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Summary.Increasingly larger data sets of processes in space and time ask for statistical models
and methods that can cope with such data.We show that the solution of a stochastic advection–
diffusion partial differential equation provides a flexible model class for spatiotemporal processes
which is computationally feasible also for large data sets.The Gaussian process defined through
the stochastic partial differential equation has, in general, a non-separable covariance struc-
ture. Its parameters can be physically interpreted as explicitly modelling phenomena such as
transport and diffusion that occur in many natural processes in diverse fields ranging from en-
vironmental sciences to ecology. To obtain computationally efficient statistical algorithms, we
use spectral methods to solve the stochastic partial differential equation. This has the advan-
tage that approximation errors do not accumulate over time, and that in the spectral space the
computational cost grows linearly with the dimension, the total computational cost of Bayesian
or frequentist inference being dominated by the fast Fourier transform. The model proposed
is applied to post-processing of precipitation forecasts from a numerical weather prediction
model for northern Switzerland. In contrast with the raw forecasts from the numerical model,
the post-processed forecasts are calibrated and quantify prediction uncertainty. Moreover, they
outperform the raw forecasts, in the sense that they have a lower mean absolute error.

Keywords: Advection–diffusion equation; Gaussian process; Numerical weather prediction;
Physics-based model; Spatiotemporal model; Spectral methods

1. Introduction

Space–time data arise in many applications; see Cressie and Wikle (2011) for an introduction
and an overview. Increasingly larger space–time data sets are obtained, for instance, from remote
sensing satellites or deterministic physical models such as numerical weather prediction (NWP)
models. Statistical models are needed that can cope with such data.

As Wikle and Hooten (2010) pointed out, there are two basic paradigms for constructing
spatiotemporal models. The first approach is descriptive and follows the traditional geostatistical
paradigm, using joint space–time covariance functions (Cressie and Huang, 1999; Gneiting,
2002; Ma, 2003; Wikle, 2003; Stein, 2005; Paciorek and Schervish, 2006). The second approach
is dynamic and combines ideas from time series and spatial statistics (Solna and Switzer, 1996;
Wikle and Cressie, 1999; Huang and Hsu, 2004; Xu et al., 2005; Gelfand et al., 2005; Johannesson
et al., 2007; Sigrist et al., 2012).

Even for purely spatial data, developing methodology which can handle large data sets is
an active area of research. Banerjee et al. (2004) referred to this as the ‘big n problem’. Factori-
zing large covariance matrices is not possible without assuming a special structure or using
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approximate methods. Using low rank matrices is one approach (Nychka et al., 2002; Banerjee
et al., 2008; Cressie and Johannesson, 2008; Stein, 2008; Wikle, 2010). Other proposals include
using Gaussian Markov random fields (Rue and Tjelmeland, 2002; Rue and Held, 2005; Lind-
gren et al., 2011) or applying tapering (Furrer et al., 2006) thereby obtaining sparse precision
or covariance matrices respectively, for which calculations can be done efficiently. Another pro-
posed solution is to approximate the likelihood so that it can be evaluated faster (Vecchia, 1988;
Stein et al., 2004; Fuentes, 2007; Eidsvik et al., 2012). Royle and Wikle (2005) and Paciorek
(2007) used Fourier functions to reduce computational costs.

In a space–time setting, the situation is the same, if not worse: one runs into a computational
bottleneck with high dimensional data since the computational cost to factorize dense NT ×
NT covariance matrices is O{.NT/3}, N and T being the number of points in space and time
respectively. Moreover, specifying flexible and realistic space–time covariance functions is a
non-trivial task.

In this paper, we follow the dynamic approach and study models which are defined through
a stochastic advection–diffusion partial differential equation (PDE). This has the advantage
of providing physically motivated parameterizations of space–time covariances. We show that,
when solving the stochastic partial differential equation (SPDE) by using Fourier functions,
we can do computationally efficient statistical inference. In the spectral space, computational
costs for the Kalman filter and backward sampling algorithms are of order O.NT/. As we show,
roughly speaking, this computational efficiency is due to the temporal Markov property, the
fact that Fourier functions are eigenfunctions of the spatial differential operators and the use
of some matrix identities. The overall computational costs are then determined by those of the
fast Fourier transform (FFT) (Cooley and Tukey, 1965) which are O{TN log.N/}. In addition,
computational time can be further reduced by running the T different FFTs in parallel.

Defining Gaussian processes through stochastic differential equations has a long history
in statistics going back to early works such as Whittle (1954, 1962) and Heine (1955). Later
works include Jones and Zhang (1997) and Brown et al. (2000). Recently, Lindgren et al. (2011)
have shown how a certain class of SPDEs can be solved by using finite elements to obtain
parameterizations of spatial Gaussian Markov random fields. A potential caveat of these SPDE
approaches is that it is non-trivial to generalize the linear equation to non-linear equations.

Spectral methods for solving PDEs are well established in the numerical mathematics com-
munity (see, for example, Gottlieb and Orszag (1977), Folland (1992) or Haberman (2004)). In
contrast, statistical models have different requirements and goals, since the (hyper)parameters
of an (S)PDE are not known a priori and need to be estimated. Spectral methods have also been
used in spatiotemporal statistics, mostly for approximating or solving deterministic integro-
difference equations or PDEs. Wikle and Cressie (1999) introduced a dynamic spatiotemporal
model obtained from an integrodifference equation that is approximated by using a reduced
dimensional spectral basis. Extending this work, Wikle (2002) and Xu et al. (2005) proposed
parameterizations of spatiotemporal processes based on integrodifference equations. Modelling
tropical ocean surface winds, Wikle et al. (2001) presented a physics-based model based on the
shallow water equations. Cressie and Wikle (2011), chapter 7, gave an overview of basis function
expansions in spatiotemporal statistics.

The novel features of our work are the following. Whereas spectral methods have been used
for approximating deterministic integrodifference equations and PDEs in the statistical litera-
ture, there is no reference, to our knowledge, that explicitly shows how to obtain a space–time
Gaussian process by solving an advection–diffusion SPDE using the real Fourier transform.
Moreover, we present computationally efficient algorithms for doing statistical inference, which
use the FFT and the Kalman filter. The computational burden can be additionally alleviated by
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applying dimension reduction. We also give a bound on the accuracy of the approximate solu-
tion. In the application, our main objective is to post-process precipitation forecasts, explicitly
modelling spatial and temporal variation. The idea is that the spatiotemporal model not only
accounts for dependence but also captures and extrapolates dynamically an error term of the
NWP model in space and time.

The remainder of this paper is organized as follows. Section 2 introduces the continuous
space–time Gaussian process defined through the advection–diffusion SPDE. In Section 3, it is
shown how the solution of the SPDE can be approximated by using the two-dimensional real
Fourier transform, and we give convergence rates for the approximation. Next, in Section 4,
we show how to do computationally efficient inference. In Section 5, the spatiotemporal model
is used as part of a hierarchical Bayesian model, which we then apply to post-processing of
precipitation forecasts.

All the methodology that is presented in this paper is implemented in the R package spate
(see Sigrist et al. (2012)).

2. A continuous space–time model: the advection–diffusion stochastic partial
differential equation

In one dimension, a fundamental process is the Ornstein–Uhlenbeck process which is governed
by a relatively simple stochastic differential equation. The process has an exponential covariance
function and its discretized version is the famous auto-regressive AR(1) model. In the two-
dimensional spatial case, Whittle (1954) argued convincingly that the process with a Whittle
correlation function is an ‘elementary’ process (see Section 2.2 for further discussion). If the
time dimension is added, we think that the process that is defined through the SPDE (1) has
properties that make it a good candidate for an elementary spatiotemporal process. It is a linear
equation that explicitly models phenomena such as transport and diffusion that occur in many
natural processes ranging from environmental sciences to ecology. This means that, if desired,
the parameters can be given a physical interpretation. Furthermore, if some parameters equal
0 (no advection and no diffusion), the covariance structure reduces to a separable covariance
structure with an AR(1) structure over time and a certain covariance structure over space.

The advection–diffusion SPDE, which is also called the transport–diffusion SPDE, is given by

@

@t
ξ.t, s/=−μT ∇ξ.t, s/+∇ ·Σ∇ξ.t, s/− ζ ξ.t, s/+ ".t, s/, .1/

with s= .x, y/T ∈R2, where ∇ = .@=@x, @=@y/T is the gradient operator, and, for a vector field F=
.Fx, Fy/T, ∇ ·F=@Fx=@x+@Fy=@y is the divergence operator. ".t, s/ is a Gaussian process that
is temporally white and spatially coloured. See Section 2.2 for a discussion on the choice of the
spatial covariance function. Heine (1955) and Whittle (1963) introduced and analysed SPDEs of
similar form to equation (1). Jones and Zhang (1997) also investigated SPDE-based models. Fur-
thermore, Brown et al. (2000) obtained such an advection–diffusion SPDE as a limit of stochastic
integrodifference equation models. Without giving any concrete details, Lindgren et al. (2011)
suggested that this SPDE can be used in connection with their Gaussian Markov random-field
method. See also Simpson et al. (2012) and Yue et al. (2012). Cameletti et al. (2013) modelled
particulate matter concentration in space and time with a separable covariance structure and an
SPDE-based spatial Gaussian Markov random field for the innovation term. Aune and Simpson
(2012) and Hu et al. (2013) used systems of SPDEs to define multivariate spatial models.

The SPDE has the following interpretation. Heuristically, an SPDE specifies what happens
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locally at each point in space during a small time step. The first term μT∇ξ.t, s/ models transport
effects (called advection in weather applications), μ= .μx,μy/T ∈ R2 being a drift or velocity
vector. The second term, ∇ ·Σ∇ ξ.t, s/, is a diffusion term that can incorporate anisotropy. If Σ is
the identity matrix, this term reduces to the divergence ∇· of the gradient ∇ which is the ordinary
Laplace operator ∇ ·∇ =Δ=@2=@x2 +@2=@y2. The third term −ζ ξ.t, s/, ζ>0, diminishes ξ.t, s/
at a constant rate and thus accounts for damping. Finally, ".t, s/ is a source–sink or stochastic
forcing term, which is also called an innovation term, that can be interpreted as describing,
among others, convective phenomena in precipitation modelling applications.

Concerning the diffusion matrix Σ, we suggest the parameterization

Σ−1 = 1

ρ2
1

(
cos.ψ/ sin.ψ/

−γ sin.ψ/ γ cos.ψ/

)T( cos.ψ/ sin.ψ/

−γ sin.ψ/ γ cos.ψ/

)
, .2/

where ρ1 >0, γ>0 and ψ∈ [0,π=2]. The parameters are interpreted as follows. ρ1 acts as a range
parameter and controls the amount of diffusion. The parameters γ and ψ control the amount
and the direction of anisotropy. With γ=1, isotropic diffusion is obtained.

Fig. 1 illustrates the SPDE (1) and the corresponding PDE without the stochastic innovation
term. Figs 1(a)–1(e) show a solution to the PDE which corresponds to the deterministic part of
the SPDE that is obtained when there is no stochastic term ".t, s/. Fig. 1 shows how the initial
state in Fig. 1(a) becomes propagated forwards in time. The drift vector points from north-east
to south-west and the diffusive part exhibits anisotropy in the same direction. A 100×100 grid
is used and the PDE is solved in the spectral domain by using the method that is described
below in Section 3. There is a fundamental difference between the deterministic PDE and the
probabilistic SPDE. In the first case, a deterministic process is modelled directly. In the second
case, the SPDE defines a stochastic process. Since the operator is linear and the input Gaus-
sian, this process is a Gaussian process whose covariance function is implicitly defined by the
SPDE. Figs 1(f)–1(j) show one sample from this Gaussian process. The same initial state as in
the deterministic example is used, i.e. we use a fixed initial state. Except for the stochastic part,
the same parameters are used for both the PDE and the SPDE. For the innovations ".t, s/, we
choose a Gaussian process that is temporally independent and spatially structured according
to the Matérn covariance function with smoothness parameter 1. Again, the drift vector points
from north-east to south-west and the diffusive part exhibits anisotropy in the same direction.

The use off this spatiotemporal Gaussian process is not restricted to situations where it is
a priori known that phenomena such as transport and diffusion occur. In the one-dimensional
case, it is common to use the AR(1) process in situations where it is not a priori clear whether
the modelled process follows the dynamics of the Ornstein–Uhlenbeck stochastic differential
equation. In two dimensions, the same holds true for the process with the Whittle covariance
function, and even more so for the process having an exponential covariance structure. Having
this in mind, even though the SPDE (1) is physically motivated, it can be used as a general
spatiotemporal model. As the case may be, the interpretation of the parameters can be more or
less straightforward.

2.1. Spectral density and covariance function
As can be shown by using the Fourier transform (see, for example, Whittle (1963)), if the
innovation process ".t, s/ is stationary with spectral density f̃ .k/, the spectrum of the stationary
solution ξ.t, s/ of the SPDE (1) is

f.ω, k/= f̃ .k/
1

2π
{.kTΣk + ζ/2 + .ω+μTk/2}−1, .3/
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where k and ω are spatial wave numbers and temporal frequencies. The covariance function
C.t, s/ of ξ.t, s/ is then given by

C.t, s/=
∫

f.ω, k/exp.itω/exp.is′k/dkdω

=
∫

f̃ .k/
exp{−iμTkt − .kTΣk + ζ/|t|}

2.kTΣk + ζ/
exp.is′k/dk, .4/

where i denotes the imaginary number i2 =−1, and the integration over the temporal frequen-
cies ω follows from the calculation of the characteristic function of the Cauchy distribution
(Abramowitz and Stegun, 1964). The spatial integral above has no closed form solution but can
be computed approximately by numerical integration.

Since, in general, the spectrum does not factorize into a temporal and a spatial component,
we see that ξ.t, s/ has a non-separable covariance function (see Gneiting et al. (2007b) for a
definition of separability). The model reduces to a separable model though, when there is no
advection and diffusion, i.e. when both μ and Σ are 0. In this case, the covariance function is
given by C.t, s/= .1=2ζ/exp.−ζ|t|/C.s/, where C.s/ denotes the spatial covariance function of
the innovation process.

2.2. Specification of the innovation process
It is assumed that the innovation process is white in time and spatially coloured. In principle,
we can choose any spatial covariance function such that the covariance function in equation
(4) is finite at zero. If f̃ .k/ is integrable, then f.ω, k/ is also integrable. Similarly to Lindgren
et al. (2011), we opt for the most commonly used covariance function in spatial statistics: the
Matérn covariance function (see Handcock and Stein (1993) and Stein (1999)). Since in many
applications the smoothness parameter is not estimable, we further restrict ourselves to the
Whittle covariance function. This covariance function is of the form .σ2d=ρ0/K1.d=ρ0/ with
d being the Euclidean distance between two points and K1.d=ρ0/ being the modified Bessel
function of order 1. It is called after Whittle (1954) who introduced it and argued convincingly
that it

‘may be regarded as the “elementary” correlation in two dimensions, similar to the exponential in one
dimension’.

It can be shown that the stationary solution of the SPDE(
∇ ·∇ − 1

ρ2
0

)
".t, s/=W.t, s/, .5/

where W.t, s/ is a zero-mean Gaussian white noise field with variance σ2, has the Whittle
covariance function in space. From this, it follows that the spectrum of the process ".t, s/ is
given by

f̃ .k/= σ2

.2π/2

(
kTk + 1

ρ2
0

)−2

, ρ0 > 0, σ> 0: .6/

The parameterσ2 determines the marginal variance of ".t, s/, and ρ0 is a spatial range parameter.

2.3. Relation to an integrodifference equation
Assuming discrete time steps with lag Δ, Brown et al. (2012) considered the integrodifference
equation
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ξ.t, s/= exp.−Δζ/
∫

R2
h.s − s′/ξ.t −Δ, s′/ds′ + ".t, s/, s ∈R2, .7/

with a Gaussian redistribution kernel

h.s − s′/= .2π/−1|2ΔΣ|−1=2 exp{−.s − s′ −Δμ/T.2ΔΣ/−1.s − s′ −Δμ/=2},

".t, s/ being temporally independent and spatially dependent. They showed that, in the limit
Δ→ 0, the solution of the integrodifference equation and that of the SPDE (1) coincide. The
integrodifference equation is interpreted as follows: the convolution kernel h.s − s′/ determines
the weight or the amount of influence that a location s′ at previous time t − Δ has on the
point s at current time t. This integrodifference equation representation provides an alternative
way of interpreting the SPDE model and its parameters. Storvik et al. (2002) showed under
which conditions a dynamic model determined by an integrodifference equation like equation
(7) can be represented by using a parametric joint space–time covariance function, and vice
versa. On the basis of the integrodifference equation (7), Sigrist et al. (2012) constructed a
spatiotemporal model for irregularly spaced data and applied it to obtain short-term predictions
of precipitation. Wikle (2002) and Xu et al. (2005) also modelled spatiotemporal rainfall on the
basis of integrodifference equations.

3. Solution in the spectral space

Solutions ξ.t, s/ of the SPDE (1) are defined in continuous space and time. In practice, we need
to discretize both space and time. The resulting vector of NT space–time points is in general of
large dimension. This makes statistical inference, be it frequentist or Bayesian, computationally
difficult or impossible. However, as we show in what follows, solving the SPDE in the spectral
space alleviates the computational burden considerably and allows for dimension reduction, if
desired.

Heuristically speaking, spectral methods (Gottlieb and Orszag (1977) and Cressie and Wikle
(2011), chapter 7) approximate the solution ξ.t, s/ by a linear combination of deterministic
spatial functions φj.s/ with random coefficients αj.t/ that evolve dynamically over time:

ξK.t, s/=
K∑

j=1
αj.t/φj.s/=φ.s/Tα.t/, .8/

where φ.s/ = .φ1.s/, : : : ,φK.s//T and α.t/ = .α1.t/, : : : ,αK.t//T. To be more specific, we use
Fourier functions

φj.s/= exp.ikT
j s/, .9/

where kj = .kx
j , k

y
j /T is a spatial wave number.

The advantages of using Fourier functions for solving linear deterministic PDEs are well
known; see, for example, Pedlosky (1987). First, differentiation in the physical space corresponds
to multiplication in the spectral space. In other words, Fourier functions are eigenfunctions of the
spatial differential operator. Instead of approximating the differential operator in the physical
space and then worrying about approximation errors, one just has to multiply in the spectral
space, and there is no approximation error of the operator when all the basis functions are
retained. In addition, one can use the FFT for efficiently transforming from the physical to the
spectral space, and vice versa.

Proposition 1 shows that Fourier functions are also useful for the SPDE (1): if the initial
condition and the innovation process are in the space that is spanned by a finite number of
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Fourier functions, then the solution of the SPDE (1) remains in this space for all times and can
be given in explicit form.

Proposition 1. Assume that the initial state and the innovation terms are of the form

ξK.0, s/=φ.s/Tα.0/,

"K.t, s/=φ.s/T ε̃.t/
.10/

where φ.s/= .φ1.s/, : : : ,φK.s//T, φj.s/ is given in equation (9), α.0/∼N[0, diag{f̃ 0.kj/}], f̃ 0.·/
being a spectral density, and ε̃.t/ is K-dimensional Gaussian white noise independent of α.0/

with

cov{ε̃.t/, ε̃.t′/}= δt,t′ diag{f̃ .kj/}, .11/

where f̃ .·/ is a spectral density and δt,t′ the Kronecker delta function equalling 1 if t = t′ and 0
otherwise. Then the process ξK.t, s/=φ.s/T α.t/, where the components αj.t/ are given by

αj.t/= exp.hjt/αj.0/+
∫ t

0
exp{hj.t −u/} "̃j.u/du, .12/

with hj =−iμTkj − kT
j Σkj − ζ, is a solution of the SPDE (1). For t →∞, the influence of the

initial condition exp.hjt/αj.0/ converges to zero and the process ξK.t, s/ converges to a time
stationary Gaussian process with mean 0 and

cov{ξK.t +Δt, s/, ξK.t, s′/}=φ.s/Tdiag

{
−exp.hjΔt/ f̃ .kj/

hj +hÅ
j

}
φ.s′/Å,

where the asterisk denotes complex conjugation.

This result shows that the solution of the SPDE is exact over time, given the frequencies
included. In contrast with finite differences, one does not accumulate errors over time. This
is related to the fact that there is no need for numerical stability conditions. For statistical
applications, where the parameters are not known a priori, this is particularly useful. The ap-
proximation error of ξK.t, s/ to the space–time stationary solution of the SPDE (1) depends on
only the number of spectral terms and not on the temporal discretization; see also proposition
2 below. Since Fourier terms are global functions, stationarity in space, but not in time, is a
necessary assumption.

Proof. By equation (12), we have

@

@t
ξK.t, s/=

K∑
j=1

α̇j.t/φj.s/=
K∑

j=1
{hjαj.t/+ "̃j.t/}φj.s/:

In contrast, since the functions φj.s/= exp .ikT
j s/ are Fourier terms, differentiation in the phys-

ical space corresponds to multiplication in the spectral space:

μT ∇φj.s/= iμTkj φj.s/ .13/

and

∇ ·Σ∇φj.s/=−kT
j Σkj φj.s/: .14/

Therefore, by the definition of hj,

.−μT∇ +∇ ·Σ∇ − ζ/
K∑

j=1
αj.t/φj.s/=

K∑
j=1

hjαj.t/φj.s/:
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Together, we have
@

@t
ξK.t, s/= .−μT∇ +∇ ·Σ∇ − ζ/ξK.t, s/+ "K.t, s/

which proves the first part of the proposition. Since the real part of hj is negative, exp.hjt/→0
for t →∞. Moreover,

lim
t→∞ cov{αj.t +Δt/,αj′.t/}= lim

t→∞ exp.hjΔt/δj,j′ f̃ .kj/

∫ t

0
exp{−.hj +hÅ

j′/.t −u/}du

=−exp.hj Δt/

hj +hÅ
j

δj,j′ f̃ .kj/, .15/

and thus the last statement follows.

We assume that the forcing term ".t, ·/, the initial state ξ.0, ·/ and consequently also the
solution ξ.t, ·/ are stationary in space. Recall the Cramér representation for a stationary field
".t, ·/:

".t, s/=
∫

exp.ikTs/d"̃t.k/

where "̃t has orthogonal increments cov{d"̃t.k/, d"̃t′.l/}= δt,t′δk,lf̃ .k/ and f̃ .·/ is the spectral
density of ".t, ·/ (see, for example, Cramér and Leadbetter (1967)). This implies that we can
approximate any stationary field, in particular also the field with a Whittle covariance function,
by a finite linear combination of complex exponentials, and the covariance of ε̃.t/ is a diagonal
matrix as required in proposition 1. Its entries are specified in expression (6). Concerning the
initial state, we can use the stationary distribution of ξ.t, ·/. An alternative choice is to use the
same spatial distribution as for the innovations: f̃ 0.·/= f̃ .·/.

3.1. Approximation bound
By passing to the limit K →∞ such that both the wave numbers kj cover the entire domain R2

and the distance between neighbouring wave numbers goes to 0, we obtain from equation (8)
the stationary (in space and time) solution with spectral density as in equation (3). In practice,
if we use the discrete Fourier transform, or its fast variant, the FFT, the wave numbers are
regularly spaced and the distance between them is fixed for all K (see below). This implies that
the covariance function of an approximate solution is periodic, which is equivalent to assuming
a rectangular domain being wrapped around a torus. Since, in most applications, the domain
is fixed anyway, this is a reasonable assumption.

On the basis of these considerations, we assume, in what follows, that s ∈ [0, 1]2 with periodic
boundary condition, i.e. that [0, 1]2 is wrapped on a torus. In practice, to avoid spurious peri-
odicity, we can apply what is called ‘padding’. This means that we take s ∈ [0, 0:5]2 and then
embed it in [0, 1]2. As in the discrete Fourier transform, if we choose s ∈ [0, 1]2, it follows that
the spatial wave numbers kj lie on the n × n grid given by Dn = {2π.i, j/ : −.n=2 + 1/ � i, j �
n=2}={−2π.n=2+1/, : : : , 2πn=2}2 with n2 =K, n being an even natural number. We then have
the following convergence result.

Proposition 2. When K → ∞, the approximation ξK.t, s/ converges in law to the solution
ξ.t, s/ of the SPDE (1) with s ∈ [0, 1]2 wrapped on a torus, and we have the bound

|C.t, s/−CK.t, s/|�σ2
ξ −σ2

ξK , .16/

where C.t, s/ and CK.t, s/ denote the covariance functions of ξ.t, s/ and ξKs.t, s/ respectively,
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and where σ2
ξ = C.0, 0/ and σ2

ξK = CK.0, 0/ denote the marginal variances of these two pro-
cesses.

Proof. Similarly to expression (4) and because k ∈ 2πZ2, it follows that the covariance
function of ξ.t, s/ is given by

C.t, s/= ∑
k∈2πZ2

∫
f.ω, k/exp.itω/dω exp.is′k/

= ∑
k∈2πZ2

f̃ .k/
−exp.hkt/

hk +hÅ
k

exp.is′k/, .17/

where hk = −iμTk − kTΣk − ζ. From proposition 1 we know that the approximate solution
ξK.t, s/ has the covariance function

CK.t, s/= ∑
k∈Dn

f̃ .k/
−exp.hkt/

hk +hÅ
k

exp.is′k/: .18/

It follows that

|C.t, s/−CK.t, s/|=
∣∣∣∣∣ ∑
k∈2πZ2

f̃ .k/
−exp.hkt/

hk +hÅ
k

.1−1{k∈Dn}/ exp.is′k/

∣∣∣∣∣
�

∑
k∈2πZ2

f̃ .k/
−1

hk +hÅ
k

.1−1{k∈Dn}/

=σ2
ξ −σ2

ξK :

.19/

Not surprisingly, this result tells us that the rate of convergence essentially depends on the
smoothness properties of the process ξ.t, s/, i.e. on how fast the spectrum decays. The smoother
ξ.t, s/, i.e. the more variation is explained by low frequencies, the faster is the convergence of
the approximation.

Note that there is a conceptual difference between the stationary solution of the SPDE (1) with
s∈R2 and the periodic solution with s∈ [0, 1]2 wrapped on a torus. For notational simplicity, we
have denoted both of them by ξ.t, s/. The finite dimensional solution ξK.t, s/ is an approximation
to both of the above infinite dimensional solutions. The above convergence result, though, holds
true only for the solution on the torus.

3.2. Real Fourier functions and discretization in time and space
To apply the model to real data, we must discretize it. In what follows, we consider the process
ξ.t, s/ on a regular grid of n × n = N spatial locations s1, : : : , sN in [0, 1]2 and at equidistant
time points t1, : : : , tT with ti − ti−1 =Δ. These two assumptions can be easily relaxed, i.e. we can
have irregular spatial observation locations and non-equidistant time points. The former can
be achieved by adopting a data augmentation approach (see, for instance, Sigrist et al. (2012))
or by using an incidence matrix (see Section 4.2). The latter can be done by taking a time vary-
ing Δ.

For illustration, we have stated the results in the previous section by using complex Fourier
functions. However, when discretizing the model, we obtain a linear Gaussian state space model
with a propagator matrix G that contains complex numbers, owing to equation (13). To avoid
this, we replace the complex terms exp.ikT

j s/ with real cos.kT
j s/ and sin.kT

j s/ functions. In other
words, we use the real instead of the complex Fourier transform. The above results then still
hold true, since, for real-valued data, the real Fourier transform is equivalent to the complex
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Fourier transform. For notational simplicity, we shall drop the superscript ‘K’ from ξK.t, s/.
The distinction between the approximation and the true solution is clear from the context.

Proposition 3. On the above specified discretized spatial and temporal domain and using the
real Fourier transform, with initial state α.t0/∼N.0, Q̃0/, Q̃0 diagonal, a stationary solution of
the SPDE (1) is of the form

ξ.ti+1/=Φα.ti+1/, .20/

α.ti+1/=Gα.ti/+ ε̃.ti+1/, ε̃.ti+1/∼N.0, Q̃/, .21/

with stacked vectors ξ.ti/ = .ξ.ti, s1/, : : : , ξ.ti, sN//T and cosine and sine coefficients α.ti/ =
.α

.c/
1 .ti/, : : : ,α.c/

4 .ti/,α
.c/
5 .ti/,α

.s/
5 .ti/, : : : ,α.c/

K=2+2.ti/,α
.s/
K=2+2.ti//

T, where Φ applies the discrete,
real Fourier transformation, G is a block diagonal matrix with 2×2 blocks and Q̃ is a diagonal
matrix. These matrices are defined as follows.

(a) Φ= .φ.s1/, : : : , φ.sN//T,

φ.sl/= .φ
.c/
1 .sl/, : : : ,φ.c/

4 .sl/,φ
.c/
5 .sl/,φ

.s/
5 .sl/, : : : ,φ.c/

K=2+2.sl/,φ
.s/
K=2+2.sl//

T,

φ
.c/
j .sl/= cos.kT

j sl/, φ
.s/
j .sl/= sin.kT

j sl/, ł =1, : : : , n2;

(b) .G/1:4,1:4 =diag[exp{−Δ.kT
j Σkj + ζ/}],

.G/5:K,5:K =diag[exp{−Δ.kT
j Σkj + ζ/}{cos.ΔμTkj/12 − sin.ΔμTkj/J2}],

where

12 =
(

1 0
0 1

)
,

J2 =
(

0 1
−1 0

)
,

.22/

(c) Q̃=diag.f̃ .kj/[1− exp{−2Δ.kT
j Σkj + ζ/}={2.kT

j Σkj + ζ/}]/,

(d) Q̃0 = .1N −GGT/−1Q̃.

In summary, at each time point t and spatial point sl, l=1, : : : , n2, the solution ξ.t, sl/ is the
discrete real Fourier transform of the random coefficients α.t/

ξ.t, sl/=
4∑

j=1
α

.c/
j .t/φ

.c/
j .sl/+

K=2+2∑
j=5

{α.c/
j .t/φ

.c/
j .sl/+α

.s/
j .t/φ

.s/
j .sl/}

=φ.sl/
T α.t/, .23/

and the Fourier coefficients α.t/ evolve dynamically over time according to the vector auto-
regression (21). The first four terms are cosine terms and, afterwards, there are cosine–sine
pairs. This is a peculiarity of the real Fourier transform. It is due to the fact that, for four
wave numbers kj, the sine terms equal 0 on the grid, i.e. sin.kT

j sl/ = 0, for all l = 1, : : : , n2

and kj ∈ {.0, 0/T, .0, nπ/T, .nπ, 0/T, .nπ, nπ/T} (Fig. 2). Equations (20) and (21) form a linear
Gaussian state space model with parametric propagator matrix G and innovation covariance
matrix Q̃, the parameterization being determined by the corresponding SPDE.

Model (20)–(21) is similar to that discussed in Cressie and Wikle (2011), chapter 7, but the
derivation as an exact solution to the SPDE (1) rather than a deterministic PDE is different.

Proof. Similarly to proposition 1, we first derive the continuous time solution. Using

μT ∇φ.c/
j .sl/=−μTkj φ

.s/
j .sl/,

μT ∇φ.s/
j .sl/=μTkj φ

.c/
j .sl/,
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∇ ·Σ∇φ.c/
j .sl/=−kT

j Σkj φ
.c/
j .sl/,

∇ ·Σ∇φ.s/
j .sl/=−kT

j Σkj φ
.s/
s j.sl/,

and the same arguments as in the proof of proposition 1, it follows that the continuous time
solution is of the form (23). For each pair of cosine–sine coefficients αj.t/ = .α

.c/
j .t/,α.s/

j .t//T

we have

αj.t/= exp.Hjt/αj.0/+
∫ t

0
exp{Hj.t −u/} ε̃j.u/du, .24/

where

Hj =
(−kT

j Σkj − ζ −μTkj

μTkj −kT
j Σkj − ζ

)
:

Now Hj can be written as

Hj = .−kT
j Σkj − ζ/12 −μTkjJ2,

where

12 =
(

1 0
0 1

)
,

J2 =
(

0 1
−1 0

)
:

Since 12 and J2 commute, we have

exp .Hjt/=exp{−t.kT
j Σkj + ζ/12}exp.−tμTkjJ2/

=exp{−t.kT
j Σkj + ζ/}{cos.tμTkj/12 − sin.tμTkj/J2}: .25/

For the calculation of the exponential function of the matrix J2, see, for example Bronson and
Costa (2007), chapter 4.

Analogously, we derive for the first four cosine terms

αc
j.t/=exp{−.kT

j Σkj + ζ/t}αc
j.0/+

∫ t

0
exp{−.kT

j Σkj + ζ/.t −u/} "̃j.u/du, j =1, : : : , 4:

.26/

Expressions (25) and (26) give the propagator matrix G.

For the discrete time solution, in addition to the propagation

αj.t +Δ/= exp .HjΔ/αj.t/,

we need to calculate the covariance of the integrated stochastic innovation term∫ t+Δ

t

exp{Hj.t +Δ−u/} ε̃j.u/du:

This is calculated as∫ t+Δ

t

exp{Hj.t +Δ−u/}f̃ .kj/ exp{H′
j.t +Δ−u/}du

=
∫ Δ

0
exp{Hj.Δ−u/}f̃ .kj/ exp{H′

j.Δ−u/}du

=
∫ Δ

0
f̃ .kj/exp{−2.kT

j Σkj + ζ/.Δ−u/}12 du
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Fig. 3. Illustration of spatial wave numbers for the two-dimensional discrete real Fourier transform with
n2 D400 grid points

= f̃ .kj/
1− exp{−2.kT

j Σkj + ζ/Δ}
2.kT

j Σkj + ζ/
12:

For the first four cosine terms, calculations are done analogously. The covariance matrix Q̃0 of
the initial state α.t0/ is assumed to be the covariance matrix of the stationary distribution of
α.ti/. Q̃0 is diagonal since GGT is diagonal; see the proof of algorithm 1 in Section 4.1. This
then gives result (20)–(21).

The discrete complex Fourier transform uses n2 different wave numbers kj, each having a
corresponding Fourier term exp.ikT

j s/. The real Fourier transform, in contrast, uses n2=2 + 2
different wave numbers, where four of them have only a cosine term and the others each have
sine and cosine terms. This follows from the fact that, for real data, certain coefficients of the
complex transform are the complex transpose of other coefficients. For technical details on the
real Fourier transform, we refer to Dudgeon and Mersereau (1984), Borgman et al. (1984), Royle
and Wikle (2005) and Paciorek (2007). Fig. 3 illustrates an example of the spatial wave numbers,
with n2 =20×20=400 grid points. The dots with a circle represent the wave numbers that are
actually used in the real Fourier transform, and the red crosses mark the wave numbers having
only a cosine term. Note that in equation (23) we choose to order the spatial wave numbers
such that the first four spatial wave numbers correspond to the cosine-only terms. To obtain
an idea of what the basis functions cos.kT

j s/ and sin.kT
j s/ look like, we plot in Fig. 2 12 low

frequency basis functions corresponding to the six spatial frequencies that are closest to the
origin 0. Further, in Fig. 4, there is an example of a propagator matrix G when n=4, i.e. when
16 (42) spatial basis functions are used. The upper left-hand 4×4 diagonal matrix corresponds
to the cosine-only frequencies. The 2 × 2 blocks following correspond to wave numbers with
cosine–sine pairs.

Concerning notation in this paper, K refers to the number of Fourier terms, i.e. this is the
dimension of the spectral process α.t/ at each time t. Furthermore, N denotes the number of
points at which the process ξ.t/ is modelled, and n is the number of points on each axis of
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Fig. 4. Illustration of propagator matrix G: 16 real Fourier functions are used (nD4)

the quadratic grid used. Often, we have n2 =N =K. However, if we use a reduced dimensional
Fourier basis, K is smaller than N; see Section 4.2.

3.3. Remarks on finite differences
Another approach to solve PDEs or SPDEs such as equation (1) consists of using a discretiza-
tion such as finite differences. Stroud et al. (2010) used finite differences to solve an advection–
diffusion PDE. Other examples are Wikle (2003), Xu and Wikle (2007), Duan et al. (2009),
Malmberg et al. (2008) and Zheng and Aukema (2010). The finite difference approximation,
however, has several disadvantages. First, each spatial discretization effectively implies an inter-
action structure between temporal and spatial correlation. In other words, as Xu et al. (2005)
stated, the discretization effectively suggests a knowledge of the scale of interaction, lagged in
time. Usually, this space–time covariance interaction structure is not known, though. Further-
more, numerical stability conditions need to be fulfilled so that the approximate solution is
meaningful. Since these conditions depend on the values of the unknown parameters, we can
run into problems.

In addition, computational tractability is an issue. In fact, we have tried to solve the SPDE
(1) by using finite differences as described in what follows. A finite difference approximation
in equation (1) leads to a vector auto-regressive model with a sparse propagator matrix be-
ing determined by the discretization. The innovation term " can be approximated by using a
Gaussian Markov random field with sparse precision matrix (see Lindgren et al. (2011)). Even
though the propagator and the precision matrices of the innovations are sparse, we have run
into a computational bottleneck when using the forward filtering backward sampling (FFBS)
algorithm (Carter and Kohn, 1994; Frühwirth-Schnatter, 1994) for fitting the model. The basic
problem is that the Kalman gain is eventually a dense matrix. Alternative sampling schemes like
the information filter (see, for example, Anderson and Moore (1979) and Vivar and Ferreira
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(2009)) did not solve the problem either. However, future research on this topic might come up
with solutions.

4. Computationally efficient statistical inference

The computational cost for one evaluation of the likelihood or one sample from the full con-
ditional in a spatiotemporal model with T time points and N spatial points equals O{.NT/3}
when taking a naive approach. Using the Kalman filter or the FFBS algorithm (Carter and
Kohn, 1994; Frühwirth-Schnatter, 1994), depending on what is needed, this cost is reduced to
O.TN3/ which, generally, is still too high for large data sets. In what follows, we show how
evaluation of the likelihood and sampling from the full conditional of the latent process can
be done efficiently in O{TN log.N/} operations. In the spectral space, the costs of the algo-
rithms grow linearly in the dimension TN, which means that the total computational costs
are dominated by the costs of the FFT (Cooley and Tukey, 1965) which are O{TN log.N/}.
Furthermore, the computational time can be reduced by running the T different FFTs in
parallel.

As is often done in a statistical model, we add a non-structured Gaussian term ν.ti+1, s/∼IID

N.0, τ2/ to expression (20) to account for small-scale variation and/or measurement errors. In
geostatistics, this term is called the nugget effect. Denoting the observations at time ti by w.ti/,
we then have the linear Gaussian state space model

w.ti+1/=Φα.ti+1/+ν.ti+1/, ν.ti+1/∼N.0, τ21N/,

α.ti+1/=Gα.ti/+ ε̃.ti+1/, ε̃.ti+1/∼N.0, Q̃/:
.27/

Note that ξ.ti+1/=Φα.ti+1/. As mentioned before, irregular spatial data can be modelled by
adopting a data augmentation approach (see Sigrist et al. (2012)) or by using an incidence
matrix (see Section 4.2). For simplicity, a zero mean was assumed. Extending the model by
including covariates in a regression term is straightforward. Furthermore, we assume normality.
The model can be easily generalized to allow for data not following a Gaussian distribution.
For instance, this can be done by including it in a Bayesian hierarchical model (Wikle et al.,
1998) and specifying a non-Gaussian distribution for w|ξ. The posterior can then no longer be
evaluated exactly. But approximate posterior probabilities can still be computed by using, for
instance, simulation-based methods such as Markov chain Monte Carlo (MCMC) sampling
(see, for example, Gilks et al. (1996) or Robert and Casella (2004)). An additional advantage of
Bayesian hierarchical models is that these models can be extended, for instance, to account for
temporal non-stationarity by letting one or several parameters vary over time.

4.1. Kalman filtering and backward sampling in the spectral space
When following both a frequentist or a Bayesian paradigm, it is crucial that one can evaluate the
likelihood of the hyperparameters given w with a reasonable computational effort. In addition,
when doing Bayesian inference, one needs to be able to simulate efficiently from the full condi-
tional of the latent process [ξ|·], or, equivalently, the Fourier coefficients [α|·]. Below, we show
how both these tasks can be done in the spectral space in linear time, i.e. using O.TN/ operations.
For transforming between the physical and spectral space, we can use the FFT which requires
O{TN log.N/} operations. We start with the spectral version of the Kalman filter. Its output is
used for both evaluating the log-likelihood and for simulating from the full conditional of the
coefficients α.

Algorithm 1 in Table 1 shows the Kalman filter in the spectral space. For simplicity, we assume
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Table 1. Algorithm 1: spectral Kalman filter

Input: T , w̃, G, τ2, Q̃, F
Output: forecast and filter means mti|ti−1 and mti|ti , and

covariance matrices Rti|ti and Rti|ti−1 , i=1, : : : , T

mt0|t0 =0
Rt0|t0 = Q̃
for i=1, : : : , T do

mti|ti−1 =Gmti−1|ti−1
Rti|ti−1 = Q̃+Rti−1|ti−1 F
Rti|ti = .τ−21N +R−1

ti|ti−1
/−1

mti|ti =mti|ti−1 + τ−2Rti|ti{w̃.ti/−mti|ti−1}
end for

that the initial distribution equals the innovation distribution. The spectral Kalman filter has as
input the Fourier transform of w̃ = .w̃.t1/T, : : : , w̃.tT /T/T of w, the diagonal matrix F given by

.F/1:4,1:4 =diag[exp{−2Δ.kT
j Σkj + ζ/}],

.F/5:N,5:N =diag[exp{−2Δ.kT
j Σkj + ζ/}12],

.28/

and other parameters that characterize the SPDE model. It returns forecast and filter means
mti|ti−1 and mti|ti and covariance matrices Rti|ti and Rti|ti−1 , i=1, : : : , T , respectively, i.e. mti|ti and
Rti|ti are the mean and the covariance matrix of α.ti/ given data up to time ti {w.tj/|j =1, : : : , i}.
Analogously, mti|ti−1 and Rti|ti−1 are the forecast mean and covariance matrix given data up to
time ti−1. We follow the notation of Künsch (2001).

Since the matrices Q̃ and F are diagonal, the covariance matrices Rti|ti and Rti|ti−1 are also
diagonal. Note that the matrix notation in algorithm 1 is used solely for illustration. In practice,
matrix vector products (Gmti−1|ti−1 ), matrix multiplications (Rti−1|ti−1 F) and matrix inversions
.τ−2 + Rti|ti−1/−1 are not calculated with general purpose algorithms but elementwise since all
matrices are diagonal or 2 × 2 block diagonal. It follows that the computational cost for this
algorithm is O.TN/.

The derivation of algorithm 1 follows from the classical Kalman filter (see, for example,
Künsch (2001)) using Φ′Φ=1N , GRti−1|ti−1 GT =Rti−1|ti−1 GGT, and the fact that GGT =F. The
first equation holds true because of the orthonormality of the discrete Fourier transform. The
second equation follows from the fact that G is 2×2 block diagonal and that Rti−1|ti−1 is diagonal
with the diagonal entries being equal for each cosine–sine pair. The last equation holds true as
shown in what follows. Being obvious for the first four frequencies, we consider the 2×2 diagonal
blocks of cosine–sine pairs:
.G/.2l−5/:.2l−4/,.2l−5/:.2l−4/.G/T

.2l−5/:.2l−4/,.2l−5/:.2l−4/

= exp{−2Δ.kT
j Σkj + ζ/}.cos.ΔμTkj/12 − sin.ΔμTkj/J2/.cos.ΔμTkj/12 − sin.ΔμTkj/J2/T

= exp{−2Δ.kT
j Σkj + ζ/}.cos.ΔμTkj/2 + sin.ΔμTkj/2/12,

l=5, : : : , N=2+2, which equals equation (28). In the last equation we have used JT
2 =−J2 and

J2
2 =−12:

On the basis of the Kalman filter, the log-likelihood is calculated as (see, for example, Shumway
and Stoffer (2000))

l=
T∑

i=1
log |Rti|ti−1 + τ21N |+ .w̃.ti/−mti|ti−1/T.Rti|ti−1 + τ21N/−1.w̃.ti/−mti|ti−1/+ TN

2
log.2π/:

.29/
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Table 2. Algorithm 2: spectral backward sampling

Input: T , G, Q̃, F, mti|ti−1 , mti|ti , Rti|ti and Rti|ti−1 , i=1, : : : , T

Output: a sample αÅ.t1/, : : : ,αÅ.tT / from [α|·]
αÅ.tT /=mtT |tT +R1=2

tT |tT nT , nT ∼N.0, 1N/

for i=T −1, : : : , 1 do
m̄ti =mti|ti +Rti|ti R

−1
ti|ti−1

GT{αÅ.ti+1/−mti|ti−1}
R̄ti = .Q̃F +R−1

ti−1|ti−1
/−1

αÅ.ti/= m̄ti + R̄1=2
ti

ni, ni ∼N.0, 1N/

end for

Since the forecast covariance matrices Rti|ti−1 are diagonal, calculation of their determinants
and their inverses is trivial, and the computational cost is again O.TN/.

In a Bayesian context, the main difficulty consists in simulating from the full conditional of
the latent coefficients [α|·]. After running the Kalman filter, this can be done with a backward
sampling step. Together, these two algorithms are known as FFBS (Carter and Kohn, 1994;
Frühwirth-Schnatter, 1994). Again, backward sampling is computationally very efficient in the
spectral space with cost being O.TN/. Algorithm 2 (Table 2) shows the backward sampling
algorithm in the spectral space. The matrices R̄ti are diagonal, which makes their Cholesky
decomposition trivial.

4.2. Dimension reduction and missing or non-gridded data
If desired, the total computational cost can be additionally alleviated by using a reduced di-
mensional Fourier basis with K << N, N being the number of grid points. This means that we
include only certain frequencies, typically low frequencies. When the Fourier transform has been
made, the spectral filtering and sampling algorithms then require O.KT/ operations. For using
the FFT, the frequencies being excluded are just set to 0. Performing the FFT still requires
O{TN log.N/} operations, though.

When the observed data do not lie on a grid or have missing data, there are two alternative
approaches. First, one can use a data augmentation approach (Smith and Roberts, 1993) for the
missing data. See Section 5.3 and, for more details, Sigrist et al. (2012). For irregularly spaced
data, one can assign the data to a regular grid and treat the cells with no observations as missing
data. An FFT can then be applied to the augmented data, and the algorithms presented above can
be used. Alternatively, as in our application, one can include an incidence matrix H that relates
the process on the grid to the observation locations. Instead of expression (27), the model is then

w.ti+1/=HΦα.ti+1/+ν.ti+1/, ν.ti+1/∼N.0, τ21N/: .30/

However, in the Kalman filter, the term .HΦ/THΦ, which is used for calculating the filter co-
variance matrix Rti|ti , is not a diagonal matrix anymore. From this follows that the Kalman filter
does not diagonalize in the spectral space if we use an incidence matrix H. Consequently, one
has to use the traditional FFBS for which the computational cost is O.K3T/. This means that
dimension reduction is required to make this approach computationally feasible.

4.3. A Markov chain Monte Carlo algorithm for Bayesian inference
On the basis of the algorithms presented above, there are several possible ways for doing statisti-
cal inference. For instance, if one adopts a frequentist paradigm, one can numerically maximize
the log-likelihood (29). In what follows, we briefly present how Bayesian inference can be done
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by using an MCMC algorithm (see Gilks et al. (1996), Robert and Casella (2004) and Brooks
et al. (2011)). This algorithm is implemented in the R package spate (Sigrist et al., 2012) and
used in the application in Section 5.

To complete the specification of a Bayesian model, prior distributions for the parameters
θ = .ρ0,σ2, ζ,ρ1,γ,α,μx,μy, τ2/T must be chosen. In general, this choice can depend on the
specific application. We present choices for priors that are weakly uninformative. On the basis
of Gelman (2006), we suggest the use of improper priors for the σ2 (marginal variance of the
innovation) and τ2 (nugget effect variance) that are uniform on the standard deviation scale σ
and τ respectively. Further, the drift parameters μx and μy have uniform priors on [−0:5, 0:5], ψ
(the direction of anisotropy) has a uniform prior on [0,π=2] and γ (the degree of anisotropy) has
a uniform prior on the log-scale of the interval [0:1, 10]. γ is restricted to [0:1, 10] since stronger
anisotropy does not seem reasonable. The range parameters of the innovations and the diffusion
matrix ρ0 and ρ1 respectively as well as the damping parameter ζ are assigned improper, locally
uniform priors on R+.

Our goal is then to simulate from the joint posterior of the unobservables [θ, α|w], where
w denotes the set of all observations. Missing data can be accommodated by using a data
augmentation approach which results in an additional Gibbs step; see Section 5.3. Since the
latent process ξ is the Fourier transform of the coefficients α, ξ.ti/=Φα.ti/, sampling from the
posterior of α is, from a methodological point of view, equivalent to sampling from the posterior
of ξ. In what follows, we use the notation [w|·] and P [w|·] to denote conditional distributions
and densities respectively.

A straightforward approach would be to sample iteratively from the full conditionals of θ and
α. One could also further divide the latent process α in blocks by iteratively sampling α.ti/ at
each time point. However θ and α can be strongly dependent, which results in slow mixing. This
problem is similar to that observed when doing inference for diffusion models; see, for example,
Roberts and Stramer (2001) and Golightly and Wilkinson (2008). It is therefore recommendable
to sample jointly from [θ, α|w] in a Metropolis–Hastings step.

Joint sampling from θ and α is done as follows. First, a proposal .θÅ, αÅ/ is obtained by sam-
pling θÅ from a Gaussian distribution with the mean equalling the last value and an adaptively
estimated proposal covariance matrix. To be more specific, ρ0, σ2, ζ, ρ1, γ and τ2 are sampled
on a log-scale to ensure that they remain positive. Then, a sample αÅ from [α|θÅ, w] is obtained
by using the FFBS algorithm (Carter and Kohn, 1994; Frühwirth-Schnatter, 1994). It can be
shown that the acceptance ratio for the joint proposal is

min

{
1,

P.θÅ|w/P.θÅ/ρÅ
0σ

2ÅζÅρÅ
1 γ

Åτ2Å

P.θ.i/|w/P.θ.i//ρ
.i/
0 σ

2.i/ζ.i/ρ
.i/
1 γ

.i/τ2.i/

}
, .31/

where P.θ|w/ denotes the likelihood of θ given w and P.θ/ the prior, and where θÅ and θ.i/

denote the proposal and the last values respectively. The factor ρ0σ
2ζρ1γτ

2 is included since
these parameters are sampled on a log-scale. We see that this acceptance ratio does not depend on
the latent process ξ=Φα. Thus, the parameters θ are allowed to move faster in their parameter
space. The value of the likelihood P.θ|w/ is obtained as a side product of the Kalman filter in
the FFBS.

For this random-walk Metropolis step, we suggest the use of an adaptive algorithm (Roberts
and Rosenthal, 2009), meaning that the proposal covariance matrices for θ are successively
estimated such that an optimal scaling is obtained with an acceptance rate between 0.2 and 0.3.
See Roberts and Rosenthal (2001) for more information on optimal scaling for Metropolis–
Hastings algorithms.
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In addition, if the model includes a regression term (see the application in Section 5), the
fixed effects can also be strongly dependent with the random effects ξ. This means that it is
advisable that the coefficients b ∈ Rp of the potential covariates x.t, s/ ∈ Rp are also sampled
together with θ and α. This can be done by slightly modifying the above algorithm. First, the
regression coefficients bÅ are proposed jointly with θÅ in a random-walk Metropolis step. Then
αÅ is sampled from [α|θÅ, bÅ, w] analogously by using the FFBS. Finally, in the acceptance
ratio (31), P.θ|w/ now must just be replaced by P.θ, b|w/, which is also a side product of the
Kalman filter.

5. Post-processing precipitation forecasts

NWP models are capable of producing predictive fields at spatially and temporally high fre-
quencies. Statistical post-processing, which is the main objective of this application, serves two
purposes. First, probabilistic predictions are obtained in cases where only deterministic predic-
tions are available. Further, even if ‘probabilistic’ forecasts in the form of ensembles (Palmer,
2002; Gneiting and Raftery, 2005) are available, they are typically not calibrated, i.e. they are
often underdispersed (Hamill and Colucci, 1997). The goal of post-processing is then to obtain
calibrated and sharp predictive distributions (see Gneiting et al. (2007a) for a definition of cal-
ibration and sharpness). For precipitation, the need for post-processing is particularly strong,
since, despite their importance, precipitation forecasts are still not as accurate as forecasts for
other meteorological quantities (Applequist et al., 2002; Stensrud and Yussouf, 2007).

Several approaches for post-processing precipitation forecasts have been proposed, including
linear regression (Antolik, 2000), logistic regression (Hamill et al., 2004), quantile regression
(Bremnes, 2004; Friederichs and Hense, 2007), hierarchical models based on a prior climatic
distribution (Krzysztofowicz and Maranzano, 2006), neural networks (Ramrez et al., 2005)
and binning techniques (Yussouf and Stensrud, 2006). Sloughter et al. (2007) proposed a two-
stage model to post-process precipitation forecasts. Berrocal et al. (2008) extended the model
of Sloughter et al. (2007) by accounting for spatial correlation. Kleiber et al. (2011) presented
a similar model that includes ensemble predictions and accounts for spatial correlation.

Except for the last two references, spatial correlation is typically not modelled in post-
processing precipitation forecasts, and none of the aforementioned models explicitly accounts
for spatiotemporal dependences. However, for temporally and spatially highly resolved data,
it is necessary to account for correlation in space and time. First, spatiotemporal correlation
is important, for instance, for predicting precipitation accumulation over space and time with
accurate estimates of precision. Further, it is likely that errors of NWP models exhibit struc-
tured behaviour over space and time, including interactions between space and time. The SPDE
approach allows for such interactions, as do other approaches which use scientifically based
physical models (Wikle and Hooten, 2010).

5.1. Data
The goal is to post-process precipitation forecasts from an NWP model called COSMO-2, a
high resolution model with a grid spacing of 2.2 km that is run by MeteoSwiss as part of
Consortium for Small-scale Modelling (see, for example, Steppeler et al. (2003)). The NWP
model produces deterministic forecasts once a day starting at 0:00 Universal Time Co-ordinated
(UTC). Predictions are made for eight consecutive time periods corresponding to 24 h ahead. In
what follows, let yF.t, s/ denote the forecast of the rainfall sum from time t −1 to t at site s made
at 0:00UTC of the same day. We consider a rectangular region in northern Switzerland shown in
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Fig. 5. Locations of grid points at which predictions are obtained (., 50 � 100 grid) and observations (�):
both axes are in kilometres using the Swiss co-ordinate system (CH1903)
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Fig. 6. Precipitation versus time, (a) for one station (Waedenswil) and (b) averaged over all stations

Fig. 5. The grid at which predictions are made is of size 50×100. Precipitation is observed at 32
stations over northern Switzerland. Fig. 5 also shows the locations of the observation stations.
In the post-processing model, the NWP forecasts are used as covariates in a regression term;
see expression (33). We use data for 3-hourly rainfall amounts from the beginning of December
2008 till the end of March 2009. To illustrate the observed data, in Fig. 6, observed precipitation
at one station and the equally weighted areal average precipitation are plotted against time. We
shall use the first three months containing 720 time points for fitting, and the last month is left
aside for evaluation.
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The NWP model forecasts are deterministic and ensembles are not available in our case.
However, the extension to use an ensemble instead of just one member can be easily done. One
can include all the ensemble members in the regression part of the model. Or, in the case of
exchangeable members, one can use the location and the spread of the ensemble.

5.2. Precipitation model for post-processing
The model that is presented in what follows is a Bayesian hierarchical model. It uses the SPDE-
based spatiotemporal Gaussian process ξ.t, s/ that was presented in Section 3 at the process level.
At the data stage, a mixture model adapted to the nature of precipitation is used. A characteristic
feature of precipitation is that its distribution consists of a discrete component, indicating the
occurrence of precipitation, and a continuous component, determining the amount (see Fig. 6).
As a consequence, there are two basic statistical modelling approaches. The continuous and the
discrete part are either modelled separately (Coe and Stern, 1982; Wilks, 1999) or together (Bell,
1987; Wilks, 1990; Bardossy and Plate, 1992; Hutchinson, 1995; Sansó and Guenni, 2004). See,
for example, Sigrist et al. (2012) for a more extensive overview of precipitation models and for
further details on the data model that is used below. Originally, the approach that is presented in
what follows goes back to Tobin (1958) who analysed household expenditure on durable goods.
For modelling precipitation, Stidd (1973) took up this idea and modified it by including a power
transformation for the non-zero part so that the model can account for skewness. Sansó and
Guenni (1999) developed Bayesian methods for the spatiotemporal analysis of rainfall by using
this skewed tobit model, but in contrast with our application they did not explicitly account for
temporal correlation and they used a much smaller spatial grid.

We denote the cumulative rainfall from time t −1 to t at site s ∈R2 by y.t, s/ and assume that
it depends on a latent Gaussian variable w.t, s/ through

y.t, s/=
{

0, if w.t, s/�0,
w.t, s/λ, if w.t, s/> 0,

.32/

where λ> 0. A power transformation is needed since precipitation amounts are skewed and do
not follow a truncated normal distribution. The latent Gaussian process w.t, s/ is interpreted as
a precipitation potential.

The mean of the Gaussian process w.t, s/ is assumed to depend linearly on spatiotemporal
covariates x.t, s/∈Rk. As shown below, this mean term basically consists of the NWP forecasts.
Variation that is not explained by the linear term is modelled by using the Gaussian process
ξ.t, s/ and the unstructured term ν.t, s/ for microscale variability and measurement errors. The
spatiotemporal process ξ.t, s/ has two functions. First, it captures systematic errors of the NWP
in space and time and can extrapolate them over time. Second, it accounts for structured vari-
ability so the post-processed forecast is probabilistic and its distribution sharp and calibrated.

To be more specific concerning the covariates, similarly to what appears in Berrocal et al.
(2008), we include a transformed variable yF.t, s/1=λ̃ and an indicator variable 1{yF.t,s/=0} which
equals 1 if yF.t, s/= 0 and 0 otherwise. λ̃ is determined by fitting the transformed tobit model
as in expression (32) to the marginal distribution of the rain data ignoring any spatiotemporal
correlation. In doing so, we obtain λ̃≈ 1:4. yF.t, s/1=λ̃ is centred near zero by subtracting its
overall mean ȳ

1=λ̃
F to reduce posterior correlations. Thus,

w.t, s/=b1{yF.t, s/1=λ̃− ȳ
1=λ̃
F }+b2 1{yF.t,s/=0} + ξ.t, s/+ν.t, s/: .33/

An intercept is not included since the first Fourier term is constant in space. In our case, including
an intercept term results in weak identifiability which slows down the convergence of the MCMC
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(a) (b)

Fig. 7. Comparison of various statistical models by using the continuous ranked probability score (in mil-
limetres (K denotes the number of basis functions used in the model; ‘Sep’ denotes the separable model with
K D 29 Fourier terms): (a) continuous ranked probability scores of station-specific forecasts; (b) continuous
ranked probability scores of areal forecasts

algorithm that is used for fitting. Note that in situations where the mean is large it is advisable
to include an intercept, since the coefficient of the first Fourier term is constrained by the joint
prior on α. Further, unidentifiability is unlikely to be a problem in these cases.

Concerning the spatiotemporal process ξ.t, s/, we apply padding. This means that we embed
the 50 × 100 grid in a rectangular 200 × 200 grid. A brief prior investigation showed that the
range parameters are relatively large in comparison with the spatial domain, and padding is
therefore used to avoid spurious correlations due to periodicity. The NWP forecasts are not
available on the extended 200×200 domain, which means that, in principle, the process w.t, s/
can only be modelled on the 50×100 grid where the covariates are available. To cope with this
we use an incidence matrix H as in expression (30) to relate the process at the 200 × 200 grid
to the observation stations. As argued in Section 4.2, this then requires that we use a reduced
dimensional Fourier expansion, i.e., instead of using N = 2002 basis functions, we use only
K << N low frequency Fourier terms. Since the observation stations are relatively scarce, one
might argue that there is no information on spatial high frequencies of the NWP error, and that
the high frequencies can be left out. In fact, this hypothesis is confirmed by our analysis; Fig. 7.

Concerning prior distributions, for θ= .ρ0,σ2, ζ,ρ1,γ,ψ,μx,μy, τ2/T, we use the priors that
were presented in Section 4.3. The parameters b and λ, which are not included in θ, have
improper, locally uniform priors on R and R+ respectively. In summary,

P.b,λ, θ/∝ 1
γ
√
σ2√τ2 1{−0:5�μx, μy�0:5} 1{0�ψ�π=2} 1{λ, ρ0, ρ1, ζ, σ2, τ2�0} 1{0:1�γ�10}:

In addition, concerning α.0/, we choose to use the innovation distribution that is specified in
expression (6) as the initial distribution.

5.3. Fitting
MCMC sampling is used to sample from the posterior distribution [b,λ, θ, α, w|y], where y
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denotes the set of all observations. We use what Neal and Roberts (2006) called a Metropolis-
within-Gibbs algorithm which alternates between blocked Gibbs (Gelfand and Smith, 1990)
and Metropolis (Metropolis et al., 1953; Hastings, 1970) sampling steps.

We use the Metropolis–Hastings algorithm that was presented in Section 4.3 with the coeffi-
cients b being sampled jointly with θ and α. Owing to the non-Gaussian data model, additional
Metropolis and Gibbs steps are required for λ and for those points of w where the observed
rainfall amount is 0 and where observations are missing. We refer to Sigrist et al. (2012) for
more details on the type of data augmentation approach that is used for doing this. We denote
by w[0] the values of w at those points where the observed rainfall is 0: y.t, s/=0. Analogously,
we define w[m] and w[+] for the missing values and the values where a positive rainfall amount is
observed, y.t, s/ > 0, respectively. The full conditionals of the censored w[0] and missing points
w[m] are truncated and regular one-dimensional Gaussian distributions respectively. Sampling
from them is done in Gibbs steps. The transformation parameter λ is sampled by using a
random-walk Metropolis step. If a new value is accepted, w[+] needs to be updated by using
the deterministic relationship w.t, s/= y.t, s/1=λ due to expression (32). From these Gibbs and
Metropolis steps, we obtain w consisting of simulated and transformed observed data. In the
second part of the algorithm, we sample b, θ and α jointly from [b, θ, α|w] by using the algo-
rithm that was presented in Section 4.3, where w acts as if it were the observed data. After a
burn-in of 5000 iterations, we use 100000 samples from the Markov chain to characterize the
posterior distribution. Convergence is monitored by inspecting trace plots.

5.4. Model selection and results
We use a reduced dimensional approach. The number of Fourier functions is determined on
the basis of the predictive performance for the 240 time points that were set aside. We start
with models including only low spatial frequencies and add successively higher frequencies. In
doing so, we consider only models that have the same resolution in each direction, i.e. we do not
consider models that have higher frequency spatial basis functions in the east–west direction
than in the north–south direction.

To assess the performance of the predictions and to choose the number of basis functions
to include, we use the continuous ranked probability score (CRPS) (Matheson and Winkler,
1976). The CRPS is a strictly proper scoring rule (Gneiting and Raftery, 2007) that assigns a
numerical value to probabilistic forecasts and assesses calibration and sharpness simultaneously
(Gneiting et al., 2007a). It is defined as

CRPS.F , y/=
∫ ∞

−∞
{F.x/−1{y�x}}2 dx, .34/

where F is the predictive cumulative distribution, y is the observed realization and 1 denotes an
indicator function. If a sample y.1/, : : : , y.m/ from F is available, it can be approximated by

1
m

m∑
i=1

|y.i/ −y|− 1
2m2

m∑
i,j=1

|y.i/ −y.j/|: .35/

Ideally, we would run the full MCMC algorithm at each time point t � 720, including all
data up to the point, and obtain predictive distributions from this. Since this is rather time
consuming, we make the following approximation. We assume that the posterior distribution
of the ‘primary’ parameters θ, b and λ given y1:t ={y1, : : : , yt} is the same for all t �720, i.e. we
neglect the additional information that the observations in March provide about the primary
parameters. Thus, the posterior distributions of the primary parameters are calculated only
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once, namely on the data set from December 2008 to February 2009. The assumption that the
posterior of the primary parameters does not change with additional data may be questionable
over longer time periods and when one moves away from the time period from which data
are used to obtain the posterior distribution. But, since all our data lie in the winter season,
we think that this assumption is reasonable. If longer time periods are considered, one could
use sliding training windows or model the primary parameters as non-stationary by using a
temporal evolution.

For each time point t �720, we make up to eight-steps-ahead forecasts corresponding to 24 h,
i.e. we sample from the predictive distribution of yÅ

t+k, k =1, : : : , 8, given y1:t ={y1, : : : , yt}.
In Fig. 7, the average CRPS of the pointwise predictions and the areal predictions are shown

for the various statistical models. In Fig. 7(a) the mean is taken over all stations and lead times,
whereas the areal version is an average over all lead times. This is done for the models with
different numbers of basis functions used. Models including only a few low frequency Fourier
terms perform worse. Then the CRPS decreases successively. The model based on including
K = 29 Fourier functions performs best. After this, adding higher frequencies results in lower
predictive performance. We interpret this result in the way that the observation data does not
allow for resolving high frequencies in the error term between the forecasted and observed
precipitation. Note that high frequencies of the precipitation process itself are accounted for
by the forecast yF. For comparison, we also fit a separable model which is obtained by setting
μ = 0 and Σ−1 = 02,2. Concerning the number of Fourier functions, we use K = 29 different
Fourier terms. The separable model clearly performs worse than the model with a non-separable
covariance structure. On the basis of these findings, we decided to use the model with 29 cosine
and sine functions.

Table 3 shows posterior medians as well as 95% credible intervals for the various parameters.
Note that the range parameters ρ0 and ρ1 as well as the drift parameters μx and μy have been
transformed back from the unit [0, 1] scale to the original kilometres scale. The posterior median
of the variance σ2 of the innovations of the spatiotemporal process is around 0.8. Compared
with this, the nugget variance, about 0.3, is smaller. For the innovation range parameter ρ0, we
obtain a value of about 25 km. And the range parameter ρ1 that controls the amount of diffusion
or, in other words, the amount of spatiotemporal interaction, is approximately 49 km. With γ

Table 3. Posterior medians and 95% credible intervals
for the SPDE-based spatiotemporal model presented in
Section 3 with K D29 Fourier terms

Parameter Median 2.5% 97.5%
value value

ρ0 25.4 18.8 32.4
σ2 0.838 0.727 0.994
ζ 0.00655 0.000395 0.0156
ρ1 48.8 42.1 57.1
γ 4.33 3.34 6.01
ψ 0.557 0.49 0.617
μx 6.73 0.688 12.9
μy −4.19 −8.55 −0.435
τ2 0.307 0.288 0.327
b1 0.448 0.414 0.481
b2 −0.422 −0.5 −0.344
λ 1.67 1.64 1.7
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Table 4. Comparison of the NWP model
and statistically post-processed forecasts by
using the mean absolute error†

Mean absolute errors (mm)
for the following forecasts:

Post NWP Static
processd

Stationwise 0.359 0.485 0.594
Areal 0.303 0.387 0.489

†‘Static’ denotes the constant forecast obtained
by using the most recently observed data.

and ψ being around 4 and 0.6 respectively, we observe anisotropy in the south-west–north-east
direction. This is in line with the orography of the region, as the majority of the grid points lies
between two mountain ranges: the Jura to the north-west and the Alps to the south-east. The
drift points to the south-east, both parameters being rather small though. Further, the damping
parameter ζ has a posterior median of about 0.01.

Next, we compare the performance of the post-processed forecasts with those from the NWP
model. In addition to the temporal cross-validation, we do the following cross-validation in space
and time. We first remove six randomly selected stations from the data, fit the latent process
to the remaining stations and evaluate the forecasts at the stations left out. Concerning the
primary parameters, i.e. all parameters except the latent process, we use the posterior obtained
from the full data including all stations. This is done for computational simplicity and since
this posterior is not very sensitive when excluding a few stations (the results are not reported).
Since the NWP produces eight-step-ahead predictions once a day, we consider only statistical
forecasts starting at 0:00 UTC. This is in contrast with the above comparison of the different
statistical models for which eight-step-ahead predictions were made at all time points and not
just once for each day. We use the mean absolute error for evaluating the NWP forecasts. To
be consistent, we also generate point forecasts from the statistical predictive distributions by
using medians and then calculate the mean absolute error for these point forecasts. In Table 4,
the results are reported. For comparison, we also give the score for the static forecast that is
obtained by using the most recently observed data. The post-processed forecasts clearly perform
better than the raw NWP forecasts. In addition, the post-processed forecasts have the advantage
that they provide probabilistic forecasts quantifying prediction uncertainty.

The statistical model produces a joint spatiotemporal predictive distribution that is spatially
highly resolved. To illustrate the use of the model, we show several quantities in Fig. 8. We
consider the time point t =760 and calculate predictive distributions over the next 24 h. Predicted
fields for the period t = 761, : : : , 768 from the NWP are shown in Fig. 8(a). In Fig. 8(b) are
pointwise medians obtained from the statistical forecasts. This is a period during which the
NWP predicts too much rainfall compared with the observed data (the results are not shown).
Fig. 8 shows how the statistical model corrects for this. For illustration, we also show one sample
from the predictive distribution. To quantify prediction uncertainty, the difference between the
third quartile and the median of the predictive distribution is plotted. These plots again show
the growing uncertainty with increasing lead time. Other quantities of interest (which are not
shown here), that can be easily obtained, include probabilities of precipitation occurrence or
various quantiles of the distribution.
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Fig. 8. Illustration of post-processed spatiotemporal precipitation fields for the period t D 761,. . . ,768 (all
quantities are in millimetres; note that the scales are different in different figures): (a) NWP forecasts; (b)
pointwise medians of the predictive distribution; (c) one sample from the predictive distribution; (d) differences
between the third quartile and the median of the predictive distribution

6. Conclusion

We present a spatiotemporal model and corresponding efficient algorithms for doing statistical
inference for large data sets. Instead of using the covariance function, we propose to use a
Gaussian process defined through an SPDE. The SPDE is solved by using Fourier functions,
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and we have given a bound on the precision of the approximate solution. In the spectral space,
we can use computationally efficient statistical algorithms whose computational costs grow
linearly with the dimension, the total computational costs being dominated by the FFT. The
space–time Gaussian process that is defined through the advection–diffusion SPDE has a non-
separable covariance structure and can be physically motivated. The model is applied to post-
processing of precipitation forecasts for northern Switzerland. The post-processed forecasts
clearly outperform the raw NWP predictions. In addition, they have the advantage that they
quantify prediction uncertainty.

In our analysis, we considered cumulative rainfall over 3 h, both in the NWP forecasts and
in the station data. It would be interesting to formulate a model which can describe different
accumulation periods in a coherent way and is still computationally feasible. Another interesting
direction for further research would be to extend the SPDE-based model to allow for spatial non-
stationarity. For instance, the deformation method of Sampson and Guttorp (1992), where the
process is assumed to be stationary in a transformed space and non-stationary in the original
domain, might be a potential way. Since the operators of the SPDE are local, we can define
the SPDE on general manifolds and, in particular, on the sphere (see, for example, Lindgren
et al. (2011)). Future research will show to what extent spectral methods can still be used in
practice.
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Sansó, B. and Guenni, L. (2004) A Bayesian approach to compare observed rainfall data to deterministic simu-

lations. Environmetrics, 15, 597–612.
Shumway, R. H. and Stoffer, D. S. (2000) Time Series Analysis and Its Applications. New York: Springer.
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