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Solarflare’s OpenOnload
®
 application acceleration middleware is an accelerated network stack. It is an implementation of 

TCP and UDP over IP which is dynamically linked into an application’s address space and granted direct access to 

accelerated network hardware. The network stack interposes network operations from the application and enables them 

to be handled completely at user-space. In so doing, it bypasses the operating system and significantly improves 

performance through the removal of disruptive events such as context switches and interrupts which otherwise reduce the 

efficiency by which a processor can execute application code. This acceleration is most pronounced for applications that 

are network intensive, such as: 

 Market data and high frequency trading applications 

 Physical modeling applications such as 

computational fluid dynamics (CFD) 

 Video streaming 

 Distributed object caches (or databases) such  

as Memcached 

 Other system hot spots such as lock managers or 

forced serialization points 

 
OpenOnload dynamically links with an application at run-time and by implementing the standard BSD sockets API, 

enables an application to be accelerated without modification.  Figure 1 illustrates OS bypass in an abstract form,  

where OpenOnload represents a protocol implementation suitable for direct access to virtualized NIC hardware.  

Figure 1 
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This paper is intended to provide an introduction to the OpenOnload internal architecture and the techniques employed to 

ensure that full application transparency is delivered with high-performance. It should be read in conjunction with the 

talk, slides and other material on the openonload.org project site. 

 

ARCHITECTURE 

OpenOnload is a passive library, which means that no threading model is imposed on the application and that the library 

will work with any language binding. It is common for applications implemented using languages such as C, C++ and Java 

to be accelerated using OpenOnload. This property also means that the library can operate with the absolute lowest 

overheads, since protocol processing may take place directly in the context of the thread invoking the networking 

operation. Especially on receive, the OpenOnload library will generally operate lazily, in that protocol processing does not 

take place until a calling thread enters the library. This is known as lazy-receive processing and has significant benefits to 

performance, particularly improving processor cache spatial and temporal locality.  

 

There are circumstances when asynchronous protocol processing should take place, for example, when an application 

thread is not provided for some significant period of time, or when an application exits before all its connections have been 

closed. For this reason, OpenOnload is a hybrid stack, capable of operating at user-space and kernel-mode for any given 

network flow and able to choose, dynamically, whichever is appropriate. Asynchronous operation is provided by the 

kernel—typically in response to an interrupt—and provides a robust mechanism to ensure that the OpenOnload network 

stack responds to protocol events in a timely manner. A pure user-space implementation by contrast would not be able to 

make such guarantees, since otherwise once an application exits or crashes, all user-space protocol state is destroyed.  

 

Hybrid stack operation is also beneficial for some workloads where there are many more application threads than physical 

CPU cores. Here the system must necessarily schedule between threads and it is often useful for some degree of 

background processing to take place in order that timely responses to synchronization operations such as poll(), select() 

or epoll() may be made. The use of background processing in the kernel context often enables post-protocol processed 

results to be indicated to the user-space library with lower latency than would otherwise be possible. This feature is 

important for protocols such as TCP where, for example, the semantics of TCP mean it is not sufficient to simply indicate 

that a packet has received in order to indicate that a file descriptor has data ready. Hybrid processing also enables 

significant performance gains to be made for highly-threaded applications, especially if the application is bursty. It is often 

the case that once a thread is scheduled with a set of active sockets, a number of network operations can be performed  

in short order. These operations can take place completely in user-space during the time-slice available to the thread.  

This property remains true even if the stack had been previously operating in kernel mode for some or all of these 

sockets. The mechanism by which this hybrid operation is enabled is a protected memory mapping from the user-space 

library onto some of the protocol state associated with each socket. Importantly, this protocol state canonically resides in 

the kernel and is accessed by the user-mode library component with low overhead via the memory mappings. 

http://www.youtube.com/watch?v=1Y8hoznuuuM
http://www.openonload.org/openonload-google-talk.pdf
http://www.openonload.org/
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The POSIX API performs networking operations via file descriptors. OpenOnload accelerates these operations by 

interposing the file-descriptor table, a copy of which is maintained at user-space. The OpenOnload library is able 

very cheaply to determine whether or not any given file descriptor should be handled by itself, or else by the regular kernel 

stack. Operations on sets of pure kernel stack based file descriptors are simply forwarded by the library to the kernel, 

whereas operations on mixed sets of descriptors containing both OpenOnloaded and kernel stack descriptors are 

handled by the OpenOnload library. 

 

 

As shown in Figure 2 above, each file descriptor which has been interposed by OpenOnload is backed by kernel state, 

including a real kernel socket.  This kernel socket enables the OpenOnload stack to request resources, such as ports, 

which are maintained by the native kernel resident networking stack. This feature also enables file descriptor based 

semantics at the POSIX API to be correctly implemented. For example, over a fork()/exec() operation, the new child 

process may inherit no state other than open file descriptors from its parent.  ie. The child process should have access to 

the same sockets as the parent, but has lost all of its user-space mappings and state. Correct operation is implemented 

utilizing a side effect of the property that protocol state is defined to reside in the kernel and therefore, appropriate 

portions may be mapped into user-space as required.  

 

Figure 2 
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Figure 3 illustrates that following the exec(), the new child process will inherit the environment of the parent and so will 

dynamically link against and initializes a fresh instance of the OpenOnload library (libonload.so). This new instance does 

not require priming with any state contained within the parent process’ library. Instead OpenOnload will perform a stat() 

operation on any unknown file-descriptor which it has been passed. The result of the stat() provides a means for the 

OpenOnload library to discover and recover a memory mapping onto the shared stack protocol state. It is also the means 

by which other shared operations on sockets are possible. Any given socket may be mapped onto a particular 

OpenOnload network stack instance, allowing for example, multiple processes to subscribe to and receive data from 

the same IP multicast groups whilst accelerated and for maximum performance without requiring multiple packet 

deliveries from hardware over the PCI bus. Control of this feature is provided both by environment variables at the 

granularity of the process, or using a programmatic API for socket granularity. This is illustrated by Figure 4, where 

multiple processes are sharing and able to access the same underlying sockets at user-space. 

 

Figure 3 
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The arrangement shown in Figure 4 should not be applied for applications where an indirect linkage through the shared 

memory segments is not appropriate. For this reason, the OpenOnload default behavior is not to share a stack following 

operations such as fork() and exec(), or where multiple processes subscribe to the same multicast groups. Unless 

specified as indicated above, the default arrangement following fork()+exec() is shown in Figure 5.  In this case network 

operations are not intercepted in user-space, and as a result processing takes place in the context of the kernel for that 

particular socket. 

 

Figure 4 

Figure 5 
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Having a kernel socket backing each OpenOnload enabled socket also allows for mixing OpenOnload-enabled network 

interfaces and other network interfaces. For example, a UDP socket may receive datagrams from any Ethernet interface. 

Those which are received from an OpenOnload enabled network interface are delivered directly through the OpenOnload 

stack, at user-space, whereas those delivered through a non-OpenOnload capable interface are delivered through the 

regular kernel stack via the kernel socket. The OpenOnload library will cleanly merge such flows, again preserving 

application transparency. 

 

As well as data operations, significant care is taken to ensure that multi-tier operations are possible for 

synchronization operation such as poll()/select()/epoll(). When a synchronization operation is requested for a file 

descriptor set containing only OpenOnload enabled file descriptors, the library is able to perform the operation entirely at 

user-space (and if requested block by busy-waiting for lowest-latency). However, if the file-descriptor set contains mixed 

file-descriptors, then the OpenOnload library cannot determine the state of the non-OpenOnload file descriptors without 

checking via the kernel maintained state of the native protocol stack (typically via a system call). In such cases, the library 

will balance the requirements to deliver correct and timely results from the kernel based file-descriptors with low-latency 

requirements from the OpenOnload enabled file descriptors by employing heuristics to always check the file-descriptors 

which can be resolved at user-space, with periodic checking of the descriptors requiring kernel operations. Combined with 

busy-waiting at user-space, this can be a valuable tool for applications containing mixed file descriptor sets. Hints can be 

provided to enable the heuristics to be further tuned – for example, an assertion that a particular socket will only receive 

datagrams from an OpenOnload enabled interface can be very useful to the library. The OpenOnload library has been 

designed to scale well with very large numbers of sockets and many different thread models. 

 

Other techniques have been employed to ensure the best possible performance with OpenOnload. For example, attention 

has been paid to reducing lock contention when accessing the library. Many common operations such one thread reading, 

another writing a socket can take place without any lock contention at all. But where locking is necessary, the developers 

have spent time to employ techniques such as CASL (or lockfree) data structures in conjunction with advanced deferred 

work techniques to deliver the absolute best in performance, not only for a simple single-threaded micro benchmarks, but 

also for the complex interactions of production applications. 

 

To avoid the requirement of managing OpenOnload enabled sockets as a separate network interface, an abstraction is 

maintained of a single physical network interface for which particular network flows are accelerated onto a virtual interface 

mapped into a user-address space. Therefore management of the physical network interface is performed using the same 

tools and operations as are used for regular kernel mode networking.  The OpenOnload kernel component registers itself 

with the Linux kernel control plane and receives full notifications of all network related state (and changes thereof) 

including properties such as VLAN and teaming status, the ARP cache, ICMP notifications, and the IP routing tables. As a 

result OpenOnload is able to correctly determine the correct operation for any API call with complete transparency. The 

control plane information which is received by the OpenOnload kernel component is mapped to the user-space libraries 

by a read-only memory mapping, enabling user-space access to critical state changes with very low overhead.  
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The OpenOnload TCP implementation was developed from the ground up, specifically for hybrid user-space/kernel 

operation. Low-latency for an eager thread is provided by significant layer integration work within the code-base. Lazy-

receive techniques are extensively deployed and the stack implements a complete set of RFCs including those 

implementing advanced congestion avoidance and recovery, such as New Reno with Fast Recovery, SACK and TCP 

Extensions for High Performance. These features ensure robust and fully compliant performance while maximizing 

performance. OpenOnload complies with at least the following RFCs: 791, 792, 793, 768, 896, 1122, 1191, 1323, 2001, 

2018, 2525, 2581, 2582, 2883, 2988, 3390, 3465, 3708, and is regression tested using industry standard test tools. 

 

OpenOnload represents over 25 man years of development and was architected from the ground up to fully support mixed 

protocol operation. It is a mature and complete product tested and in full production in many demanding applications, 

delivering robust performance, ease of deployment with the absolute best in performance. 

 

IN SUMMARY 

OpenOnload is implemented using a language agnostic, passive library. This property means that the product may 

be used in conjunction with any language binding and with other libraries and Middleware. 

 

OpenOnload is a hybrid user-space / kernel stack. This property means that protocol processing can take place at the 

appropriate place for the application’s needs and enables the stack to support the full POSIX semantics expected by true 

application level transparency. 

 

OpenOnload operates by interposing the file-descriptor table maintained at user-space. It is able, very cheaply, to 

determine whether or not any given file descriptor should be handled by the Openonload library, or else by the regular 

kernel stack.  

 

OpenOnload is able to operate efficiently with mixed sets of file-descriptors including multiple protocols and 

descriptors from arbitrary network interfaces 

 

OpenOnload enabled sockets are backed by a real kernel socket. This enables the OpenOnload stack to request 

resources which are maintained by the regular kernel stack, such as ports. It also enables file descriptor based semantics 

at the POSIX API to be correctly implemented. 

 

OpenOnload supports shared operations on sockets. This enables multiple processes to subscribe to the same 

multicast groups whilst accelerated. Enables fork()/exec() semantics and debugger applications to attach to protocol state. 

 

OpenOnload supports multi-tier processing of synchronization operations, such as poll()/select()/epoll().  

This enables efficient processing of mixed kernel / OpenOnload file descriptor sets. 
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OpenOnload utilizes lock-free data structures and deferred work techniques to ensure best performance not only for 

simple single-threaded micro benchmarks, but also for the complex interactions of production applications with multiple 

threads. 

 

OpenOnload’s kernel module registers with the Linux kernel control plane and receives full notifications of all 

network related state. This enables OpenOnload behave in the same way as the kernel stack, and with complete 

transparency. Read only memory mappings reflect the control plane to user space, enabling low overhead operation. 

 

OpenOnload TCP was designed specifically for hybrid user-space operation and supports both high-performance, 

and fully conformant operation in congested environments by implementing a complete set of RFCs including advanced 

congestion avoidance and recovery.  
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