

PGR IEEE-1394

Digital Camera Register Reference

Revised September 9, 2005

Point Grey Research Inc. 8866 Hudson Street • Vancouver, BC • Canada • V6P 4N2 • T (604) 730-9937 • www.ptgrey.com

Copyright © 2005 Point Grey Research Inc. All Rights Reserved.

1 Hardware Warranty

Point Grey Research Inc. (PGR) warrants to the Original Purchaser that the Camera Module provided with this package is guaranteed to be free from material and manufacturing defects for a period of one (1) year. Should a unit fail during this period, PGR will, at its option, repair or replace the damaged unit. Repaired or replaced units will be covered for the remainder of the original equipment warranty period. This warranty does not apply to units that, after being examined by PGR, have been found to have failed due to customer abuse, mishandling, alteration, improper installation or negligence.

Point Grey Research, Inc. expressly disclaims and excludes all other warranties, express, implied and statutory, including, but without limitation, warranty of merchantability and fitness for a particular application or purpose. In no event shall Point Grey Research, Inc. be liable to the Original Purchaser or any third party for direct, indirect, incidental, consequential, special or accidental damages, including without limitation damages for business interruption, loss of profits, revenue, data or bodily injury or death.

2 Table of Contents

1	Har	dware Warranty	2
2	Tab	le of Contents	3
3	List	of Tables	6
4	Intro	oduction	7
	4.1. 4.2.	Scope Using this Manual	
5	Can	nera Control Command Registers	9
	5.1. 5.2. 5.3. 5.4.	Register Map Calculating Actual Offsets using Inquiry Register Quadlet Offsets Camera Initialize Register Inquiry Registers for Video Format / Mode / Frame Rate 5.4.1. Video Format Inquiry Registers 5.4.2. Video Mode Inquiry Registers 5.4.3. Video Frame Rate Inquiry Registers	10 11 12 12 13 14
	5.5. 5.6. 5.7. 5.8.	Inquiry Registers for Basic Functions Inquiry Registers for Feature Presence Inquiry Registers for Feature Elements Control and Status Registers (CSRs)	20 22 24 24 24 24 25 26 26 27 28 27 28 28 29 30
	5.9.	Control and Status Registers for Features	31 32 34 35 35 37 37 37

	5.9.9. 5.9.10.	GAIN: 820h IRIS: 824h	
	5.9.10.		
	5.9.12.	TEMPERATURE: 82Ch	
	5.9.13.	TRIGGER_MODE: 830h	
	5.9.14.	TRIGGER_DELAY: 834h (v1.31)	
	5.9.15.	FRAME_RATE: 83Ch (v1.31)	
5.10.		te Value CSR Registers	
	5.10.1.	Inquiry Registers for Absolute Value CSR Offset Address	
	5.10.2.	Absolute Value Register Format	45
	5.10.3.	Units of Value for Absolute Value CSR Registers	
	5.10.4.	Determining Absolute Value Register Values	
	5.10.5.	Setting Absolute Value Register Values	
	5.10.6.	Current Absolute Value Register Offsets	
5.11.		Node Control and Status Registers for Format_7	
	5.11.1.	Inquiry Registers for Format_7 CSR Offset Address	
	5.11.2.	MAX_IMAGE_SIZE_INQ: 000h	
	5.11.3.	UNIT_SIZE_INQ (004h) and UNIT_POSITION_INQ (04Ch)	
	5.11.4.	IMAGE_POSITION (008h) and IMAGE_SIZE (00Ch)	50
	5.11.5.	COLOR_CODING_ID (010h) and COLOR_CODING_INQ (01	4h)
		50	,
	5.11.6.	PIXEL_NUMBER_INQ (034h), TOTAL_BYTES_HI_INQ (038	3h),
	and TOT	AL_BYTES_LO_INQ (03Ch)	
	5.11.7.	PACKET_PARA_INQ (040h) and BYTE_PER_PACKET (044h)	51
	5.11.8.	PACKET_PER_FRAME_INQ: 048h	
	5.11.9.	FRAME_INTERVAL_INQ: 050h	
	5.11.10.		
5.12.		ed Registers	54
	5.12.1.	ACCESS_CONTROL_REGISTERS: 1000h - 100Ch	54
	5.12.2.	EXTENDED SHUTTER: 1028h	
	5.12.3.	SOFT ASYNC TRIGGER: 102Ch	
	5.12.4.	BAYER TILE MAPPING: 1040h	
	5.12.5.	BAYER TILE GAIN: 1044h	
	5.12.6.	Y16_DATA_FORMAT: 1048h	
	5.12.7.	AUTO_EXPOSURE_RANGE: 1088h	
	5.12.8.	AUTO_SHUTTER_RANGE: 1098h	
	5.12.9.	AUTO_GAIN_RANGE: 10A0h	58
	5.12.10.		
	5.12.11.	GPIO_XTRA: 1104h	
	5.12.12.	SHUTTER DELAY: 1108h	
	5.12.13.	—	
	5.12.14.	GPIO CTRL PIN 0: 1110h	
	5.12.15.	GPIO_XTRA_PIN_0: 1114h	
	5.12.16.	GPIO_STRPAT_MASK_PIN_0: 1118h	
	5.12.17.	GPIO CTRL PIN 1: 1120h	
	5.12.18.	GPIO_XTRA_PIN_1: 1124h	
	5.12.10.	GPIO_STRPAT_MASK_PIN_1: 1128h	64
	5.12.19.	GPIO_STREAT_MASK_FIN_T. T1201 GPIO_CTRL_PIN_2: 1130h	
	5.12.20.	GPIO_CTRL_FIN_2: 11301 GPIO_XTRA_PIN_2: 1134h	
	5.12.21.	GPIO_XTRA_FIN_2: T1341 GPIO_STRPAT_MASK_PIN_2: 1138h	
	5.12.22.	GPIO_STRFAT_MASK_FIN_2. 11301 GPIO_CTRL_PIN_3: 1140h	
	5.12.23.		
	5.12.24.		67
	J.12.23.	GEIU_STREAT_WASR_FIN_3. 114011	07

		5.12.26. PIO_OUTPUT: 11F0h	69 70 71 72 73 74 74 74 75 75 76 76
6	Isoc	hronous Packet Format	
	6.1. 6.2.	Isochronous Packet Format for Format_0, Format_1 and Format_2 6.1.1. Isochronous Bandwidth Requirements Isochronous Packet Format for Format_7 (Partial Image Size Format)	78
7	Gen	eral Purpose Input / Output	81
	7.1.	PGR-Specific GPIO Modes7.1.1. GPIO_Mode_0: Input7.1.2. GPIO_Mode_1: Output7.1.3. GPIO_Mode_2: Asynchronous (External) Trigger7.1.4. GPIO_Mode_3: Strobe7.1.5. GPIO_Mode_4: Pulse Width Modulation (PWM)7.1.6. GPIO_Mode_8: Output (DCAM Specification v1.31)GPIO Control Using DCAM v1.31 PIO / Strobe	81 82 82 82 82 83
8	Para	allel Input / Output (PIO)	84
	8.1.	 PIO Control and Inquiry Registers	84 84 85
9	Stro	be Signal Output	86
	9.1. 9.2.	Inquiry Register for Strobe Output CSR Offset Address Strobe Output Registers	
10	Seri	al Port Input / Output (SIO)	88
	10.1. 10.2. 10.3. 10.4.	SIO Buffers Serial Input Transaction (Receiving Data) Serial Output Transaction (Transmitting Data) SIO Control and Inquiry Registers 10.4.1. Inquiry Register for SIO CSR Offset Address 10.4.2. SIO Registers	88 88 89 89
11	Trig	ger Modes	93

	11	.1.2. 7	Γrigger_Mode_0 – Standard External Trigger Mode Γrigger_Mode_1 – Bulb Shutter Mode Γrigger_Mode_3 – Skip Frames Mode	93
12	Techni	cal Su	pport Resources	95
			a Customer Login Account	
			ge Base Downloads	
			ng Technical Support	
13	Contac	ting P	oint Grey Research Inc	96
		-	-	
14	Appen	dix A		97
14	••		and Version Numbering Scheme	
14	14.1. S 14	oftware	and Version Numbering Scheme Overview	
14	14.1. S 14 14	oftware .1.1. (.1.2. /	and Version Numbering Scheme Overview Alpha	
14	14.1. S 14 14 14 14	oftware .1.1. (.1.2. / .1.3. E	and Version Numbering Scheme Overview Alpha Beta	
14	14.1. S 14 14 14 14 14	oftware .1.1. (.1.2. <i>/</i> .1.3. E .1.4. F	and Version Numbering Scheme Overview Alpha	
14 15	14.1. S 14 14 14 14 14 14	Coftware .1.1. (.1.2. <i>H</i> .1.3. E .1.4. F .1.5. F	and Version Numbering Scheme Overview Alpha Beta Release Candidate	97 97 97 97 97 98 98 98

3 List of Tables

Table 1: Isochronous Data Packet Format	. 77
Table 2: Isochronous Data Packet Format	. 79

4 Introduction

The PGR IEEE-1394 Digital Camera Register Reference is a source of general information pertaining to all PGR IEEE-1394 Imaging Products.

This manual attempts to provide the user with a detailed specification of the various features, formats, modes, frame rates, and control parameters implemented by each PGR IEEE-1394 camera. It should be used in conjunction with the camera-specific *Technical Reference Manual* or *Getting Started Manual* to determine the full functionality offered by an individual camera system.

The reader should be aware that PGR camera systems are complex and dynamic – if any errors or omissions are found during experimentation, please contact us using our support web form at http://www.ptgrey.com/support/contact.

4.1. Scope

The *PGR IEEE-1394 Digital Camera Register Reference* lists all of the registers that are used by the following PGR IEEE-1394 cameras:

- <u>Dragonfly</u> (all models)
- <u>Dragonfly Express</u>¹ (all models)
- <u>Flea</u> (all models)
- <u>Scorpion</u> (all models)

For a list of implemented registers for the Firefly and <u>Firefly2</u>, consult the TI chipset datasheet found at <u>http://www.ptgrey.com/support/kb/details.asp?id=34</u>.

Not all registers are implemented by all cameras (see the section *Using this Manual*). For modelspecific information, such as supported format and frame rates and detailed technical information, consult the *Technical Reference Manual* specifically for your camera.

Most registers are implemented according to the *IIDC 1394-based Digital Camera (DCAM)* Specification Version 1.30. Other registers are implemented according to Version 1.31 of the DCAM specification; these registers are noted with a (v1.31) beside the register name. Most registers detailed in section 5.12 Advanced Registers are outside of the DCAM specification; those that are not are explicitly noted.

¹ Listed as **DX** in the Feature Availability tables

4.2. Using this Manual

Register offsets and values are generally referred to in their hexadecimal forms, represented by either a '0x' before the number or 'h' after the number, e.g. the decimal number 256 can be represented as 0xFF or FFh.

Each register section contains **Format**, **Feature Availability**, and **Other Resources** tables. The *Format* table describes the purpose of each bit in the 32-bit register. Some bits have an associated field name listed in the *Field* column of the *Format* table. Field names are always *italicized* when referred to outside of the *Format* table.

The *Feature Availability* table describes whether some or all of the functionality defined by that register is implemented or used by the specified camera (indicated by a ' \checkmark '). If a camera does not implement any of the functionality defined by a register, a minus (-) sign is shown together with the comment, "Not implemented".

NOTE: Some registers have multiple functions associated with them e.g. $ONE_SHOT/MULTI_SHOT$ register 0x61C. A ' \checkmark ' is not meant to indicate that the specified camera implements all of these functions. To determine the specific functions that are implemented, use the appropriate Feature Inquiry Registers.

The *Other Resources* table points users to other sources of information pertinent to the register being described. These sources can include other reference manuals or documents, software programs or example code, or on-line knowledge base articles.

NOTE: The Glossary section near the end of this manual is a useful reference for many of the words used throughout.

5 Camera Control Command Registers

This section details all of the registers implemented by PGR IEEE-1394 cameras. As a general rule, PGR IEEE-1394 cameras attempt to conform to the *IIDC 1394-based Digital Camera Specification v1.30*, which can be purchased from the 1394 Trade association at:

http://www.1394ta.org/

The base address for all camera control command registers is **0xFFFF Fxxx xxxx**. This address is contained in the configuration ROM in the camera unit directory. As of this writing, this address for all PGR cameras is **0xFFFF F0F0 0000**. All camera control registers are offset from this address.

The *PGR FlyCapture* API library has function calls to get and set camera register values. These function calls automatically take into account the 1394 base address. For example, to get the 32-bit value of the SHUTTER register at 0xFFFF F0F0 081C:

flycaptureGetCameraRegister(context, 0x81C, &ulValue);

5.1. Register Map

The following detail summarizes the layout of the PGR IEEE-1394 camera register space and lists the associated section of this manual.

Offset	Register Name	Description	Section
000h	INITIALIZE	Camera initialize register	5.3
100h	V_FORMAT_INQ	Inquiry register for video format	5.4.1
180h	V_MODE_INQ_X	Inquiry register for video mode	5.4.2
200h	V_RATE_INQ_y_X	Inquiry register for video frame rate	5.4.3
300h	Reserved		
400h	BASIC_FUNC_INQ	Inquiry register for feature presence	5.5
	FEATURE_HI_INQ		5.6
	FEATURE_LO_INQ		
500h	Feature_Name_INQ	Inquiry register for feature elements	5.7
600h	CAM_STA_CTRL	Status and control register for camera	5.8
640h		Feature control error status register	
700h	ABS_CSR_HI_INQ_x	Inquiry register for Absolute value CSR offset	5.10.1
		address	
800h	Feature_Name	Status and control register for feature	5.9

5.2. Calculating Actual Offsets using Inquiry Register Quadlet Offsets

The addresses for many DCAM control and status registers (CSRs), such as those that provide control over absolute values, Format_7 video modes, PIO, SIO and strobe output, vary between camera manufacturers. In order to provide a common mechanism across camera models for determining the location of these CSRs relative to the 1394 base address, 0xFFFF Fxxx xxxx, the DCAM specification provides fixed locations for inquiry registers that contain quadlet offsets, or pointers, to the actual offsets.

For example, the Absolute Value CSR's provide minimum, maximum and current real-world values for camera properties such as gain, shutter, etc., as described in the *Absolute Value Register Format* section. To determine the location of the shutter absolute value registers (code snippets use function calls included in the PGR FlyCapture SDK):

1. Read the ABS_CSR_HI_INQ_7 register 71Ch to obtain the quadlet offset for the absolute value CSR for shutter:

flycaptureGetCameraRegister(context, 0x71C, &ulValue);

2. The 32-bit ulValue is a quadlet offset, so multiply by 4 to get the actual offset:

ulValue = ulValue * 4; // ulValue == 0x3C0244, actual offset == 0xF00910

3. The actual offset 0xF00910 represents the offset from the 1394 base address 0xFFFF Fxxx xxxx. Since the *PGR FlyCapture API* automatically takes into account the 1394 base offset 0xFFFF F0F0 0000, the actual offset in this example would be 0x910.

5.3. Camera Initialize Register

Format:

Offset	Name	Field	Bit	Description	
000h	INITIALIZE	Initialize	[0]	If this bit is set to 1, the camera will reset to	
				its initial state and default settings. This bit is	
				self-cleared.	
		-	[1-31]	Reserved	

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL	ALL	✓	This register is supported on all PGR IEEE-1394 DCAM cameras

5.4. Inquiry Registers for Video Format / Mode / Frame Rate

The following registers may be used to determine the video formats, modes and frame rates that are available with the camera.

(Bit values = 0: Not Available, 1: Available)

5.4.1. Video Format Inquiry Registers

Format:				
Offset	Name	Field	Bit	Description
100h	V_FORMAT_INQ	Format_0	[0]	VGA non-compressed format
				(160x120 through 640x480)
		Format_1	[1]	Super VGA non-compressed format (1)
				(800x600 through 1024x768)
		Format_2	[2]	Super VGA non-compressed format (2)
				(1280x960 through 1600x1200)
		Format_x	[3-5]	Reserved for other formats
		Format_6	[6]	Still Image Format
		Format_7	[7]	Partial Image Size Format
			[8-31]	Reserved

Camera	Model/Sensor	Firmware	Avail.	Notes			
ALL	ALL	ALL	\checkmark	This register is supported on all PGR			
				IEEE-1394 DCAM cameras			

5.4.2. Video Mode Inquiry Registers

Format:				
Offset	Name	Field	Bit	Description
180h	V_MODE_INQ_O	Mode_0	[0]	160x120 YUV(4:4:4) Mode (24bit/pixel)
	(Format 0)	Mode_1	[1]	320x240 YUV(4:2:2) Mode (16bit/pixel)
		Mode_2	[2]	640x480 YUV(4:1:1) Mode (12bit/pixel)
		Mode_3	[3]	640x480 YUV(4:2:2) Mode (16bit/pixel)
		Mode_4	[4]	640x480 RGB Mode (24bit/pixel)
		Mode_5	[5]	640x480 Y8 (Mono) Mode (8bit/pixel)
		Mode_6	[6]	640x480 Y16 (Mono16) Mode (16bit/pixel)
			[7-31]	Reserved
184h	V_MODE_INQ_1	Mode_0	[0]	800x600 YUV(4:2:2) Mode (16bit/pixel)
	(Format 1)	Mode_1	[1]	800x600 RGB Mode (24bit/pixel)
		Mode_2	[2]	800x600 Y (Mono) Mode (8bit/pixel)
		Mode_3	[3]	1024x768 YUV(4:2:2) Mode (16bit/pixel)
		Mode_4	[4]	1024x768 RGB Mode (24bit/pixel)
		Mode_5	[5]	1024X768 Y (MONO) MODE (8BIT/PIXEL)
		Mode_6	[6]	800x600 Y (Mono16) Mode (16bit/pixel)
		Mode_7	[7]	1024x768 Y (Mono16) Mode (16bit/pixel)
			[8-31]	Reserved
188h	V_MODE_INQ_2	Mode_0	[0]	1280x960 YUV(4:2:2) Mode (16bit/pixel)
	(Format 2)	Mode_1	[1]	1280x960 RGB Mode (24bit/pixel)
		Mode_2	[2]	1280x960 Y (Mono) Mode (8bit/pixel)
		Mode_3	[3]	1600x1200 YUV(4:2:2) Mode (16bit/pixel)
		Mode_4	[4]	1600X1200 RGB MODE (24BIT/PIXEL)
		Mode_5	[5]	1600x1200 Y (Mono) Mode (8bit/pixel)
		Mode_6	[6]	1280x960 Y (Mono16) Mode (16bit/pixel)
		Mode_7	[7]	1600X 1200 Y (Mono16) Mode (16bit/pixel)
			[8-31]	Reserved
18Ch				
:			Res	erved
197h				
19Ch	V_MODE_INQ_7	Mode_0	[0]	Format_7 Mode_0
	(Format 7)	Mode_1	[1]	Format_7 Mode_1
		Mode_2	[2]	Format_7 Mode_2
		Mode_3	[3]	Format_7 Mode_3
		Mode_4	[4]	Format_7 Mode_4
		Mode_5	[5]	Format_7 Mode_5
		Mode_6	[6]	Format_7 Mode_6
		Mode_7	[7]	Format_7 Mode_7
			[8-31]	Reserved

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL	ALL	~	These registers are supported on all PGR IEEE-1394 DCAM cameras

5.4.3. Video Frame Rate Inquiry Registers

This set of registers allows the user to query the available frame rates for all Formats and Modes.

Format:				
Offset	Name	Field	Bit	Description
200h	V_RATE_INQ_0_0	FrameRate_0	[0]	Reserved
	(Format 0, Mode 0)	FrameRate_1	[1]	Reserved
		FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	120fps
		FrameRate_7	[7]	240fps
			[8-31]	Reserved
204h	V_RATE_INQ_0_1	FrameRate_0	[0]	1.875fps
	(Format 0, Mode 1)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	120fps
		FrameRate_7	[7]	240fps
			[8-31]	Reserved
208h	V_RATE_INQ_0_2	FrameRate_0	[0]	1.875fps
	(Format 0, Mode 2)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	120fps
		FrameRate_7	[7]	240fps
20.01		.	[8-31]	Reserved
20Ch	V_RATE_INQ_0_3	FrameRate_0	[0]	1.875fps
	(Format 0, Mode 3)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	120fps
		FrameRate_7	[7]	240fps Reserved
210h	V_RATE_INQ_0_4	FrameRate_0	[8-31] [0]	1.875fps
21011	(Format 0, Mode 4)	FrameRate_0	[0]	3.75fps
	(10111at 0, 10000 4)	FrameRate_1	[2]	7.5fps
		FrameRate_2	[2]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	120fps
		r ramercate_0	[0]	120149

	En D (7	[7]	2405
	FrameRate_7	[7]	240fps
		[8-31]	Reserved
214h V_RATE_INQ		[0]	1.875fps
(Format 0, Mod	·	[1]	3.75fps
	FrameRate_2	[2]	7.5fps
	FrameRate_3	[3]	15fps
	FrameRate_4	[4]	30fps
	FrameRate_5	[5]	60fps
	FrameRate_6	[6]	120fps
	FrameRate_7	[7]	240fps
		[8-31]	Reserved
218h V_RATE_INQ		[0]	1.875fps
(Format 0, Mod	,	[1]	3.75fps
	FrameRate_2	[2]	7.5fps
	FrameRate_3	[3]	15fps
	FrameRate_4	[4]	30fps
	FrameRate_5	[5]	60fps
	FrameRate_6	[6]	120fps
	FrameRate_7	[7]	240fps
		[8-31]	Reserved
21Ch			
:		Reser	rved
21Fh			
220h V_RATE_INQ		[0]	Reserved
(Format 1, Mod	le 0) FrameRate_1	[1]	3.75fps
	FrameRate_2	[2]	7.5fps
	FrameRate_3	[3]	15fps
	FrameRate_4	[4]	30fps
	FrameRate_5	[5]	60fps
	FrameRate_6	[6]	120fps
	FrameRate_7	[7]	240fps
		[8-31]	Reserved
224h V_RATE_INQ		[0]	Reserved
(Format 1, Mod	le 1) FrameRate_1	[1]	Reserved
	FrameRate_2	[2]	7.5fps
	FrameRate_3	[3]	15fps
	FrameRate_4	[4]	30fps
	FrameRate_5	[5]	60fps
	FrameRate_6	[6]	120fps
	FrameRate_7	[7]	Reserved
		[8-31]	Reserved
228h V_RATE_INQ		[0]	Reserved
(Format 1, Mod	le 2) FrameRate_1	[1]	Reserved
	FrameRate_2	[2]	7.5fps
	FrameRate_3	[3]	15fps
	FrameRate_4	[4]	30fps
	FrameRate_5	[5]	60fps
	FrameRate_6	[6]	120fps
	FrameRate_7	[7]	240fps
		[8-31]	Reserved

			F1 3	0.755
	(Format 1, Mode 3)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	120fps
		FrameRate_7	[7]	Reserved
			[8-31]	Reserved
230h	V_RATE_INQ_1_4	FrameRate_0	[0]	1.875fps
	(Format 1, Mode 4)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	Reserved
		FrameRate_7	[7]	Reserved
			[8-31]	Reserved
234h	V_RATE_INQ_1_5	FrameRate_1	[1]	3.75fps
	(Format 1, Mode 5)	FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	120fps
		FrameRate_7	[7]	240fps
			[8-31]	Reserved
238h	V_RATE_INQ_1_6	FrameRate_0	[0]	Reserved
	(Format 1, Mode 6)	FrameRate_1	[1]	3.75fps
	(, , , , , , , , , , , , , , , , , , ,	FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	120fps
		FrameRate_7	[7]	240fps
		/	[8-31]	Reserved
23Ch	V_RATE_INQ_1_7	FrameRate_0	[0]	1.875fps
2501	(Format 1, Mode 7)	FrameRate_1	[1]	3.75fps
	(= 0111111 1, 111040 7)	FrameRate 2	[2]	7.5fps
		FrameRate_3	[2]	15fps
		FrameRate_4	[3]	30fps
		FrameRate_5	[4]	60fps
		FrameRate_6	[5]	120fps
		FrameRate_7	[7]	Reserved
			[8-31]	Reserved
240h	V_RATE_INQ_2_0	FrameRate_0		1.875fps
24011	(Format 2, Mode 0)	FrameRate_1	[0] [1]	3.75fps
	(1 ormat 2, wrote 0)	FrameRate_2		
			[2]	7.5fps
		FrameRate_3	[3]	15fps 20fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
1		FrameRate_6	[6]	Reserved

		Ensure Data 7	[7]	Deserved
		FrameRate_7	[7]	Reserved
0.4.41	V DATE DIO 2 1	E D (O	[8-31]	Reserved
244h	V_RATE_INQ_2_1	FrameRate_0	[0]	1.875fps
	(Format 2, Mode 1)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	Reserved
		FrameRate_7	[7]	Reserved
0.401		E D (O	[8-31]	Reserved
248h	V_RATE_INQ_2_2	FrameRate_0	[0]	1.875fps
	(Format 2, Mode 2)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	120fps
		FrameRate_7	[7]	Reserved
0.4.01		E D (O	[8-31]	Reserved
24Ch	V_RATE_INQ_2_3 (Format 2, Mode 3)	FrameRate_0	[0]	1.875fps
	(Format 2, Mode 5)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps 20fac
		FrameRate_4	[4]	30fps
		FrameRate_5 FrameRate_6	[5] [6]	60fps Reserved
		FrameRate_7	[7]	Reserved
		Trancicate_/	[8-31]	Reserved
250h	V_RATE_INQ_2_4	FrameRate_0	[0]	1.875fps
25011	(Format 2, Mode 4)	FrameRate 1	[1]	3.75fps
	(1 011110 2, 1110 00 1)	FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate 5	[5]	Reserved
		FrameRate 6	[6]	Reserved
		FrameRate_7	[7]	Reserved
			[8-31]	Reserved
254h	V_RATE_INQ_2_5	FrameRate_0	[0]	1.875fps
	(Format 2, Mode 5)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	120fps
		FrameRate_7	[7]	Reserved
			[8-31]	Reserved
258h	V_RATE_INQ_2_6	FrameRate_0	[0]	1.875fps
	(Format 2, Mode 6)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps

		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	Reserved
		FrameRate_7	[7]	Reserved
			[8-31]	Reserved
25Ch	V_RATE_INQ_2_7	FrameRate_0	[0]	1.875fps
	(Format 2, Mode 7)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	Reserved
		FrameRate_7	[7]	Reserved
			[8-31]	Reserved
260h				
:			Reser	rved
2BFh		[
2E0h	V_CSR_INQ_7_0	Mode_0	[0-31]	CSR quadlet offset for Format_7 Mode_0
2E4h	V_CSR_INQ_7_1	Mode_1	[0-31]	CSR quadlet offset for Format_7 Mode_1
2E8h	V_CSR_INQ_7_2	Mode_2	[0-31]	CSR quadlet offset for Format_7 Mode_2
2ECh	V_CSR_INQ_7_3	Mode_3	[0-31]	CSR quadlet offset for Format_7 Mode_3
2F0h	V_CSR_INQ_7_4	Mode_4	[0-31]	CSR quadlet offset for Format_7 Mode_4
2F4h	V_CSR_INQ_7_5	Mode_5	[0-31]	CSR quadlet offset for Format_7 Mode_5
2F8h	V_CSR_INQ_7_6	Mode_6	[0-31]	CSR quadlet offset for Format_7 Mode_6
2FCh	V_CSR_INQ_7_7	Mode_7	[0-31]	CSR quadlet offset for Format_7 Mode_7

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL	ALL	\checkmark	These registers are supported on all PGR
				IEEE-1394 DCAM cameras

5.5. Inquiry Registers for Basic Functions

The following registers show which DCAM-compliant basic functions are implemented on the camera.

(Bit values = 0: Not Available, 1:	Available)
------------------------------------	------------

Format:				
Offset	Name	Field	Bit	Description
400h	400h BASIC_FUNC_INQ	Advanced_Feature_Inq	[0]	Inquiry for advanced feature. (Vendor Unique Features)
		Vmode_Error_Status_Inq	[1]	Inquiry for existence of Vmode_Error_Status register
		Feature_Control_Error_Status_Inq	[2]	Inquiry for existence of Feature_Control_Error_Status register
		Opt_Func_CSR_Inq	[3]	Inquiry for optional function CSR.
			[4-7]	Reserved
		1394.b_mode_Capability	[8]	Inquiry for 1394.b mode capability
			[9-15]	Reserved
		Cam_Power_Cntl	[16]	Camera process power ON/OFF capability
			[17-18]	Reserved
		One_Shot_Inq	[19]	One shot transmission capability
		Multi_Shot_Inq	[20]	Multi shot transmission capability
			[21-27]	Reserved
		Memory_Channel	[28-31]	Maximum memory channel number (N)
				Memory channel no
				0 = Factory setting memory
				1 = Memory Ch 1
				2 = Memory Ch 2
				: N- Memory Ch N
				N= Memory Ch N If 0000, user memory is not
				available.

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL	ALL	✓	This register is supported on all PGR IEEE-1394 DCAM cameras
				IEEE-1594 DCAWI cameras

5.6. Inquiry Registers for Feature Presence

The following registers show the presence of the DCAM-compliant camera features or optional functions implemented on the camera.

(Bit values = 0 : No	ot Available, 1: Available)
------------------------	-----------------------------

Offset	Name	Field	Bit	Description
404h	Feature_Hi_Inq	Brightness	[0]	Brightness Control
		Auto_Exposure	[1]	Auto Exposure Control
		Sharpness	[2]	Sharpness Control
		White_Balance	[3]	White Balance Control
		Hue	[4]	Hue Control
		Saturation	[5]	Saturation Control
		Gamma	[6]	Gamma Control
		Shutter	[7]	Shutter Speed Control
		Gain	[8]	Gain Control
		Iris	[9]	IRIS Control
		Focus	[10]	Focus Control
		Temperature	[11]	Temperature Control
		Trigger	[12]	Trigger Control
		Trigger_Delay	[13	Trigger Delay Control
		White_Shading	[14]	White Shading Compensation Control
		Frame_Rate	[15]	Frame rate prioritize control
			[16-31]	Reserved
408h	Feature_Lo_Inq	Zoom	[0]	Zoom Control
		Pan	[1]	Pan Control
		Tilt	[2]	Tilt Control
		Optical Filter	[3]	Optical Filter Control
			[4-15]	Reserved
		Capture_Size	[16]	Capture image size for Format_6
		Capture_Quality	[17]	Capture image quality for Format_6
			[18-31]	Reserved
40Ch	Opt_Function_Inq	-	[0]	Reserved
		PIO	[1]	Parallel input/output control
		SIO	[2]	Serial Input/output control
		Strobe_Output	[3]	Strobe signal output
		-	[4-31]	Reserved
410h-47Fh	Reserved			
480h	Advanced_Feature	Advanced_Feature_Quadl	[0-31]	Quadlet offset of the advanced feature
	_Inq	et_Offset		CSR's (see the Advanced Registers
				section) from the base address of initial
10.11			50.043	register space. (Vendor unique)
484h	PIO_Control_CSR	PIO_Control_Quadlet_Off	[0-31]	Quadlet offset of the PIO control
	_Inq	set		CSR's (see the <i>Parallel Input/Output</i>
				(<i>PIO</i>) section) from the base address of
40.01		SIO Control O II / Off	FO 211	initial register space.
488h	SIO_Control_CSR	SIO_Control_Quadlet_Off	[0-31]	Quadlet offset of the SIO control
	_Inq	set		CSR's (see the Serial Port
				Input/Output (SIO) section) from the
				base address of initial register space.

Format:

48Ch	Strobe_Output_CS R Inq	Strobe_Output_Quadlet_O ffset	[0-31]	Quadlet offset of the strobe output signal CSR's (see the <i>Strobe Signal</i>
	K_mq	liset		<i>Output</i> section) from the base address of initial register space.

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL	ALL	\checkmark	These registers are supported on all PGR
				IEEE-1394 DCAM cameras

5.7. Inquiry Registers for Feature Elements

The following registers show the presence of specific features, modes and minimum and maximum values for each of the DCAM-compliant camera features or optional functions implemented by the camera (see the section *Inquiry Registers for Feature Presence*).

(Bit values = 0: Not Available, 1: Available)

Offset	Name	Field	Bit	Description	
500h	BRIGHTNESS_INQ	Presence_Inq	[0]	Presence of this feature	
		Abs_Control_Inq	[1]	Absolute value control	
			[2]	Reserved	
		One_Push_Inq	[3]	One push auto mode (controlled
		-		automatically by camera only of	once)
		ReadOut_Inq	[4]	Ability to read the value of this	s feature
		On_Off_Inq	[5]	Ability to switch feature ON a	nd OFF
		Auto_Inq	[6]	Auto mode (controlled automa	atically by
				camera)	
		Manual_Inq	[7]	Manual mode (controlled by us	
		Min_Value	[8-19]	Minimum value for this feature	e control
		Max_Value	[20-31]	Maximum value for this featur	e control
504h	AUTO_EXPOSURE_INQ	Same for	mat as the E	BRIGHTNESS_INQ register	
508h	SHARPNESS_INQ			BRIGHTNESS_INQ register	
50Ch	WHITE_BALANCE_INQ	Same for	mat as the E	BRIGHTNESS_INQ register	
510h	HUE_INQ			BRIGHTNESS_INQ register	
514h	SATURATION_INQ	Same for	mat as the E	BRIGHTNESS_INQ register	
518h	GAMMA_INQ	Same for	mat as the E	BRIGHTNESS_INQ register	
51Ch	SHUTTER_INQ	Same for	mat as the E	BRIGHTNESS_INQ register	
520h	GAIN_INQ	Same for	mat as the E	BRIGHTNESS_INQ register	
524h	IRIS_INQ	Same for	mat as the E	BRIGHTNESS_INQ register	
528h	FOCUS_INQ	Same format as the BRIGHTNESS_INQ register			
52Ch	TEMPERATURE_INQ			BRIGHTNESS_INQ register	
530h	TRIGGER_INQ	Presence_Inq	[0]	Presence of this feature	
		Abs_Control_Inq	[1]	Absolute value control	
			[2-3]	Reserved	
		ReadOut_Inq	[4]	Ability to read the value of this	
		On_Off_Inq	[5]	Ability to switch feature ON an	
		Polarity_Inq	[6]	Ability to change trigger input	
		Value_Read_Inq	[7]	Ability to read raw trigger input	ıt
		Trigger_Source0_Inq	[8]	Presence of Trigger Source 0	ID=0
		Trigger_Source1_Inq	[9]	Presence of Trigger Source 1	ID=1
		Trigger_Source2_Inq	[10]	Presence of Trigger Source 2	ID=2
		Trigger_Source3_Inq	[11]	Presence of Trigger Source 3	ID=3
			[12-14]	Reserved	ID=4-6
		Software_Trigger_Inq	[15]	Presence of Software Trigger	ID=7
		Trigger_Mode0_Inq	[16]	Presence of Trigger Mode 0	
		Trigger_Mode1_Inq	[17]	Presence of Trigger Mode 1	
		Trigger_Mode2_Inq	[18]	Presence of Trigger Mode 2	
		Trigger_Mode3_Inq	[19]	Presence of Trigger Mode 3	
		Trigger_Mode4_Inq	[20]	Presence of Trigger Mode 4	
		Trigger_Mode5_Inq	[21]	Presence of Trigger Mode 5	
			[22-29]	Reserved	

Format:

		Trigger_Mode14_Inq	[30]	Presence of Trigger Mode 14
				(Vendor unique trigger mode 0)
		Trigger_Mode15_Inq	[31]	Presence of Trigger Mode 15
				(Vendor unique trigger mode 1)
534h	TRIGGER_DLY_INQ	Presence_Inq	[0]	Presence of this feature
		Abs_Control_Inq	[1]	Absolute value control
			[2]	Reserved
		One_Push_Inq	[3]	One push auto mode (controlled
		_		automatically by camera only once)
		ReadOut_Inq	[4]	Ability to read the value of this feature
		On_Off_Inq	[5]	Ability to switch feature ON and OFF
			[6-7]	Reserved
		Min_Value	[8-19]	Minimum value for this feature control
		Max_Value	[20-31]	Maximum value for this feature control
538h	WHITE_SHD_INQ	Same for	mat as the H	BRIGHTNESS_INQ register
53Ch	FRAME_RATE_INQ	Same for	mat as the H	BRIGHTNESS_INQ register
540h				
:		Reserved for other	FEATURE	_HI_INQ
57Ch				
580h	ZOOM_INQ	Presence_Inq	[0]	Presence of this feature
		Abs_Control_Inq	[1]	Absolute value control
			[2]	Reserved
		One_Push_Inq	[3]	One push auto mode (controlled
				automatically by camera only once)
		ReadOut_Inq	[4]	Ability to read the value of this feature
		On_Off_Inq	[5]	Ability to switch feature ON and OFF
		Auto_Inq	[6]	Auto mode (controlled automatically by
				camera)
		Manual_Inq	[7]	Manual mode (controlled by user)
		Min_Value	[8-19]	Minimum value for this feature control
		Max_Value	[20-31]	Maximum value for this feature control
584h	PAN_INQ	Same	e format as t	the ZOOM_INQ register
588h	TILT_INQ	Same format as the ZOOM_INQ register		
58Ch	OPTICAL_FILTER_INQ	Same format as the ZOOM_INQ register		

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL	ALL	\checkmark	These registers are supported on all PGR
				IEEE-1394 DCAM cameras

5.8. Control and Status Registers (CSRs)

The following section details a series of standard control and status registers.

5.8.1. CURRENT_FRAME_RATE: 600h

Allows the user to query and modify the current frame rate of the camera.

Format:

tormat:				
Field	Bit	Description		
Cur_V_Frm_Rate	[0-2]	Current frame rate		
		FrameRate_0 FrameRate_7		
	[3-31]	Reserved.		

Feature Availability:

	cature Avanability.					
Camera	Model/Sensor	Firmware	Avail.	Notes		
Dragonfly	ALL	2.1.2.14	✓ 	 Through the adjustment of the EXTENDED_SHUTTER register at offset 1028h, the published frame rates would vary accordingly. For example, if the camera is put into 32Hz mode, frame rate 4 would become 32, 3 would become 16, 2 would become 8 and so on. This is true for all extended shutter modes except for the 50Hz mode. 		
ALL	ALL		\checkmark			

5.8.2. CURRENT_VIDEO_MODE: 604h

Allows the user to query and modify the current video mode of the camera.

Format:

Field	Bit	Description
Cur_V_Mode	[0-2]	Current video mode
		Mode_0 Mode_7
	[3-31]	Reserved.

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		✓	

5.8.3. CURRENT_VIDEO_FORMAT: 608h

Allows the user to query and modify the current video format of the camera.

Format:

Field	Bit	Description
Cur_V_Format	[0-2]	Current video format
		Format_0 Format_7
	[3-31]	Reserved.

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		\checkmark	

5.8.4. ISO_CHANNEL / ISO_SPEED: 60Ch

Allows the user to query the camera's isochronous transmission channel and speed information.

Format:		
Field	Bit	Description
ISO_Channel	[0-3]	Isochronous channel number for video data transmission
		(Except for Format_6)
	[4-5]	Reserved
ISO_Speed	[6-7]	Isochronous transmit speed code.
		(Except for Format_6)
		0 = 100Mbps
		1 = 200 Mbps
		2 = 400Mbps
	[8-15]	Reserved
Operation_Mode	[16]	1394 operation mode
		Change control register sets of ISO_Channel and ISO_Speed
		registers
		0 = Legacy (v1.30 compatible)
		1 = 1394.b (v1.31 mode)
		Camera shall start in legacy mode for backward compatibility
	[17]	Reserved
ISO_Channel_B	[18-23]	Isochronous channel number for video data transmission of 1394.b
		mode
		(Except for Format_6)
	[24-28]	Reserved
ISO_Speed_B	[29-31]	Isochronous transmit speed code of 1394.b mode
		(Except for Format_6)
		0 = 100Mbps
		1 = 200 Mbps
		2 = 400Mbps
		3 = 800Mbps
		4 = 1.6Gbps
		5 = 3.2Gbpss

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		~	

5.8.5. CAMERA_POWER: 610h

Allows the user to power-up or power-down components of the camera. The exact components, e.g. image sensor, A/D converter, other board electronics, will vary between camera models.

If isochronous transmit (ISO_EN / ONE_SHOT / MULTI_SHOT) is enabled while the camera is powered down, the camera will automatically write $Cam_Pwr_Ctrl = 1$ to power itself up. However, disabling isochronous transmit does not automatically power-down the camera.

The camera will typically not send the first two images acquired after power-up unless the camera is in asynchronous trigger mode. The auto-exposure algorithm does not run while the camera is powered down. It may therefore take several (n) images to get a satisfactory image, where n is undefined.

Field	Bit	Description	
Cam_Pwr_Ctrl	[0]	Write:	
		0: Begin power-down process	
		1: Begin power-up process	
		Read:	
		0: Camera is powered down, or in the process of powering up i.e.,	
		bit will be zero until camera completely powered up (outside IIDC	
		specification).	
		1: Camera is powered up	
	[1-30]	Reserved	
Camera_Power_Status	[31]	Read only	
		Read: the pending value of Cam_Pwr_Ctrl	

Format:

Feature Availability:

	catare Avanability.				
Camera	Model/Sensor	Firmware	Avail.	Notes	
Dragonfly	ALL	2.1.2.14	-	Not implemented	
DX	ALL	1.1.0.5	\checkmark	• Camera_Power is OFF both at	
Flea	ALL	1.0.2.2		startup and reinitialization	
Scorpion	SCOR-03SO	1.0.2.1			
	SCOR-14SO				
	SCOR-20SO				
Scorpion	SCOR-13FF	1.0.2.1	\checkmark	• Camera_Power is OFF at startup,	
				but ON at reinitialization	
Scorpion	SCOR-03KD	0.0.1.48	-	Not implemented	
Scorpion	SCOR-13SM	0.0.0.33	-	Not implemented	

5.8.6. ISO_EN / CONTINUOUS_SHOT: 614h

This register allows the control of isochronous data transmission. Continuous shot must be enabled (Bit 0 = 1) to generate a software trigger using SOFT_ASYNC_TRIGGER register 102Ch. During ISO_EN = 1 or One_Shot = 1 or Multi_Shot =1, the register value which reflects the Isochronous packet format cannot change. Data transfer control priority is ISO_EN > One_Shot > Multi_Shot.

Format:

- 2			
	Field	Bit	Description
	ISO_EN / Continuous	[0]	1 = Start ISO transmission of video data.
	Shot		0 = Stop ISO transmission of video data. Continuous Shot is not
			enabled.
		[1-31]	Reserved.

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		\checkmark	

5.8.7. MEMORY_SAVE: 618h

This register allows the user to control whether the current status and modes are saved to the memory channel specified in the MEM_SAVE_CH register 0x620.

There is currently no way to save modifications to the default LUT or SIO configuration.

All channels can be reset back to the original factory defaults by writing the value 0xDEAFBEEF to Memory_Save (ignores MEM_SAVE_CH). The factory defaults channel can be overwritten by writing the value 0x87654321 to Memory_Save [618h] when Mem_Save_Ch [620h] is zero.

Format:

Field	Bit	Description
Memory_Save	[0]	1 = Current status and modes are saved to MEM_SAVE_CH
		(Self cleared)
	[1-31]	Reserved.

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
DX	ALL	1.1.0.5	\checkmark	
ALL	ALL		-	Not implemented

5.8.8. ONE_SHOT / MULTI_SHOT: 61Ch

This register allows the user to control single and multi-shot functionality of the camera. During $ISO_EN = 1$ or $One_Shot = 1$ or $Multi_Shot = 1$, the register value which reflects the Isochronous packet format cannot change. Data transfer control priority is $ISO_EN > One_Shot > Multi_Shot$.

r or mat.			
Field	Bit	Description	
One_Shot	[0]	1 = only one frame of video data is transmitted.	
		(Self cleared after transmission)	
		Ignored if ISO_EN = 1	
Multi_Shot	[1]	1 = N frames of video data is transmitted.	
		(Self cleared after transmission)	
		Ignored if ISO_EN = 1 or One_Shot =1	
	[2-15]	Reserved.	

Count_Number	[16-31]	Count number for Multi-shot function.
--------------	---------	---------------------------------------

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		\checkmark	Except Scorpion SCOR-03KD

5.8.9. MEM_SAVE_CH: 620h

This register allows the user to specify the memory channel number to be used by the MEMORY_SAVE command.

The camera will initialize itself at power-up, or when explicitly reinitialized, using the contents of the last saved memory channel.

Attempting to save user settings to the (read-only) factory defaults channel will cause the camera to switch back to using the factory defaults during initialization.

Format:

I UI IIIdu					
Field	Bit	Description			
Mem_Save_Ch	[0-3]	Write channel for Memory_Save command.			
		Shall be $\geq =0001$ (0 is for factory default settings)			
		See BASIC_FUNC_INQ register.			
	[4-31]	Reserved.			

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
DX	ALL	1.1.0.5	\checkmark	Supports two user-writeable channels
				plus a factory default channel
ALL	ALL		-	Not implemented

5.8.10. CUR_SAVE_CH: 620h

This register allows the user to load the camera settings configuration stored in the specified memory channel, and reports the current memory channel being used.

Format:

Field	Bit	Description
Cur_Mem_Ch	[0-3]	Write: Loads the camera status, modes and values from the specified memory channel. Read: The current memory channel number.
	[4-31]	Reserved.

Camera	Model/Sensor	Firmware	Avail.	Notes
DX	ALL	1.1.0.5	\checkmark	
ALL	ALL		-	Not implemented

5.8.11. VMODE_ERROR_STATUS: 628h

This register is used by the camera to report any camera configuration errors. If an error has occurred, no image data will be sent by the camera.

Format:

Field	Bit	Description
Vmode_Error_Status	node_Error_Status [0] Error status of combination of video format, mod ISO_SPEED setting. 0: no error	
		1: error This flag will be updateed every time one of the above settings is changed by writing a new value.
	[1-31]	Reserved.

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		\checkmark	

5.8.12. SOFTWARE_TRIGGER: 62Ch (v1.31)

This register allows the user to generate a software asynchronous trigger.

Format:

Field	Bit	Description
Software_Trigger	[0]	Write: 0: Reset software trigger, 1: Set software trigger
		(Self-cleared when Trigger_Mode=0,2,4)
		Read: 0: Ready, 1: Busy

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	-	Not implemented. Use
				SOFT_ASYNC_TRIGGER register
				102Ch.
DX	ALL	1.1.0.5	\checkmark	
Flea	ALL	1.0.2.2		
Scorpion	SCOR-03SO	1.0.2.1		
	SCOR-14SO			
	SCOR-20SO			
	SCOR-13FF			
Scorpion	SCOR-03KD	0.0.1.48	-	Not implemented.
Scorpion	SCOR-13SM	0.0.0.33	-	Not implemented.

Other Resources:

Туре	Description
Software	AsyncTriggerEx sample program (PGR FlyCapture SDK)
Documentation	Technical Application Note TAN2004004

5.8.13. DATA_DEPTH: 630h (v1.31)

This register allows the user to query the effective depth of the current image data. The image data format is least significant bit (LSB) and odd bits are filled with zeros.

Format:

Field	Bit	Description
Data_Depth	[0-7]	If read value of Data_Depth is zero, shall ignore this field.
		Write: Ignored
		Read: Effective data depth
-	[8-31]	Reserved

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		-	Not implemented

5.9. Control and Status Registers for Features

The user can control each feature of the camera through these registers. The controllable items are *Mode* and *Value*.

Mode:

Each CSR has three bits for mode control, ON_OFF, One_Push and A_M_Mode (Auto/Manual mode). Each feature can have four states corresponding to the combination of mode control bits.

One_Push	ON_OFF	A_M_Mode	State
Х	0	Х	Off state.
			Feature will be fixed value state and uncontrollable.
Х	1	1	Auto control state.
			Camera controls feature by itself continuously.
0	1	0	Manual control state.
			User can control feature by writing value to the value
			field.
1	1	0	One-Push action.
(Self clear)			Camera controls feature by itself only once and returns to
			the Manual control state with adjusted value.

Note: Not all features implement all modes.

(X: don't care)

Value:

If the *Presence_Inq* bit of the register is one, the value field is valid and can be used for controlling the feature. The user can write control values to the value field only in the Manual control state. In the other states, the user can only read the value. The camera always has to show the real setting value at the value field if *Presence_Inq* is one.

5.9.1. BRIGHTNESS: 800h

Allows the user to control the brightness of the image.

Format:		
Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
		0: N/A, 1: Available
Abs_Control	[1]	Absolute value control
		0: Control with the value in the Value field
		1: Control with the value in the Absolute value CSR.
		If this bit = 1, the value in the Value field is read-only.
	[2-4]	Reserved
One_Push	[5]	One push auto mode (controlled automatically by camera only
		once)
		Write: 1: Begin to work (self-cleared after operation)
		Read: 0: Not in operation, 1: In operation
		If A_M_Mode = 1, this bit is ignored
ON_OFF	[6]	Write: ON or OFF for this feature
		Read: read a status
		0: OFF, 1: ON
		If this bit $= 0$, other fields will be read only
		(Note that this field is read only).
A_M_Mode	[7]	Write: set the mode
		Read: read a current mode
		0: Manual, 1: Automatic
	[8-19]	Reserved
Value	[20-31]	Value.
		A write to this value in 'Auto' mode will be ignored.

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	~	 The <i>Value</i> field specifies the black level using 1/16 pixel units supporting a range of black=0 (0) to black=15.94 (255). This register corresponds to the A/D converter's clamp level register.
DX	ALL	1.1.0.5	\checkmark	
Flea	ALL	1.0.2.2		
Scorpion	SCOR-03SO	1.0.2.1		
	SCOR-14SO			
	SCOR-20SO			

Scorpion	SCOR-13FF	1.0.2.1		 The brightness CSR value is directly written into the sensor 's DAC_RAW register 0x9. With DAC_VHIGH=0 Ohm and DAC_VLOW=0 Ohm you can vary the analog dark signal from 3.0V (0) to 1.6V (127). There is no fixed formula for this. Note that the output range of the output amplifier is between 3V and 1.2V. The offset is applied before the gain so it will be changing when the gain is increased.
Scorpion	SCOR-03KD	0.0.1.48	✓	
Scorpion	SCOR-13SM	0.0.0.33	✓	 The brightness CSR value is directly written into the sensor black level control register (0x19)

5.9.2. AUTO_EXPOSURE: 804h

This register allows the user to control the camera system's automatic exposure algorithm. It has three useful states:

State	Description		
Off	Control of the exposure is achieved via setting both the SHUTTER and GAI		
	registers. This mode is achieved by setting the ON_OFF field to be 0. An		
	equivalent mode can be achieved by setting the A_M_Mode fields in the		
	SHUTTER and GAIN registers to 0 (Manual).		
ON	The camera automatically modifies the SHUTTER and GAIN registers to try		
Manual Exposure	and match the average image intensity to the value written to the Value field.		
Control	This mode is achieved by setting the A_M_Mode value of the		
	AUTO_EXPOSURE register to 0 (manual) and either/both of the A_M_Mode		
	values for the SHUTTER and GAIN registers to 1 (Auto).		
ON	The camera modifies the Value field in order to produce an image that is		
Auto Exposure	visually pleasing. This mode is achieved by setting the A_M_MODE for all		
Control	three of the AUTO_EXPOSURE, SHUTTER and GAIN registers to 1 (Auto).		
	In this mode, the Value field reflects the average image intensity.		

Auto exposure can only control the exposure when the SHUTTER and/or GAIN registers have their A_M_Mode bits set. If only one of the registers is in "auto" mode then the auto exposure controller attempts to control the image intensity using just that one register. If both of these registers are in "auto" mode the auto exposure controller uses a shutter-before-gain heuristic to try and maximize the signal-to-noise ratio by favoring a longer shutter time over a larger gain value.

In absolute mode, an exposure value (EV) of 1 is twice as bright as an EV of 0. 0 can be considered to be "normal exposure". In theoretical terms, this equates to a shutter of 1 second using a f1.0 aperture lens. Normal exposure is where the average intensity of the image is 18% of 1023 (18% grey).

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
rresence_mq	[0]	0: N/A, 1: Available
Abs Control	[1]	Absolute value control
	[1]	0: Control with the value in the Value field
		1: Control with the value in the Absolute value CSR.
		If this bit = 1, the value in the Value field is read-only.
	[2-4]	Reserved
One_Push	[5]	One push auto mode (controlled automatically by camera only
		once)
		Write: 1: Begin to work (self-cleared after operation)
		Read: 0: Not in operation, 1: In operation
		If $A_M_Mode = 1$, this bit is ignored
ON_OFF		Write: ON or OFF for this feature
		Read: read a status
		0: OFF, 1: ON
		If this bit $= 0$, other fields will be read only

Format:

A_M_Mode	[7]	Write: set the mode Read: read a current mode	
		0: Manual, 1: Automatic	
	[8-19]	Reserved	
Value	[20-31]	Value.	
		A write to this value in 'Auto' mode will be ignored.	

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		\checkmark	

5.9.3. SHARPNESS: 808h

This register provides a mechanism to control a sharpening filter applied to the image on the camera before it is transmitted to the PC.

Format:

Same definition as BRIGHTNESS.

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		-	Not implemented

5.9.4. WHITE_BALANCE: 80Ch

This register controls the relative gain of pixels in the Bayer tiling used in the CCD of a color camera. Control of the register is achieved via the R_Value and B_Value fields and the On_Off bit. Both value fields specify relative gain, with a value that is half the maximum value being a relative gain of zero. This register has two states:

- OFF the same gain is applied to all pixels in the Bayer tiling.
- ON the *R_Value* field is applied to the red pixels of the Bayer tiling and the *B_Value* field is applied to the blue pixels of the Bayer tiling.

The following table illustrates the default gain settings for most cameras.

	Red	Green	Blue
Black and White	32	32	32
Color	50	22	50

Note: The Bayer_Tile_Gain register (offset 1044h) provides an alternate way of setting these gains and allows the setting of both green pixel gains.

5.9.4.1. One-Shot and Auto Operation

One of the uses of One-Shot/Auto White Balance is to obtain a similar color balance between different cameras that are slightly different from each other. Theoretically, if different cameras

are pointed at the same object, using One-Shot/Auto will get their color balances to be even closer together.

One-Shot is identical to Auto white balance, except One-Shot only attempts to automatically adjust white balance for a set period of time before stopping. The white balance of the camera before using One-Shot/Auto must already be relatively close. In other words, if the Red is set to 0 and Blue at maximum (two extremes), One-Shot/Auto will not work. However, if the camera is already close to being color balanced, then it will work (it may only be a small change).

Format:				
Field	Bit	Description		
Presence_Inq	[0]	Presence of this feature		
		0: N/A, 1: Available		
Abs_Control	[1]	Absolute value control		
		0: Control with value in the Value field		
		1: Control with value in the associated Abs Value CSR		
		If this bit is 1, then Value is ignored		
	[2-4]	Reserved		
One_Push	[5]	One push auto mode (controlled automatically by camera only		
		once)		
		Write: 1: Begin to work (self-cleared after operation)		
		Read: 0: Not in operation, 1: In operation		
		If $A_M_{de} = 1$, this bit is ignored		
ON_OFF	[6]	Write: ON or OFF for this feature		
		Read: read a status		
		0: OFF, 1: ON		
		If this bit = 0 , other fields will be read only		
A_M_Mode	[7]	Write: Set the mode.		
		Read: read the current mode.		
		0: Manual, 1: Auto		
U_Value / B_Value	[8-19]	Blue Value.		
		A write to this value in 'Auto' mode will be ignored.		
V_Value / R_Value	[20-31]	Red Value.		
		A write to this value in 'Auto' mode will be ignored.		

I cutul c 110	catare rivanability:					
Camera	Model/Sensor	Firmware	Avail.	Notes		
Dragonfly	ALL	2.1.2.14	~	Bit 1: The camera does not implement Abs Value control for white balance and as such this bit is always 0. Bit 7: The camera does not implement auto white balance and as such this bit is always 0 The range of both the R_Value and		
				<i>B_Value</i> is 063.		
ALL	ALL		\checkmark	Color models only.		

5.9.5. HUE: 810h

This register provides a mechanism to control the Hue component of the images being produced by the camera, given a standard Hue, Saturation, Value (HSV) color space.

Format:

Same definition as BRIGHTNESS.

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		-	Not implemented

5.9.6. SATURATION: 814h

This register provides a mechanism to control the Saturation component of the images being produced by the camera, given a standard Hue, Saturation, Value (HSV) color space.

Format:

Same definition as BRIGHTNESS.

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		-	Not implemented

5.9.7. GAMMA: 818h

This register provides a mechanism to control the function used to non-linearly map a higher bit depth image produced by the sensor to the requested number of bits. The following function applies to all PGR cameras that implement gamma:

y = 255 * pow (x/z, 1/g)

Where:

```
z = pow(2,n) - 1
y = output
x = input
pow(a,b) = a to the power of b
g = Gamma in Absolute value = Gamma in integer value/1024.0
n = # of bits from the analog-to-digital (A/D) converter
```

Format:

Same definition as BRIGHTNESS.

F cature Ava	cature Avanability:				
Camera	Model/Sensor	Firmware	Avail.	Notes	
Dragonfly	ALL	2.1.2.14	-	Not implemented	
DX	ALL	1.1.0.5	~		
Flea	ALL	1.0.2.2			
Tica	ALL	1.0.2.2			

Scorpion	SCOR-03SO	1.0.2.1		
	SCOR-14SO			
	SCOR-20SO			
	SCOR-13FF			
Scorpion	SCOR-03KD	0.0.1.48	-	Not implemented
Scorpion	SCOR-13SM	0.0.0.33	\checkmark	

Other Resources:

Туре	Description
Documentation	Scorpion Technical Reference

5.9.8. SHUTTER: 81Ch

This register provides a mechanism to control the integration time. Control of the register is via the *Value* field and the *Abs_Control* and A_M_Mode bits (ON_OFF is always set). This register has three states:

State	Description:		
Manual/Abs	The shutter value is set by the user via the Abs_Shutter register. The Value field		
	becomes read only and reflects the converted value of the Abs_Shutter register.		
Manual	The user sets the shutter value via the Value field - the Abs_Shutter register becomes		
	read only and contains the current shutter time.		
Auto	The shutter value is set by the auto exposure controller (if enabled). Both the Value		
	field and the Abs_Shutter register become read only.		

See the *Gain and Shutter Settings* section (where applicable) of your camera's *Technical Reference Manual* for conversion of values to real-world units.

Note that the shutter times are scaled by the divider of the basic frame rate. For example, dividing the frame rate by two (e.g. 15fps to 7.5fps) causes the maximum shutter time to double (e.g. 33ms to 66ms).

Field Bit Description		Description
Presence_Inq	[0]	Presence of this feature
-		0: N/A, 1: Available
Abs_Control	[1]	Absolute value control
		0: Control with the value in the Value field
		1: Control with the value in the Absolute value CSR.
		If this bit $= 1$, the value in the Value field is ignored.
	[2-4]	Reserved
One_Push	[5]	One push auto mode (controlled automatically by camera only once)
		Write: 1: Begin to work (self-cleared after operation)
		Read: 0: Not in operation, 1: In operation
		If A M Mode = 1, this bit is ignored

ON_OFF		Write: ON or OFF for this feature	
		Read: read a status	
		0: OFF, 1: ON	
		If this bit $= 0$, other fields will be read only	
		(Note that this field is read only).	
A_M_Mode	[7]	Write: set the mode	
		Read: read a current mode	
		0: Manual, 1: Automatic	
High_Value	[8-19]	Upper 4 bits of the shutter value available only in extended shutter	
		mode (outside of specification).	
Value	[20-31]	Value.	
		A write to this value in 'Auto' mode will be ignored.	

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		\checkmark	
Scorpion	SCOR-13SM	0.0.0.33	~	The value written to the Symagery sensor is the shutter value multiplied by the pixel clock (40MHz) divided by 27,000.

Other Resources:

Туре	Description
KB Article	Article 202 - Using Absolute Value registers
KB Article	Article 16 - Calculating Dragonfly gain and shutter settings

5.9.9. GAIN: 820h

This register controls the gain of the A/D converter. Control of the register is via the *Value* field and the *Abs_Control* and *A_M_Mode* bits (*ON_OFF* is always set). This register has three states:

State	Description
Manual/Abs	The gain value is set by the user via the Abs_Gain register: the Value field becomes
	read only and reflects the converted absolute value.
Manual	The gain value is set by the user via the <i>Value</i> field: the Abs_Gain register becomes
	read only and contains the current gain.
Auto	The gain value is set by the auto exposure controller (if enabled): both the Value
	field and the Abs_Gain register become read only.

See *Gain and Shutter Settings* section (where applicable) of your camera's *Technical Reference Manual* for conversion of values to real-world units.

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
		0: N/A, 1: Available

Abs_Control	[1]	Absolute value control	
	[+]	0: Control with the value in the Value field	
		1: Control with the value in the Absolute value CSR.	
	[0,4]	If this bit = 1, the value in the Value field is ignored.	
	[2-4]	Reserved	
One_Push	[5]	One push auto mode (controlled automatically by camera only	
		once)	
		Write: 1: Begin to work (self-cleared after operation)	
		Read: 0: Not in operation, 1: In operation	
		If $A_M_M = 1$, this bit is ignored	
ON_OFF	[6]	Write: ON or OFF for this feature	
		Read: read a status	
		0: OFF, 1: ON	
		If this bit $= 0$, other fields will be read only	
		(Note that this field is read only).	
A_M_Mode	[7]	Write: set the mode	
		Read: read a current mode	
		0: Manual, 1: Automatic	
	[8-19]	Reserved	
Value	[20-31]	Value.	
		A write to this value in 'Auto' mode will be ignored.	

Camera	Model/Sensor	Firmware	Avail.	Notes
		Filliwale		THOLES
ALL	ALL		\checkmark	
Scorpion	SCOR-13SM	0.0.0.33	~	 Auto and One_Push implemented Values come from the Gain CSR, which map to the Symagery Gain Configuration Register (register 0x04) in the following way 0 => 0x02 9 => 0x15 1 => 0x03 10 => 0x3B 2 => 0x04 11 => 0x35 3 => 0x05 12 => 0x36 4 => 0x06 13 => 0x37 5 => 0x07 14 => 0x3D 6 => 0x0E 15 => 0x3E 7 => 0x14 16 => 0x3F 8 => 0x1B

Other Resources:

Туре	Description
KB Article	Article 142 - Method for determining signal-to-noise ratio (SNR)
KB Article	Article 81 - Controlling the white balance for all four pixels
KB Article	Article 16 - Calculating Dragonfly gain and shutter settings

5.9.10. IRIS: 824h

This register provides a mechanism to control the iris on cameras that support lenses with an automatic or motorized aperture.

Format:

Same definition as BRIGHTNESS.

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		-	Not implemented

5.9.11. FOCUS: 828h

This register provides a mechanism to control the focus on cameras that support lenses with an automatic or motorized focus.

Format:

Same definition as BRIGHTNESS.

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		-	Not implemented

5.9.12. TEMPERATURE: 82Ch

Allows the user to get the temperature of the camera board-level components. For cameras housed in a case, it is the ambient temperature within the case. The *Value* is in degrees Kelvin and are in one-tenths (0.1) of a degree.

Format:	

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
		0: N/A, 1: Available
Abs_Control	[1]	Absolute value control
		0: Control with the value in the Value field
		1: Control with the value in the Absolute value CSR.
		If this bit = 1, the value in the Value field is read-only.
	[2-4]	Reserved
One_Push	[5]	One push auto mode (controlled automatically by camera only
		once)
		Write: 1: Begin to work (self-cleared after operation)
		Read: 0: Not in operation, 1: In operation
		If $A_M_{de} = 1$, this bit is ignored
ON_OFF	[6]	Write: ON or OFF for this feature
		Read: read a status
		0: OFF, 1: ON
		If this bit = 0 , other fields will be read only

		(Note that this field is read only).	
A_M_Mode	[7]	Read: read a current mode	
		0: Manual, 1: Automatic	
	[8-19]	Reserved	
Value	[20-31]	Value.	
		A write to this value in 'Auto' mode will be ignored.	

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		-	Not implemented

5.9.13. TRIGGER_MODE: 830h

This register controls the trigger mode. Control of the register is via the On_Off bit and the *Trigger_Mode* and *Parameter* fields.

For cameras using the PGR-Specific GPIO Modes (see section 7.1: *PGR-Specific GPIO Modes*), the *Trigger_Polarity* bit is used to invert the polarity of *all* trigger signals. Polarities generally default to active low. Writing a 1 to this bit would therefore set all trigger polarities to be active high. For cameras using the DCAM v1.31 trigger functionality (see section 7.2: *GPIO Control Using DCAM v1.31 PIO /* Strobe), the *Trigger_Polarity* bit controls the polarity of the current *Trigger_Source. Trigger_Polarity* does not affect the trigger pin polarity of DCAM v1.31-compliant cameras that are using GPIO_MODE_2.

The *Trigger_Source* bit is used to select which GPIO pin will be used for external trigger purposes when using the DCAM v1.31 trigger functionality. For more information, consult section 7.2: *GPIO Control Using DCAM v1.31 PIO /* Strobe.

The *Trigger_Value* bit is used to determine the current raw signal value on the pin.

The *Trigger_Mode* bit is used to set the trigger mode to be used. To determine the trigger modes supported by an individual camera, query the TRIGGER_INQ register 530h (see the *Inquiry Registers for Feature Elements* section). For individual trigger mode descriptions, see the *Trigger Modes* section).

The *Trigger_Queue* field in the GPIO_XTRA register 1104h can be used to control how an external trigger signal that is sent during integration (between shutter open and close) is handled: queued (stored to immediately trigger the next frame) or dropped. Refer to this register to determine if this is implemented for your camera.

rormat.			
Field	Bit	Description	
Presence_Inq	[0]	Presence of this feature	
		0: N/A, 1: Available	
Abs_Control	[1]	Absolute value control	
		0: Control with the value in the Value field	
		1: Control with the value in the Absolute value CSR.	
		If this bit $= 1$, the value in the Value field is read-only.	

	[2-5]	Reserved	
ON_OFF	[6]	Write: ON or OFF for this feature	
		Read: read a status	
		0: OFF, 1: ON	
		If this bit $= 0$, other fields will be read only	
Trigger_Polarity	[7]	Select trigger polarity (except for Software_Trigger)	
		0: Trigger active low, 1: Trigger active high	
Trigger_Source	[8-10]	Select trigger source	
(v1.31)		Sets trigger source ID from trigger source ID_Inq	
Trigger_Value (v1.31)	[11]	Trigger input raw signal value	
		Read only	
		0: Low, 1: High	
	[8-11]	Reserved	
Trigger_Mode	[12-15]	Trigger mode (Trigger_Mode_015)	
	[16-19]	Reserved	
Parameter	[20-31]	Parameter for trigger function, if required (optional)	

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	\checkmark	Does not implement Trigger_Source or
				Trigger_Value - implemented through
				GPIO registers
DX	ALL	1.1.0.5	\checkmark	
Flea	ALL	1.0.2.2		
Scorpion	SCOR-03SO	1.0.2.1		
	SCOR-14SO			
	SCOR-20SO			
	SCOR-13FF			
Scorpion	SCOR-03KD	0.0.1.48	-	Not implemented
Scorpion	SCOR-13SM	0.0.0.33	\checkmark	

Other Resources:

Туре	Description
Software	AsyncTriggerEx sample program (PGR FlyCapture SDK)
Documentation	Technical Application Note TAN2004004

5.9.14. TRIGGER_DELAY: 834h (v1.31)

This register provides control over the time delay between an external asynchronous trigger and the start of integration (shutter open).

Format:	Format:							
Field	Bit	Description						
Presence_Inq	[0]	Presence of this feature						
		0: N/A, 1: Available						
Abs_Control	[1]	Absolute value control						
		0: Control with the value in the Value field						
		1: Control with the value in the Absolute value CSR.						
		If this bit = 1, the value in the Value field is read-only.						
	[2-5]	Reserved						

ON_OFF	[6]	Write: ON or OFF for this feature		
		Read: read a status		
		0: OFF, 1: ON		
		If this bit $= 0$, other fields will be read only		
	[7-19]	Reserved		
Value	[20-31]	Value.		

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	-	Not implemented. See register
				SHUTTER_DELAY: 1108h.
DX	ALL	1.1.0.5	\checkmark	• Delay is in units of a 24.576MHz
Flea	ALL	1.0.2.2		clock.
Scorpion	SCOR-03SO	1.0.2.1		• Less than 1024 ticks is linear;
	SCOR-14SO			greater than 1024 ticks is non-linear.
	SCOR-20SO			Recommend using register 950h
	SCOR-13FF			ABS_VAL_TRIGGER_DELAY.
Scorpion	SCOR-03KD	0.0.1.48	-	Not implemented
Scorpion	SCOR-13SM	0.0.0.33	-	Not implemented

5.9.15. FRAME_RATE: 83Ch (v1.31)

This register provides control over the frame rate of the camera. The actual frame interval (time between individual image acquisitions) is fixed by the frame rate value. When this feature is ON, exposure time is limited by the frame rate value dynamically. The available frame rate range depends on the current video format and/or video mode.

Format:

Same definition as BRIGHTNESS.

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	-	Not implemented. See FRAME_TIME
				register 1240h.
DX	ALL	1.1.0.5	\checkmark	Turn FRAME_RATE to OFF to enable
Flea	ALL	1.0.2.2		Extended Shutter mode, or Global
Scorpion	SCOR-03SO	1.0.2.1		Shutter mode for SCOR-13FF.
	SCOR-14SO			
	SCOR-20SO			
	SCOR-13FF			
Scorpion	SCOR-03KD	0.0.1.48	-	Not implemented.
Scorpion	SCOR-13SM	0.0.0.33	-	Not implemented.

Other Resources:

Туре	Description
Software	<i>ExtendedShutterEx</i> sample program (PGR FlyCapture SDK)
KB Article	Article 115 - Key differences between rolling shutter and frame (global) shutter.

5.10. Absolute Value CSR Registers

Many PGR IEEE-1394 cameras implement "absolute" modes for various camera settings that report real-world values, such as Shutter times in seconds (s) and Gain values in decibels (dB). Using the absolute values contained in the following registers is easier and more efficient than applying complex conversion formulas to the information in the *Value* field of the associated Control and Status Register. In addition, these conversion formulas can change between firmware versions. PGR therefore recommends using the absolute registers to determine camera values.

5.10.1. Inquiry Registers for Absolute Value CSR Offset Address

The following set of registers indicates the locations of the absolute value CSR registers that are implemented by PGR IEEE-1394 cameras. These offsets are relative to the 1394 base offset 0xFFFF F0F0 0000.

Offset	Name	Bit	Description
700h	ABS_CSR_HI_INQ_0	[031]	Quadlet offset for the absolute value CSR for Brightness.
704h	ABS_CSR_HI_INQ_1	[031]	Quadlet offset for the absolute value CSR for Auto Exposure.
708h	ABS_CSR_HI_INQ_2	[031]	Quadlet offset for the absolute value CSR for Sharpness.
70Ch	ABS_CSR_HI_INQ_3	[031]	Quadlet offset for the absolute value CSR for White Balance.
710h	ABS_CSR_HI_INQ_4	[031]	Quadlet offset for the absolute value CSR for Hue.
714h	ABS_CSR_HI_INQ_5	[031]	Quadlet offset for the absolute value CSR for Saturation.
718h	ABS_CSR_HI_INQ_6	[031]	Quadlet offset for the absolute value CSR for Gamma.
71Ch	ABS_CSR_HI_INQ_7	[031]	Quadlet offset for the absolute value CSR for Shutter.
720h	ABS_CSR_HI_INQ_8	[031]	Quadlet offset for the absolute value CSR for Gain.
724h	ABS_CSR_HI_INQ_9	[031]	Quadlet offset for the absolute value CSR for Iris.
728h	ABS_CSR_HI_INQ_10	[031]	Quadlet offset for the absolute value CSR for Focus.
72Ch	ABS_CSR_HI_INQ_11	[031]	Quadlet offset for the absolute value CSR for Temperature.
730h	ABS_CSR_HI_INQ_12	[031]	Quadlet offset for the absolute value CSR for Trigger.
734h	ABS_CSR_HI_INQ_13	[031]	Quadlet offset for the absolute value CSR for Trigger Delay.
740h	Reserved		
:			
77Fh			
7C0h	ABS_CSR_LO_INQ_0	[031]	Quadlet offset for the absolute value CSR for Zoom.
7C4h	ABS_CSR_LO_INQ_1	[031]	Quadlet offset for the absolute value CSR for Pan.
7C8h	ABS_CSR_LO_INQ_2	[031]	Quadlet offset for the absolute value CSR for Tilt.

5.10.2. Absolute Value Register Format

The IIDC DCAM Specification defines the Absolute Value CSRs. Each set of absolute value CSRs consist of three registers (quadlets): a minimum value, a maximum value (both read only) and the current value. The DCAM specification defines the offsets of the Absolute Value CSRs for each of the camera features, as described in section 6.9.1 above.

Offset	Name	Field	Bit	Description
000h	Absolute Value	Min_Value	[0-31]	Minimum value for this feature. Read only.
004h		Max_Value	[0-31]	Maximum value for this feature. Read only.
008h		Value	[0-31]	Current value of this feature.

0-7		8-15	16-23	24-31				
	Floating-point value with IEEE/REAL*4 format							
	Sign(S) Exponent(exp) Mantissa(m)							

23bit

5.10.3. Units of Value for Absolute Value CSR Registers

8bit

1bit

The following tables describe the real-world units that are used for the absolute value registers. Each value is either Absolute (value is an absolute value) or Relative (value is an absolute value, but the reference is system dependent).

Feature element	Function	Unit	Unit	Reference	Value Type
name			Description	point	
Brightness	Black level offset	%			Absolute
Auto Exposure	Auto Exposure	EV	exposure value	0	Relative
White_Balance	White Balance	K	kelvin		Absolute
Hue	Hue	deg	degree	0	Relative
Saturation	Saturation	%		100	Relative
Shutter	Integration time	S	seconds		Absolute
Gain	Circuit gain	dB	decibel	0	Relative
Iris	Iris	F	F number		Absolute
Focus	Focus	m	meter		Absolute
Trigger	External Trigger	times			Absolute
Trigger_Delay	Trigger Delay	S	seconds		Absolute
Frame_Rate	Frame rate	fps	frames per		Absolute
			second		

5.10.4. Determining Absolute Value Register Values

The Absolute Value CSR's store 32-bit floating-point values with IEEE/REAL*4 format, as described in the *Absolute Value Register Format* section. To determine the minimum, maximum and current values for a property such as shutter²:

4. Read the ABS_CSR_HI_INQ_7 register 71Ch to obtain the quadlet offset for the absolute value CSR for shutter:

flycaptureGetCameraRegister(context, 0x71C, &ulValue);

5. The 32-bit ulValue is a quadlet offset, so multiply by 4 to get the actual offset:

ulValue = ulValue * 4; // ulValue == 0x3C0244, actual offset == 0xF00910

² Code snippets use function calls included in the PGR FlyCapture SDK

NOTE: This offset represents the offset from the 1394 base address 0xFFFF Fxxx xxxx. Since the PGR FlyCapture API automatically takes into account the 1394 base offset 0xFFFF F0F0 0000, the actual offset in this example would be 0x910.

6. Use the offset obtained to read the min, max and current absolute values and convert the 32-bit hexadecimal values to floating point:

```
// declare a union of a floating point and unsigned long
typedef union _AbsValueConversion
{
      unsigned longulValue;
      float
             fValue;
} AbsValueConversion;
float
                    fMinShutter, fMaxShutter, fCurShutter;
AbsValueConversion minShutter, maxShutter, curShutter;
// read the 32-bit hex value into the unsigned long member
flycaptureGetCameraRegister( context, 0x910, &minShutter.ulValue );
flycaptureGetCameraRegister( context, 0x914, &maxShutter.ulValue );
flycaptureGetCameraRegister( context, 0x918, &curShutter.ulValue );
fMinShutter = minShutter.fValue;
fMaxShutter = maxShutter.fValue;
fCurShutter = curShutter.fValue;
```

NOTE: The PGR FlyCapture API provides function calls to automatically get and set absolute values, e.g. flycaptureGetCameraAbsProperty(), etc. Refer to the PGR FlyCapture User Manual for function definitions.

5.10.5. Setting Absolute Value Register Values

The user must write a 1 to bit [1] of the associated feature CSR order to change the Value field of this register from being read-only. For example, to enable absolute value control of shutter, bit [1] of SHUTTER register 0x81C must be set to 1.

5.10.6. Current Absolute Value Register Offsets

NOTE: The following table lists the absolute value offsets for all PGR cameras as of the revision date. These offsets are subject to change without notice.

Offset	Name	Field	Bit	Description
900h	ABS_VAL_AUTO_EXPOSURE	Min_Value	[0-31]	Min auto exposure value.
904h		Max_Value	[0-31]	Max auto exposure value.
908h		Value	[0-31]	Current auto exposure value.

		1		
910h	ABS_VAL_SHUTTER	Min_Value	[0-31]	Min shutter value seconds
914h		Max_Value	[0-31]	Max shutter value seconds
918h		Value	[0-31]	Current shutter value seconds
920h	ABS_VAL_GAIN	Min_Value	[0-31]	Min gain value dB
924h		Max_Value	[0-31]	Max gain value dB
928h		Value	[0-31]	Current gain value dB
930h	ABS_VAL_BRIGHTNESS	Min_Value	[0-31]	Min brightness value %
934h		Max_Value	[0-31]	Max brightness value %
938h		Value	[0-31]	Current brightness value %
940h	ABS_VAL_GAMMA	Min_Value	[0-31]	Min gamma value
944h		Max_Value	[0-31]	Max gamma value
948h		Value	[0-31]	Current gamma value
950h	ABS_VAL_TRIGGER_DELAY	Min_Value	[0-31]	Min delay value seconds
954h		Max_Value	[0-31]	Max delay value seconds
958h		Value	[0-31]	Current delay value seconds
960h	ABS_VAL_FRAME_RATE	Min_Value	[0-31]	Min frame rate FPS
964h		Max_Value	[0-31]	Max frame rate FPS
968h		Value	[0-31]	Current frame rate FPS

5.11. Video Mode Control and Status Registers for Format_7

These registers provide Format_7, Mode_x information for cameras that implement Format_7 (Partial Image Size Format). Not all registers are implemented for all PGR cameras.

5.11.1. Inquiry Registers for Format_7 CSR Offset Address

The following set of registers indicates the locations of the Format_7 Mode_x CSR registers that are implemented by PGR IEEE-1394 cameras. These offsets are relative to the 1394 base offset 0xFFFF F0F0 0000.

Offset	Name	Field	Bit	Description
2E0h	V_CSR_INQ_7_0	Mode_0	[0-31]	CSR quadlet offset for Format_7 Mode_0
2E4h	V_CSR_INQ_7_1	Mode_1	[0-31]	CSR quadlet offset for Format_7 Mode_1
2E8h	V_CSR_INQ_7_2	Mode_2	[0-31]	CSR quadlet offset for Format_7 Mode_2
2ECh	V_CSR_INQ_7_3	Mode_3	[0-31]	CSR quadlet offset for Format_7 Mode_3
2F0h	V_CSR_INQ_7_4	Mode_4	[0-31]	CSR quadlet offset for Format_7 Mode_4
2F4h	V_CSR_INQ_7_5	Mode_5	[0-31]	CSR quadlet offset for Format_7 Mode_5
2F8h	V_CSR_INQ_7_6	Mode_6	[0-31]	CSR quadlet offset for Format_7 Mode_6
2FCh	V_CSR_INQ_7_7	Mode_7	[0-31]	CSR quadlet offset for Format_7 Mode_7

NOTE: Refer to the section Calculating Actual Offsets using Inquiry Register Quadlet Offsets for information on calculating the actual offsets of the following registers for each Format_7 mode.

5.11.2. MAX_IMAGE_SIZE_INQ: 000h

This register is an inquiry register for maximum image size.

Format:		
Field	Bit	Description
Hmax	[0-15]	Maximum horizontal pixel number
Vmax	[16-31]	Maximum vertical pixel number

5.11.3. UNIT_SIZE_INQ (004h) and UNIT_POSITION_INQ (04Ch)

This register is an inquiry register for unit size.

Hmax = Hunit * n = Hposunit*n3 (n, n3 are integers) Vmax = Vunit * m = Vposunit*m3 (m, m3 are integers)

If the read value of Hposunit is 0, Hposunit = Hunit for compatibility with DCAM Rev 1.20.

If the read value of Vposunit is 0, Vposunit = Vunit for compatibility with DCAM Rev 1.20.

Format (UNIT_SIZE_INQ: 004h):

Field	Bit	Description
Hunit	[0-15]	Horizontal unit pixel number
Vunit	[16-31]	Vertical unit pixel number

Format (UNIT_POSITION_INQ: 04Ch):

Field	Bit	Description
Hposunit	[0-15]	Horizontal unit pixel number for position
		If read value of Hposunit is 0, Hposunit = Hunit for
		compatibility.
Vposunit	[16-31]	Vertical unit number for position
		If read value of Vposunit is 0, Vposunit = Vunit for
		compatibility.

5.11.4. IMAGE_POSITION (008h) and IMAGE_SIZE (00Ch)

These registers determine an area of required data. All the data must be as follows:

Left = Hposunit * n1 Top = Vposunit * m1 Width = Hunit * n2 Height = Vunit * m2 (n1, n2, m1, m2 are integers) Left + Width <= Hmax Top + Height <= Vmax

Format (IMAGE_POSITION: 008h):

Field	Bit	Description
Left	[0-15]	Left position of requested image region (pixels)
Тор	[16-31]	Top position of requested image region (pixels)

Format (IMAGE_SIZE: 00Ch):

Field	Bit	Description
Width	[0-15]	Width of requested image region (pixels)
Height	[16-31]	Height of requested image region (pixels)

5.11.5. COLOR_CODING_ID (010h) and COLOR_CODING_INQ (014h)

The COLOR_CODING_INQ register describes available the color-coding capability of the system. Each coding scheme has its own ID number. The required color-coding scheme must be set to COLOR_CODING_ID register as the ID number.

Format (COLOR_CODING_ID: 010h):

Field	Bit	Description
Coding_ID	[0-7]	Color coding ID from COLOR_CODING_INQ register
	[8-31]	Reserved (all zero)

Field	Bit	Description	ID
Mono8	[0]	Y only. Y=8bits, non compressed	0
4:1:1 YUV8	[1]	4:1:1, $Y=U=V=$ 8bits, non compressed	1
4:2:2 YUV8	[2]	4:2:2, Y=U=V=8bits, non compressed	2
4:4:4 YUV8	[3]	4:4:4, Y=U=V=8bits, non compressed	3
RGB8	[4]	R=G=B=8bits, non compressed	4
Mono16	[5]	Y only, Y=16bits, non compressed	5
RGB16	[6]	R=G=B=16bits, non compressed	6
Signed Mono16	[7]	Y only, Y=16 bits, non compressed (signed integer)	7
Signed RGB16 [8]		R=G=B=16 bits, non compressed (signed integer)	8
Raw8 [9]		Raw data output of color filter sensor, 8 bits	9
Raw16	[10]	Raw data output of color filter sensor, 16 bits	10
	[11-31]	Reserved (all zero)	11-31

Format (COLOR_CODING_INQ: 014h):

5.11.6. PIXEL_NUMBER_INQ (034h), TOTAL_BYTES_HI_INQ (038h), and TOTAL_BYTES_LO_INQ (03Ch)

The PIXEL_NUMBER_INQ register includes the total number of pixels in the required image area. The TOTAL_BYTE_INQ register includes the total number of bytes in the required image area.

If the *Presence* bit in the VALUE_SETTING register is zero, the values of these registers will be updated by writing the new value to the IMAGE_POSITION, IMAGE_SIZE and COLOR_CODING_ID registers.

If the *Presence* bit in the VALUE_SETTING register is one, the values of these registers will be updated by writing one to the *Setting_1* bit in the VALUE_SETTING register. If the *ErrorFlag_1* bit is zero after the *Setting_1* bit returns to zero, the values of these registers are valid.

Format (PIXEL_NUMBER_INQ: 034h):

Field	Bit	Description
PixelPerFrame	[0-31]	Pixel number per frame

Format (TOTAL_BYTES_HI_INQ: 038h):

Field	Bit	Description
BytesPerFrameHi	[0-31]	Higher quadlet of total bytes of image data per frame

Format (TOTAL_BYTES_LO_INQ: 03Ch):

Field	Bit	Description	
BytesPerFrameLo	[0-31]	Lower quadlet of total bytes of image data per frame	

5.11.7. PACKET_PARA_INQ (040h) and BYTE_PER_PACKET (044h)

MaxBytePerPacket describes the maximum packet size for one isochronous packet. *UnitBytePerPacket* is the unit for isochronous packet size.

RecBytePerPacket describes the recommended packet size for one isochronous packet. If *RecBytePerPacket* is zero, you must ignore this field.

If the *Presence* bit in the VALUE_SETTING register is zero, values of these fields will be updated by writing the new value to the IMAGE_POSITION, IMAGE_SIZE and COLOR_CODING_ID registers with the value of the ISO_Speed register (60Ch [6..7]).

First, the ISO_Speed register must be written. Then the IMAGE_POSITION, IMAGE_SIZE and COLOR_CODING_ID registers should be updated.

If the *Presence* bit in the VALUE_SETTING register is one, the values of these fields will be updated by writing one to the *Setting_1* bit in the VALUE_SETTING register. If the *ErrorFlag_1* bit is zero after the *Setting_1* bit returns to zero, the values of these fields are valid.

The *BytePerPacket* value determines the real packet size and transmission speed for one frame image. The *BytePerPacket* value must keep the following condition.

BytePerPacket = UnitBytePerPacket * n (n is an integer) BytePerPacket <= MaxBytePerPacket

Format (PACKET_PARA_INQ: 040h):

Field	Bit	Description
UnitBytePerPacket	[0-15]	Minimum bytes per packet
MaxBytePerPacket	[16-31]	Maximum bytes per packet

Format (BYTE_PER_PACKET: 044h):

Field	Bit	Description
BytePerPacket	[0-15]	Packet size
RecBytePerPacket	[16-31]	Recommended bytes per packet. If this value is
		zero, must ignore this field.

5.11.8. PACKET_PER_FRAME_INQ: 048h

If BytePerPacket * n != BytePerFrame (n is an integer), you must use padding. The *PacketPerFrame* value is the number of packets per one frame. This register will be updated after *BytePerPacket* is written.

The total number of bytes of transmission data per one frame = BytePerPacket * PacketPerFrame.

The number of bytes of padding = BytePerPacket * PacketPerFrame - BytePerFrame. The receiver must ignore the above padding data in the last packet of each frame.

Field	Bit	Description
PacketPerFrame	[0-31]	Number of packets per frame

5.11.9. FRAME_INTERVAL_INQ: 050h

This register describes the frame interval based on the current camera conditions, including exposure time. The reciprocal value of this (1 / FrameInterval) is the frame rate of the camera. If the value of this register is zero, the camera can't report this value and it should be ignored. FrameInterval is in seconds and reported in IEEE1394/REAL*4 floating-point format (see section 5.10.4: *Determining Absolute Value Register Values*).

Format:

Field	Bit	Description
FrameInterval	[0-31]	Current frame interval (seconds) (IEEE/REAL*4 floating-point value) If read value of FrameInterval is zero, ignore this field.

5.11.10. VALUE_SETTING: 07Ch

The purpose of the *Setting_1* bit is for updating the TOTAL_BYTES_HI_INQ, TOTAL_BYTES_LO_INQ, PACKET_PARA_INQ and BYTE_PER_PACKET registers. If one of the values in the IMAGE_POSITION, IMAGE_SIZE, COLOR_CODING_ID and ISO_Speed registers is changed, the *Setting_1* bit must be set to 1. The *ErrorFlag_1* field will be updated when the *Setting_1* bit returns to 0. If the *ErrorFlag_1* field is zero, the values of the TOTAL_BYTES_HI_INQ, TOTAL_BYTES_LO_INQ, PACKET_PARA_INQ and BYTE_PER_PACKET registers are valid.

After the *BytePerPacket* value is written, the *ErrorFlag_2* field will be updated. If the *ErrorFlag_2* field is zero, isochronous transmission can be started without any problem.

Format:		
Field	Bit	Description
Presence	[0]	If this bit is one, <i>Setting_1</i> , <i>ErrorFlag_1</i> and <i>ErrorFlag_2</i>
		fields are valid. This bit is read only.
Setting_1	[1]	If writing "1" to this bit, IMAGE_POSITION,
_		IMAGE_SIZE, COLOR_CODING_ID and ISO_Speed
		register value will be reflected in PIXEL_NUMBER_INQ,
		TOTAL_BYTES_HI_INQ, TOTAL_BYTES_LO_INQ,
		PACKET_PARA_INQ and BYTE_PER_PACKET registers.
		This bit is self-cleared.
	[2-7]	Reserved
ErrorFlag_1	[8]	Combination of the values of IMAGE_POSITION,
		IMAGE_SIZE, COLOR_CODING_ID and ISO_Speed
		register is not acceptable.
		0: no error, 1: error
		This flag will be updated every time when Setting_1 bit
		returns to "0" from "1".
ErrorFlag_2	[9]	BytePerPacket value is not acceptable.
		0: no error, 1: error
	[10-31]	Reserved

5.12. Advanced Registers

5.12.1. ACCESS_CONTROL_REGISTERS: 1000h - 100Ch

According to the DCAM specification, these registers must be configured properly before access to the advanced registers is granted. This requirement is not enforced on the camera but the registers' formats are here for completeness.

Offset	Name	Field	Bit	Description
1000h	ACCESS_CONTROL_HI	Feature_ID_Hi	[0-31]	
1004h	ACCESS_CONTROL_LO	Feature_ID_Lo	[0-15]	
			[16-19]	Reserved
		Time_Out	[20-31]	Milliseconds until
				time out (max 4.095s)
1008h-	FEATURE_ID	Company_ID	[0-23]	00B09D
100Ch		Adv_Feature_Set	[24-47]	Advanced Feature set
				unique value
				(currently 000004)

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		\checkmark	These registers are supported on all PGR
				IEEE-1394 DCAM cameras

5.12.2. EXTENDED_SHUTTER: 1028h

Allows the user to access a number of different extended shutter modes. Placing the camera into extended shutter mode removes the restriction that the shutter integration time must be less than the frame rate. The actual frame rate will be the maximum of the nominal frame rate and the shutter time.

For PGR IEEE-1394 cameras that implement the FRAME_RATE register 83Ch, extended shutter times can be achieved by turning the FRAME_RATE register OFF.

DRAGONFLY ONLY: The maximum shutter values for the various modes are as follows:

Frame Rate	Maximum Shutter Value
30Hz	532 * 1/16000sec.
32Hz	500 * 1/16000sec.
Extended shutter	4000 * 1/16000sec.
50Hz	256 * 1/12800sec.
24Hz	666 * 1/16000sec.

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
		0: N/A 1: Available
	[1-12]	Reserved
Shutter_Mode	[13-15]	0: 30Hz (default)
		1: 32Hz
		2: extended shutter
		3: 50Hz
		4: 24Hz
	[16-31]	Reserved.

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	\checkmark	
ALL	ALL		-	Not implemented. Turn FRAME_RATE
				register OFF (where applicable) to
				enable extended shutter.

Other Resources:

Туре	Description
Software	ExtendedShutterEx sample program (PGR FlyCapture SDK)

5.12.3. SOFT_ASYNC_TRIGGER: 102Ch

Provides a software method for generating an asynchronous trigger event. When the camera is in Trigger_Mode_0, writing a zero to bit 31 of this register will generate an asynchronous trigger.

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature.
		0: N/A, 1: Available
	[1-29]	Reserved.
Trigger	[30-31]	Write:
		0: generate trigger
		Read:
		0: camera is not ready to be triggered; integration is complete but
		camera is transferring image data
		1: camera is ready to be triggered
		2: camera is in the middle of integration

	cuture rivunusinty t						
Camera	Model/Sensor	Firmware	Avail.	Notes			
Dragonfly	ALL	2.1.2.14	√	Does not implement <i>Trigger</i> field status			
				mode 2 (middle of integration)			
DX	ALL	1.1.0.5	\checkmark	Deprecated. Recommend using			
Flea	ALL	1.0.2.2		SOFTWARE_TRIGGER register 62Ch.			
Scorpion	SCOR-03SO	1.0.2.1					
	SCOR-14SO						
	SCOR-20SO						

	SCOR-13FF			
Scorpion	SCOR-03KD	0.0.1.48	-	Not implemented
Scorpion	SCOR-13SM	0.0.0.33	✓	

Other Resources:

Туре	Description
Software	AsyncTriggerEx sample program (PGR FlyCapture SDK)
KB Article	Article 169 - Time between software asynchronous trigger and start of integration.

5.12.4. BAYER_TILE_MAPPING: 1040h

This 32 bit read only register specifies the sense of the cameras' Bayer tiling. Various colors are indicated by the ASCII representation of the first letter of their name.

Color	ASCII
Red (R)	52h
Green (G)	47h
Blue (B)	42h
Monochrome (Y)	59h

For example, 0x52474742 is RGGB and 0x59595959 is YYYY.

I of mati		
Field	Bit	Description
Bayer_Sense_A	[0-7]	ASCII representation of the first letter of the color of pixel (0,0) in
		the Bayer tile.
Bayer_Sense_B	[8-15]	ASCII representation of the first letter of the color of pixel (0,1) in
		the Bayer tile.
Bayer_Sense _C	[16-24]	ASCII representation of the first letter of the color of pixel (1,0) in
		the Bayer tile.
Bayer_Sense _D	[25-31]	ASCII representation of the first letter of the color of pixel (1,1) in
		the Bayer tile.

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		~	

5.12.5. BAYER_TILE_GAIN: 1044h

Bit

Allows the user to specify all four Bayer tile pixel gains. The ordering matches that of the BAYER_TILE_MAPPING register (offset 1040h) and the units match those of the WHITE_BALANCE register (offset 80Ch).

Any write to this register will set the *On_Off* bit of the WHITE_BALANCE register.

Format:

d

Fiel

Description

Bayer_Gain_A	[0-7]	Gain for pixel (0,0) in the Bayer tile.
Bayer_Gain_B	[8-15]	Gain for pixel (0,1) in the Bayer tile.
Bayer_Gain_C	[16-24]	Gain for pixel (1,0) in the Bayer tile.
Bayer_Gain_D	[25-31]	Gain for pixel (1,1) in the Bayer tile.

Camera	Model/Sensor	Firmware	Avail.	Notes	
Dragonfly	ALL	2.1.2.14	✓	Implemented on Dragonfly only.	

5.12.6. Y16_DATA_FORMAT: 1048h

This register allows the user to specify the image data format for Y16 images: either IIDC 1394 DCAM-compliant mode (default) or PGR-specific (Intel-compatible) mode.

IIDC 1394 DCAM mode:

Description	Data Format	
Actual bit depth: Dependent on A/D converter	0-7	8-15
Bit alignment: MSB	98765432	10xxxxxx
Byte alignment: Big-endian		

PGR-specific mode:

Description	Data Format	
Actual bit depth: Dependent on A/D converter	0-7	8-15
Bit alignment: MSB	10xxxxxx	98765432
Byte alignment: Little-endian		

Format:

Field	Bit	Description	
Presence_Inq	[0]	Presence of this feature.	
		0: N/A, 1: Available	
	[1-30]	Reserved.	
	[31]	Value	
		0: PGR-specific mode	
		1: DCAM-compliant mode (default)	

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		\checkmark	

5.12.7. AUTO_EXPOSURE_RANGE: 1088h

Specifies the range of allowed exposure values to be used by the automatic exposure controller when in auto mode.

Field	Bit	Description	
Presence_Inq	[0]	Presence of this feature	
-		0: N/A 1: Available	
	[1-7]	Reserved	
Min_Value	[8-19]	Lower bound	
Max_Value	[20-31]	Upper bound	

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		\checkmark	

5.12.8. AUTO_SHUTTER_RANGE: 1098h

Specifies the range of allowed shutter values to be used by the automatic exposure controller.

Format:					
Field	Bit	Description			
Presence_Inq	[0]	Presence of this feature			
		0: N/A 1: Available			
	[1-7]	Reserved			
Min_Value	[8-19]	Lower bound			
Max_Value	[20-31]	Upper bound			

Note: The actual range used is further restricted to match the current grab mode (see Shutter register [offset 81Ch] for the list of ranges).

Note: Although 0xFFA0 is the maximum shutter setting in extended shutter mode, 0xFA0 is the maximum shutter setting for the AUTO_SHUTTER_RANGE.

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		\checkmark	

5.12.9. AUTO_GAIN_RANGE: 10A0h

Specifies the range of allowed gain values to be used by the automatic exposure controller.

Format:

Field	Bit	Description	
Presence_Inq	[0]	Presence of this feature	
		0: N/A 1: Available	
	[1-5]	Reserved	
ON_OFF	[6]	Write: ON or OFF for this feature	
		Read: read a status	
		0: OFF 1: ON	
		If this bit $= 0$, other fields will be read only	
		Controls auto white balance gain boost.	
	[7]	Reserved	

Min_Value	[8-19]	Lower bound
Max_Value	[20-31]	Upper bound

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		\checkmark	

5.12.10. GPIO_CONTROL: 1100h

Provides status information about the camera's general-purpose I/O pins.

0: Voltage low, 1: Voltage high

Format:

Field	Bit	Description		
Presence_Inq	[0]	Presence of this feature		
		0: N/A 1: Available		
Pin_Count	[12-15]	Number of available GPIO pins		
	[16-28]	Reserved		
Value_3	[28]	Value of IO3		
Value_2	[29]	Value of IO2		
Value_1	[30]	Value of IO1		
Value_0	[31]	Value of IO0		

Feature Availability:

I cucui e i i ve	cuture rivanuonity t				
Camera	Model/Sensor	Firmware	Avail.	Notes	
ALL	ALL		\checkmark	Except Scorpion SCOR-03KD	

5.12.11. GPIO_XTRA: 1104h

The GPIO_XTRA register has three main functions:

- 1. *Strobe_Start*: Controls when the strobe starts: relative to the start of integration (default) or relative to the time of an asynchronous trigger.
- 2. *Trigger_Queue*: Control how an external trigger signal that is sent during integration (between shutter open and close) is handled: queued (stored to immediately trigger the next frame) or dropped.
- 3. *Strobe_Multiplier*: This multiplier acts on three different components:
 - a. Strobe delay (set in GPIO_XTRA_PIN_x register, *Mode_Specific_1* field)
 - b. Strobe duration (set in GPIO_XTRA_PIN_x register, *Mode_Specific_2* field)
 - c. Shutter delay (set in SHUTTER_DELAY register, *Shutter_Delay* field)

This allows the strobe signal delay/duration and shutter delay to be extended.

DRAGONFLY ONLY: The strobe can be extended beyond the 65,535 ticks of the 49.152MHz clock allowable in the GPIO_XTRA_PIN / SHUTTER_DELAY registers, according to the following formula:

New_duration_or_delay = 16-bit_field_value * (Strobe_Multiplier + 1) For example, to extend the length of the strobe from 1.33ms (Mode_Specific_2 = FFFFh) to 21.20ms, enter F in the Strobe_Multiplier field.

To extend the shutter delay from 1.33ms (Shutter_Delay = FFFFh) to 4.0ms, enter 2 in the Strobe_Multiplier field.

Format:

Field	Bit	Description	
Strobe_Start	[0]	Current Mode	
		0: Strobe start is relative to start of integration	
		1: Strobe start is relative to external trigger	
Trigger_Queue	[1]	Current Mode	
		0: Trigger sent during integration is queued	
		1: Trigger sent during integration is dropped	
	[2-23]	Reserved	
Strobe_Multiplier	[24-31]		

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	~	
DX	ALL	1.1.0.5	\checkmark	 Strobe_Start defaults to time of trigger when
Flea	ALL	1.0.2.2		in asynchronous trigger mode
Scorpion	SCOR-03SO	1.0.2.1		 Strobe_Multiplier deprecated. Recommend
	SCOR-14SO			using GPIO_XTRA_PIN_x only.
	SCOR-20SO			
	SCOR-13FF			
Scorpion	SCOR-03KD	0.0.1.48	-	Not implemented

5.12.12. SHUTTER_DELAY: 1108h

This register provides control over the time delay between an external trigger and the start of integration (shutter open).

Format:

Field	Bit	Description			
	[0-15]	Reserved			
Shutter_Delay	[16-31]	Delay before the start of integration.			

	Camera	Model/Sensor	Firmware	Avail.	Notes	
--	--------	--------------	----------	--------	-------	--

Dragonfly	ALL	2.1.2.14	√	Implemented on Dragonfly only.For camerasthat implementTRIGGER_DELAYregister834h, use
				TRIGGER_DELAY.
				Delay is in ticks of a 49.152MHz clock. To extend the duration of this delay, use
				the <i>Strobe_Multiplier</i> defined in the
				GPIO_XTRA register.

5.12.13. GPIO_STRPAT_CTRL: 110Ch

This register provides control over a shared 4-bit counter with programmable period. When the *Current_Count* equals N a GPIO pin will only output a strobe pulse if bit[N] of the GPIO_STRPAT_MASK_PIN_x register's *Enable_Pin* field is set to '1'.

Please refer to *Technical Application Note: TAN2005003* for a full description of the strobe pattern functionality.

Field	Bit	Description	
Presence_Inq	[0]	Presence of this feature	
		0: N/A 1: Available	
	[1-18]	Reserved	
Count_Period	[19-23]	Controls the period of the strobe pattern	
		Valid values: 116	
	[24-27]	Reserved	
Current_Count	[28-31]	Read-only	
		The value of the bit index defined in GPIO_x_STRPAT_MASK	
		that will be used during the next image's strobe. Current_Count	
		increments at the same time as the strobe start signal occurs.	

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	-	Not implemented
DX	ALL	1.1.0.5	\checkmark	
Flea	ALL	1.0.2.2		
Scorpion	SCOR-03SO	1.0.2.1		
	SCOR-14SO			
	SCOR-20SO			
	SCOR-13FF			
Scorpion	SCOR-03KD	0.0.1.48	-	Not implemented
Scorpion	SCOR-13SM	0.0.0.33	-	Not implemented

5.12.14. GPIO_CTRL_PIN_0: 1110h

This register provides control over the first GPIO pin (Pin 0).

Field	Bit	Description

Presence_Inq	[0]	Presence of this feature	
		0: N/A 1: Available	
	[1-11]	Reserved	
Pin_Mode	[12-15]	Current GPIO_Mode	
		0: Input	
		1: Output	
		2: Asynchronous trigger	
		3: Strobe	
		4: Pulse width modulation (PWM)	
		8: Output (DCAM Specification v1.31-compliant cameras only)	
Data	[16-31]	Data field	
		GPIO_MODE_0 – bit 31 contains value	
		GPIO_MODE_1 – bit 31 contains value	
		GPIO_MODE_2 – 0: trigger on falling edge, 1: on rising edge	
		GPIO_MODE_3 – 0: High active output, 1: Low active output	
		GPIO_MODE_4 – see the "PGR Specific GPIO Modes" section.	

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		\checkmark	Except Scorpion SCOR-03KD

5.12.15. GPIO_XTRA_PIN_0: 1114h

This register contains mode specific data for the first GPIO pin (Pin 0).

Format:

Field	Bit	Description
Mode_Specific_1	[0-15]	GPIO_MODE_3: Delay before the start of the pulse
		GPIO_MODE_4: Low period of PWM pulse (if Pwm_Pol = 0)
Mode_Specific_2	[16-31]	GPIO_MODE_3: Duration of the pulse
		GPIO_MODE_4: High period of PWM pulse (if Pwm_Pol = 0)

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	~	Units are ticks of a 49.152MHz clock
DX	ALL	1.1.0.5	\checkmark	Units are ticks of a 1.024MHz clock
Flea	ALL	1.0.2.2		
Scorpion	SCOR-03SO	1.0.2.1		
	SCOR-14SO			
	SCOR-20SO			
	SCOR-13FF			
Scorpion	SCOR-03KD	0.0.1.48	-	Not implemented
Scorpion	SCOR-13SM	0.0.0.33	\checkmark	

5.12.16. GPIO_STRPAT_MASK_PIN_0: 1118h

This register defines the actual strobe pattern to be implemented by GPIO0 in conjunction with the *Count_Period* defined in GPIO_STRPAT_CTRL register 110Ch.

For example, if *Count_Period* is set to '3', bits 16-18 of the *Enable_Mask* can be used to define a strobe pattern. An example strobe pattern might be bit 16=0, bit 17=0, and bit 18=1, which will cause a strobe to occur every three frames (when the *Current_Count* is equal to 2).

Format:		
Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
		0: N/A 1: Available
	[1-15]	Reserved
Enable_Mask	[16-31]	Bit field representing the strobe pattern used in conjunction with
		Count_Period in GPIO_STRPAT_CTRL
		0: Do not output a strobe
		1: Output a strobe

Feature Availability.

I cucui e ilite	cature Avanability.				
Camera	Model/Sensor	Firmware	Avail.	Notes	
Dragonfly	ALL	2.1.2.14	-	Not implemented	
Flea	ALL	1.0.2.2	\checkmark		
Scorpion	SCOR-03SO	1.0.2.1			
	SCOR-14SO				
	SCOR-20SO				
	SCOR-13FF				
Scorpion	SCOR-03KD	0.0.1.48	-	Not implemented	
Scorpion	SCOR-13SM	0.0.0.33	-	Not implemented	

5.12.17. GPIO_CTRL_PIN_1: 1120h

This register provides control over the second GPIO pin (Pin 1).

Format:					
Field	Bit	Description			
Presence_Inq	[0]	Presence of this feature			
		0: N/A 1: Available			
	[1-11]	Reserved			
Pin_Mode	[12-15]	Current GPIO_Mode			
		0: Input			
		1: Output			
		2: Asynchronous trigger			
		3: Strobe			
		4: Pulse width modulation (PWM)			
		8: Output (DCAM Specification v1.31-compliant cameras only)			
Data	[16-31]	Data field			
		GPIO_MODE_0 – bit 31 contains value			
		GPIO_MODE_1 – bit 31 contains value			
		GPIO_MODE_2 – 0: trigger on falling edge, 1: on rising edge			
		GPIO_MODE_3 – 0: High active output, 1: Low active output			
		GPIO_MODE_4 – see the "PGR Specific GPIO Modes" section.			

Format:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		\checkmark	Except Scorpion SCOR-03KD

5.12.18. GPIO_XTRA_PIN_1: 1124h

This register contains mode specific data for the second GPIO pin (Pin 1).

Format:		
Field	Bit	Description
Mode_Specific_1	[0-15]	GPIO_MODE_3: Delay before the start of the pulse
		GPIO_MODE_4: Low period of PWM pulse (if Pwm_Pol = 0)
Mode_Specific_2	[16-31]	GPIO_MODE_3: Duration of the pulse
		GPIO_MODE_4: High period of PWM pulse (if Pwm_Pol = 0)

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	\checkmark	Units are ticks of a 49.152MHz clock
DX	ALL	1.1.0.5	\checkmark	Units are ticks of a 1.024MHz clock
Flea	ALL	1.0.2.2		
Scorpion	SCOR-03SO	1.0.2.1		
	SCOR-14SO			
	SCOR-20SO			
	SCOR-13FF			
Scorpion	SCOR-03KD	0.0.1.48	-	Not implemented
Scorpion	SCOR-13SM	0.0.0.33	\checkmark	

5.12.19. GPIO_STRPAT_MASK_PIN_1: 1128h

This register defines the actual strobe pattern to be implemented by GPIO1 in conjunction with the *Count_Period* defined in GPIO_STRPAT_CTRL register 110Ch.

For example, if *Count_Period* is set to '3', bits 16-18 of the *Enable_Mask* can be used to define a strobe pattern. An example strobe pattern might be bit 16=0, bit 17=0, and bit 18=1, which will cause a strobe to occur every three frames (when the *Current_Count* is equal to 2).

Format:		
Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
		0: N/A 1: Available
	[1-15]	Reserved
Enable_Mask	[16-31]	Bit field representing the strobe pattern used in conjunction with
		Count_Period in GPIO_STRPAT_CTRL
		0: Do not output a strobe
		1: Output a strobe

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	-	Not implemented

Flea	ALL	1.0.2.2	\checkmark	
Scorpion	SCOR-03SO	1.0.2.1	✓	
	SCOR-14SO			
	SCOR-20SO			
	SCOR-13FF			
Scorpion	SCOR-03KD	0.0.1.48	-	Not implemented
Scorpion	SCOR-13SM	0.0.0.33	-	Not implemented

5.12.20. GPIO_CTRL_PIN_2: 1130h

This register provides control over the third GPIO pin.

Format:

Field	Bit	Description	
Presence_Inq	[0]	Presence of this feature	
		0: N/A 1: Available	
	[1-11]	Reserved	
Pin_Mode	[12-15]	Current GPIO_Mode	
		0: Input	
		1: Output	
		2: Asynchronous trigger	
		3: Strobe	
		4: Pulse width modulation (PWM)	
		8: Output (DCAM Specification v1.31-compliant cameras only)	
Data	[16-31]	Data field	
		GPIO_MODE_0 – bit 31 contains value	
		GPIO_MODE_1 – bit 31 contains value	
		GPIO_MODE_2 – 0: trigger on falling edge, 1: on rising edge	
		GPIO_MODE_3 – 0: High active output, 1: Low active output	
		GPIO_MODE_4 – see the "PGR Specific GPIO Modes" section.	

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		✓	Except Scorpion SCOR-03KD

5.12.21. GPIO_XTRA_PIN_2: 1134h

This register contains mode specific data for the third GPIO pin.

1 01 111000		
Field	Bit	Description
Mode_Specific_1	[0-15]	GPIO_MODE_3: Delay before the start of the pulse
		GPIO_MODE_4: Low period of PWM pulse (if Pwm_Pol = 0)
Mode_Specific_2	[16-31]	GPIO_MODE_3: Duration of the pulse
		GPIO_MODE_4: High period of PWM pulse (if Pwm_Pol = 0)

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	\checkmark	Units are ticks of a 49.152MHz clock

DX	ALL	1.1.0.5	✓	Units are ticks of a 1.024MHz clock
Flea	ALL	1.0.2.2		
Scorpion	SCOR-03SO	1.0.2.1		
	SCOR-14SO			
	SCOR-20SO			
	SCOR-13FF			
Scorpion	SCOR-03KD	0.0.1.48	-	Not implemented
Scorpion	SCOR-13SM	0.0.0.33	\checkmark	

5.12.22. GPIO_STRPAT_MASK_PIN_2: 1138h

This register defines the actual strobe pattern to be implemented by GPIO2 in conjunction with the *Count_Period* defined in GPIO_STRPAT_CTRL register 110Ch.

For example, if *Count_Period* is set to '3', bits 16-18 of the *Enable_Mask* can be used to define a strobe pattern. An example strobe pattern might be bit 16=0, bit 17=0, and bit 18=1, which will cause a strobe to occur every three frames (when the *Current_Count* is equal to 2).

rormat:				
Field	Bit	Description		
Presence_Inq	[0]	Presence of this feature		
		0: N/A 1: Available		
	[1-15]	Reserved		
Enable_Mask	[16-31]	Bit field representing the strobe pattern used in conjunction with		
		Count_Period in GPIO_STRPAT_CTRL		
		0: Do not output a strobe		
		1: Output a strobe		

Feature Availability:

Formate

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	-	Not implemented
Flea	ALL	1.0.2.2	\checkmark	
Scorpion	SCOR-03SO	1.0.2.1	\checkmark	
	SCOR-14SO			
	SCOR-20SO			
	SCOR-13FF			
Scorpion	SCOR-03KD	0.0.1.48	-	Not implemented
Scorpion	SCOR-13SM	0.0.0.33	-	Not implemented

5.12.23. GPIO_CTRL_PIN_3: 1140h

This register provides control over the fourth GPIO pin.

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature 0: N/A 1: Available
	[1-11]	Reserved

Pin_Mode	[12-15]	Current GPIO_Mode	
		0: Input	
		1: Output	
		2: Asynchronous trigger	
		3: Strobe	
		4: Pulse width modulation (PWM)	
		8: Output (DCAM Specification v1.31-compliant cameras only)	
Data	[16-31]	Data field	
		GPIO_MODE_0 – bit 31 contains value	
		GPIO_MODE_1 – bit 31 contains value	
		GPIO_MODE_2 – 0: trigger on falling edge, 1: on rising edge	
		GPIO_MODE_3 – 0: High active output, 1: Low active output	
		GPIO_MODE_4 – see the "PGR Specific GPIO Modes" section.	

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	\checkmark	Must be physically implemented to
				work. See Technical Reference Manual.
				Default: GPIO_MODE_0
ALL	ALL		\checkmark	Except Scorpion SCOR-03KD

5.12.24. GPIO_XTRA_PIN_3: 1144h

This register contains mode specific data for the fourth GPIO pin.

Format:

Field	Bit	Description
Mode_Specific_1	[0-15]	GPIO_MODE_3: Delay before the start of the pulse
		GPIO_MODE_4: Low period of PWM pulse (if Pwm_Pol = 0)
Mode_Specific_2	[16-31]	GPIO_MODE_3: Duration of the pulse
		GPIO_MODE_4: High period of PWM pulse (if Pwm_Pol = 0)

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	\checkmark	Units are ticks of a 49.152MHz clock
DX	ALL	1.1.0.5	\checkmark	Units are ticks of a 1.024MHz clock
Flea	ALL	1.0.2.2		
Scorpion	SCOR-03SO	1.0.2.1		
	SCOR-14SO			
	SCOR-20SO			
	SCOR-13FF			
Scorpion	SCOR-03KD	0.0.1.48	-	Not implemented
Scorpion	SCOR-13SM	0.0.0.33	\checkmark	

5.12.25. GPIO_STRPAT_MASK_PIN_3: 1148h

This register defines the actual strobe pattern to be implemented by GPIO3 in conjunction with the *Count_Period* defined in GPIO_STRPAT_CTRL register 110Ch.

For example, if *Count_Period* is set to '3', bits 16-18 of the *Enable_Mask* can be used to define a strobe pattern. An example strobe pattern might be bit 16=0, bit 17=0, and bit 18=1, which will cause a strobe to occur every three frames (when the *Current_Count* is equal to 2).

Format:			
Field	Bit	Description	
Presence_Inq	[0]	Presence of this feature	
		0: N/A 1: Available	
	[1-15]	Reserved	
Enable_Mask	[16-31]	Bit field representing the strobe pattern used in conjunction with	
		Count_Period in GPIO_STRPAT_CTRL	
		0: Do not output a strobe	
		1: Output a strobe	

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	-	Not implemented
Flea	ALL	1.0.2.2	\checkmark	
Scorpion	SCOR-03SO	1.0.2.1	\checkmark	
	SCOR-14SO			
	SCOR-20SO			
	SCOR-13FF			
Scorpion	SCOR-03KD	0.0.1.48	-	Not implemented
Scorpion	SCOR-13SM	0.0.0.33	-	Not implemented

5.12.26. PIO_OUTPUT: 11F0h

This section describes the control and inquiry registers for the PIO_Output functionality specified in the *IIDC 1394-based Digital Camera (DCAM) Specification Version v1.31*. See the section *GPIO Control Using DCAM v1.31 PIO /* Strobe for further information.

Format:		
Field	Bit	Description
IO0_Status	[0]	State (voltage level) of the IO0 pin
TO1 Oct	[1]	0: Low, 1: High
IO1_Status	[1]	State (voltage level) of the IO1 pin 0: Low, 1: High
IO2_Status	[2]	State (voltage level) of the IO2 pin
		0: Low, 1: High
IO3_Status	[3]	State (voltage level) of the IO3 pin
		0: Low, 1: High
	[4-31]	Reserved

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	-	Not implemented
Flea	ALL	1.0.2.2	\checkmark	
Scorpion	SCOR-03SO	1.0.2.1	\checkmark	
	SCOR-14SO			

	SCOR-20SO			
	SCOR-13FF			
Scorpion	SCOR-03KD	0.0.1.48	-	Not implemented
Scorpion	SCOR-13SM	0.0.0.33	_	Not implemented

5.12.27. PIO_INPUT: 11F4h

This section describes the control and inquiry registers for the PIO_Input functionality specified in the *IIDC 1394-based Digital Camera (DCAM) Specification Version v1.31*. See the section *GPIO Control Using DCAM v1.31 PIO* / Strobe for further information.

Format:		
Field	Bit	Description
IO0_Status	[0]	State (voltage level) of the IO0 pin
		0: Low, 1: High
IO1_Status	[1]	State (voltage level) of the IO1 pin
		0: Low, 1: High
IO2_Status	[2]	State (voltage level) of the IO2 pin
		0: Low, 1: High
IO3_Status	[3]	State (voltage level) of the IO3 pin
		0: Low, 1: High
	[4-31]	Reserved

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	I	Not implemented
Flea	ALL	1.0.2.2	\checkmark	
Scorpion	SCOR-03SO	1.0.2.1	\checkmark	
	SCOR-14SO			
	SCOR-20SO			
	SCOR-13FF			
Scorpion	SCOR-03KD	0.0.1.48	-	Not implemented
Scorpion	SCOR-13SM	0.0.0.33	-	Not implemented

5.12.28. PIO_DIRECTION: 11F8h

If the *IOx_Mode* bit is asserted (write a '1'), this means the GPIO pin is currently configured as an output and the *Pin_Mode* of the GPIO pin (see the GPIO_CTRL_PIN_x register) is GPIO_Mode_8. Otherwise, the *Pin_Mode* will be GPIO_Mode_0 (Input). The PIO_DIRECTION register is writeable only when the current GPIO_Mode is GPIO_Mode_0 or GPIO_Mode_8.

See the section GPIO Control Using DCAM v1.31 PIO / Strobe.

Field	Bit	Description
IO0_Mode	[0]	Current mode of GPIO Pin 0
		0: Other, 1: Output

IO1_Mode	[1]	Current mode of GPIO Pin 1	
		0: Other, 1: Output	
IO2_Mode	[2]	Current mode of GPIO Pin 2	
		0: Other, 1: Output	
IO3_Mode	[3]	Current mode of GPIO Pin 3	
		0: Other, 1: Output	
	[4-31]	Reserved	

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	-	Not implemented
Flea	ALL	1.0.2.2	\checkmark	
Scorpion	SCOR-03SO	1.0.2.1	\checkmark	
	SCOR-14SO			
	SCOR-20SO			
	SCOR-13FF			
Scorpion	SCOR-03KD	0.0.1.48	-	Not implemented
Scorpion	SCOR-13SM	0.0.0.33	-	Not implemented

5.12.29. FRAME_TIME: 1240h

This register provides control over frame rate relative to the CURRENT_FRAME_RATE value.

For example, when CURRENT_FRAME_RATE = 4 (i.e. 30Hz on a lo-res Dragonfly) the camera sends 240 iso packets per image. To achieve 30Hz operation the camera waits for about 26-27 iso periods before sending the next image.

The FRAME_TIME register allows the desired frame rate to be specified, which could be considerably less than the nominal rate specified by CURRENT_FRAME_RATE. For example, with a CURRENT_FRAME_RATE of 30fps, 25fps is now possible.

The formula to determine the Value is:

FRAME_TIME = 800 * (Current_Frame_Rate / Desired_Frame_Rate)

Example:

To achieve 25fps while the current frame rate is 30fps:

FRAME_TIME = 800 * (30fps / 25fps) = 960 = 3C0h

Enter 3C0h in the Value field (last 16 bits) of 1240h to achieve 25fps.

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature 0: N/A 1: Available
	[1-5]	Reserved

ON_OFF	[6]	Always ON. To turn this feature OFF, write a 0 to this bit and bits 20-31 (Value_Field).
	[7–19]	Reserved
Value	[20-31]	Value

Camera	Model/Sensor	Firmware	Avail.	Notes			
Dragonfly	ALL	2.1.2.14	\checkmark	Implemented on	Dragonfly	only.	For
				cameras	that	implei	ment
				FRAME_RATE	register	83Ch,	use
				FRAME_RATE.			

5.12.30. FRAME_SYNC_OFFSET: 1244h

Multiple cameras of the same type on the same IEEE-1394 bus are automatically synchronized to each other at the hardware level. This register allows the user to offset the synchronization of one camera relative to another camera by a defined amount of time. For example, it would be possible for camera "B" to always grab images 1ms after camera "A" grabs images; the two cameras are therefore synchronized, but the grabbing of "B" is delayed by 1ms.

This register has the same format as the FRAME_TIME register and uses the same units. The offset must be some number between 0 and 1/- where - is the current frame rate. If the FRAME_TIME *Value* does not divide evenly into 128 seconds and the offset register is not written for all applicable cameras within the same 128s ISO period, setting a FRAME_SYNC_OFFSET *Value* will not work properly.

r'urmat.			
Field	Bit	Description	
Presence_Inq	[0]	Presence of this feature	
		0: N/A 1: Available	
	[1-5]	Reserved	
ON_OFF	[6]	Always ON. To turn this feature OFF, write a 0 to this bit and	
		bits 20-31 (Value_Field).	
	[7–19]	Reserved	
Value	[20-31]	Value	

Format:

The formula to determine the FRAME_SYNC_OFFSET Value is:

FRAME_SYNC_OFFSET	=	Desired_Offset_Time		
		(1 / Current_Frame_Rate) / FRAME_TIME_Value		

Example:

To determine the *Value* required to offset the synchronization of a camera running at 30Hz by 1ms, read the FRAME_TIME register 1240h *Value* field. Assuming the *Value* is 320h:

FRAME_SYNC_OFFSET = 0.001s(1 / 30fps) / 320h = 0.001s / 0.0000416s/unit = 24 = 18h

Enter 18h in the Value field of 1244h to offset that camera's synchronization by 1ms.

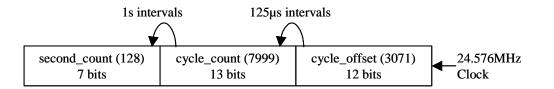
Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes			
Dragonfly	ALL	2.1.2.14	\checkmark	Implemented on Dragonfly only. For			
				cameras that implement			
				TRIGGER_DELAY register 834h, use			
				TRIGGER_DELAY.			

5.12.31. FRAME_INFO: 12F8h

This register allows the user to control the types of frame-specific information that is embedded into the first several pixels of the image. The first byte of embedded image data starts at pixel 0,0 (column 0, row 0) and continues in the first row of the image data i.e. (1,0), (2,0), etc. Users using color cameras that do Bayer color processing on the PC must extract the value from the non-color processed image in order for the data to be valid.

Each piece of information takes up 1 quadlet (4 bytes) of the image. When the camera is operating in Y8 (8bits/pixel) mode, this is therefore 4 pixels worth of data. The types of information that can be embedded (e.g. image timestamp, camera shutter and gain settings, etc.) vary between models.


Insertion of each quadlet is controlled by a bit in this register. Because it is a bit field, setting bit 31 to '1' turns on the Timestamp, bit 30 controls Gain, etc. For black and white cameras, white balance is still included, but no valid data is provided.

For example, a write of 800001FFh to this register on a PGR *Flea* would turn on all possible options. Therefore, the first 9 quadlets (36 bytes) of image data would contain camera information, in the following format:

FlyCaptureImage image;			
image.pData[0]	= first byte of Timestamp data		
image.pData[4]	= first byte of Gain data		
image.pData[24]	= first byte of Frame Counter data		

If you just turned on Shutter (0x12F8 = 0x80000004), then the first 4 bytes of the image would contain Shutter information for that image. Similarly, if you just turned on Brightness, the first 4 bytes would contain Brightness information.

The Timestamp format matches the CYCLE_TIME register format as follows (some cameras replace the bottom 4 bits of the cycle_offset with a 4-bit version of the Frame Counter):

Format:

Field	Bit	Description	
Presence_Inq	[0]	Presence of this feature	
		0: N/A 1: Available	
	[1-22]	Reserved	
Insert_Info	[23-31]	Display image-specific information	
		0: Off 1: On	

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	\checkmark	Timestamp only
Flea	ALL	1.0.2.2	~	Eight (8) different possible pieces of embedded information. Quadlet 1: Timestamp (bottom 4 bits are a 4-bit version of the Frame Counter) Quadlet 2: Gain CSR ³ Quadlet 3: Shutter CSR Quadlet 4: Brightness CSR Quadlet 5: Exposure CSR Quadlet 5: Exposure CSR Quadlet 6: White Balance CSR Quadlet 7: Frame Counter Quadlet 8: Strobe Pattern Counter Quadlet 9: GPIO Pin State
Scorpion	ALL		~	Data written into image pixels encompasses additional information beyond the timestamp. See the <i>Scorpion</i> <i>Technical Reference Manual</i> .

5.12.32. XMIT_FAILURE: 12FCh

This register contains a count of the number of failed frame transmissions that have occurred since the last reset. An error occurs if the camera cannot arbitrate for the bus to transmit image data and the image data FIFO overflows.

Format:

Field	Bit	Description	
Frame_Count	[0-31]	Read: Count of failed frame transmissions. Write: Reset.	

Feature Availability:

³ The full 32-bit value of the control and status register is embedded

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		✓	

5.12.33. LUT_CTRL: 1A40h - 1A44h

This register allows the user to access and control a lookup table (LUT), with entries stored onboard the camera. For a working example of how to use the LUT registers, please contact Technical Support (see section 12.4: *Contacting Technical Support*).

Format:

Offset	Name	Field	Bit	Description
1A40h	LUT_LO_INQ	Presence_Inq	[0]	Presence of this feature
		_		0: Not available, 1: Available
		-	[1-7]	Reserved
		Bit_Depth	[8-15]	Bit depth of the lookup table
		Entries	[16-31]	Number of entries in the table
1A44h	LUT_HI_INQ		[0-31]	Quadlet offset of the lookup table

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	ALL	-	Not implemented
Flea	ALL	1.0.2.2	\checkmark	Capable of doing block transfers.
Scorpion	SCOR-03SO	1.0.2.1	\checkmark	Capable of doing block transfers.
	SCOR-14SO			
	SCOR-20SO			
	SCOR-13FF			
Scorpion	SCOR-03KD	0.0.1.48	-	Not implemented
Scorpion	SCOR-13SM	0.0.0.33	-	Not implemented

5.12.34. SERIAL_NUMBER: 1F20h

Specifies the unique serial number of the camera.

Format:

Field	Bit	Description
Serial_Number	[0-31]	Unique serial number of camera (read-only)

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		✓	

5.12.35. MAIN_BOARD_INFO: 1F24h

Specifies the type of camera (according to the main printed circuit board).

Format:

Field	Bit	Description	

Major_Board_Design	[0-11]	2: Digiclops
		3: Dragonfly
		4: Sync Unit
		6: Ladybug Head
		7: Ladybug Base Unit
		8: Bumblebee
		A: Scorpion Back Board
		10: Flea
		12: Dragonfly Express
Minor_Board_Rev	[12-15]	Internal use
Reserved	[16-31]	Reserved

Feature Availability:

CameraModel/SensorFirmwareAvail.NotesALLALL✓	 cuture rivanushity t						
ALL ALL 🗸	Camera	Model/Sensor	Firmware	Avail.	Notes		
	ALL	ALL		\checkmark			

5.12.36. SCORPION_BOARD_INFO: 1F28h

Specifies the type of sensor for Scorpion models only (due to the wide variety of imaging sensors available).

Format:

Field	Bit	Description
Front_Board_Design	[0-11]	1: SCOR-13SM (Symagery VCA1281 CMOS)
		2: SCOR-03KD (National Semiconductor LM9618 CMOS)
		3: SCOR-13FF (FillFactory IBIS5 CMOS)
		5: SCOR-20SO (Sony ICX274 CCD)
		8: SCOR-03SO (Sony ICX414 CCD)
		9: SCOR-14SO (Sont ICX267 CCD)
Minor_Board_Rev	[12-15]	Internal use
Reserved	[16-31]	Reserved

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
Scorpion	ALL		\checkmark	Implemented on Scorpion models only

5.12.37. BUILD_TIMESTAMP: 1F40h

Specifies the date that the current version of the firmware was built in Unix time format.

Format:

I of mat.		
Field	Bit	Description
Build_Date	[0-31]	Date firmware was built (read-only)

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		\checkmark	

5.12.38. FIRMWARE_VERSION: 1F60h

This register contains the version information for the currently loaded camera firmware. For more information on PGR versioning standards, see *Software and Version Numbering*.

Field	Bit	Description
Major	[0-7]	Major revision number
Minor	[8-15]	Minor revision number
Туре	[16-19]	Type of release
		0: Alpha
		1: Beta
		2: Release Candidate
		3: Release
Revision	[20-31]	Revision number

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		\checkmark	

5.12.39. FIRMWARE_BUILD_DATE: 1F64h

Specifies the date that the current version of the firmware was built in Unix time format.

Format:

Field	Bit	Description
Build_Date	[0-31]	Date firmware was built (read-only)

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		~	

5.12.40. FIRMWARE_DESCRIPTION: 1F68-1F7Ch

Null padded, big-endian string describing the currently loaded version of firmware.

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		\checkmark	

6 Isochronous Packet Format

Unlike simple register reads and writes, which are handled by asynchronous communication, the camera transmits image data using a guaranteed bandwidth mechanism known as isochronous data transmission. This section details the format and bandwidth requirements of the isochronous data broadcast by the camera. The amount of isochronous bandwidth allocated to a camera must be negotiated with the isochronous resource manager node (generally the 1394 host adapter in the PC). Every video format, mode and frame rate has a different video data format.

NOTE: All Point Grey Research IEEE-1394 cameras follow these DCAM isochronous packet format specifications. To determine the formats / frame rates implemented by your camera, consult your camera's Technical Reference manual.

6.1. Isochronous Packet Format for Format_0, Format_1 and Format_2

The following table shows the format of the first quadlet (a quadlet being four bytes) in the data field of an isochronous data block.

0-7	8-15		16-23	24-31				
data_length			channel	tCode	sy			
header_CRC								
Video data payload								
	data_CRC							

Table 1: Isochronous Data Packet Format.

data_length – the number of bytes in the data field.

tag - (tag field) shall be set to 0

channel – isochronous channel number, as programmed in the iso_channel field of the cam_sta_ctrl register

tCode – (transaction code) shall be set to the isochronous data block packet tCode.

sy – (synchronization value) shall be set to 0001h on the first isochronous data block of a frame, and shall be set to zero on all other isochronous data blocks.

Video data payload – shall contain the digital video information.

6.1.1. Isochronous Bandwidth Requirements

The amount of isochronous bandwidth required to transmit images from the camera is dependent on the format and frame rate. The following table describes the bandwidth requirements for each available format and frame rate. Each entry in the table indicates the required bandwidth in number of lines, pixels and quadlets per isochronous period. Bandwidth requirements for Format 7 are negotiated with the camera at runtime. The location of the pertinent registers can be read from offset 2E0h-2FCh.

Mode	Video Format	240fps	120fps	60fps	30fps	15fps	7.5fps	3.75fps	1.875fps
0	160x120	4H	2H	1H	1/2H	1/4H	1/8H		
	YUV(4:4:4)	640p	320p	160p	80p	40p	20p		
	24bit/pixel	480q	240q	120q	60q	30q	15q		
1	320x240	8)8H	4)4H	2H	1H	1/2H	1/4H	1/8H	1/16H
	YUV(4:2:2)	2560p	1280p	640p	320p	160p	80p	40p	20p
	16bit/pixel	1280q	640q	320q	160q	80q	40q	20q	10q
2	640x480	16)16H	8)8H	4)4H	2)2H	1H	1/2H	1/4H	1/8H
	YUV(4:1:1)	10240p	5120p	2560p	1280p	640p	320p	1/8H 40p 20q 1/4H 160p 60q 1/4H 160p 80q 1/4H 160p 80q 1/4H 160p 20q 1/4H 160p 20q 1/4H 160p 80q 1/4H 160p 80q 3/8H 384p 96q 3/8H	80p
	12bit/pixel	3840q	1920q	960q	480q	240q	120q	60q	30q
3	640x480	32)16H	16)8H	8)4H	4)2H	2)1H	1/2H	1/4H	1/8H
	YUV(4:2:2)	10240p	5120p	2560p	1280p	640p	320p	160p	80p
	16bit/pixel	5120q	2560q	1280q	640q	320q	160q	80q	40q
4	640x480 RGB	32)16H	16)8H	8)4H	4)2H	2)1H	1/2H	1/4H	1/8H
	24bit/pixel	10240p	5120p	2560p	1280p	640p	320p	80q 1/4H 160p 120q 1/4H	80p
		7680q	3840q	1920q	960q	480q	240q		60q
5	640x480 Y (Mono)	16)16H	8)8H	4)4H	2)2H	1H	1/2H	1/4H	1/8H
	8bit/pixel	10240p	5120p	2560p	1280p	640p	320p	160p	80p
		2560q	1280q	640q	320	160q	80q	40q	20q
6	640x480 Y (Mono)	32)16H	16)8H	8)4H	4)2H	2)1H	1/2H	1/4H	1/8H
	16bit/pixel	10240p	5120p	2560p	1280p	640p	320p	160p	80p
		5120q	2560q	1280q	640q	320q	160q	80q	40q
7				Res	erved				
5	1024x768 Y					3/2H	3/4H	3/8H	3/16H
	(Mono)					1536p	768p	384p	192p
	8bit/pixel					384q**2	192q	96q	48q
7	1024x768 Y						3/4H	3/8H	3/16H
	(Mono)						768p	384p	192p
	16bit/pixel						384q**4	192q**2	96q

Format_1	
----------	--

Forma	<u></u>								
Mode	Video Format	240fps	120fps	60fps	30fps	15fps	7.5fps	3.75fps	1.875fps
0	800*600	32)20H	16)10H	8)5H	4)5/2H	2)5/4H	5/8H	5/16H	
	YUV(4:2:2)	16000p	8000p	4000p	2000p	1000p	500p	250p	
	16bit/pixel	8000q	4000q	2000q	1000q	500q	250q	125q	
1	800x600 RGB		32)10H	16)5H	8)5/2H	4)5/4H	2)5/8H		
	24bit/pixel		8000p	4000p	2000p	1000p	500p		
	*		600q	3000q	1500q	750q	375q		
2	800x600 Y (Mono)	16)20H	8)10H	4)5H	2)5/2H	5/4H	5/8H		
	8bit/pixel	16000p	8000p	4000p	2000p	1000p	500p		
	_	4000q	2000q	1000q	500q	250q	125q		
3	1024x768		32)12H	16)6H	8)3H	4)3/2H	2)3/4H	3/8H	3/16H
	YUV(4:2:2)		12288p	6144p	3072p	1536p	768p	384p	192p
	16bit/pixel		6144q	3072q	1536q	768q	384q	192q	96q
4	1024x768 RGB			32)6H	16)3H	8)3/2H	4)3/4H	2)3/8H	3/16
	24bit/pixel			6144p	3072p	1536p	768p	384p	192p
	_			4608q	2304q	1152q	576q	288q	144q
5	1024x768 Y	32)24H	16)12H	8)6H	4)3H	2)3/2H	3/4H	3/8H	3/16H
	(Mono)	24576p	12288p	6144p	3072p	1536p	768p	384p	192p
	8bit/pixel	6144q	3072q	1536q	768q	384q	192q	96q	48q

6	800x600 Y	32)20H	16)10H	8)5H)	4)5/2H	2)5/4H	5/8H	5/16H	
	(Mono16)	16000p	8000p	4000p	2000p	1000p	500p	250p	
	16bit/pixel	8000q	4000q	2000q	1000q	500q	250q	125q	
7	1024x768 Y		32)12H	16)6H	8)3H	4)3/2H	2)3/4H	3/8H	3/16H
	(Mono16)		12288p	6144p	3072p	1536p	768p	384p	192p
	16bit/pixel		6144q	3072q	1536q	768q	384q	192q	96q

Format_2

ruimai								
Mode	Video Format	120fps	60fps	30fps	15fps	7.5fps	3.75fps	1.875fps
0	1280x960 YUV(4:2:2)		32)8H	16)4H	8)2H	4)1H	2)1/2H	1/4H
	16bit/pixel		10240p	5120p	2560p	1280p	640p	320p
	_		5120q	2560q	1280q	640q	320q	160q
1	1280x960 RGB		32)8H	16)4H	8)2H	4)1H	2)1/2H	1/4H
	24bit/pixel		10240p	5120p	2560p	1280p	640p	320p
	_		7680q	3840q	1920q	960q	480q	240q
2	1280x960 Y (Mono)	32)16H	16)8H	8)4H	4)2H	2)1H	1/2H	1/4H
	8bit/pixel	20480p	10240p	5120p	2560p	1280p	640p	320p
	_	5120q	2560q	1280q	640q	320q	160q	80q
3	1600x1200		32)10H	16)5H	8)5/2H	4)5/4H	2)5/8H	5/16H
	YUV(4:2:2)		16000p	8000p	4000p	2000p	1000p	500p
	16bit/pixel		8000q	4000q	2000q	1000q	500q	250q
4	1600x1200 RGB			32)5H	16)5/2H	8)5/4H	4)5/8H	2)5/16H
	24bit/pixel			8000p	4000p	2000p	1000p	500p
				6000q	3000q	1500q	750q	375q
5	1600x1200 Y (Mono)	32)20H	16)10H	8)5H	4)5/2H	2)5/4H	5/8H	5/16H
	8bit/pixel	32000p	16000p	8000p	4000p	2000p	1000p	500p
		8000q	4000q	2000q	1000q	500q	250q	125q
6	1280x960 Y (Mono16)		32)8H	16)4H	8)2H	4)1H	2)1/2H	1/4H
	16bit/pixel		10240p	5120p	2560p	1280p	640p	320p
			5120q	2560q	1280q	640q	320q	160q
7	1600x1200 Y		32)10H	16)5H	8)5/2H	4)5/4H	2)5/8H	5/16H
	(Mono16)		16000p	8000p	4000p	2000p	1000p	500p
	16bit/pixel		8000q	4000qH	2000q	1000q	500q	250q

[--H - Lines/Packet]

[--p - Pixels/Packet]

[--q-Quadlets/Packet

2) : required S200 data rate

4) : required S400 data rate

8) : required S800 data rate

16) : required S1600 data rate

32) : required S3200 data rate

6.2. Isochronous Packet Format for Format_7 (Partial Image Size Format)

The following table shows the format of the first quadlet (a quadlet being four bytes) in the data field of an isochronous data block.

0-7	8-15		16-23	24-31				
data_	length	tag	channel	tCode	sy			
	header_CRC							
	Video data payload							
	data_CRC							

 Table 2: Isochronous Data Packet Format.

data_length – the number of bytes in the data field.

tag - (tag field) shall be set to 0

channel – isochronous channel number, as programmed in the iso_channel field of the cam_sta_ctrl register

tCode – (transaction code) shall be set to the isochronous data block packet tCode.

sy – (synchronization value) shall be set to 0001h on the first isochronous data block of a frame, and shall be set to zero on all other isochronous data blocks.

Video data payload – shall contain the digital video information.

7 General Purpose Input / Output

This section describes the general purpose input/output (GPIO) functionality implemented on PGR IEEE-1394 cameras equipped with GPIO pins (see individual camera *Technical Reference Manual* for GPIO pin information).

Historically, PGR IEEE-1394 cameras that have implemented GPIO functionality (e.g. Dragonfly) have done so using the advanced GPIO_CTRL_PIN_x and GPIO_XTRA_PIN_x registers (1100h to 1144h) in conjunction with the GPIO Modes outlined below. However, with the addition of similar GPIO functionality to the *IIDC 1394-based Digital Camera (DCAM) Specification Version v1.31*, many PGR camera models are currently changing to also support the newly-defined trigger, parallel input/output (PIO), serial input/output (SIO) and strobe functionality outlined in version 1.31 of the DCAM. Therefore, while all PGR cameras support the PGR-specific GPIO modes, some cameras will also support the DCAM v1.31-specific input/output modes.

NOTE: To determine whether your camera model supports the new DCAM v1.31 trigger functionality:

1. Check the "Feature Availability" table for the relevant feature; or

2. Query the camera's Opt_Function_Inq register 40Ch.

7.1. PGR-Specific GPIO Modes

The following modes are PGR-specific GPIO modes used exclusively with the GPIO_CTRL_PIN_x registers. All PGR IEEE-1394 digital cameras that are equipped with GPIO connectors currently support these GPIO registers and modes, with the exception of GPIO_Mode_8, which applies specifically to cameras that implement the DCAM v1.31-compliant input/output modes.

7.1.1. GPIO_Mode_0: Input

When a GPIO pin is put into *GPIO_Mode_0* and external wiring is attached to the pin, the associated GPIO_CTRL_PIN_x register's *Data* field will reflect the voltage level of the wiring. For example, a voltage of 0V would be reflected as a '0' in Bit 31, and a voltage of +3.3V would be reflected as a '1'.

7.1.2. GPIO_Mode_1: Output

A GPIO pin in *GPIO_Mode_1* will output a defined voltage signal, either high or low. If Bit 31 of the GPIO_CTRL_PIN_x register's *Data* field is '0', the pin will output 0V. If Bit 31 is set to '1', the pin will output +3.3V. Toggling this bit will therefore cause a rising or falling edge transition, which can be used to manually trigger external circuitry. Please note *GPIO_Mode_3* is the mode to use for automatic (continuous) triggering.

WARNING: Do <u>not</u> connect power to a pin configured as an output (effectively connecting two outputs to each other). Doing so can cause damage to camera electronics.

7.1.3. GPIO_Mode_2: Asynchronous (External) Trigger

When a GPIO pin is put into *GPIO_Mode_2*, and an external TRIGGER_MODE enabled (which disables isochronous data transmission), the camera can be asynchronously triggered to grab an image by sending a voltage transition to the pin. Writing a '0' to Bit 31 of the GPIO_CTRL_PIN_x register will cause the camera to be triggered when it detects a falling edge; a '1' is used for a rising edge.

7.1.4. GPIO_Mode_3: Strobe

A GPIO pin in *GPIO_Mode_3* will output a voltage pulse of fixed delay and duration, according to the 32-bit value of the associated GPIO_XTRA_PIN_x register. The *Strobe_Start* and *Strobe_Multiplier* fields in the GPIO_XTRA register can be used to change the strobe behaviour.

7.1.5. **GPIO_Mode_4:** Pulse Width Modulation (PWM)

A GPIO pin in *GPIO_Mode_4* will output a specified number of pulses with programmable high and low duration.

The start of these pulses is defined by the user by writing the GPIO_CTRL_PIN_x register that is controlling the PWM. The pulse is independent of integration or external trigger. There is only one real PWM signal source (i.e. two or more pins cannot simultaneously output different PWM's), but the pulse can appear on any of the GPIO pins.

The units of time may vary between cameras, but is generally standardized to be in ticks of a 1.024MHz clock. New functionality has been added to recent firmware versions (available at <u>http://www.ptgrey.com/support/downloads</u>) that allow the user to designate a separate GPIO pin as an "enable pin"; the PWM pulses will continue only as long as the enable pin is held in a certain state (high or low).

To configure the camera to generate an infinite number of PWM pulses, set the *Pwm_Count* to 0xFF (255).

Field	Bit	Description
Presence_Inq	[0]	Value should be '1'
	[1-11]	Reserved
Pin_Mode	[12-15]	Value should be '4'
Pwm_Count	[16-23]	Number of PWM pulses
		Read: The current count i.e. counts down the remaining pulses
		Write: Writing the number of pulses starts the PWM. Write 0xFF
		for infinite pulses.
En_Pin	[25-27]	The GPIO pin to be used as a PWM enable i.e. the PWM
		continues as long as the En_Pin is held in a certain state (high or
		low).
Disable_Pol	[29]	Polarity of the PWM enable pin (En_Pin) that will disable the
		PWM. For example, if this bit is zero, the PWM will be disabled
		when the PWM enable pin goes low.
En_En	[30]	0: Disable enable pin (En_Pin) functionality
		1: Enable En_Pin functionality
Pwm_Pol	[31]	Polarity of the PWM signal
		0: Low, 1: High

7.1.5.1. Format of GPIO_CTRL_PIN_x Register in GPIO_Mode_4

7.1.6. GPIO_Mode_8: Output (DCAM Specification v1.31)

A GPIO pin in *GPIO_MODE_8* is currently configured as an output using the DCAM v1.31 functionality. See the section, *GPIO Control Using DCAM v1.31 PIO* / Strobe.

7.2. GPIO Control Using DCAM v1.31 PIO / Strobe

Version 1.31 of the *IIDC 1394-based Digital Camera (DCAM) Specification* includes a new set of "Optional Function CSR" registers, which define a mechanism for controlling parallel input/output, strobe and serial port operations. These Optional Functions CSRs are implemented in some PGR IEEE-1394 cameras. For cameras that implement this functionality, PGR recommends using these new registers instead of the GPIO registers 1100h to 1144h.

NOTE: Refer to Technical Application Note (TAN2004004): Synchronizing to an external device using DCAM 1.31 Trigger Mode_0, for more information on how to use this new functionality. Technical Application Note's can be downloaded from http://www.ptgrey.com/support/downloads/.

8 Parallel Input / Output (PIO)

8.1. **PIO Control and Inquiry Registers**

A GPIO pin can be in one of two states: output/strobe or input/trigger. The behaviour of each GPIO pin is controlled using the PIO registers.

8.1.1. Inquiry Register for PIO CSR Offset Address

The following register indicates the locations of the PIO CSR registers that are implemented by PGR IEEE-1394 cameras. These offsets are relative to the 1394 base offset 0xFFFF F0F0 0000.

Offset	Name	Field	Bit	Description
484h	PIO_CONTROL_CSR INO	PIO_Control_Quad let Offset		Quadlet offset of the PIO control CSRs from the base address of initial
		let_onset		register space

8.1.2. PIO Registers

NOTE: Refer to the section Calculating Actual Offsets using Inquiry Register Quadlet Offsets for information on calculating the actual offsets of the following registers for each Format_7 mode.

Offset	Name	Field	Bit	Description
000h	PIO_OUTPUT	Output_Port	[0-31]	General purpose PIO output
004h	PIO_INPUT	Input_Port	[0-31]	General purpose PIO input
008h	PIO_DIRECTION	Input_Output_Ctrl	[0-31]	Current auto exposure value.

PIO_DIRECTION is used for configuring pins to be either inputs or outputs, and is used in conjunction with the PIO_OUTPUT and PIO_INPUT registers. If the *IOx_Mode* bit is asserted (write a '1'), this means the GPIO pin is currently configured as an output and the *Pin_Mode* of the GPIO pin (see the GPIO_CTRL_PIN_x register) is GPIO_Mode_8. Otherwise, the *Pin_Mode* will be GPIO_Mode_0 (Input). The PIO_DIRECTION register is writeable only when the current GPIO_Mode is GPIO_Mode_0 or GPIO_Mode_8.

PIO_OUTPUT is used for configuring the output values for individual pins. PIO_INPUT is used for configuring the input values for individual pins.

8.1.3. Configuring PIO for External Trigger

To configure a GPIO pin to be a trigger, set the bit for the relevant pin in the PIO_DIRECTION: 11F8h register to '0', then set the bit for the relevant pin in the TRIGGER_MODE register *Trigger_Source* field.

NOTE: Only one GPIO pin can be configured as a trigger source using this method. To have multiple pins acting as a trigger sources, use the GPIO_MODE_2 method via the GPIO_CTRL_PIN_x registers.

8.1.4. Configuring PIO for Strobe Output

To configure a GPIO pin to output a strobe pulse, set the bit for the relevant pin in the PIO_DIRECTION: 11F8h register to '1', then set the duration and delay using the related STROBE_x_CNT register.

9 Strobe Signal Output

This section describes the control and inquiry registers for the Strobe Signal functionality specified in the *IIDC 1394-based Digital Camera (DCAM) Specification Version v1.31*.

9.1. Inquiry Register for Strobe Output CSR Offset Address

The following register indicates the locations of the Strobe Output CSR registers that are implemented by PGR IEEE-1394 cameras. These offsets are relative to the 1394 base offset 0xFFFF F0F0 0000.

Offset	Name	Field	Bit	Description
48Ch	STROBE_OUTPUT_ CSR_INQ	Strobe_Output_Qu adlet_Offset	[0-31]	Quadlet offset of the Strobe output signal CSRs from the base address of initial register space

9.2. Strobe Output Registers

NOTE: Refer to the section Calculating Actual Offsets using Inquiry Register Quadlet Offsets for information on calculating the actual offsets of the following registers.

(Bit values = 0: Not Available, 1: Available)

Format:				
Offset	Name	Field	Bit	Description
000h	STROBE_CTRL_INQ	Strobe_0_Inq	[0]	Presence of strobe 0 signal
		Strobe_1_Inq	[1]	Presence of strobe 1 signal
		Strobe_2_Inq	[2]	Presence of strobe 2 signal
		Strobe_3_Inq	[3]	Presence of strobe 3 signal
		-	[4-31]	Reserved
004h		Res	served	
:				
0FCh			-	
100h	STROBE_0_INQ	Presence_Inq	[0]	Presence of this feature
				0: N/A 1: Available
			[1-3]	Reserved
		ReadOut_Inq	[4]	Ability to read the value of this
				feature
		On_Off_Inq	[5]	Ability to switch feature ON and
				OFF

		Polarity_Inq	[6]	Ability to change signal polarity			
		ionunty_inq	[7]	Reserved			
		Min_Value	[8-19]	Minimum value for this feature			
			L · · J	control			
		Max Value	[20-	Maximum value for this feature			
		_	31]	control			
104h	STROBE_1_INQ	Sa	ame defin	ition as Strobe_0_Inq			
108h	STROBE_2_INQ	Sa	ame defin	ition as Strobe_0_Inq			
10Ch	STROBE_3_INQ	Sa	ame defin	ition as Strobe_0_Inq			
110h		Re	served				
:							
1Ch			-				
200h	STROBE_0_CNT	Presence_Inq	[0]	Presence of this feature			
				0: N/A 1: Available			
			[1-5]	Reserved			
		On_Off	[6]	Write: ON or OFF this function			
				Read: read a status			
				0: OFF, 1: ON			
				If this bit $= 0$, other fields will be			
				read only.			
		Signal_Polarity	[7]	Select signal polarity			
				If Polarity_Inq is "1":			
				- Write to change strobe output			
				polarity			
				- Read to get strobe output polarity			
				If Polarity_Inq is "0":			
				- Read only			
				0: Low active output			
				1: High active output			
		Delay_Value	[8-19]	Delay after start of exposure until the			
			500	strobe signal asserts			
		Duration_Value	[20-	Duration of the strobe signal			
			31]	A value of 0 means de-assert at the			
00.11		~	1.07	end of exposure, if required.			
204h	STROBE_1_CNT			ition as Strobe_0_Cnt			
208h	STROBE_2_CNT			ition as Strobe_0_Cnt			
20Ch	STROBE_3_CNT	Same definition as Strobe_0_Cnt					
210h-		Re	served				
2FFh							

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	-	
DX	ALL	1.1.0.5	\checkmark	Consult Technical Application Note
Flea	ALL	1.0.2.2		TAN2005002 at
Scorpion	SCOR-03SO	1.0.2.1		http://www.ptgrey.com/support/downloads for
	SCOR-14SO			further configuration information.
	SCOR-20SO			
	SCOR-13FF			
Scorpion	SCOR-03KD	0.0.1.48	-	Not implemented
Scorpion	SCOR-13SM	0.0.0.33	-	Not implemented

10 Serial Port Input / Output (SIO)

Some PGR IEEE-1394 cameras are equipped with RS232 serial port functionality via the camera's GPIO connector. For specific hardware configuration information regarding the serial port connector consult your camera's *Technical Reference* manual or *Getting Started* manual. For information on how to configure your camera's registers and GPIO connector to act as an RS232 serial port connector, consult *Technical Application Note TAN2004001: Configuring and testing the RS-232 serial port*, available at http://www.ptgrey.com/support/downloads/.

10.1. SIO Buffers

- Both the transmit and receive buffers are implemented as circular buffers that may exceed the 255byte maximum specified by the *Buffer_Size_Inq* [24..31] field of the Serial_Mode_Reg register 2000h.
- The transmit buffer size is 512b.
- The receive buffer size is 2Kb.
- Block reads and writes are both supported. Neither their length nor their address have to be quadlet aligned or divisible by 4.

10.2. Serial Input Transaction (Receiving Data)

This section provides a general overview of the steps for a serial input transaction, where the camera is receiving data from a transmitting serial port.

- 1. Read the valid data size of current receive buffer *RBUF_ST* or *RDRD* flag.
- 2. Write the input data length to *RBUF_CNT*.
- 3. Read received characters from *SIO_Data_Register*.
- 4. To input more characters, repeat step 1.

10.3. Serial Output Transaction (Transmitting Data)

This section provides a general overview of the steps for a serial output transaction, where the camera is transmitting data to a receiving serial port.

- 1. Read the available data space of the current transmit buffer *TBUF_ST* or *TDRD* flag.
- 2. Write characters to the SIO_Data_Register.
- 3. Write the valid output data length to *TBUF_CNT* to start transmit.
- 4. To output more characters, repeat step 1.

10.4. SIO Control and Inquiry Registers

This section describes the control and inquiry registers for the serial input/output (SIO) control functionality defined in the *IIDC 1394-based Digital Camera (DCAM) Specification Version* v1.31.

10.4.1. Inquiry Register for SIO CSR Offset Address

The following register indicates the locations of the Strobe Output CSR registers that are implemented by PGR IEEE-1394 cameras. These offsets are relative to the 1394 base offset 0xFFFF F0F0 0000.

Offset	Name	Field	Bit	Description
488h			[0-31]	Quadlet offset of the SIO control
	_INQ	let_Offset		CSRs from the base address of initial register space

10.4.2. SIO Registers

NOTE: Refer to the section Calculating Actual Offsets using Inquiry Register Quadlet Offsets for information on calculating the actual offsets of the following registers.

(Bit values = 0: Not Available, 1: Available)

Format:

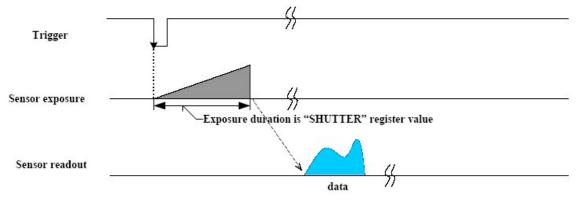
Offset	Name	Field	Bit	Description
000h	SERIAL_MODE_	Baud_Rate	[0-7]	Baud rate setting
	REG			Write: Set baud rate
				Read: Get current baud rate
				0: 300bps
				1: 600bps
				2: 1200bps
				3: 2400bps
				4: 4800bps
				5: 9600bps
				6: 19200bps
				7: 38400bps
				8: 57600bps
				9: 115200bps
				10: 230400bps
				Other values reserved
		Char_Length	[8-15]	Character length setting
				Write: Set data length (must not be 0)
				Read: Get data length
				7: 7bits
1				8: 8bits
				Other values reserved

004h SERIAL_CONTR RE [0] Receive data buffer ready (read only) 004h SERIAL_CONTR RE [0] Receive data buffer ready (read only) 004h SERIAL_STATUS TE [1] Transmit data buffer ready (read only) TE [1] Transmit data buffer ready (read only) status Write: 9: 10: Disable, 1: Enable - [2-7] Reserved SERIAL_STATUS JREG - [2-7] Reserved SERIAL_STATUS JREG - [2-7] Reserved - [2-7] Reserved Reading this register causes the receive data has been enabled. - [2-7] Reading this register causes the receive data has been enabled. - [2-7] Reading this register causes the receive data has been enabled. - [2-7] Reading this register causes the receive data has been enabled. - [2-7] Reading this register causes the ransmit data has bregister causes the receive data in the buffer to be fushed. - - - -			Dority	[16 17]	Parity setting
004h SERIAL_CONTR RE [0] Read: Get current step bit Read: Get current step bit Read: Get current step bit 0: 1 004h SERIAL_CONTR RE [0] 24-31 Buffer-Size (Read-Only) This field indicates the maximum size of the receiver transmit data buffer. See also section 10.1: SID Buffer-Size (Action 10.1: SID Buffer-Size 3 should be ignored. 004h SERIAL_CONTR RE [0] Reserved 004h SERIAL_CONTR RE [10] Receive enable Indicates if the camera's ability to receive data has been enabled. Enabling this register causes the data in the buffer to be immediately started. Disable, 1: Enable TE [11] Transmit data buffer ready (read only) Indicates if the camera's ability to transmit data has been enabled. Read: Current status Write: 0: Disable, 1: Enable TE [1] Transmit data has been enabled. Read: Current status Write: 0: Disable, 1: Enable SERIAL_STATUS _REG - [2.7] Reserved - [2.7] Reserved - SERIAL_STATUS _REG TDRD [8] Transmit data buffer ready (read only) Indicates if the transmit buffer is ready to receive data from th user. It will be in the Ready state as long as TBUF_ST = 0 and RE is enabled. Read only - [9] Reserved - <td< td=""><td></td><td></td><td>Parity</td><td>[16-17]</td><td>Parity setting Write: Set parity</td></td<>			Parity	[16-17]	Parity setting Write: Set parity
004h SERIAL_CONTR RE [0] Reserved 004h SERIAL_CONTR RE [0] Receive and the camera's ability to receive data has been enabled. Read-Only started. Disable, 1: Enable 004h SERIAL_CONTR RE [0] Receive and the camera's ability to receive data has been enabled. Read-Only be immediately, and and SIO_Data_Register characters 1-3 should be ignored. 004h SERIAL_CONTR RE [0] Receive and the camera's ability to receive capability to be immediately started. Disable, 1: Enable 004h SERIAL_CONTR RE [0] Receive enable 0L_REG TE [1] Indicates the maximum size of the receive transmit data buffer. See the receive capability to receive data has been enabled. Read: Current status Write: 0: Disable, 1: Enable TE [1] Transmit data buffer to be flushed. Read: Current status Write: 0: Disable, 1: Enable SERIAL_STATUSREG - [2-7] Reserved - [2-7] Reserved - - [2-7] Reserved - - [2-7] Reserved - REG - [2-7] Reserved -					
004h Stop_Bit [18-19] Stop bits Write: Set stop bit Read: Get current stop bit 0: 1 - (20-23) Reserved - (20-3) Reserved - (24-3) Buffer Size (Read-Only) This Field indicates the maximum size the maximum size the maximum size the maximum size the maximum cancers a shifty to the function (20-10) Reserved - (0) Receive enable Indicates if the cameria shifty to be immediately started. Shishing this register causes the receive capability is to be immediately started. Note in the make the maximum size the ransmit capability to be immediately started. Read: Current status Write: 0: Disable, 1: Enable - TE [11] Transmit data has been enabled. Read: Current status Write: 0: Disable, 1: Enable -					
004h SERIAL_CONTR RE [0] TE [1] Tressini data buffer. See showing the number of the series of the ser					
004h SERIAL_CONTR RE [10] Stop bits Read: Cet current stop bit Read: Cet current stop bit 0: 1 1: 1.5 2: 2 004h SERIAL_CONTR OL_REG RE [0] Reserved Receive/transmit data buffer. See also section 10.1: SIO Buffers. If this value=1, Buffer Status Comrol and SIO-Data Register characters 1-3 should be ignored. 004h SERIAL_CONTR OL_REG RE [0] Receive enable Indicates if the camera's ability to receive data has been enabled. Enabling this register causes the receive capability to be immediately started. Disabling this register causes the data in the buffer to be flushed. Read: Current status TE [1] Transmit data buffer ready (read only) Indicates if the camera's ability to ransmit data has been enabled. Enabling this register causes the transmit capability to be immediately started. Disabling this register causes the transmit capability to be immediately started. Disabling this register causes the transmit capability to be immediately started. Disabling this register causes the transmit capability to be immediately started. Disabling this register causes the transmit capability to be immediately started. Disable, 1: Enable . [2-7] Reserved . [2-7] Reserved <					
004h SERIAL_CONTR RE [0] Receive anabled. Receive anabled. [24-31] Buffer Size [Read-Only) This field indicates the maximum size of the receive/transmit data buffer. See also section 10.1: SIO Buffer.S. 004h SERIAL_CONTR RE [0] Receive anable Receive anable [0] 004h SERIAL_CONTR RE [0] Receive anable [1] 1 ft is requirer characters 1-3 should be ignored. should be ignored. Receive anable 004h SERIAL_CONTR RE [0] Receive anable [1] Indicates if the camera's ability to receive data has been enabled. Enabling this register causes the transmit data in the buffer to be flushed. Read: Current status TE [1] Transmit enable [1] Indicates if the camera's ability to transmit data has been enabled. Enabling this register causes the transmit capability to be immediately started. Disabling this register causes the transmit capability to be immediately. and any pending data is discarded. Read: Current status - [2-7] Reserved Read: Current status - [2-7] Reserved Read: Current status - [2-7] Reserved </td <td></td> <td></td> <td>Stop Dit</td> <td>[19 10]</td> <td></td>			Stop Dit	[19 10]	
004h SERIAL_CONTR Re [0] 1: 1.5 004h SERIAL_CONTR RE [0] Reserved 004h SERIAL_CONTR RE [0] Receive enable 004h SERIAL_CONTR RE [0] Receive enable 014h OL_REG RE [0] Receive enable 104icates if the camera's ability to receive data has been enabled. Enabling this register causes the receive capability to be functiately started. Disability the ready to receive data function the starts.			зюр_ви	[10-19]	-
004h SERIAL_CONTR RE [0] Received maximum data buffer. See also section 10.1: SIO Buffers. Status, Control and SIO Data, Register characters 1-3 should be ignored. 004h SERIAL_CONTR RE [0] Receive enable Indicates if the camera's ability to receive data has been enabled. Each and the buffer to be flushed. Read to the receive capability to be immediately started. Disabling this register causes the data in the buffer to be flushed. Read: Current status Write: O. Disable, I: Enable TE [1] Transmit enable: Indicates if the camera's ability to transmit data bas been enabled. Read: Current status Write: O. Disable, I: Enable TE [1] Transmit enable: Indicates if the camera's ability to transmit data has been enabled. Read: Current status Write: O. Disable, I: Enable SERIAL_STATUS					
004h SERIAL_CONTR RE [0] Receive and the camera's ability to receive characters 1-3 should be ignored. 004h SERIAL_CONTR RE [0] Receive enable 004h SERIAL_CONTR RE [0] Receive enable Indicates if the camera's ability to transmit data base on enabled. Indicates if the camera's ability to receive capability to be immediately started. Disabling this register causes the receive capability to be immediately started. Disabling this register causes the transmit data has been enabled. TE [1] Transmit enable Indicates if the camera's ability to transmit capability to be immediately started. Disabling this register causes the transmit capability to be immediately started. Disabling this register causes the transmit capability to be immediately started. Disabling this register causes the transmit capability to be immediately started. Disabling this register causes the transmit capability to be immediately started. Disable, 1: Enable TE [1] Transmit data has been enabled. Endotes the camera's ability to transmit data thas been enabled. Reading this register causes the transmit capability to transmit data that be camera's ability to transmit capability to be immediately started. Disabling this register causes the transmit capability to be immediately started. Disable, 1: Enable					-
- [20-23] Reserved Buffer_Size_Inq [24-31] Buffer Size (Read-Only) This field indicates the maximum size of the receive/transmit data buffer. See also section 10.1: SIO Buffers. If this value=1.1, Buffer_Status_Control and SIO_Data_Register characters 1-3 should be ignored. 004h SERIAL_CONTR RE [0] Receive enable Indicates if the camera's ability to receive data has been enabled. Enabling this register causes the receive capability to be immediately started. Disabiling this register causes the data in the buffer to be flushed. Read: Current status Write: 0: Disable, 1: Enable TE [1] TE [1] Transmit data has been enabled. Indicates if the camera's ability to transmit data has been enabled. Enabling this register causes the transmit capability to be immediately started. Disabiling this register causes the transmit capability to be immediately started. Disabiling this register causes the transmit capability to be immediately. served - [2-7] Reserved SERIAL_STATUSREG TDRD [8] Transmit data buffer ready (read only) Indicates if the receive buffer is ready - [2-7] Reserved - [2-7] Reserved					
- [20-23] Reserved Buffer_Size_Inq [24-31] This field indicates the maximum size of the receive/transmit data buffer. See also section 10.1: SIO Buffers. If this value=1, Buffer_Status_Control and SIO_Data_Register characters 1-3 should be ignored. 004h SERIAL_CONTR RE [0] Receive enable 01_REG RE [0] Receive enable Indicates if the camera's ability to receive capability to be immediately started. Disabling this register causes the data in the buffer to be fluxbed. RE [1] TE [1] Trasmit enable TE [1] Trasmit data has been enabled. Read: Current status Write: 0: Disable, 1: Enable Trasmit data has been enabled. Read: Current status Write: 0: Disable, 1: Enable Trasmit data has been enabled. Read: Current status Write: 0: Disable, 1: Enable Trasmit data has been enabled. Read: Current status Write: 0: Disable, 1: Enable Trasmit data has been enabled. Readity to trasmit data has been enabled. SERIAL_STATUS TD [8] Trasmit data has been enabled. Readity to trasmit data has been enabled.					
Buffer_Size_Inq [24-31] Buffer Size (Read-Only) This field indicates the maximum size of the receive/transmit data buffer. See also section 10.1: SIO Buffers. If this value=1, Buffer_Status_Control and SIO_Data_Register characters 1-3 should be ignored. 004h SERIAL_CONTR OL_REG RE [0] Receive enable Indicates if the camera's ability to receive data has been enabled. Enabling this register causes the receive capability to be immediately started. Disabling this register causes the receive capability to be flushed. Read: TE [1] Transmit enable Indicates if the camera's ability to receive data has been enabled. Enabling this register causes the receive capability to be immediately started. Disable, I: Enable TE [1] Transmit enable. Indicates if the camera's ability to receive data from the ser. It will be in the Read: Current status write: 0: Disable, 1: Enable - [2-7] Reserved SERIAL_STATUS _REG TDRD [8] Transmit data buffer ready (read only) Indicates if the transmit buffer is ready to receive data from the user. It will be in the Ready state as long as TBUF_ST != 0 and TE is enabled. Read only 0: Not ready. 1: Ready - [9] Reserved - [9] Reserved Read only 0: Not ready. 1: Ready - [9] Reserved Read only 0: Not ready. 1: Read only				[20, 22]	
004h SERIAL_CONTR RE [0] Receive anable Indicates if the camera's ability to receive data has been enabled. 004h SERIAL_CONTR RE [0] Receive anable Indicates if the camera's ability to receive data has been enabled. 004h SERIAL_CONTR RE [0] Receive anable Indicates if the camera's ability to receive data has been enabled. 01 TE [1] Transmit data has been enabled. Enabling this register causes the data in the buffer to be flushed. 01 TE [1] Transmit data has been enabled. Enabling this register causes the transmit data has been enabled. 01 TE [1] Transmit data has been enabled. Enabling this register causes the transmit data has been enabled. 02 TE [1] Transmit data has been enabled. Enabling this register causes the transmit capability to be immediately started. Disabling this register causes data transmit data has been enabled. 04 - [2-7] Reserved - [2-7] Reserved Read cally (read only) 1 Indicates if the ransmit buffer ready (read only) Indicates if the ransmit buffer is ready to receive data from the user. It will be in the Ready state as long as TBUF_ST != 0 and TE is enabled. Read only </td <td></td> <td></td> <td>- Duffen Sine Inn</td> <td></td> <td></td>			- Duffen Sine Inn		
004h SERIAL_CONTR OL_REG RE [0] of the receive/transmit data buffer. See also section 10.1: SIO Buffers. If this value=1, Buffer_Status_Control and SIO_Data_Register characters 1-3 should be ignored. 004h SERIAL_CONTR OL_REG RE [0] Receive enable Indicates if the camera's ability to receive data has been enabled. Enabling this register causes the receive capability to be immediately started. Disabiling this register causes the data in the buffer to be flushed. Read: TE [1] Transmit enable Indicates if the camera's ability to virte: 0: Disable, 1: Enable TE [1] Tearsmit data has been enabled. Enabling this register causes the data in the buffer to be flushed. Read: Current status Virte: 0: Disable, 1: Enable SERIAL_STATUS _REG - SERIAL_STATUS _REG TDRD . [8] Transmit data buffer ready (read only) Indicates if the transmit buffer is ready to receive data from the user. It will be in the Ready state as long as <i>TBUF_ST</i> != 0 and TE is enabled. Read only . [9] Reserved RDRD [10] Receive data buffer ready (read only) Indicates if the receive buffer is ready to be read by the user. It will be in the Ready state as long as <i>RBUF_ST</i> != 0 and RE is enabled. Read only			Buller_Size_inq	[24-31]	
004h SERIAL_CONTR RE [0] Receive enable 004h SERIAL_CONTR RE [0] Receive enable 014 OL_REG Immediately RE [0] Receive enable 015 SERIAL_CONTR RE [0] Receive enable 016 REG Immediately Immediately 017 TE [1] Transmit enable Immediately 118 TE [1] Transmit capability to be immediately 119 TE [1] Transmit capability to be immediately 110 TE [1] Transmit capability to be immediately 111 Transmit capability to be immediately Indicates if the camera's ability to 111 Transmit capability to be immediately Indicates if the camera's ability to 119 REG - [2-7] 120 REG - [2-7] 121 Ready state as long as TBUF_ST - 121 - [2-7] Reserved 121 REG - [9] 121 Ready state as long as TBUF_ST - 122 - [10] Receive buffer is ready 121 - [9] Receive buffer is ready <					
004h SERIAL_CONTR RE [0] Receive enable 004h SERIAL_CONTR RE [0] Receive enable 01_REG Indicates if the camera's ability to receive data has been enabled. Enabling this register causes the receive capability to be immediately started. Disabling this register causes the started. Disabling this register causes the data in the buffer to be flushed. REG TE [1] Transmit enable Indicates if the camera's ability to transmit data has been enabled. Enabling this register causes the receive capability to transmit data has been enabled. TE [1] Transmit enable Indicates if the camera's ability to transmit data has been enabled. Enabling this register causes the transmit data has been enabled. Indicates if the camera's ability to transmit data has been enabled. Indicates if the camera's ability to transmit data has been enabled. Enabling this register causes the transmit data bility to the immediately started. Disable, 1: Enable - [2-7] Reserved - [2-7] Reserved					
004h SERIAL_CONTR OL_REG RE [0] Receive enable Indicates if the camera's ability to receive data has been enabled. Enabling this register causes the receive capability to be immediately started. Disabling this register causes the data in the buffer to be flushed. Read: Current status Write: 0: Disable, 1: Enable TE [1] Transmit enabled. Enabling this register causes the receive capability to be immediately started. Disabling this register causes the data in the buffer to be flushed. Read: Current status Write: 0: Disable, 1: Enable TE [1] Transmit data has been enabled. Enabling this register causes the transmit data has been enabled. Enabling this register causes the transmit data has been enabled. Enabling this register causes data transmission to stop immediately started. Disable, 1: Enable • [2-7] Reserved • [2-7] Ready st					
004h SERIAL_CONTR OL_REG RE [0] Receive enable Indicates if the camera's ability to receive data has been enabled. Enabling this register causes the cabling this register causes the the data in the buffer to be flushed. Read: TE [1] Transmit enable Indicates if the camera's ability to receive adata has been enabled. Enabling this register causes the data in the buffer to be flushed. Read: TE [1] Transmit enable Indicates if the camera's ability to transmit data has been enabled. Enabling this register causes the transmit capability to be immediately started. Disabling this register causes data transmission to stop immediately, and any pending data is discarded. Read: SERIAL_STATUS _REG - [2-7] Reserved SERIAL_STATUS _REG TDRD [8] Transmit data buffer ready (read only) Indicates if the transmit buffer is ready to receive data from the user. It will be in the Ready state as long as TBUF_ST != 0 and TE is enabled. Read only or Not ready, 1: Ready - [9] Reserved RDRD [10] Reserved only Indicates if the receive buffer is ready to be read by the user. It will be in the Ready state as long as RBUF_ST != 0 and RE is enabled. Read only					
004h SERIAL_CONTR RE [0] Receive enable 01_REG Indicates if the camera's ability to receive data has been enabled. Enabling this register causes the receive capability to be immediately started. Disabling this register causes the data in the buffer to be flushed. Read: Current status Write 0: Disable, 1: Enable TE [1] Transmit enable Indicates if the camera's ability to transmit data has been enabled. Enabling this register causes the data in the buffer to be flushed. Read: Current status WITE [1] Transmit enable Indicates if the camera's ability to transmit data has been enabled. Enabling this register causes the transmit capability to be immediately started. Disabling this register causes the transmit capability to be immediately. and any pending data is discarded. Read: Current SERIAL_STATUS TDRD [8] Transmit data buffer ready (read only) Indicates if the transmit buffer is ready to receive data from the user. It will be in the Ready state as long as TBUF_ST != 0 and TE is enabled. Read only . [9] Reserved . [10] Receive data buffer ready (read only) Indicates if the receive buffer is ready to be read by the user. It will be in the Ready state as long as TBUF_ST != 0 and RE is enabled. Read only					
OL_REG Indicates if the camera's ability to receive data has been enabled. Enabling this register causes the receive capability to be immediately started. Disabling this register causes the data in the buffer to be flushed. Read: Current status Write: 0: Disable, 1: Enable TE [1] Transmit enable Indicates if the camera's ability to transmit data has been enabled. Enabling this register causes the data in the buffer to be flushed. Read: Current status Write: 0: Disable, 1: Enable TE [1] Transmit enable Indicates if the camera's ability to transmit data has been enabled. Enabling this register causes data transmission to stop immediately started. Disabling this register causes data transmission to stop immediately. and any pending data is discarded. Read: Current status Write: 0: Disable, 1: Enable SERIAL_STATUS TDRD [8] Transmit data buffer ready (read only) Indicates if the transmit buffer is ready to receive data from the user. It will be in the <i>Ready</i> state as long as <i>TBUF_ST</i> != 0 and TE is enabled. Read only - [9] Reserved - [9] Reserved data buffer ready (read only) Indicates if the receive buffer is ready to be read by the user. It will be in the <i>Ready</i> state as long as <i>TBUF_ST</i> != 0 and TE is enabled. Read only - [9] Reserved - [9] Reserved data buffer ready (read only) Indicates if the receive buffer is ready to be read by the user. It will be in the <i>Ready</i> state as long as <i>RBUF_ST</i> != 0 and RE is enabled. Read only	00.41	CEDIAL CONTR	חת	101	5
SERIAL_STATUS TDRD [2-7] Reserved SERIAL_STATUS TDRD [8] Transmit data buffer ready (read only) . [9] Reserved Ready state as long as TBUF_ST != 0 and TE is enabled. . . [9] Reserved Ready state as long as RBUF_ST != 0 and TE is enabled. . . [10] Receive data bas been enabled. [2-7] Reserved <tr td=""> . .</tr>	004h		RE	[0]	
Enabling this register causes the receive capability to be immediately started. Disabling this register causes the data in the buffer to be flushed. Read: Current status Write: 0: Disable, 1: Enable TE [1] Transmit enable Indicates if the camera's ability to transmit data has been enabled. Enabling this register causes the transmit data has been enabled. Enabling this register causes the transmit capability to be immediately started. Disabling this register causes the transmit capability to be immediately started. Disabling this register causes the transmit capability to be immediately, and any pending data is discarded. Read: Current status Write: 0: Disable, 1: Enable - [2-7] Reserved SERIAL_STATUS TDRD [8] Indicates if the transmit buffer ready (read only) Indicates if the transmit buffer is ready to receive data from the user. It will be in the <i>Ready</i> state as long as <i>TBUF_ST</i> != 0 and TE is enabled. Readonly [10] Receive data buffer ready (read only) Indicates if the transmit buffer is ready to receive data from the user. It will be in the <i>Ready</i> state as long as <i>TBUF_ST</i> != 0 and TE is enabled. Ready atta as long as <i>TBUF_ST</i> RDRD [10] Receive data buffer ready (read only) Indicates if the receive buffer is ready to be read by the user. It will be in the <i>Ready</i> state as long as <i>RBUF_ST</i> != 0 and RE is enabled.		OL_REG			-
SERIAL_STATUS TDRD [8] Transmit data buffer ready (read only) Indicates Transmit data buffer ready (read only) Indicates Image: I					
SERIAL_STATUS TDRD [8] Transmit data buffer ready (read only)					
Image: set of the set of					
Image: status					
TE [1] Transmit enable Indicates if the camera's ability to transmit data has been enabled. Enabling this register causes the transmit capability to be immediately, started. Disabling this register causes data transmission to stop immediately, and any pending data is discarded. Read: Current status Virite: 0: Disable, 1: Enable - [2-7] SERIAL_STATUS TDRD [8] Transmit data buffer ready (read only) Indicates if the transmit buffer is ready to receive data from the user. It will be in the <i>Ready</i> state as long as <i>TBUF_ST</i> != 0 and TE is enabled. REG - [9] Reserved - [9] Reserved RDRD RDRD [10] Receive data buffer ready (read only) Indicates if the receive buffer is ready to be ready to be ready state as long as <i>RBUF_ST</i> != 0 and RE is enabled. Ready state as long as <i>RBUF_ST</i> != 0 and RE is enabled. Ready state as long as <i>RBUF_ST</i> != 0 and RE is enabled. Ready state as long as <i>RBUF_ST</i> != 0 and RE is enabled. Ready state as long as <i>RBUF_ST</i> != 0 and RE is enabled.					
TE [1] Transmit enable Indicates if the camera's ability to transmit data has been enabled. Enabling this register causes the transmit capability to be immediately started. Disabling this register causes data transmission to stop immediately, and any pending data is discarded. Read: Current - [2-7] Reserved SERIAL_STATUS TDRD					
Indicates if the camera's ability to transmit data has been enabled. Enabling this register causes the transmit capability to be immediately, started. Disabling this register causes data transmission to stop immediately, and any pending data is discarded. Read: Current status Write: 0: Disable, 1: Enable SERIAL_STATUS - [2-7] Reserved REG - [2-7] Reserved [8] Transmit data buffer ready (read only) Indicates if the transmit buffer is ready to receive data from the user. It will be in the <i>Ready</i> state as long as <i>TBUF_ST</i> != 0 and TE is enabled. Read only [9] Reserved [9] Reserved [10] Receive data buffer ready (read only) Indicates if the receive buffer is ready to receive data from the user. It will be in the <i>Ready</i> state as long as <i>TBUF_ST</i> != 0 and TE is enabled. Read only [10] Receive data buffer ready (read only) Indicates if the receive buffer is ready to be read by the user. It will be in the <i>Ready</i> state as long as <i>RBUF_ST</i> != 0 and RE is enabled. Read only					
Image: series of the series			TE	[1]	
- [2-7] Reserved SERIAL_STATUS TDRD [8] Transmit data buffer ready (read only)					•
Image: state in the second state second state in the second state second state second state second state second state in the second state second stat					
started. Disabling this register causes data transmission to stop immediately, and any pending data is discarded. Read: Current status Write: 0: Disable, 1: Enable - [2-7] Reserved SERIAL_STATUS TDRD [8] Transmit data buffer ready (read only) Indicates if the transmit buffer is ready to receive data from the user. It will be in the Ready state as long as TBUF_ST					
- [2-7] Read: Current status Write: 0: Disable, 1: Enable - [2-7] Reserved SERIAL_STATUS TDRD [8] Transmit data buffer ready (read only)					
- [2-7] Read: Current status Write: 0: Disable, 1: Enable - [2-7] Reserved SERIAL_STATUS TDRD [8] Transmit data buffer ready (read only)					
Image: series of the secience of the secince of the secience of the secience of the secience of					
- [2-7] Reserved SERIAL_STATUS TDRD [8] Transmit data buffer ready (read only) _REG Indicates if the transmit buffer is ready to receive data from the user. It will be in the Ready state as long as TBUF_ST != 0 and TE is enabled. Read only 0: Not ready, 1: Ready 0: Not ready, 1: Ready - [9] Reserved RDRD [10] Receive data buffer ready (read only) Indicates if the receive buffer is ready to be read by the user. It will be in the Ready state as long as RBUF_ST != 0 and RE is enabled.					
SERIAL_STATUS TDRD Image: Transmit data buffer ready (read only) REG [8] Transmit data buffer ready (read only) Indicates if the transmit buffer is ready to receive data from the user. It will be in the Ready state as long as TBUF_ST != 0 and TE is enabled. Read only 0: Not ready, 1: Ready - [9] Reserved RDRD [10] Receive data buffer ready (read only) Indicates if the receive buffer is ready to be read by the user. It will be in the Ready state as long as RBUF_ST != 0 and RE is enabled.					
			-		
- [9] Reserved RDRD [10] Receive data buffer ready (read only) Indicates if the receive buffer is ready to be read by the user. It will be in the Ready state as long as RBUF_ST != 0 and RE is enabled.			TDRD	[8]	
- [9] Reserved RDRD [10] Receive data buffer ready (read only) Indicates if the receive buffer is ready to be read by the user. It will be in the Ready state as long as RBUF_ST != 0 and RE is enabled. Ready state as long as RBUF_ST != 0 and RE is enabled.		_REG			
- [9] Reserved RDRD [10] Receive data buffer ready (read only) Indicates if the receive buffer is ready to be read by the user. It will be in the Ready state as long as RBUF_ST != 0 and RE is enabled. Read only Read only					
- [9] Read only 0: Not ready, 1: Ready - [9] Reserved RDRD [10] Receive data buffer ready (read only) Indicates if the receive buffer is ready to be read by the user. It will be in the Ready state as long as RBUF_ST != 0 and RE is enabled. Read only					
- [9] Reserved RDRD [10] Receive data buffer ready (read only) Indicates if the receive buffer is ready to be read by the user. It will be in the Ready state as long as RBUF_ST != 0 and RE is enabled. Read only					
- [9] Reserved RDRD [10] Receive data buffer ready (read only) Indicates if the receive buffer is ready to be read by the user. It will be in the Ready state as long as RBUF_ST != 0 and RE is enabled. Read only Read only					
RDRD [10] Receive data buffer ready (read only) Indicates if the receive buffer is ready to be read by the user. It will be in the Ready state as long as RBUF_ST != 0 and RE is enabled. Read only					
Indicates if the receive buffer is ready to be read by the user. It will be in the <i>Ready</i> state as long as <i>RBUF_ST</i> != 0 and RE is enabled. Read only			-		
to be read by the user. It will be in the <i>Ready</i> state as long as <i>RBUF_ST</i> != 0 and RE is enabled. Read only			RDRD	[10]	
Ready state as long as RBUF_ST != 0 and RE is enabled. Read only					
and RE is enabled. Read only					
Read only					<i>Ready</i> state as long as <i>RBUF_ST</i> $!= 0$
					and RE is enabled.
0: Not ready, 1: Ready					Read only
					0: Not ready, 1: Ready
- [11] Reserved			-	[11]	

002h TRANSMIT_BUF 002ch TRANSMIT_BUF <			ODED	[10]	D : 1 (C
008h RECEIVE_BUFF FER [13] Receive data framing error Read: Current status Write: 0: Clear flag, 1: Ignored 008h RECEIVE_BUFF PER [14] Receive data parity error Read: Current status Write: 0: Clear flag, 1: Ignored 008h RECEIVE_BUFF RBUF_ST [0-8] StO receive buffer status Indicates the number of bytes that have arrived at the camerate but have yet to be queued to be read. Read: Valid data size of current receive Write: Ignored 00Ch TRANSMIT_BUF_ST [0-8] StO receive buffer control Indicates the number of bytes that are ready to be read. Read: Valid data size for read Write: Set input data size 00Ch TRANSMIT_BUF_ST [0-8] StO output buffer status Indicates the number of bytes that are ready to be read. Read: Valid data size for read Write: Set input data size 00Ch TRANSMIT_BUF_ST [0-8] StO output buffer status Indicates the minimum number of free bytes available to be filled in the transmit buffer. It will count down as bytes are written to any of the StO_Data_Registers status at 2100th. It will count up as bytes are actually transmitted after a write to available buffer space may be larger Read: Available data space of transmit buffer TBUF_CNT [8-15] StO output buffer control Indicates the number of bytes that have been stored since it was last written to available to to TRUF_CNT TBUF_CNT [8-15] Sto output buffer control Indid			ORER	[12]	Receive buffer over run error
FER [13] Receive data framing error Read: Current status Write: 0: Clear flag, 1: Ignored 008h RECEIVE.BUFF [14] Receive data parity error Read: Current status Write: 0: Clear flag, 1: Ignored 008h RECEIVE.BUFF RBUF_ST [10-8] StO receive buffer status Indicates the number of bytes that have arrived at the camera but have yet to be queued to be read. 008h RECEIVE.BUFF RBUF_ST [10-8] 008h RECEIVE.BUFF RBUF_CNT [8-15] 008h RECEIVE.BUFF RBUF_CNT [8-15] 008h RECEIVE.BUFF RBUF_CNT [8-15] 008h RECEIVE.BUFF RBUF_CNT [8-15] 008h RECEIVE.BUFF TBUF_ST [0-8] 0008h TRANSMIT_BUF TBUF_ST [0-8] 00001 TRANSMIT_BUF TBUF_ST [0-8] StO output buffer status Indicates the minimum number of free bytes available to be filled in the transmitted after a write to TBUF_CNT. Although its maximum value is 255, the actual amount of available buffer space may be larger. Read: Available data space of transmitud uta is 255, the actual amount of available buffer space may be larger. Read: Available data space of transmitud buffer TBUF_CNT [8-15]					
008h RECEIVE_BUFF ER_STATUS_CO NTROL RBUF_ST [10-8] Sto receive buffer status Indicates the number of bytes that have arrived at the camera but have yet to be queued to be read. Read: Valid data size of current receive buffer 008h RECEIVE_BUFF ER_STATUS_CO NTROL RBUF_ST [0-8] Sto receive buffer status Indicates the number of bytes that have arrived at the camera but have yet to be queued to be read. Read: Valid data size of current receive buffer 008h RECEIVE_BUFF ER_STATUS_CO NTROL RBUF_CNT [8-15] Sto receive buffer control Indicates the number of bytes that are ready to be read. Read: Valid data size for read Write: Set input data size 00Ch TRANSMIT_BUF FER_STATUS_C ONTROL TBUF_ST [0-8] Sto output buffer status Indicates the number of bytes that are ready to be read. Read: Available to be filled in the ransmit buffer. It will count down as bytes are writen to any of the Sto_Data_Registers status at 2100h. It will count up as bytes are actually transmitud after a write to TBUF_CNT [8-15] 7BUF_CNT [8-15] Sto output buffer control Indicates the numburg of bytes that have been stored since it was last writen to write: Ignored 7BUF_CNT [8-15] Sto output buffer control Indicates the number of bytes that have buffer ontrol indicates the number of bytes th		-	FED	[13]	
PER [14] Write: 0: Clear flag, 1: Ignored Read: Current status Write: 0: Clear flag, 1: Ignored 008h RECEIVE_BUFF RBUF_ST [0-8] SIO receive buffer status Indicates the number of bytes that have arrived at the camera but have yet to be queued to be read. Read: Valid data size of current receive buffer 008h RECEIVE_BUFF RBUF_CNT [8-15] SIO receive buffer status Indicates the number of bytes that are ready to be read. Read: Valid data size of current receive buffer 008ch TRANSMIT_BUF [8-15] SIO receive buffer control Indicates the number of bytes that are ready to be read. Read: Valid bata size of read 008ch TRANSMIT_BUF TBUF_ST [0-8] SIO output buffer status Indicates the minimum number of free bytes available to be filled in the ransmit buffer. It will count down as bytes are written to any of the SIO_DATA_Registers starting at 2100h. It will count up a bytes are actually transmitted after a write to TBUF_CNT_Although its maximum value is 255, the actual amount value is 255, the actual amount value is 255, the actual anonuer of start was last written to. Write: Ignored TBUF_CNT [8-15] SIO output buffer control Indicates the number of bytes that have been stored since it was last written to. Write: gaune and be larger. Read: Available data space of transmit buffer TBUF_CNT [8-15] SIO output buffer control Indicates the number of bytes that have been stored since it was last written to. Write: Sto be written - its value bein writ			ΓEK	[15]	
PER [14] Receive data parity error Read: Current status Write: 0. Clear flag, 1: Ignored 008h RECEIVE_BUFF ER_STATUS_CO NTROL r [15-31] Reserved 008h RECEIVE_BUFF ER_STATUS_CO NTROL RBUF_ST [0-8] SIO receive buffer status Indicates the number of bytes that have arrived at the camera but have yet to be queued to be read. Read: Valid data size of current receive buffer 00Ch TRANSMIT_BUF FER_STATUS_C ONTROL [8-15] SIO receive buffer control Indicates the number of bytes that are ready to be read. Read: Remaining data size for read Write: Set input data size 00Ch TRANSMIT_BUF FER_STATUS_C ONTROL TBUF_ST [0-8] SIO comput buffer status Indicates the minimum number of free bytes available to be filled in the stress are written to any of the SIO_comput buffer status 116-311 Reserved TBUF_CNT [8-15] 7 TBUF_CNT [8-15] SIO comput buffer status Indicates the minimum number of free bytes are written to any of the SIO_Data_Registers stating at 2100h It will count up as bytes are actually transmituded after a write vitor 7 TBUF_CNT [8-15] SIO output buffer control Indicates the number of bytes that have been stored since it was last written to. Write: Ignored 7 TBUF_CNT [8-15] SIO output buffer control Indicates that wave been stored sin					
OOSh RECEIVE_BUFF RBUF_ST [0-8] StO receive buffer status Indicates the number of bytes that have arrived at the camera but have yet to be queued to be read. Read: Valid data size of current receive buffer 00Sh RECEIVE_BUFF RBUF_CNT [0-8] StO receive buffer control Indicates the number of bytes that have buffer 00Ch TRANSMIT_BUF RBUF_CNT [8-15] StO receive buffer control Indicates the number of bytes that are ready to be read. Read: Remaining data size for read Write: Set input data size 00Ch TRANSMIT_BUF FER_STATUS_C ONTROL TBUF_ST [0-8] StO output buffer status Indicates the minimum number of free bytes available to be filled in the transmit buffer. It will count down as bytes are written to any of the StO_Data_Registers starting at 2100h. It will count up as bytes are actually transmitted after a write to TBUF_CNT. Although its maximum value is 255, the actual amount of available buffer space may be larger. Read: Available data space of transmit buffer TBUF_CNT [8-15] StO output buffer control Indicates the number of bytes that have been stored since it was last writen to. Write: Ignored TBUF_CNT [8-15] StO output buffer control Indicates the number of bytes that have been stored since it was last writen to. Write: use that availe ead thrown away. Writing a number data size to bytes to be transmitted after a write to go to 0. Writing an unmber gated writen data size to buffer Write: Set output data size for transmit. Haread: Written data size for transmit. Haread: Written dat		-	DED	[14]	
OOSh RECEIVE_BUFF ER_STATUS_CO NTROL RBUF_ST [0-8] StO receive buffer status Indicates the number of bytes that have arrived at the camera but have yet to be queued to be read. Read: Valid data size of current receive buffer 00Ch RBUF_CNT [8-15] StO receive buffer control Indicates the number of bytes that are ready to be read. Read: Remaining data size for read Write: Set input data size 00Ch TRANSMIT_BUF FER_STATUS_C ONTROL - [16-31] Reserved 00Ch TRANSMIT_BUF FER_STATUS_C ONTROL TBUF_ST [0-8] StO output buffer status Indicates the number of ptes that are ready to be read. Read: Remaining data size for read Write: Set input data size ONTROL 00Ch TRANSMIT_BUF FER_STATUS_C ONTROL TBUF_ST [0-8] StO output buffer status Indicates the number of bytes that have bytes are avtitue to any of the StO_Data_Registers status gat 2100M It will count up as bytes are actually transmitted after a write to TBUF_CNT TBUF_CNT [8-15] StO output buffer control Indicates the number of bytes that have been stored since it was last written to Write: Ignored TBUF_CNT [8-15] StO output buffer control Indicates the number of bytes that have been stored since it was last written to write: Ignored TBUF_CNT [8-15] StO output buffer control Indicates the number of bytes that have been stored since it was last written to writis value will cause that many			FER	[14]	1 1
O08h RECEIVE_BUFF ER_STATUS_CO NTROL RBUF_ST [0-8] Reserved 008h RECEIVE_BUFF ER_STATUS_CO NTROL RBUF_ST [0-8] Indicates the number of bytes that have arrived at the camera but have yet to be queued to be read. Read: Valid data size of current receive buffer 000h TRANSMIT_BUF FER_STATUS_C ONTROL RBUF_CNT [8-15] SIO receive buffer control Indicates the number of bytes that are ready to be read. Read: Remaining data size 000ch TRANSMIT_BUF FER_STATUS_C ONTROL TBUF_ST [0-8] SIO output buffer status Indicates the minimum number of free bytes available to be filled in the transmit buffer. It will cound down as bytes are written to any of the SIO_Data_Registers starting at 2100h. It will count up as bytes are actually transmited after a write to TBUF_CNT. Although its maximum value is 255, the actual amount of available buffer space may be larger. Read: Available buffer space may be larger. Read: Available buffer control Indicates the number of bytes that have been stored since it was last written to. Write: Ignored TBUF_CNT [8-15] SIO output buffer control Indicates the number of bytes that have been stored since it was last written to write: Ignored TBUF_CNT [8-15] SIO output buffer control Indicates the number of bytes that have been stored since it was last written to write is value will cause that many bytes to be written - its value being valid and the remainder being pading. Read: Written data size for transmit. Write: Set output data size for transmit. Read: Written data size					
008h RECEIVE_BUFF ER_STATUS_CO NTROL RBUF_ST [0-8] <i>SIO receive buffer status</i> Indicates the number of bytes that have queued to be read. Read: Valid data size of current receive buffer 00Ch RBUF_CNT [8-15] <i>SIO receive buffer control</i> Indicates the number of bytes that are ready to be read. Read: Remaining data size for read Write: Served 00Ch TRANSMIT_BUF FER_STATUS_C ONTROL TBUF_ST [0-8] <i>SIO output buffer status</i> Indicates the minimum number of fee bytes available to be filled in the transmitted after a write to <i>SIO Data_Registers</i> starting at 2100h. It will count up as bytes are actually transmitted after a write to <i>TBUF_CNT</i> [0-8] TBUF_CNT [8-15] <i>SIO output buffer control</i> Indicates the minimum number of fee bytes available to be filled in the transmitted after a write to <i>SIO_Data_Registers</i> starting at 2100h. It will count up as bytes are actually transmitted after a write to <i>TBUF_CNT</i> . Although its maximum value is 255, the actual amount of available buffer space may be larger. Read: Available data space of transmit buffer TBUF_CNT [8-15] <i>SIO output buffer control</i> Indicates the number of bytes that have been stored since it was last written to. Writi: Ignored TBUF_CNT [8-15] <i>SIO output buffer control</i> Indicates the number of bytes that have been stored since it was last written to. Write: Ignored TBUF_CNT [8-15] <i>SIO output buffer control</i> Indicates the number of bytes that have been stored since it was last written to. Write:		-		[15 21]	
ER_STATUS_CO Indicates the number of bytes that have arrived at the camera but have yet to be queued to be read. Read: Valid data size of current receive buffer Read: Valid data size of current receive buffer Write: Ignored SIO receive buffer control NTROL [8-15] SIO receive buffer control Indicates the number of bytes that are ready to be read. Read: Valid data size for read Write: Set input data size - [16-31] 00Ch TRANSMIT_BUF TBUF_ST [0-8] 00Ch TRANSMIT_BUF TBUF_ST [0-8] 00Ch TRANSMIT_BUF TBUF_ST [0-8] 00Ch TRANSMIT_BUF TBUF_ST [0-8] 00Ch TRANSMIT_BUF TBUF_CNT [8-15] 00Ch TRANSMIT_BUF TBUF_CNT [0-8] 00Ch TRUE_CNT [8-15] Indicates the number of bytes that supe stratin anot strate in a write to tranot strate in a	008b	DECEIVE BLIEF	- DRUE ST		
RBUF_CNT [8-15] SIO receive buffer control Indicates the number of bytes that are ready to be read. Read: Remaining data size for read Write: Set input data size 00Ch TRANSMIT_BUF FER_STATUS_C ONTROL TBUF_ST [0-8] SIO output buffer status Indicates the minimum number of free bytes available to be filled in the transmit buffer. It will count down as bytes are written to any of the SIO_Data_Registers starting at 2100h It will count up as bytes are actually transmitted after a write to TBUF_CNT. Although its maximum value is 255, the actual amount oo available buffer space may be larger Read: Available data space of transmi buffer TBUF_CNT [8-15] SIO output buffer control Indicates the number of bytes that have been stored since it was last written to available buffer space may be larger Read: Available data space of transmi buffer TBUF_CNT [8-15] SIO output buffer control Indicates the number of bytes that have been stored since it was last written to Write: Ignored TBUF_CNT [8-15] SIO output buffer control Indicates the number of bytes that have been stored since it was last written to Writing an unber cause it to go to 0. Writing a number less than its value will cause that many bytes to be written - its value being valid and the remainder being padding Read: Written data size to buffer Write: Set output data size for transmit valid and the remainder being padding Read: Written data size to buffer Write: Set output data size for transmit. 010h Reserved		ER_STATUS_CO	_		Indicates the number of bytes that have arrived at the camera but have yet to be queued to be read. Read: Valid data size of current received
00Ch TRANSMIT_BUF FER_STATUS_C ONTROL - [16-31] Reserved 00Ch TRANSMIT_BUF FER_STATUS_C ONTROL TBUF_ST [0-8] Sto output buffer status Indicates the minimum number of free bytes available to be filled in the transmit buffer. It will count down as bytes are written to any of the <i>Sto_Data_Registers</i> starting at 2100h. It will count up as bytes are actually transmitted after a write to <i>TBUF_CNT</i> . Although its maximum value is 255, the actual amount of available buffer space may be larger. Read: Available data space of transmit buffer TBUF_CNT [8-15] Sto output buffer control Indicates the number of bytes that have been stored since it was last written to. Write: Ignored TBUF_CNT [8-15] Sto output buffer control Indicates the number of bytes that have been stored since it was last written to. Writing any value to <i>TBUF_CNT</i> will cause it to go to 0. Writing a number less than its value will cause that many bytes to be transmitted and the rest thrown away. Writing a number less than its value will cause that many bytes to be written - its value being valid and the remainder being padding. Read: Written data size for transmit. Vrite: Set output data size for transmit. 010h Reserved					Write: Ignored
00Ch TRANSMIT_BUF FER_STATUS_C ONTROL TBUF_ST [0-8] SIO output buffer status Indicates the minimum number of free bytes available to be filled in the transmit buffer. It will count down as bytes are written to any of the SIO_Data_Registers starting at 2100h. It will count up as bytes are actually transmited after a write to TBUF_CNT TBUF_CNT [8-15] SIO output buffer control available buffer space may be larger. Read: Available data space of transmit buffer Write: Ignored TBUF_CNT [8-15] SIO output buffer control Indicates the number of bytes that have been stored since it was last written to. Writing any value to TBUF_CNT will cause it to go to 0. Writing a number greater than its value will cause that many bytes to be transmited and the rest thrown away. Writing a number greater than its value will cause that many bytes to be written - its value being valid and the remainder being padding. Read: Written data size to buffer Write: Set output data size for transmit. 010h Reserved			RBUF_CNT		Indicates the number of bytes that are ready to be read. Read: Remaining data size for read Write: Set input data size
FER_STATUS_C Indicates the minimum number of free bytes available to be filled in the transmit buffer. It will count down as bytes are written to any of the SIO_Data_Registers starting at 2100h. It will count up as bytes are actually transmitted after a write to TBUF_CNT. Although its maximum value is 255, the actual amount of available buffer space may be larger. Read: Available data space of transmit buffer TBUF_CNT [8-15] SIO output buffer control Indicates the number of bytes that have been stored since it was last written to. Writing any value to TBUF_CNT will cause it to go to 0. Writing a number greater than its value will cause that many bytes to be transmitted and the rest thrown away. Writing a number greater than its value will cause that many bytes to be written - its value being valid and the remainder being padding. Read: Written data size to buffer Write: Set output data size for transmit. 010h Reserved			-		
010h Reserved 1 Indicates the number of bytes that have been stored since it was last written to. Writing any value to TBUF_CNT will cause it to go to 0. Writing a number less than its value will cause that many bytes to be transmitted and the rest thrown away. Writing a number greater than its value will cause that many bytes to be written - its value being valid and the remainder being padding. Read: Written data size to buffer Write: Set output data size for transmit. 010h Reserved	00Ch	FER_STATUS_C			Indicates the minimum number of free bytes available to be filled in the transmit buffer. It will count down as bytes are written to any of the <i>SIO_Data_Registers</i> starting at 2100h. It will count up as bytes are actually transmitted after a write to <i>TBUF_CNT</i> . Although its maximum value is 255, the actual amount of available buffer space may be larger. Read: Available data space of transmit buffer Write: Ignored
010h Reserved			TBUF_CNT		Indicates the number of bytes that have been stored since it was last written to. Writing any value to <i>TBUF_CNT</i> will cause it to go to 0. Writing a number less than its value will cause that many bytes to be transmitted and the rest thrown away. Writing a number greater than its value will cause that many bytes to be written - its value being valid and the remainder being padding. Read: Written data size to buffer Write: Set output data size for transmit.
:	0101		-		Reserved
	010h		I	Reserved	
	01011				

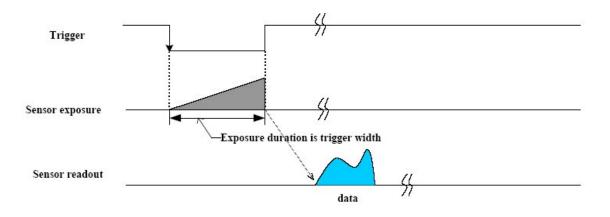
100h	SIO_DATA_REGI	Char_0	[0-7]	Character_0
	STER			Read: Read character from receive
				buffer. Padding data if data is not
				available.
				Write: Write character to transmit
				buffer. Padding data if data is invalid.
		Char_1	[8-16]	Character_1
				Read: Read character from receive
				buffer+1. Padding data if data is not available.
				Write: Write character to transmit
				buffer+1. Padding data if data is
				invalid.
		Char_2	[17-23]	Character_2
				Read: Read character from receive
				buffer+2. Padding data if data is not
				available.
				Write: Write character to transmit
				buffer+2. Padding data if data is
		Char 2	[24-31]	invalid.
		Char_3	[24-31]	<i>Character_3</i> Read: Read character from receive
				buffer+3. Padding data if data is not
				available.
				Write: Write character to transmit
				buffer+3. Padding data if data is
				invalid.
104h	SIO_DATA_REGI		[0-31]	Alias SIO_Data_Register area for
:	STER_ALIAS			block transfer.
1FFh				

Feature Availability:

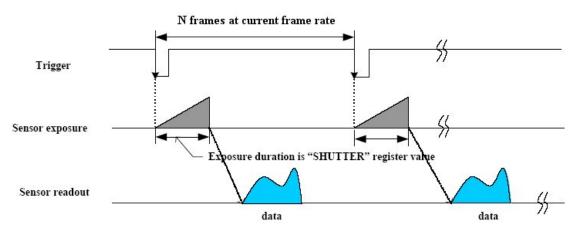

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	-	
DX	ALL	1.1.0.5	\checkmark	Supports block transfers
Flea	ALL	1.0.2.2		
Scorpion	SCOR-03SO	1.0.2.1		
	SCOR-14SO			
	SCOR-20SO			
	SCOR-13FF			
Scorpion	SCOR-03KD	0.0.1.48	-	Not implemented
Scorpion	SCOR-13SM	0.0.0.33	-	Not implemented

11 Trigger Modes

This section describes the internal and external trigger modes available. These modes and their interaction with the GPIO pins can be configured and controlled via the TRIGGER_MODE register at 830h and the GPIO registers at 1100h-1144h.


11.1.1. Trigger_Mode_0 – Standard External Trigger Mode

Trigger_Mode_0 is best described as the standard external trigger mode. When the camera is put into Trigger_Mode_0, the camera starts integration of the incoming light from external trigger input falling/rising edge. The SHUTTER register describes integration time. No parameter is required. The camera can be triggered in this mode using the GPIO pins as external trigger or SOFT_ASYNC_TRIGGER register 102Ch.


11.1.2. Trigger_Mode_1 – Bulb Shutter Mode

Also known as Bulb Shutter mode, Trigger_Mode_1 is an IIDC 1394 DCAM-compliant trigger mode, in which the camera starts integration of the incoming light from external trigger input falling edge. Integration time is equal to low state time of the external trigger input.

11.1.3. Trigger_Mode_3 – Skip Frames Mode

Trigger_Mode_3 allows the user to put the camera into a mode where the camera only transmits one out of N specified images. This is an internal trigger mode that requires no external interaction. Where N is the parameter set in bits [20-31] of the TRIGGER_MODE register (offset 830h), the camera will issue a trigger internally at a cycle time that is N times greater than the current frame rate. Again, the SHUTTER register describes integration time. Note that this is different from the IIDC specification that states the cycle time will be N times greater than the fastest frame rate.

12 Technical Support Resources

Point Grey Research Inc. endeavours to provide the highest level of technical support possible to our customers. Most support resources can be accessed through the Product Support section of our website: <u>http://www.ptgrey.com/support</u>.

12.1. Creating a Customer Login Account

The first step in accessing our technical support resources is to obtain a Customer Login Account. This requires a valid name, e-mail address, and camera serial number. To apply for a Customer Login Account go to: <u>http://www.ptgrey.com/support/downloads/user_request.html</u>.

12.2. Knowledge Base

Our on-line knowledge base contains answers to some of the most common support questions. It has information about all PGR products and was developed to help customers resolve product issues. It is constantly updated, expanded, and refined to ensure that our customers have access to the latest information. To access the knowledge base, go to: <u>http://www.ptgrey.com/support/kb/</u>.

12.3. Product Downloads

Customers with a Customer Login Account can access the latest software and firmware for their cameras from our downloads site at <u>http://www.ptgrey.com/support/downloads</u>. We encourage our customers to keep their software and firmware up-to-date by downloading and installing the latest versions. These versions include the latest bug fixes and feature enhancements.

12.4. Contacting Technical Support

Before contacting Technical Support, have you:

- 1. Read the product documentation and user manual?
- 2. Searched the Knowledge Base?
- 3. Downloaded and installed the latest version of software and/or firmware?

If you have done all the above and still can't find an answer to your question, contact our Technical Support team using our on-line web form: <u>http://www.ptgrey.com/support/contact/</u>. This will create a ticket in our Request Tracker support system, and a Technical Support representative will contact you by e-mail within one (1) business day.

13 Contacting Point Grey Research Inc.

For any questions, concerns or comments please contact us via the following methods:

Email:	For all general questions about Point Grey Research please contact us at <u>info@ptgrey.com</u> . For specific product questions, quotes or product pricing con <u>sales@ptgrey.com</u> .			
	For technical support (existing c http://www.ptgrey.com/support/	•		
Main Office:	Mailing Address: Point Grey Research, Inc. 8866 Hudson Street Vancouver, BC, Canada V6P 4N2	Tel: 604.730.9937 Fax: 604.732.8231		
USA Branch	Mailing Address: 13749 E. Charter Oak Drive Scottsdale, AZ USA 85259-2322	Tel: 480.391-2125 Fax: 480.391-2125		
Knowledge Base:	Find answers to commonly asked questions in our knowledge base at <u>http://www.ptgrey.com/support/kb/</u> .			
Downloads:	Users can download the latest manuals and software from http://www.ptgrey.com/support/downloads/			

14 Appendix A

14.1. Software and Version Numbering Scheme

14.1.1. Overview

All PGR software and firmware follow a standardized version-naming scheme that allows users to quickly and easily determine the latest software versions. All software and firmware version numbers consist of 4 numbers separated by periods e.g. firmware version 2.0.0.20. This follows the general pattern of:

MajorRevision.MinorRevision.TypeOfRelease.BuildNumber

where Type of Release is always '0' for an Alpha version, '1' for Beta, '2' for Release Candidate, and '3' for Release. All future firmware and software versions posted on our download site will follow this scheme. To determine the latest version of a particular family of software, look first at Major Revision, then Minor Revision and finally Build Number. The Build Number does not increase indefinitely, but instead resets after each increase of either the Minor or Major Revision Number.

Example:

Version 2.0.1.24 is a later version than 2.0.0.23, and is also Beta class software. However, version 2.1.0.1 is a later version than 2.0.1.24, as this product has undergone a minor revision. Version 1.4.0.18 is a later version than 1.3.3.5, even though it is Alpha class software.

14.1.2. Alpha

Software that meets the PGR Alpha standard is not required to satisfy a large percentage of the full software release process. This classification has been instituted for quick bug fixes and new functionality. As such, a user of an Alpha release has very few guarantees outside from the software version number being correct. As a general rule, Alpha releases will not be made public. Upon request, they can and will be emailed to knowledgeable users.

14.1.3. Beta

The requirements for a piece of software to meet the Beta standard are substantially stricter than those of the Alpha standard. A release that meets the Beta requirements will be functionally complete. It will have been tested internally and by Alpha users, source code documentation will be complete and memory leaks and other similar problems will be solved. These releases will be made public. They will be posted to the web pages in a category separate from Release Candidates and Releases. Again, software that meets the Beta standard is designed for knowledgeable users.

14.1.4. Release Candidate

The only difference between software that meets the Release Candidate standard and software that meets the Release standard will be the amount of testing and the delivery mechanism. Release Candidates will be fully supported and posted to the web pages but not burned to CDs - they will be designed for use by new users.

14.1.5. Release

Software will only meet the Release standard when it is burned to CD and shipped with new camera systems. Similar to Release Candidate users, users of Release software can expect fully functional libraries, examples and installation scripts.

15 Appendix B: Glossary

Term	Definition
Absolute Values	Real-world values, such as milliseconds (ms), decibels (dB) or percent (%). Using the absolute values is easier and more efficient than applying complex conversion formulas to integer values.
Analog-to-Digital Converter	Often abbreviated as ADC or A/D converted, it is a device that converts a voltage to a digital number.
API	Application Programming Interface. Essentially a library of software functions.
Auto Exposure (EV)	This is the average intensity of the image. It will use other available (non-manually adjustable) controls to adjust the image.
Brightness (%)	This is essentially the level of black in an image. A high brightness will result in a low amount of black in the image. In the absence of noise, the minimum pixel value in an image acquired with a brightness setting of 1% should be 1% of the A/D converter's minimum value.
CSR	Control and Status Register. A 4 byte (32-bit) control register used by PGR IEEE- 1394 cameras.
DCAM	Abbreviation for the <i>IIDC 1394-based Digital Camera (DCAM) Specification</i> , which is the standard used for building FireWire-based cameras.
Firmware	Programming that is inserted into programmable read-only memory, thus becoming a permanent part of a computing device. Firmware is created and tested like software and can be loaded onto the camera.
Format_7	Encompasses partial or custom image video formats and modes, such as region of interest of pixel binned modes. Format_7 modes and frame rates are defined by the camera manufacturer, as opposed to the DCAM specification.
FPS	Frames Per Second.
Frame Rate	Often defined in terms of number of frames per second (FPS) or frequency (Hz). This is the speed at which the camera is streaming images to the host system. It basically defines the interval between consecutive image transfers.
Gain (dB)	The amount of amplification that is applied to a pixel by the A/D converter. An increase in gain can result in a brighter image and an increase in noise.
Gamma	Gamma defines the function between incoming light level and output picture level. Gamma can also be useful in emphasizing details in the darkest and/or brightest regions of the image.
GPIO	General Purpose Input/Output.
Quadlet	A 4 byte (32-bit) value.
Quadlet Offset	The number of quadlets separating a base address and the desired CSR address. For example, if the base address is 0xFFFF0F00000 and the value of the quadlet offset is 0x100, then the actual address offset is 0x400 and the actual adress 0xFFFF0F000400.
Saturation	This is how far a color is from a gray image of the same intensity. For example, red is highly saturated, whereas a pale pink is not.
Sharpness	This works by filtering the image to reduce blurred edges in an image.
Signal-to-Noise Ratio (dB)	The difference between the ideal signal that you expect and the real-world signal that you actually see is usually called noise. The relationship between signal and noise is called the signal-to-nose ratio (SNR). SNR is calculated using the general methodology outlined in KB Article 142.
Shutter (ms)	This is the amount of time that the camera's electronic shutter stays open for; also known as the integration time. The shutter time defines the start and end point of when light falls on the imaging sensor. At the end of the integration period, all charges are simultaneously transferred to light-shielded areas of the sensor. The charges are then shifted out of the light shielded areas of the sensor and read out.

16 Index

1

1394.b capability, determining	19
16-bit per pixel (mono) data formatSee	Y16
image data format	

Α

absolute value mode asynchronous trigger mode	45 82
auto exposure	
algorithm overview	34
auto exposure range	57
auto gain range	58
auto shutter range	58
limitations	34
states	34

В

Base address	9
Base address offset	9
Bayer tile gain	56
Bayer tile mapping	56
brightness control	32, 41
bulb shutter trigger mode	See Trigger_Mode_1

С

camera setting conversion formulas	45
conversion formulas for camera settings	45
current frame rate	24
varies with extended shutter	24
current video format	24
current video mode	24

D

DCAMSee	IIDC	1394-based	Digital	Camera
(DCAM)	Specifi	cation		
delay betwe	en ext	ernal trigger a	nd shutte	er 60

Ε

extended shutter maximum shutter values external trigger mode See asynchronous trig	54 ger
mode	
externally trigger camera	
using DCAM v1.31 PIO and strobe modes	81
using PGR-specific GPIO modes	81

F

failed frame transmission count	73
feature availability table	8
firmware version numbering scheme	97
focus	41, 44
frame rate control	
custom frame rates	70
via frame time	70
frame rate, partial image mode	53

G

gain	39
control of A/D converter gain	39
states	39
gamma	37
general purpose I/O control	59
strobe multiplier	59
strobe start control	59
trigger queue behaviour	59
get camera type	74
get firmware version	76
get sensor type (Scorpion only)	75

Н

hue

37

Ι

IIDC	1394-based	Digital	Camera	(DCAM)
Spe	ecification			7
image timestamp mechanism				72
integration time			Se	ee shutter

Integration time iris isochronous channel and speed isochronous data bandwidth requiren isochronous data packet format isochronous data transmission	See Shutter 41 25 nents 78 77, 79 77
L	
lookup table register LUT register	74 74
Μ	
mode control of CSR registers multiple camera automatic synchroni offset synchronization	31 zation 71
Р	
parallel input/output (DCAM v1.31) PIO See parallel input/output (I pulse width modulation (PWM) mode	
R	
reset camera to default settings	11
S	
saturation sharpness shutter	37 35 38

38
See Trigger_Mode_3
iger 55
ode See
81

т

95
95
95
95
81, 93
42
93
93
94

V

value	field	for	CSR	registers
value	neiu	IUI	COR	registers

W

white balance	
controlling relative Bayer Tile gain	35
controlling using Bayer Tile Gain register	35

Υ

Y16 image data format

31

57