
systembsd: custom dbus daemons

emulating systemd behavior on

openbsd

ian sutton, 2015

public domain/CC0

who(1)
 -senior computer engineering student at syracuse university

 -openbsd user for 1 year
 -windows (1995) -> ubuntu (2006) -> arch (2009) ->
openbsd (2014)
 -"plan 9"

 -c programmer

 -most interested in kernel/low-level drivers development

 -aspiring openbsd developer

 ian@kremlin.cc
 freenode: kremlin-

 kremlin.cc
 uglyman.kremlin.cc (repos)
 bsd.port.mk
 ce.gl

who(1)
cont.
 -works for spiders, an online platforms development group at
syracuse university (3 years)

 -started out as a html/css/php/javascript/kitchen sink dev
 -ugh

 -now help manage some of the systems hosting our sites
 -many hundreds of wordpress installations

 -also doing contract work for a diamond dealer in houston
 -migrating their sales/records system from dbase on dos
running on a 486 machine older than i
 -new system uses openbsd, owner very happy with it

history(3)
 -starting in 2013 i became increasingly unsatisfied with linux
 -kernel development pace
 -incongruent kern/user space due to -2147483647 distros
 -are you using networkmangler? netctl? wicd? networkd?
 -community
 -license sucks
 -kernel source tree is a gordian knot

 -2013, arch linux replaces system V init with systemd
 -the straw that broke the camel's back
 -"/bin exists in filesystem" (!)

history(3)
cont.
 -2014, apply for google summer of code with openbsd, began
transitioning to using openbsd
 -2015 gsoc

 -found it to be an overall more coherent & contiguous
operating system
 -"minimal"

 -awesome code quality & documentation

 -professional, serious community
 -"what he is trying to do is create a frankenstein." - theo de
raadt on my computer

 -codebase represents work accomplished by a small
number of talented, focused engineers
 rather than by thousands of nebulous individuals

 -straightforward & permissive license (11 lines!)

disclaimer
 -the opinions in this talk are wholly my own and do not
represent the views of
 my employers, my colleagues, the president, xenu, etc.

 -i am an undergraduate college student and shouldn't be taken
as an authoritative source

 -the systemd project & its developers admittedly catch a lot of
undue, inappropriate flak
 which has created a very angry & political dialogue
surrounding systemd, which i am trying
 to avoid in this talk

systembsd
 -my gsoc project last year was to write several dbus daemons
emulating the behavior
 of systemd counterparts
 -from scratch in c

 -hostnamed, localed, timedated, and logind

 -mentored by ajacoutot@ and landry@, openbsd developers

 -project was successful yet ongoing
 -hard to keep up with systemd development pace
 -logind split

 -will hopefully end up as a !PORT! installed alongside large
DEs like gnome

systembsd: why
 -the overwhelmingly common use case for these daemons is
for running gnome

 -gnome has a history with compatibility/portability
 -gnome 3 requires 3d acceleration
 -but what if i am running it in a VM?
 -old friend nvidia

 -gnome 3 now depends on systemd (or at least these 4
daemons)
 -problematic as *bsd will never run systemd

 -so we emulate the daemons with code written from scratch
 as porting a subset of systemd is infeasible

but before we get into that...

was..ist..das
systemd overview

was..ist..das
systembsd overview

"emulating the daemons' behavior"
 -systemd code too co-dependent on other systemd
libraries/components
 -can't port/recreate any low-level functionality
 -horrible idea anyway

 -we use dbus instead

"emulating the daemons' behavior":
dbus
 -dbus is a userspace ipc program
 -general programs can register their service names on the
"bus"
 -services with names on the bus can call functions with
typed params on each other
 -according to a security policy (polkit)
 -systemd team did a lot of work on it + is tightly integrated
into systemd
 -dbus is terrible
 -dbus is ported to bsd

"emulating the daemons' behavior":
dbus
 -we can write programs that register names on the dbus
 -those names might happen to match the ones systemd
registers
 -APIs, too

what this looks like
node /org/freedesktop/hostname1 {
 interface org.freedesktop.hostname1 {
 methods:
 SetHostname(in s name,
 in b user_interaction);
 SetStaticHostname(in s name,
 in b user_interaction);
 SetPrettyHostname(in s name,
 in b user_interaction);
 SetIconName(in s name,
 in b user_interaction);
 SetChassis(in s name,
 in b user_interaction);
 signals:
 properties:
 readonly s Hostname = 'dhcp-192-168-47-11';
 readonly s StaticHostname = 'lennarts-computer';
 readonly s PrettyHostname = 'Lennart's Computer';
 readonly s IconName = 'computer-laptop';
 readonly s Chassis = 'laptop';
 };
 interface org.freedesktop.DBus.Properties {
 };
 interface org.freedesktop.DBus.Introspectable {
 };
 interface org.freedesktop.DBus.Peer {
 };
};

hostnamed
 -controls setting various hostnames
 -regular hostname
 -static hostname
 -"pretty" hostname
 -icon & chassis
 -easy

hostnamed
 -hostnames on bsd work differently than linux
 -domain

 -/etc/hostname.if
 -interface-specific name

 -notice trend of named daemon doing things outside of its
scope
 -this is for sysadmins/corporate people
 -example: machine type, icon, vm status, etc.

localed
node /org/freedesktop/locale1 {
 interface org.freedesktop.locale1 {
 methods:
 SetLocale(in as locale,
 in b user_interaction);
 SetVConsoleKeyboard(in s keymap,
 in s keymap_toggle,
 in b convert,
 in b user_interaction);
 SetX11Keyboard(in s layout,
 in s model,
 in s variant,
 in s options,
 in b convert,
 in b user_interaction);
 signals:
 properties:
 readonly as Locale = ['LANG=en_US.UTF-8'];
 readonly s VConsoleKeymap = 'de';
 readonly s VConsoleKeymapToggle = '';
 readonly s X11Layout = 'de';
 readonly s X11Model = '';
 readonly s X11Variant = '';
 readonly s X11Options = '';
 };
 interface org.freedesktop.DBus.Properties {
 };
 interface org.freedesktop.DBus.Introspectable {
 };
 interface org.freedesktop.DBus.Peer {
 };
};

localed
 -controls setting locale
 -$ locale
 LANG=
 LC_COLLATE="C"
 LC_CTYPE="C"
 LC_MONETARY="C"
 LC_NUMERIC="C"
 LC_TIME="C"
 LC_MESSAGES="C"
 LC_ALL=

 -these should be utf-8

 -locales work differently on openbsd than linux or other bsds
 -/usr/share/locale/
 -posix locales

 -also handles setting keymap & "X11 keyboard"
 -keymaps for ttys & X

 -also pretty easy

timedated
node /org/freedesktop/timedate1 {
 interface org.freedesktop.timedate1 {
 methods:
 SetTime(in x usec_utc,
 in b relative,
 in b user_interaction);
 SetTimezone(in s timezone,
 in b user_interaction);
 SetLocalRTC(in b local_rtc,
 in b fix_system,
 in b user_interaction);
 SetNTP(in b use_ntp,
 in b user_interaction);
 signals:
 properties:
 readonly s Timezone = 'Europe/Berlin';
 readonly b LocalRTC = false;
 readonly b NTP = true;
 };
 interface org.freedesktop.DBus.Properties {
 };
 interface org.freedesktop.DBus.Introspectable {
 };
 interface org.freedesktop.DBus.Peer {
 };
};

timedated
 -handles setting time & date (big surprise)
 -also NTP

 -UTC vs. RTC
 -why?
 -unix

 -actual systemd linux implementation has a lot more stuff than
site lists
 -this was common
 -major development setback
 -have to improvise

logind (the big one)
 -api way too huge to list here

 -important objects:
 -user (not that kind of user)
 -session
 -seat

 -functions:
 -flush devices
 -allocate devices
 -handle creating/destroying users/seats/sessions
 -reboot (!!)
 -shutdown (!!)
 -sleep (!!)
 -acpi hell

logind
 -logind is huge and it sucks
 -recently split off into its own package
 -fstab story
 -Error getting authority: Error initializing authority: Could
not
 connect: No such file or directory (g-io-error-quark, 1)

 -`loginctl` to manage via command line
 -almost carbon copy of dbus interface
 -why?

 -hard to emulate on openbsd
 -pam vs. bsd_auth

pam

 -pluggable authentication modules

 -pretty much unstandardized
 -sun 1995
 -linux/freebsd rolls their own
 -api doesn't match up
 -libpam on linux
 -unportable, especially for openbsd (untrusted)

 -openbsd's pam port died a while back
 -integrating logind with bsd_auth(3) is hard
 -not sure if possible currently

 -end benefit
 -thin clients

systemd // bsd
 -systemd major components:
 -lrwxrwxrwx 1 root root 22 Apr 21 21:02 /sbin/init ->
../lib/systemd/systemd
 -classic init
 -huge misconceptions

 -does pretty much the same job as system V init (unix)
 -inherit zombie pids
 -never ever die, lest panic

systemd // bsd
 -systemctl
 -userspace tool for dealing with systemd startup tasks

 -similar to /etc/rc.d/foo
 -(as of 5.7) `rcctl` (ajacoutot)

 -instead of runlevels, you have service targets (.service
files)

 -types:
 -simple
 -forking
 -oneshot
 -dbus
 -notify
 -idle (reasons)

systemd // bsd
 -one *bsd, we do things the classic way
 -/etc/rc.conf
 -opinion: this is sound methodology

 -there are serious problems with systemd startup services
 -ewontfix.com/15

systemd // bsd
 -journalctl
 -overview
 -we do NOT WANT THIS
 -binary logs
 -feels more fragmented than syslog

 -bsd uses syslog, authlog, /var/log/, etc.

 -you're SOL if logs get corrupted
 -"this shouldn't happen" - systemd team

 -point of journaling

 -fair criticism of systemd

systemd // bsd
 (linux)
 $ du -csh /var/log/journal
 424M total

 (bsd)
 $ sudo du -csh /var
 15.2M total

 -things like this make me want to use bsd over linux

systemd // bsd

 -networkd
 -admittedly not that bad
 -naming screwups
 -story
 -eno1, enp0s5, enp0s6

 -uses plaintext config files to define network interfaces
 -very precarious
 -discrepancy between what is defined in configs vs.
reality

 -on bsd, network interfaces are products of drivers
 -i/f naming schema follow driver naming schema
 -example: run (ralink wifi device driver) puts up
interface "run0"
 -makes a lot of sense, to me

systemd // bsd

 -cgroups (control groups)
 -kernel-level
 -control resource usage
 -perhaps a logical approach

 -compare with bsd login.conf
 -user classes
 -easy to modify, plaintext confs
 -reboot may not be nessecary

 -used with docker
 -compare with containers, or freebsd jails
 -where things are headed, it seems

concluding thoughts

 -systemd presents concerns for *bsd
 -easy for developers who only see linux to rely on it
 -we get the short end of the stick
 -cannot port

 -the bright side:
 -opportunity for *bsd to outperform on systemd
shortcomings
 -stability is key
 -problem as systemd is rapidly being integrated, despite
age
 -bugs

 -systemd targets audience that would appreciate bsd
 -sysadmins overseeing many machines
 -large scale production servers

concluding thoughts

 -i have seen (and am part of) crowd that has switched to
 bsd because of systemd

 -code quality and maintainbility
 -now
 -future

 -i am hopeful

questions

 -any questions!

thank you

