze</code> when creating new docunments
and <code>: si ze</code> when starting new pages. The default page size for new
docunents is LETTER (612. 00 x 792.00).

You may al so define the orientation of the page to be either portrait
(default) or |andscape. Use <code>: page_| ayout </ code> when creati ng new
docunents and <code>:| ayout </ code> when starting new pages.

HOHHHHHFHHHHFH

require_relative '../exanpl e_hel per

filenane = Fil e. basenane(__FILE _).gsub('.rb", '.pdf")
Prawn: : Docunent . gener at e(

fil enane,

page_si ze: ' EXECUTI VE',

page_| ayout: :|andscape

do

text ' EXECUTI VE | andscape page.

custom si ze = [275, 326]

["A4", "TABLO D, 'B7', customsize].each do |size
start_new_page(size: size, |layout: :portrait)
text "#{size} portrait page."

start _new_page(si ze: size, layout: :|andscape)
text "#{size} |andscape page."
end

This code snippet was not evaluated inline. You may see its output by running the example file located here:

http://github.com/prawnpdf/prawn/tree/master/manual/document_and_page_options/page_size.rb

http://github.com/prawnpdf/prawn/tree/master/manual/document_and_page_options/page_size.rb

document _and_page options/

The default margin for pages is 0.5 inch but you can change that with the : mar gi n option or if
you'd like to have different margins you can use the :left_margin, :right_margin,
:top_nargin,:bottom margi n options.

These options are available both for starting new pages and creating new documents.

frozen_string_literal: true

The default margin for pages is 0.5 inch but you can change that with the
<code>: mar gi n</ code> option or if you' d like to have different margi ns you
can use the <code>:|eft _nargi n</ code>, <code>:right margi n</ code>,

<code>: t op_mar gi n</ code>, <code>: bottom nmar gi n</ code> opti ons.

These options are avail able both for starting new pages and creating new
docunent s.

require_relative '../exanpl e_hel per'

filenane = Fil e. basenane(__FILE _).gsub('.rb", '.pdf")
Prawn: : Docunent . generate(fil enane, margin: 100) do
text '100 pts margins.'
st r oke_bounds

start _new _page(l eft_margi n: 300)
text '300 pts margin on the left.'
st r oke_bounds

start_new _page(top_margin: 300)

text '300 pts margin both on the top and on the left. Notice that whenever
"you set an option for a new page it will remain the default for the ' \
'foll ow ng pages.'

st r oke_bounds

start _new_page(nmargi n: 50)

text '50 pts margins. Using the margin option will reset previous specific '
‘calls to left, right, top and bottom margins."

st r oke_bounds

start_new page(margi n: [50, 100, 150, 200])
text 'There is also the shorthand CSS |i ke syntax used here.'’
st roke_bounds

end

This code snippet was not evaluated inline. You may see its output by running the example file located here:

http://github.com/prawnpdf/prawn/tree/master/manual/document_and_page_options/page_margins.rb

http://github.com/prawnpdf/prawn/tree/master/manual/document_and_page_options/page_margins.rb

document _and_page options/

Pass an image path to the : backgr ound option and it will be used as the background for all
pages. This option can only be used on document creation.

frozen_string_ literal: true

Pass an inmage path to the <code>: background</code> option and it will be used
as the background for all pages.

This option can only be used on docunent creation.

require_relative '../exanple_ hel per'

filenane = Fil e. basename(__FILE_).gsub('.rb", '.pdf")

img = "#{Prawn:: DATADI R}/ i nages/ | ett er head. j pg"

Prawn: : Docunent . generat e(fil ename, background: ing, margin: 100) do

text 'My report caption', size: 18, align: :right
nove_down font. height * 2

text "Here is my text explaning this report.
size: 12, align: :left, leading: 2

nove_down font. hei ght
text "I'musing a soft background. " * 40,

size: 12, align: :left, leading: 2
end

This code snippet was not evaluated inline. You may see its output by running the example file located here:

http://github.com/prawnpdf/prawn/tree/master/manual/document_and_page_options/background.rb

http://github.com/prawnpdf/prawn/tree/master/manual/document_and_page_options/background.rb

document _and_page options/

To set the document metadata just pass a hash to the :info option when creating new
documents. The keys in the example below are arbitrary, so you may add whatever keys you want.

frozen_string_ literal: true

To set the docunent netadata just pass a hash to the <code>:info</code>
option when creating new docunents.

The keys in the exanple below are arbitrary, so you may add what ever keys you
want .

require_relative '../exanpl e_hel per'
filenane = Fil e.basename(__FILE_).gsub('.rb',

info = {
Title: "My title',
Aut hor: ' John Doe',
Subj ect: 'My Subject',
Keywords: 'test netadata ruby pdf dry',
Creator: 'ACME Soft App',
Producer: ' Prawn',
Creati onDate: Tinme. now

}

Prawn: : Docunent . generate(fil ename, info: info) do

text "This is a test of setting netadata properties via the info option.'

text "While the keys are arbitrary, the above exanple sets conmmon attributes.'
end

This code snippet was not evaluated inline. You may see its output by running the example file located here:

http://github.com/prawnpdf/prawn/tree/master/manual/document_and_page_options/metadata.rb

http://github.com/prawnpdf/prawn/tree/master/manual/document_and_page_options/metadata.rb

document _and_page options/

(Optional; PDF 1.6) The page scaling option to be selected when a print dialog is displayed for this
document. Valid values are None, which indicates that the print dialog should reflect no page
scaling, and AppDef aul t , which indicates that applications should use the current print scaling. If
this entry has an unrecognized value, applications should use the current print scaling. Default
value: AppDef aul t .

Note: If the print dialog is suppressed and its parameters are provided directly by the application,
the value of this entry should still be used.

F*

frozen_string_literal: true

(Optional; PDF 1.6) The page scaling option to be selected when a print dialog
is displayed for this docunent. Valid values are <code>None</code>, which
indicates that the print dialog should reflect no page scaling, and
<code>AppDef aul t </ code>, which indicates that applications should use the
current print scaling. |If this entry has an unrecogni zed val ue, applications
shoul d use the current print scaling. Default value: <code>AppDefault</code>.

Note: If the print dialog is suppressed and its paraneters are provided
directly by the application, the value of this entry should still be used.

#
#
#
#
#
#
#
#
#

require_relative '../exanpl e_hel per'

filenane = File. basenane(__FILE).gsub('.rb", '.pdf")
Prawn: : Docunent . gener at e(
fil ename,
page_l| ayout: :l|andscape, print_scaling: :none
) do
text 'Wihen you print this docunment, the scale to fit in print preview '\
"shoul d be disabled by default.'
end

This code snippet was not evaluated inline. You may see its output by running the example file located here:

http://github.com/prawnpdf/prawn/tree/master/manual/document_and_page_options/print_scaling.rb

http://github.com/prawnpdf/prawn/tree/master/manual/document_and_page_options/print_scaling.rb

Outline

The outline of a PDF document is the table of contents tab you see to the right or left of your PDF
viewer.

The examples include:
» How to define sections and pages

» How to insert sections and/or pages to a previously defined outline structure

outline/

The document outline tree is the set of links used to navigate through the various document
sections and pages.

To define the document outline we first use the out | i ne method to lazily instantiate an outline
object. Then we use the def i ne method with a block to start the outline tree.

The basic methods for creating outline nodes are secti on and page. The only difference
between the two is that page doesn't accept a block and will only create leaf nodes while
sect i on accepts a block to create nested nodes.

sect i on accepts the title of the section and two options: : dest i nati on - a page number to link
and : cl osed - a boolean value that defines if the nested outline nodes are shown when the
document is open (defaults to true).

page is very similar to section. It requires a :title option to be set and accepts a
:destination.

secti on and page may also be used without the def i ne method but they will need to instantiate
the out | i ne object every time.

First we create 10 pages just to have sonething to link to
(1..10).each do |index|

text "Page #{index}"

start _new_page
end

outline. define do
section(' Section 1', destination: 1) do
page title: 'Page 2', destination: 2
page title: 'Page 3', destination: 3
end

section(' Section 2', destination: 4) do
page title: 'Page 5, destination: 5

section(' Subsection 2.1", destination: 6, closed: true) do
page title: 'Page 7', destination: 7
end
end
end

Qutside of the define bl ock
outline.section('Section 3", destination: 8) do
outline.page title: 'Page 9', destination: 9

end

outline.page title: 'Page 10', destination: 10

Section and Pages w thout |inks. Wile a section without a link nmay be
useful to group some pages, a page without a link is useless
outline.update do # update is an alias to define
section(' Section without link') do
page title: 'Page wi thout |ink
end
end

This code snippet was not evaluated inline. You may see its output by running the example file located here:

http://github.com/prawnpdf/prawn/tree/master/manual/outline/sections_and_pages.rb

http://github.com/prawnpdf/prawn/tree/master/manual/outline/sections_and_pages.rb

outline/

We have already seen how to define an outline tree sequentially.
If you'd like to add nodes to the middle of an outline tree the add_subsect i on_t o may help you.

It allows you to insert sections to the outline tree at any point. Just provide the ti t | e of the parent
section, the posi ti on you want the new subsection to be inserted : fi rst or: 1| ast (defaults to
.l ast) and a block to declare the subsection.

The add_subsecti on_t o block doesn't necessarily create new sections, it may also create new
pages.

If the parent title provided is the title of a page. The page will be converted into a section to receive
the subsection created.

First we create 10 pages and sone default outline
(1..10).each do |index|

text "Page #{index}"

start_new_page
end

outline. define do
section(' Section 1', destination: 1) do
page title: 'Page 2', destination: 2
page title: 'Page 3', destination: 3
end
end

Now we will start adding nodes to the previous outline
out | i ne. add_subsection_to(' Section 1', :first) do
outline.section('Added later - first position') do
outline.page title: 'Page 4', destination: 4
outline.page title: 'Page 5, destination: 5
end
end

out | ine. add_subsection_to(' Section 1') do
outline.page title: 'Added later - last position'
destination: 6
end

outline. add_subsection_to(' Added later - first position') do
outline.page title: 'Another page added |ater',
destination: 7
end

The title provided is for a page which will be converted into a section
out | i ne. add_subsection_to(' Page 3') do
outline.page title: 'Last page added'
destination: 8

end

This code snippet was not evaluated inline. You may see its output by running the example file located here:

http://github.com/prawnpdf/prawn/tree/master/manual/outline/add_subsection_to.rb

http://github.com/prawnpdf/prawn/tree/master/manual/outline/add_subsection_to.rb

outline/

Another way to insert nodes into an existing outline is the i nsert _secti on_after method.

It accepts the title of the node that the new section will go after and a block declaring the new
section.

As is the case with add_subsecti on_t o the section added doesn't need to be a section, it may
be just a page.

First we create 10 pages and sone default outline
(1..10).each do |index|

text "Page #{index}"

start_new_page
end

outline. define do
section(' Section 1', destination: 1) do
page title: 'Page 2', destination: 2
page title: 'Page 3', destination: 3
end
end

Now we will start adding nodes to the previous outline
outline.insert_section_after('Page 2') do
outline.section('Section after Page 2') do
outline.page title: 'Page 4', destination: 4
end
end

outline.insert_section_after('Section 1') do
outline.section('Section after Section 1') do
outline.page title: 'Page 5, destination: 5
end
end

Addi ng just a page
outline.insert_section_after('Page 3') do

outline.page title: 'Page after Page 3', destination: 6
end

This code snippet was not evaluated inline. You may see its output by running the example file located here:

http://github.com/prawnpdf/prawn/tree/master/manual/outline/insert_section_after.rb

http://github.com/prawnpdf/prawn/tree/master/manual/outline/insert_section_after.rb

Repeatable content

Prawn offers two ways to handle repeatable content blocks. Repeater is useful for content that gets
repeated at well defined intervals while Stamp is more appropriate if you need better control of
when to repeat it.

There is also one very specific helper for numbering pages.

The examples show:

» How to repeat content on several pages with a single invocation
e How to create a new Stamp

* How to "stamp" the content block on the page

* How to number the document pages with one simple call

repeatable_content/

The r epeat method is quite versatile when it comes to define the intervals at which the content
block should repeat.

The interval may be a symbol (: al | , : odd, : even), an array listing the pages, a range or a Pr oc
that receives the page number as an argument and should return true if the content is to be
repeated on the given page.

You may also pass an option : dynami ¢ to reevaluate the code block on every call which is useful
when the content changes based on the page number.

It is also important to say that no matter where you define the repeater it will be applied to all
matching pages.

repeat (:all) do
draw text 'All pages', at: bounds.top_left
end

repeat (: odd) do
draw text 'Only odd pages', at: [0, O]
end

repeat (: even) do
draw text 'Only even pages', at: [0, 0]
end

repeat ([1, 3, 7]) do
draw text 'Only on pages 1, 3 and 7', at: [100, O]
end

repeat (2..4) do
draw text 'Fromthe 2nd to the 4th page', at: [300, O]
end

repeat (->(pg) { (pg % 3).zero? }) do
draw text 'Every third page', at: [250, 20]
end

repeat (:all, dynamc: true) do
draw_t ext page_nunber, at: [500, O]
end

10.ti nes do

start_new_page

draw text 'A wonderful page', at: [400, 400]
end

This code snippet was not evaluated inline. You may see its output by running the example file located here:

http://github.com/prawnpdf/prawn/tree/master/manual/repeatable_content/repeater.rb

http://github.com/prawnpdf/prawn/tree/master/manual/repeatable_content/repeater.rb

repeatable_content/

Stamps should be used when you have content that will be included multiple times in a document.
Its advantages over creating the content anew each time are:

1. Faster document creation
2. Smaller final document

3. Faster display on subsequent displays of the repeated element because the viewer application
can cache the rendered results

The cr eat e_st anp method does just what it says. Pass it a block with the content that should be
generated and the stamp will be created.

There are two methods to render the stamp on a page st anp and st anp_at . The first will render
the stamp as is while the second accepts a point to serve as an offset to the stamp content.

create_stanp(' approved') do
rotate(30, origin: [-5, -5]) do
stroke_col or ' FF3333'
stroke_ellipse [0, 0], 29, 15
stroke_col or ' 000000’

fill _color '993333
font (' Ti mes- Roman') do
draw_text 'Approved , at: [-23,
end
fill _col or ' 000000
end
end

stanp ' approved'

stanp_at 'approved' , [200, 200]

\0\‘&

repeatable_content/

The nunber _pages method is a simple way to number the pages of your document. It should be
called towards the end of the document since pages created after the call won't be numbered.

It accepts a string and a hash of options:
start_count _at is the value from which to start numbering pages

t ot al _pages If provided, will replace t ot al with the value given. Useful for overriding the total
number of pages when using the start_count_at option.

page_filter,whichisoneof::all,:odd,:even, an array, a range, or a Proc that receives the
page number as an argument and should return true if the page number should be printed on that

page.
col or which accepts the same valuesasfill _col or

As well as any option accepted by t ext _box

text "This is the first page!’

10.ti nes do

start_new_page

text 'Here cones yet another page.'
end

string = 'page <page> of <total >
Green page nunbers 1 to 7
options = {

at: [bounds.right - 150, 0],

wi dt h: 150,

align: :right,

page filter: (1..7),

start_count _at: 1,
color: '007700'
}

nunber _pages string, options

Gray page nunbers from 8 on up
options[:page filter] = ->(pg) { pg > 7 }
options[:start_count_at] = 8
options[:color] = '333333

nunber pages string, options

start_new_page
text "See. This page isn't nunbered and doesn't count towards the total."

This code snippet was not evaluated inline. You may see its output by running the example file located here:

http://github.com/prawnpdf/prawn/tree/master/manual/repeatable_content/page_numbering.rb

http://github.com/prawnpdf/prawn/tree/master/manual/repeatable_content/page_numbering.rb

repeatable_content/

Below is the code to generate page numbers that alternate being rendered on the right and left
side of the page. The first page will have a "1" in the bottom right corner. The second page will
have a "2" in the bottom left corner of the page. The third a "3" in the bottom right, etc.

text "This is the first page!’

10.ti nes do

start_new_page

text 'Here cones yet another page.'
end

string = '<page>'
odd_options = {
at: [bounds.right - 150, 0],
wi dt h: 150,
align: :right,
page_filter: :odd,
start_count _at: 1
}
even_options = {
at: [0, bounds.left],
wi dt h: 150,
align: :left,
page _filter: :even,
start_count _at: 2

}

nurmber _pages string, odd_options
nunber _pages string, even_options

This code snippet was not evaluated inline. You may see its output by running the example file located here:

http://github.com/prawnpdf/prawn/tree/master/manual/repeatable_content/alternate_page_numbering.rb

http://github.com/prawnpdf/prawn/tree/master/manual/repeatable_content/alternate_page_numbering.rb

Security

Security lets you control who can read the document by defining a password.
The examples include:

* How to encrypt the document without the need for a password

» How to configure the regular user permissions

* How to require a password for the regular user

* How to set a owner password that bypass the document permissions

security/

The encrypt _docunent method, as you might have already guessed, is used to encrypt the
PDF document.

Once encrypted whoever is using the document will need the user password to read the
document. This password can be set with the : user passwor d option. If this is not set the
document will be encrypted but a password will not be needed to read the document.

There are some caveats when encrypting your PDFs. Be sure to read the source documentation
(you can find it here: https://github.com/prawnpdf/prawn/blob/master/lib/prawn/security.rb) before
using this for anything super serious. Bare encryption. No password needed. Simple password. All
permissions granted.

H

frozen_string literal: true

The <code>encrypt docunent </ code> net hod, as you m ght have al ready guessed,
is used to encrypt the PDF docunent.

Once encrypted whoever is using the docunent will need the user password to
read the docunment. This password can be set with the

<code>: user _passwor d</code> option. If this is not set the docunent will be
encrypted but a password will not be needed to read the docunent.

There are sone caveats when encrypting your PDFs. Be sure to read the source
docunentation (you can find it here:

htt ps://github. com prawnpdf/ prawn/ bl ob/ master/|i b/ prawn/security.rb) before
using this for anything super serious.

#
#
#
#
#
#
#
#
#
#
#
#

require_relative '../exanpl e_hel per'

Bare encryption. No password needed.

Prawn: : Manual Bui | der: : Exanpl e. generat e(' bare_encryption. pdf') do
text 'See, no password was asked but the document is still encrypted.'’
encrypt _documnent

end

Sinple password. All permni ssions granted.
Prawn: : Manual Bui | der: : Exanpl e. gener at e(' si npl e_password. pdf') do
text ' You was asked for a password.'
encrypt _docunent (user _password: ‘'foo', owner_password: 'bar')
end

This code snippet was not evaluated inline. You may see its output by running the example file located here:

http://github.com/prawnpdf/prawn/tree/master/manual/security/encryption.rb

https://github.com/prawnpdf/prawn/blob/master/lib/prawn/security.rb
http://github.com/prawnpdf/prawn/tree/master/manual/security/encryption.rb

security/

Some permissions may be set for the regular user with the following options: : pri nt _docunent,
:nmodi fy_contents, : copy_contents, :nodi fy_annotations. All this options default to
true, so if you'd like to revoke just set them to false.

A user may bypass all permissions if he provides the owner password which may be set with the
: owner _passwor d option. This option may be set to : r andomso that users will never be able to
bypass permissions.

There are some caveats when encrypting your PDFs. Be sure to read the source documentation
(you can find it here: https://github.com/prawnpdf/prawn/blob/master/lib/prawn/security.rb) before
using this for anything super serious. User cannot print the document. All permissions revoked and
owner password set to random

frozen_string_ literal: true

Sonme permi ssions may be set for the regular user with the foll ow ng options:
<code>: pri nt _docunent </ code>, <code>: nodi fy_cont ent s</ code>

<code>: copy_cont ent s</ code>, <code>: nodify_annotati ons</code>. Al this
options default to true, so if you' d like to revoke just set themto false

A user may bypass all perm ssions if he provides the owner password which
may be set with the <code>: owner password</code> option. This option may be
set to <code>:randonx/code> so that users will never be able to bypass
perni ssi ons.

There are sone caveats when encrypting your PDFs. Be sure to read the source
docunentation (you can find it here

https://github. com prawnpdf/ prawn/ bl ob/ master/|ib/prawn/security.rb) before
using this for anything super serious.

#
#
#
#
#
#
#
#
#
#
#
#
#
#

require_relative '../exanmple_hel per'

User cannot print the docunent.
Prawn: : Manual Bui | der: : Exanpl e. generat e(' cannot _print. pdf') do
text "If you used the user password you won't be able to print the doc."
encrypt _docunent (
user _password: 'foo', owner_password: 'bar',
perm ssions: { print_docunent: false }

)

end

Al perm ssions revoked and owner password set to random
Prawn: : Manual Bui | der: : Exanpl e. gener at e(' no_perm ssi ons. pdf ') do
text "You may only view this and won't be able to use the owner password."
encrypt _documnent (
user _password: ‘'foo', owner_password: :random
perm ssions: {
print_docunent: false
nodi fy_contents: false
copy_contents: false,
nodi fy_annot ati ons: fal se

This code snippet was not evaluated inline. You may see its output by running the example file located here:

http://github.com/prawnpdf/prawn/tree/master/manual/security/permissions.rb

https://github.com/prawnpdf/prawn/blob/master/lib/prawn/security.rb
http://github.com/prawnpdf/prawn/tree/master/manual/security/permissions.rb

	Cover
	How to read this manual
	Basic concepts
	Creation
	Origin
	Cursor
	Other cursor helpers
	Adding pages
	Measurement
	View

	Graphics
	Basics
	Helper
	Fill and stroke

	Shapes
	Lines and curves
	Common lines
	Rectangle
	Polygon
	Circle and ellipse

	Fill and Stroke settings
	Line width
	Stroke cap
	Stroke join
	Stroke dash
	Color
	Gradients
	Transparency
	Soft masks
	Blend mode
	Fill rules

	Transformations
	Rotate
	Translate
	Scale

	Text
	Basics
	Free flowing text
	Positioned text
	Text box overflow
	Text box excess
	Column box

	Styling
	Font
	Font size
	Font style
	Color
	Alignment
	Leading
	Kerning and character spacing
	Paragraph indentation
	Rotation

	Advanced Styling
	Inline
	Formatted text
	Formatted callbacks
	Rendering and color
	Text box extensions

	External Fonts
	Single usage
	Registering families

	Multilingualization
	Utf8
	Line wrapping
	Right to left text
	Fallback fonts
	Win ansi charset

	Bounding box
	Basics
	Creation
	Bounds

	Advanced
	Stretchy
	Nesting
	Indentation
	Canvas
	Russian boxes

	Layout
	Simple grid
	Boxes
	Content

	Table
	Images
	Basics
	Plain image
	Absolute position

	Relative Positioning
	Horizontal
	Vertical

	Size
	Width and height
	Scale
	Fit

	Document and page options
	Page size
	Page margins
	Background
	Metadata
	Print scaling

	Outline
	Basics
	Sections and pages

	Adding nodes later
	Add subsection to
	Insert section after

	Repeatable content
	Repeater
	Stamp
	Page numbering
	Alternate page numbering

	Security
	Encryption
	Permissions

