Methods in Ecology and Evolution

Methods in Ecology and Evolution 2014, 5, 1373-1382 doi: 10.1111/2041-210X.12279

SPECIAL ISSUE. MODELLING DEMOGRAPHIC PROCESSES IN MARKED POPULATIONS:
PROCEEDINGS OF THE EURING 2013 ANALYTICAL MEETING

Goodness-of-fit of integrated population models using
calibrated simulation

Panagiotis Besbeas"? and Byron J.T. Morgan?

1Depanfmenz‘ of Statistics, Athens University of Economics and Business, 76 Patission Str, Athens 10434, Greece, and
2National Centre for Statistical Ecology, School of Mathematics, Statistics and Actuarial Science, University of Kent,
Canterbury CT2 7NF, UK

Summary

1. Integrated population modelling is proving to be an important and useful technique in statistical ecology.
However, there is currently no simple formal method for judging how well models fit data, when potentially sev-
eral different data sets described by different structured models are being analysed in combination.

2. We propose and evaluate a new approach, of calibrated simulation. Here, comparative data sets are obtained
from simulating data when model parameter values are obtained from the assumed asymptotic normal distribu-
tion of the maximume-likelihood estimators from the real data. The approach is motivated and justified by Baye-
sian P-values. Calibration of the resulting statistics is achieved as repeated data sets are easily simulated from the
fitted model. The method requires the specification of model discrepancy measures, and we show how different
measures can highlight different aspects of fit.

3. Calibration is only strictly necessary if the statistics proposed may appear to be extreme.

4. The approach of using calibrated simulation to check the goodness-of-fit of integrated population models is
demonstrated by application to data sets on lapwings and herons. In each case, there are two data sets involved
in the integrated analysis, and for each component data set, discrepancy measures of goodness-of-fit are
obtained. For the lapwing application, as replication is efficient, it is possible to calibrate the procedure simply by
using additional simulations. The heron application is shown to be feasible, but is substantially harder to cali-
brate, due to the presence of productivity thresholds that need to be estimated using profile likelihood methods.
We demonstrate the importance of taking more than one discrepancy measure for time-series data. Avenues for
future research are outlined. This article has supplementary materials on line.

Key-words: asymptotic normality, discrepancy measure, goodness-of-fit, herons, integrated popu-
lation modelling, kernel density estimation, lapwings

tance of the independence assumption is examined by simula-
tion in Besbeas, Borysiewicz & Morgan (2009) and Abadi
et al. (2010). More flexible approaches, based on hierarchical

Introduction

When independent data sets are obtained from observations

on wild animals then after appropriate stochastic models are
constructed, likelihoods can be formed for each data set and
multiplied together to give a single joint likelihood. This was
done by Besbeas et al. (2002) (hereafter BFMC), for census
and demographic data on birds. The advantages of maximiz-
ing the joint likelihood were that common parameters were
estimated with greater precision and in addition it was possible
to provide a coherent estimate of a productivity parameter,
together with its standard error, that would not otherwise have
been possible. The approach generalizes naturally to when
there are additional data and corresponding likelihoods, for
example on productivity, and is called integrated population
modelling; see for example, Tavecchia ez al. (2009). The impor-
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modelling and Bayesian analysis, are provided by Chandler &
Clark (2014) and Mazzetta, Morgan & Coulson (2010), in
which different observations can be obtained on the same ani-
mals, which are described by an underlying stochastic, possibly
spatial, process. A useful bibliography of recent work on inte-
grated population modelling has been provided by Schaub &
Abadi (2011).

In BFMC, the demographic data were ring recoveries, pro-
viding information on survival which is typically expressed in
terms of annual probabilities, and the corresponding likeli-
hood was product multinomial; see for example, Freeman &
Morgan (1992). The census data were described using a state-
space model incorporating survival and productivity parame-
ters; see for example, Durbin & Koopman (2001). In that case,
an approximate likelihood resulted from using the Kalman fil-
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ter. Goodness-of-fit was considered graphically, separately for
the two individual component data sets, using plots of
observed vs. expected values for the demographic data and Q-
Q plots for the prediction errors from the Kalman filter used to
produce the likelihood for the census data. In other applica-
tions, goodness-of-fit of time-series components of integrated
population modelling has been checked visually by
superimposing observed and fitted trajectories, as done for
instance in Besbeas & Morgan (2012). Thus, up to now, good-
ness-of-fit checking for integrated population models is either
not done, or done in an ad hoc fashion, and a new approach is
required. In this paper, we follow the same strategy as BFMC,
considering the fit of the models to component data sets sepa-
rately. However, we adopt a common procedure for all compo-
nents of integrated population analysis and also present a
simulation-based method for formally evaluating the resulting
measures. Brooks, King & Morgan (2004) introduced Bayes-
ian inference for integrated population modelling, and an
advantage of the Bayesian approach is the availability of
Bayesian P-values for judging goodness-of-fit. However,
Bayesian P-values are implicitly dependent on the priors (see
e.g. King et al. 2009, p138). In addition, more recently, King
(2011) has identified problems with MCMC mixing, as did also
Besbeas & Morgan (2012). Therefore, as in BFMC, here we
use classical inference for model fitting. Our particular focus in
this paper is on checking the goodness-of-fit of models that
have already been chosen for data sets. Model selection in inte-
grated population modelling is the topic of a companion
paper by P.T. Besbeas, R.S. McCrea and B.J.T. Morgan, in

prep.

Methods

STATE-SPACE MODELS

State-space models involve two linked stochastic equations, a
transition equation and an observation equation; see for exam-
ple, Durbin & Koopman (2001). As an illustration, we give
below the transition equation for the lapwing Vanellus vanellus
census data, taken from BFMC. We assume no sex effect on
survival and that breeding starts at age 2:

()= (8 4G+ )
Na,t a d)a,t d)a,t Na,t—l €a,t
Here N, , and N, , denote the numbers of one-year-old female
birds and (adult) female birds aged >2 years, respectively, at
time ¢, and ¢;, and ¢, are, respectively, the annual survival
probabilities of birds in their first year of life and of birds aged
1 year and older at time 7. The parameter p, denotes the annual
productivity of females per female, and the ¢, and ¢, , terms
are errors, which are taken as normally distributed with vari-
ances given by suitable Poisson and binomial expressions; see
BFMC for details.

We are not able to observe both N, ,and N, ,, as information
is available only on the number breeding, N, ,, and this feature
is described by the observation equation:

eqn 1

yi = (0,1) x (N1, Noy)' + 1, eqn 2

which includes a term to describe measurement error. A simple
possibility, which we adopt, is to assume that 1, ~ N(0,7).

PARAMETER REGRESSIONS

For lapwings, following model selection, the survival probabil-
ities, which are common to both likelihoods in the integrated
population model, are logistically regressed on a measure of
winter severity, ®,, the number of days when the temperature
was below freezing in year ¢, as measured in central England.
Specifically, in an obvious notation,

logit(¢1,) = By + Pro eqn 3

logit(d,,) = & + i eqn 4

The reporting probability of dead birds, A,, which is a com-
ponent of the ring—recovery likelihood, is logistically regressed
on time, this reflecting the decline over time in reporting proba-
bility of dead birds in England. In addition, productivity, p,,
which only appears in the state-space model, is logarithmically
regressed on time, as it has been inferred to be decreasing, and
as such is responsible for the declining population size of this
species in England; see BFMC. We may denote the integrated
population model as ¢(®,),d(o,)/M(year)/p(year).

USE OF SIMULATIONTO CHECK GOODNESS-OF-FIT

Constructing diagnostics for judging the goodness-of-fit of
state-space models to data is complex, as explained in New-
man et al. (2014, p117). A particular use of simulation was
suggested by Brooks, Catchpole & Morgan (2000) in the con-
text of the analysis of mark-recovery and recapture data
from wild birds, and it is also proposed by Johnson (2004).
We extend the approach to integrated population modelling.
The work is motivated by Bayesian P-values; see for example,
Brooks, Catchpole & Morgan (2000), where multiple simula-
tions are obtained from the posterior distribution for the
parameters of the model being considered. Once the inte-
grated model is fitted to all of the data, then s sets of simu-
lated data sets, of dimensions matched to those of the real
data sets, are obtained repeatedly from the component mod-
els. Each set is simulated with parameter values drawn from
the assumed asymptotic multivariate normal distribution of
the maximum-likelihood parameter estimates from fitting the
real data.

In detail, suppose that 0 and X are, respectively, the maxi-
mume-likelihood estimates from fitting the real data, and asso-
ciated dispersion matrix obtained from inverting the observed
information matrix evaluated at 0. For each simulated param-
eter value, 8, ~N(0, X), we might calculate a measure of the
discrepancy between the data, x and the corresponding model,
D(x; 0,), and we also simulate a new data set x; from the model.
For each new data set, we then calculate D(x;; 0,), and a scatter
plot is obtained of D(x; 0;) vs. D(x; 0,). If the model fits the
data well, then one would expect approximately half of the
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points in the scatter to be above the line of unit slope through
the origin. We denote the proportion of points above the line
by p. = n./s, where n, is the corresponding number of points
above the line. For integrated population modelling, we can
obtain such plots and proportions separately for each of the
data sets in the analysis. An attraction of this approach is that
there is complete freedom in the choice of the measures of dis-
crepancy that may be used, and furthermore more than one
might be used for each data set, as recommended by Gelman,
Meng & Stern (1996). For example, Millar & Meyer (2000)
used four different measures when assessing the fit of a surplus-
production model for fisheries data: one was a standard chi-
square, while the other three were specific to the problem. They
obtained P-values of 0-69, 0-27, 0-50 and 0-42 which they
judged indicated that the model fitted the data sufficiently well.
However, we note the variation in the values obtained, which
indicates the importance of taking several measures. As
observed by Johnson (2004), the distribution of P-values is also
unknown, and they cannot be easily calibrated due to the com-
putation time required. By running simulations for replicated
versions of the real data, we provide such a calibration for the
methods in this paper, without the need for multiple Markov
chain Monte Carlo simulations required to calibrate Bayesian
P-values.

If uninformative prior distributions are assumed for the
model parameters, and if the assumption of asymptotic
normality for the distribution of maximum-likelihood esti-
mators is justified, then simulating as we do from the multi-
variate normal distribution will be similar to simulating
from a posterior distribution for the parameters, producing
Bayesian P-values. It is therefore important to check the
assumption of multivariate normality for the problems that
we consider, and we do that in the next section. Should the
assumption of multivariate normality not hold then a possi-
ble approach, which we do not consider here would be to
sample from a kernel density estimate from additional
bootstrap sampling. An alternative would be to employ an
appropriate reparameterization.

Simulation check of multivariate normality

The papers of Besbeas, Lebreton & Morgan (2003) and
McCrea et al. (2010) have both made the multivariate normal
assumption for the distribution of maximum-likelihood esti-
mators in integrated population modelling when data arise
from single-site and multi-site mark-recovery data, respec-
tively. In each case, the assumption was found to perform well
for the data considered. They checked profile likelihoods for
selected parameters, and as a simpler alternative here we focus
on univariate marginal distributions and examine all model
parameters. We have conducted further simulations, of single-
site mark-recovery data, based on the lapwing data set (see
Results) and for several modifications of that set in which there
are successive reductions in sample sizes. This has also been
done for integrated modelling, where independent census data
were also available. Illustrations are given in Fig. 1. In order to
obtain replicate data sets matched to the real data, we have
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used nonparametric bootstrap sampling for the ring—recov-
ery data and bootstrapping in the state-space framework
(Stoffer & Wall 1991) for the time series. We believe that
both of these approaches are novel for integrated popula-
tion modelling. Even when mark-recovery data are very
sparse indeed, the assumption of approximate univariate
normality is satisfied for the parameter estimators. We attri-
bute this to the fact that mark-recovery likelihoods will be
approximately products of binomial distributions, corre-
sponding to animals not recovered, and the good approxi-
mation of those binomial distributions by normals.
Additional results are in the Appendix S1. The bootstrap-
ping also provides a useful check of the Hessian-based stan-
dard errors which we have used. The agreement, shown in
the Appendix S1, is excellent.

Choice of discrepancy measure

MARK-RECOVERY DATA

For mark-recovery data, there are different discrepancy mea-
sures that may be used. Brooks, Catchpole & Morgan (2000)
use the Freeman-Tukey statistic (Freeman & Tukey 1950) in
which, for expected values {¢;}, we define the following dis-
crepancy measure:

Dir(x;0) = S (V5 - Ve,

i

eqn 5

and an alternative is the Pearson chi-square statistic, incor-
porating an amalgamation level m to accommodate small
values. Details of these two measures and their asymptotic
equivalence when the model is correct are provided by
Bishop, Fienberg & Holland (1975, p513). The difficulty with
using the chi-square measure when data are sparse is the
need for pooling cells with small expected values, which is
not only arbitrary but results in differential weighting of the
cells. We demonstrate this in Fig. 2 for model ¢(®,),d.(®,)/
A(year) fitted to the lapwing data. We can see here that chi-
square provides not a single discrepancy measure, but rather
an infinite family of such measures, indexed by the amalgam-
ation level used. Small amalgamation can give rise to accept-
able p. values, but for larger amalgamation, extreme non-
zero counts, which may occur in the real data, are moved
towards the main diagonal of the recovery table, resulting in
increased discrepancies compared with simulated data, for
which such extreme values would be relatively rare, and
resulting small p. values. If matching such extreme values is
seen to be important, then the chi-square discrepancy mea-
sure will indicate poor fit of the model. This explains how
different discrepancy measures can lead to different values
and indeed different conclusions. This is further explored for
these data in the Appendix S2, using simulation, when
extreme values are less likely to occur. Also shown in Fig. 2
is a Monte Carlo investigation of the residual deviance,
2(liax — f), where £,y 18 the log likelihood under the maxi-
mal model, which fits a parameter for each observation, and
{ is the maximized log likelihood for model ¢;(®,),d.(®,)/A
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(year); see for example, Catchpole (1995). This is in agree-
ment with the Freeman-Tukey results in Fig. 2b, and we
therefore select the Freeman-Tukey measure for use in the
work of this paper. This perspective applies also to mark—
recapture data in general.

CENSUS DATA

Fig. 1. Tllustration of sampling distributions
for estimated parameters from ring—recovery
data alone, left column, and integrated popu-
lation modelling, right column, derived by
bootstrapping for the lapwing example. The
parameters are (a,b) ¢, intercept, By, (c,d) ¢,
intercept, &, (¢) A intercept, (f) p intercept.
1000 bootstrap replicates were used in each
case.

Fig. 2. The amalgamation level m determines
the value at which small cells are pooled when
forming a Pearson chi-square discrepancy
measure. Panel (a) shows the effect of 72 on the
chi-square discrepancy, for model
d1(m,),d(0,)/Myear) fitted to the lapwing
ring-recovery data. For comparison, panel (b)
trivially shows the stability of the Freeman—
Tukey discrepancy, as it does not involve m1.
There are four circles per amalgamation level,
corresponding to four replicate runs. Panel (c)
provides a histogram summarizing the distri-
bution of the observed deviance, indicated by
the vertical line, from 500 Monte Carlo simu-
lations.

For any time series {y,}, there are many alternative discrep-
ancy measures that can be used, based on the prediction errors,
{y: — 7/}, where y, are fitted values. For illustration, we use
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two simple measures in the paper; these are the mean absolute
percentage error (MAPE),

_ 100
ZI

t=1

Dyape(y; 0 =)/l eqn 6

where 7 is the number of (non-missing) prediction errors, and
the maximum percentage error (MPE),

Dwmpe(y; 0) = 100max{(y; — 3,)/y:}. eqn 7
In both cases, the observations where y, = 0 are ignored. As
we shall see, in practice careful thought needs to be given to the
selection of an appropriate measure(s) for particular ecological
time series, and there is a wide range of alternatives that may
be appropriate in different applications.

Results

We illustrate the performance of calibrated simulation by
application to the real data sets on birds analysed by BFMC,
and by simulation. There are two of these real data sets, on
northern lapwings, described earlier, and on grey herons,
Ardea cinerea. In each case, there are both national ring-recov-
ery data on birds ringed as young, and national count data.
For the herons the count data can be taken as a census, while
for lapwings, the count data provide an index of abundance.
The two examples contrast in interesting ways: lapwings are in
decline, whereas grey herons, following a large fall in numbers
as a result of the severe winter of 1962 in Britain, have been
increasing since then. The count data for both species are plot-
ted in BEFMC. In each case, the data have been obtained from
the British Trust for Ornithology.

LAPWINGS

We present in Fig. 3 results for the lapwing data. Based on 500
simulations, the resulting values for p,. (n.) are 0-39 (195) for
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the ring-recovery data, 0-72 (362) for the MAPE and 0-52
(259) for MPE. We judge therefore that the selected model
d1(o,),d.(o,)/M(year)/p(year) fits the data well, in agreement
with the conclusions of BFMC.

SIMULATION RESULTS: LAPWINGS

In order to provide a calibration of these values, we now simu-
late 100 data sets matched to the real data, using the maxi-
mum-likelihood parameter estimates from fitting the selected
model to the real data. Parameter values used in the simulation
are given in Table 1(a). Note the qualitative difference between
this simulation and those needed to produce the original p,. val-
ues. The simulation produces replica data sets, and we then
obtain p. values for each of these replicated data sets. Then for
each of these replications, we fit the selected model to the simu-
lated data and form p,. values, in each case based upon 500 sim-
ulations from the appropriate assumed multivariate normal
distribution. The resulting samples of 100 values for p. are
summarized in Fig. 4d. We can see that the values of p.
obtained for the real data are in agreement with the box plots,
in accordance with the findings of BFMC. The distribution of
p. values obtained for the recovery data indicates that when
the model is correct a wide range of p.. values may be obtained.
A uniform distribution for p, values is desirable, as it would
remove the need for calibration. The location of the box plot
for the MAPE measure of discrepancy in Fig. 4d is interesting,
as one might expect it to be centred at 0-5, as is true of the other
two measures considered in that figure panel. This is partly a
consequence of the behaviour of the MAPE discrepancy for
the relatively short length of ecological time series that we con-
sider, and we return to this point later in the paper. Sensitivity
studies not reported here also show that the MAPE discrep-
ancy is affected by the size of ¢ used. Also in Fig. 4, for com-
parison, we provide box plots of p. values from the three
following wrong models for the data: (a) a model where all
parameters are constant, ¢1,d,/A/p; (b) a model in which ¢,

(a)
o
0 o
PR 3\
=
28 -
= -
o o
e =
- | o | | |
160 170 180 190 8 9 10 11 12 13
Der(x; 6) Diiape(x; 6))
(c)
o
Fig. 3. Simulation results to construct p,. val- ¥
ues for model ¢(®,),d(®,)/M(year)/p(year) of CD\ =
demographic (a), and count data on lapwings, 2:1
(b) using mean absolute percentage error and T
(c) using maximum percentage error. 500 sim- Q °
ulations are used. Here and later, circles are -

used for the Freeman—-Tukey discrepancy and 16
dots for the discrepancy measures for the
time-series data.

18 20 22 24 26 28
Dype(x; 0)
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Table 1. Parameter values used in simulations to calibrate p,. estimates:
(a) for lapwings, (b) for herons with one productivity threshold and (c)
for herons with two productivity thresholds. Here the parameters vo,v;,
v, specify the thresholds measured on a logarithmic scale; see Besbeas
& Morgan (2012). The values are maximum-likelihood estimates of
models fitted to the real data. Data-based initial populations (not
shown) were used to generate the abundance data for both species

Parameters (a) (b) (c)

¢, intercept (Bo) 0-523 —0-187 —0-185
¢, slope (By) —0-023 —0-023 —0-022
¢, intercept - 0-388 0-391
, slope - —0-019 —0-017
¢ intercept - 0-906 0-925
¢s slope - —0-020 —0-019
b, intercept (&) 1:519 1355 1.357
b, slope (&) —0-028 —0-018 —0-020
) intercept —4-564 —2.027 —2.027
A slope —0-584 —0-831 —0-831
p intercept —1-175 - -
pslope —0-425 - -
Vo - —0-112 —0-041
Vi - 0-280 0-528
v - - —0-142
c 160-01 381-74 316-64

and p are both constant, ¢(®,),d,/AMyear)/p and (c) a model
with constant productivity, ¢1(®,),d.(o,)/AM(year)/p. Thus, in
order, the three wrong models (a—) are of decreasing misspeci-
fication. In Fig. 4, as we move from (d) to (c), we see that there
is no major change to the box plot for the recovery data, this
being because the only change to the model is to productivity,
which does not feature in the likelihood for the recovery data.
However, as we then move in order to the plots of (b) and (a),
we progressively make the modelling of the recovery data
worse, and as a result the recovery box plots shift in the direc-
tion of smaller values. In contrast, as we move to (¢) and then
to (b) and (a), the time-series box plots move in the direction of
larger values. This is because the models for the time-series

data are becoming steadily less realistic, which results in larger
estimates of observation error variance in the state-space
model for the census data, accommodating the lack of fit.
Thus, in this case D(x;; 0;,), values will tend to be greater than
D(x; 0;) values.

The comparison between the performance of the MAPE
and MPE measures is interesting, demonstrating the need for
ecological time series to use more than one discrepancy mea-
sure. In separate work, we have investigated the behaviour of a
range of alternatives, and a preliminary conclusion is that there
may be advantages to using symmetric MAPE (SMAPE) mea-
sures; see the Appendix S3.

HERONS

We can examine the fit to the heron data for the selected model
of BFMC in the same way as we have for the lapwings. This
model is more complex, involving four age classes for survival,
corresponding to birds aged 0, 1, 2 and more than 2 years, and
has a more sophisticated model for productivity, incorporating
density dependence. As with the lapwing application, each sur-
vival probability is regressed on w, and the reporting probabil-
ity is regressed on time, but the productivity parameter, instead
of being regressed on time, is now related to population size
through a threshold dependence; see Besbeas & Morgan
(2012). This approach is motivated by the rapid population
growth of the population following the population crash of
1962, so that the model has productivity that is driven by popu-
lation size, relative to fixed threshold sizes. The final model
selected by Besbeas & Morgan (2012) was one with three
thresholds, with productivity determined by the position of the
population size relative to those thresholds. Likelihoods do
not change when threshold parameters vary over intervals that
do not contain any time-series data, and as a consequence
thresholds are estimated from profile likelihoods.

We can see this from the histograms of Fig. 5, which are the
result of multiple simulations of matched data from a fitted
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Fig. 4. Box plots of p,. values for four models
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all parameters constant; (b) model with con-
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(c) model with constant productivity; (d) cor-
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rect model. In (d), the position of the p,. values
for the real data is indicated by circles.
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Fig. 5. Histograms of maximum-likelihood
estimates for four of the parameters in the one
threshold model for heron data, resulting from
fitting 100 simulated data sets. The parameters
are (a) ¢, intercept, By, (b) ¢, intercept, &, (c)
intercept p, (d) the single threshold value .
The values used in the simulation are indicated
by vertical lines, and we note the non-normal
appearance for parameters 3y and 1. See Table
1(b) for the parameter values used in the simu-
lation.

heron model with one threshold parameter t, each simulation
fitted by maximum likelihood. Consequently, for this applica-
tion, we conduct calibrated simulation conditional upon the
of threshold parameters

maximum-likelihood estimates
obtained from the real data.

Fig. 6. Scatter plots to obtain p, values for
determining the fit of integrated population
models of demographic and count data on
grey herons. Plots (a) and (b) correspond to no
threshold for productivity, taken as constant,
plots (c) and (d) correspond to a single produc-
tivity threshold, and plots (e) and (f) corre-
spond to two thresholds for productivity.
Mean absolute percentage error (MAPE) dis-
crepancy measures appear on the left and
those for maximum percentage error (MPE)
are on the right.
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when there are three thresholds for productivity. The p,. values
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for MAPE and MPE are 0-49 and 0-81, respectively. It appears
that the recovery data are not well described, and this may well
be due to overdispersion. We can therefore see the advantage
of checking goodness-of-fit separately for the different compo-
nents of integrated population modelling. We do not discuss
here the incorporation of overdispersion for the recovery data,
but this can be done in different ways; see for example Barry
et al. (2003), Besbeas, Borysiewicz & Morgan (2009), Burn-
ham & Rexstad (1993) and Pledger & Schwarz (2002). How-
ever, overdispersion is not revealed as such a problem for the
census data. BFMC do not comment on overdispersion at all,
and for goodness-of-fit to the census data rely solely on super-
position of observed and fitted time series.

SIMULATION RESULTS: HERONS

We illustrate the method with the use of single and two thresh-
old models, where productivity takes different values, depend-
ing on a threshold population size(s). Thus, this model for
simulation is structurally quite different from that for lap-
wings. The parameter values that were used in the simulations
were the maximum-likelihood estimates from fitting the corre-
sponding model to the heron data, and are given in Table 1(b)
and (c). In each case, recovery data were simulated by using
the observed ringing totals and winter severity measures @,.
These were combined for joint analysis with independent sets
of simulated abundance data, the values p, for a range of mod-
els were calculated based upon 500 simulations, and the pro-
cess was repeated 100 times. The sample sizes were selected to
match the heron data sets. The census data were generated by
simulating a population from a state-space model, with the
threshold determined by the corresponding true values of the
population size. For the case of a single threshold, and each
pair of simulated ring-recovery and abundance data, the
parameters were estimated two ways, once employing constant
productivity, and once with the threshold determined by the
corresponding observed values y,; see Besbeas & Morgan
(2012). For two thresholds, the same approach is adopted. The
threshold model is fitted in the manner of Besbeas & Morgan

25

Fig. 7. Scatter plots to obtain p.. values for
determining the fit of integrated population
models of demographic and count data on
grey herons when three thresholds for produc-
tivity are used. The three panels correspond to
the following three discrepancy measures

10

described in the text: (a) Freeman-Tukey; (b)
mean absolute percentage error; (¢) maximum
percentage error.

12 14 16 18

Dype(x,6))

(2012), by searching over a grid of population values for the
threshold, as direct optimization with respect to parameters
and tis not feasible.

We can see from Fig. 8 that the box plots are better
centred on 0-5 when the model is correct, compared to
when there is no assumed threshold. However, the differ-
ences are small and will inevitably depend upon the value
of the threshold adopted. The results of Fig. 9 are more
interesting, and we can see that the incorrect model with
no thresholds results in box plots for the time-series dis-
crepancy measures that are clearly incorrectly centred, sig-
nalling an incorrect model. The structural difference
between the single threshold and two threshold models is
not as great as between threshold models and a model
with no threshold, and we can see this from panels (b)
and (c) of Fig. 9. As with the lapwing simulations, there
are differences in behaviour of the two time-series discrep-
ancy measures, and this is the subject of further research.

(a) (b)
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Fig. 8. Box plots of p,. values for two models for simulated heron data
with a single productivity threshold: (a) the wrong model is fitted, with
constant productivity; (b) the correct model is fitted, with one produc-
tivity threshold.
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Fig.9. Box plots of p. values for three models for simulated heron data
with two productivity thresholds: (a) the wrong model is fitted, with
constant productivity; (b) the wrong model is fitted with one productiv-
ity threshold; (c) the correct model is fitted with two productivity
thresholds.

Discussion

By means of two examples, we have demonstrated the poten-
tial of calibrated simulation for gauging the fit of integrated
population models. In most cases, applications will be straight-
forward, corresponding to the lapwing example. If p. values
are obtained which are judged to be acceptable, the calibration
would not be necessary, and it only needs to be used to check
values considered to be too high or too low. We believe that
this approach will prove to be useful in future applications of
integrated population modelling. The value of the heron exam-
ple is in demonstrating that in certain cases modifications to
the standard procedure are needed. Ongoing research will eval-
uate the use of calibrated simulation for assessing the fit of
mark-recapture data in general. For the ring—recovery data
analysed in this paper, the calibration of the Freeman-Tukey
discrepancy measures shows that the distribution of p,. values
is approximately uniform when the model fits the data well.
However, this is a consequence of the data and measure
employed, and less uniform results are obtained for the time-
series data and measures. Further research on Bayesian P-val-
ues is described by Zhang (2014).

Constructing discrepancy measures for different types of
data and models produces interesting new challenges. We have

Calibrated simulation goodness-of-fit 1381

seen that for time-series and mark-recovery data different
measures need to be used in tandem and that sensitivity analy-
ses also need to be carried out. This is the topic of current
research.
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