

Light as part of the EM spectrum On colours

The human eye perceive visible light of each wavelength as a specific colours.

Light, colour and human eye Cone receptors

Aalto University School of Electrical Engineering

Only the cones distinguish colours.

- There are 4 500 000 cones in average on the retina.
- They are less sensitive to light than rods.
- They are arranged mostly in fovea and macula.
- They contribute to vision in well lit environment – photopic vision.

Light, colour and human eye Cone receptor cells

Humans normally have three kinds of cones.

L-cones - respond most to long wavelengths, peaking in the yellow region.

M-cones - respond most to mediumwavelength, peaking at green.

S-cones - respond most to shortwavelength light of a violet colour.

Aalto University School of Electrical Engineering

Lighting Unit / Department of Electrical Engineering and Automation 26.11.2015

Light, colour and human eye Cone receptor cells

- The number of individual types of cones in the retina is different.
- There is only 7 % of "blue" cones in the central part of the retina (i.e. fovea) and "green" and "red" are in the ratio 1:1,5.
- There is no "blue" cones right in the middle and there is only 1 % of them on the whole retina.

Aalto University School of Electrical Engineering

Modern Science of Colorimetry

Sir Isaac Newton (1642-1727)

- Light consists of particles.
- White light results from mixing the seven primary colours.
- The human eye cannot perceive the components of mixed light.
- Two colours with different spectral composition may appear to be identical.
- Seven primaries: red, orange, yellow, green, blue, indigo and violet

Aalto University School of Electrical Engineering

Lighting Unit / Department of Electrical Engineering and Automation 26.11.2015

Modern Science of Colorimetry The trichromatic theory

Prof. Christian Ernst Wünsch (1744-1828)

• Newton's seven primary colours are combinations of the three others. (1722)

Thomas Young (1773-1829)

- · Wave theory of light
- Three type of receptors on the retina (1801)
- Primaries: red, green and violet

Aalto University School of Electrical Engineering

Portrait of Thomas Young

	Wavelength	Colour n	Colour matching coefficients			ticity co- nates	
	nm	X	y	— Z	х	у	
-	570 580	0,7621 0,9163	0,9520 0,8700	0,0021 0,0017	0,4441 0,5125	0,5547 0,4866	
	590 600 610	1,0263 1,0622 1,0026	0,7570 0,6310 0,5030	0,0011 0,0008 0,0003	0,5752 0,6270 0,6658	0,4242 0,3725 0,3340	
	620 630	0,8544 0,6424	0,3810 0,2650	0,0003 0,0002 0,0000	0,6915 0,7079	0,3083 0,2920	
	640 650	0,4479 0,2835 0,1640	0,1750 0,1070	0,0000 0,0000	0,7190 0,7260 0,7200	0,2809 0,2740 0,2700	
	670 680	0,1049 0,0874 0,0468	0,0320 0,0170	0,0000 0,0000 0,0000	0,7320 0,7334	0,2700 0,2680 0,2666	
	690 700	0,0227 0,0114	0,0082 0,0041	0,0000 0,0000	0,7344 0,7347	0,2656 0,2653	
	710 720 730	0,0058 0,0029 0.0014	0,0021 0,0010 0,0005	0,0000 0,0000 0,0000	0,7347 0,7347 0,7347	0,2653 0,2653 0.2653	
	740 750	0,0007 0,0003	0,0003 0,0001	0,0000 0,0000	0,7347 0,7347	0,2653 0,2653	

The CIE 1931 XYZ system Chromaticity diagram

- Every real colour is within the area defined by spectral locus and the purple boundary.
- Spectral colours are on the locus(edge).
- R, G and B are on the spectral locus.
- Pure spectral colour cannot be achieved by mixing primary colours
- X, Y and Z are not within the spectral locus.

Aalto University School of Electrical Engineering

<section-header><list-item><list-item><list-item><list-item><list-item><list-item>

Colour Rendering Index Metamerism

- Light source metamerism
 - Same chromaticity
 - Different spectral power distribution
 - Different colour rendering properties
 - Normally such an extreme degree of metamerism is not shown by conventional light sources.
- Other type of metamerisms:
 - Surface colour metamerism
 - Observer metamerism

Aalto University School of Electrical Engineering

The appearance of the lights is the same, but surfaces illuminated by them appear different.

> Lighting Unit / Department of Electrical Engineering and Automation 26.11.2015

Δ

48

Colour rendering index Limitations

Rapid uptake of LED lighting

- For some types of light sources, the CIE CRI does not agree well with overall perceived colour rendering.
- The disagreement tends to be significant for LED light sources that contain narrow-band spectral components.

Main technical issues

- Inaccuracy of colour appearance evaluation arising from the original 1974 CRI formulae and small number of colour test samples used in the CRI calculation.
- Limitation of the CRI due to the fact that it is simply a colour fidelity metric.

Aalto University School of Electrical Engineering

Aalto University School of Electrical Engineering

Colour Rendering Index Test Colour Samples Test **CIE Specification** Color Num-ber Munsell **ISCC-NBS** Name Notation у Y 7.5 R 6/4 5 Y 6/4 5 GY 6/8 2.5G 6/6 0.375 0.331 29.9 Light grayish red 0.385 0.395 28.9 Dark grayish yellow 0.373 0.464 30.4 Strong yellow green 0.287 0.400 29.2 Moderate yellowish 1. 2. 3. 4. 10 BG 6/4 0.258 0.306 30.7 Light bluish green 5 PB 6/8 0.241 0.243 29.7 Light blue 2.5 P 6/8 0.284 0.241 29.5 Light blue 10 P 6/8 0.325 0.262 31.5 Light reddish purple 5. 6. 7. 8. 4.5 R 4/13 0.567 0.306 11.4 Strong red 5 Y 8/10 0.438 0.462 59.1 Strong yellow 4.5 G 5/8 0.254 0.410 20.0 Strong green 3 PB 3/11 0.155 0.150 6.4 Strong blue 5 YR 8.4 0.372 0.352 57.3 Light yellowish pink 9. 10. 11. 12. 13. (Caucasian complexion) 14. 5 GY 4/4 0.353 0.432 11.7 Moderate olive green (leaf green) Aalto University Lighting Unit / Department of Electrical Engineering and Automation School of Electrical 26.11.2015 Engineering 54

Modern colour order systems The Munsell system

Albert H. Munsell published his colour atlas in 1915

- Almost uniform color representation
- Based on rigorous measurements of human subjects' visual responses to colour.

Modern colour order systems The Munsell System

A colour is described with three attributes (i.e. colour dimensions):

- Hue (the name of the colour)
- Value (the lightness or darkness of the colour)
- Chroma (the saturation or purity of the colour)

Lighting Unit / Department of Electrical Engineering and Automation

26.11.2015

Aalto University School of Electrical Engineering

