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“All models are wrong; some models are useful.”

- George Box

1
Adaptive Learning

Here we talk about adaptive and interpretable methods.

1.1 Challenges in Cancer Data

1.1.1 Cancer Heterogeneity

1.1.2 Batch Effects and Noise

1.2 RatBoost

1.2.1 Background

Over the past few decades, biology has transformed into a high throughput re-
search field, both in terms of the number of different measurement techniques as
well as the amount of variables measured by each technique (e.g., from Sanger
sequencing to deep sequencing), and is more and more targeted to individual
cells [99]. This has led to an unprecedented growth of biological information.
Consequently, techniques that can help researchers find important insights into
the data are becoming increasingly important. Predicting survival of cancer
patients based on measurements from microarray experiments has been a field
of great interest, but there is often very little overlap between the important
genes or biomarkers identified by different studies [34]. Several reasons have
been suggested to explain these findings (e.g., heterogeneity of cancer samples
or insufficient sample size). Attempts have been made to incorporate additional
information from other sources, such as protein-protein interaction (PPI) net-
works, to make the predictions more robust [25]. One of the latest approaches
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integrates network and expression data by introducing a network-induced clas-
sification kernel (NICK) [66]. Although this method exhibits state-of-the-art
performance, the way it penalizes genes that are connected to not-predictive
genes can result in selection of isolated features as important features for predic-
tion. We observed this bias of the method towards isolated nodes on additional
experiments on synthesized data as shown in Section 4.2.1. Another issue is
that in PPI networks, genes or proteins, which have been known to researchers
longer and are well-known, are studied more and therefore have more edges con-
nected to them; whereas less well-known genes and proteins are in sparser areas
of the network. This bias might further affect the judgment of methods like
NICK that use a PPI networks as an input. Consequently, we rely on the fact
that such networks exist between genes and proteins, but we do not take them
as input. If there is a dependence between input features, which is the case in
many biological settings, our method can benefit from this effect. Otherwise, it
is reduced to a standard ensemble method. Furthermore, a central assumption
underlying many methods is that all data are drawn from the same unknown
underlying distribution. This may not be the case, especially for heterogeneous
cancer samples, and in particular not for all measured genes.

In this work, we introduce a method that is aware of this potential bias and
utilizes an estimate of the differences during the generation of the final prediction
method. For this, we introduce a set of sparse classifiers based on L1-SVMs [16],
where each set of features used by one classifier is disjoint from the selected
feature set of any other classifier. Furthermore, for each feature chosen by one
of the classifiers, we introduce a regression model that uses additional features
and is based on Gaussian process regression. These regression models are then
used to estimate how predictable the features of each classifier are for each test
sample. This information can then be used to find a confidence weighting of the
classifiers, i.e. up-weighting classifiers with high confidence and down-weighting
classifiers with lower confidence, for each test sample. Schapire and Singer show
that incorporating confidences of classifiers can improve the performance of an
ensemble method [96]. However, in their setting, confidences of classifiers are
estimated using the training data and are thus fixed for all test samples, whereas
in our setting, we estimate confidences of individual classifiers per given test
sample. Another related work includes mixture of experts, in which the model
trains a set of neural networks and uses a gating network to set the weights
of the networks [55]. One issue with their method is that neural networks
with lower performance will not be optimized as much as networks with better
performance on training data since the gate module down-weights the error
propagated to them. Also training of the gating network is interconnected with
the neural network experts and afftects training of those modules. Our method,
in contrast, trains each module independently using all training samples, and
their reliability does not affect how they are trained. Bayesian hierarchical
mixtures of experts takes a more similar approach, but the method is complex,
and it has a high time complexity to train the architecture of the hierarchy [14].

We show that this method exhibits state-of-the-art performance for different
cancer types, with gene expression or methylation data sets as the input. Since
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the weighting of the classifiers is customized for each test sample, the estimated
confidences can offer insights into the specific characteristics of each individual’s
cancer. To facilitate interpretation of the model, we then create a visualization
of the important genes found through this analysis for each test sample. Ad-
ditionally, we show how the important genes of the training set can be found
using our learning method and cross validation.

Our idea might resemble ensemble feature selection, which involves aggre-
gating multiple feature scores from several scoring mechanisms. These scor-
ing mechanisms vary from being several different methods, to being the same
method applied to different parts of the data such as a random cross valida-
tion scheme [95]. This idea has been studied further by other researchers and
they introduced two different methods to aggregate scores from different models.
They use an ensemble of support vector machines which on its own has been
used to select features in a given data set in other works [51]. Although we use
an ensemble of support vector machines, our goal is not to give a ranking to
features of the data set, rather to find multiple parsimonious gene sets that are
predictive of the outcome on their own, and use all of them in parallel to predict
the outcome.

Similar to this approach, in another work, iRDA uses a different approach
and can report multiple parsimonious gene sets [64]. One significant difference
between iRDA and our work is that we have an embedded prediction approach
using these sets, which iRDA lacks. Furthermore, gene sets are somehow ordered
in iRDA according to their ”strength”, and within each set, redundant genes
are removed. In our model redundant genes can be included in two different
ways. One is within different individual learners. For example, if genes g1 and
g2 are both strong but redundant, individual learner 1 might include g1, and
individual learner 2 might include g2. Also, if there are more redundant or
related genes in the gene pool, they will be used to estimate how reliable g1 and
g2 are. Therefore instead of dismissing them, we exploit the fact that they exist.

Related to sorting genes and testing for significance of a reported gene set,
Gene Set Enrichment Analysis (GSEA) and its modifications are a commonly
used tool [101, 104]. GSEA based methods rank genes depending on how much
they relate to the outcome. The choice of relationship is rather free and can
vary from Pearson correlation to mutual information. Then for a given gene
set, a p-value is calculated by estimating how often a random gene set appears
before the given set on the list. There have been several modifications and
improvements to the method [75, 31]. Although it is true that GSEA is used
to assess the relevance or importance of a given set to the outcome, we need
to remember that a particular gene set might consist of genes that are not
necessarily important on their own, but are predictive once considered together.
Our method does not consider genes individually whereas GSEA does to sort
the genes in the first place. Therefore we believe GSEA based methods are not
suitable to assess how well our method performs.
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Analysis of NICK

Lavi, et al. modified the standard SVM formulation, which is shown in Formula
2.12, as shown in Formula 4.1 [66]. This formulation adds a penalty function
to penalize weight differences if their corresponding features are connected in
the given graph. The intuition is that if features are connected in the network,
their weight should be somehow similar.

min
w,w0

1

2
∥w∥2 + 1

2
β
∑

(j,k)∈E

(wj − wk)
2


s.t.:

∀i ∈ {1, · · · , n} : (wxi + w0)yi ≥ 1 (1.1)

In the above formulation, E is the set of edges of the given network. They
also show how to derive the dual of the above optimization problem as shown
in Formula 4.2:

max
α


n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyj(x
T
i L)(L

Txj)


LLT = (I+ βB)−1

s.t.:

∀i ∈ {1, · · · , n} :
n∑

i=1

αiyi = 0

∀i ∈ {1, · · · , n} : αi ≥ 0

Laplacian matrix:

B = D−A (1.2)

In Formula 4.2, D is a diagonal matrix having degrees of nodes on its main
diagonal, A is the adjacency matrix, and B is called the graph Laplacian matrix.
The benefit of the above formulation is that the input vectors can be transformed
using the matrix L, which itself comes from the Cholesky decomposition of the
matrix (I + βB)−1. The parameter β in both Formulea 4.1 and 4.2 sets how
much we penalize weight differences for connected vertices.

After training the model on the data using the above formulation, we can
calculate back the vector w using Formula 4.3. We use the vector w to investi-
gate which nodes and pairs of nodes are given a relatively high value compared
to other features.

w = (I+ βB)−1
n∑

i=1

αiyixi (1.3)

4



We then use calculated feature weights in the vector w of both normal and
modified SVM (NICK) to show which feature pairs are selected as important
in the model, as shown step by step bellow. Please note that NICK transforms
the data using the matrix L, and then solves a normal SVM on the transformed
data, and therefore in the following whenever we refer to transformed data, that
means NICK method.

1. Solve SVM problem for original and transformed data.

2. Calculate w for both models.

3. Compute for each pair of nodes, for each model:

Score(i, j) =
|wi|+ |wj |

2
× e−max(dG(i,j),1) (1.4)

4. Report pairs with highest scores for both trained models.

In order to evaluate the method, we need to synthesize some data because in
the real data it is not clear which features are the true discriminating features.
For this purpose, we randomly generate a graph, and assign nodes to three
different classes. Nodes in this graph represent genes/features in the data set.
Each feature is a random variable sampled from a Gaussian distribution. If
the node is independent of the target class, it gets its value from a Gaussian
distribution regardless of the target class. If the feature is selected as a signal
node, then it takes its value from two different Gaussian distributions that differ
in their mean, depending on the target class of the sample. Some of these signal
features are connected only to random features, and some are connected to other
signal nodes. We call connected signal features a pathway. The generated graph
and an example of selected feature nodes are shown in Figure 4.1.

To generate our synthesized data set, for each data point, and each feature
of that data point, we first assign a class to that data point, and according to
the assigned class, we sample from the corresponding distribution, according to
the following functions:

• Signal nodes (genes): f(n) =

{
N(−µ, 1) if n is in class 1
N(µ, 1) if n is in class 2

• Random nodes (non-signal genes): f(n) = N(0, 1)

We perform three experiments. Each experiment uses the same graph struc-
ture, but has a different set of signal nodes. First we put pathway nodes on the
boundaries of the graph, then we move one pathway deep into the graph struc-
ture, and in the last experiment all pathway nodes are inside the graph structure.
These three scenarios are shown in Figures 4.2, 4.3, and 4.4 accordingly.

Figure 4.2(b, c) presents node pairs with highest assigned scores as calcu-
lated in Formula 4.4, comparing normal SVM and NICK. Orange and yellow
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Figure 1.1: Blue: random gene, Orange: Signal node being a member of a
pathway of signal nodes, Yellow: A lonely signal node

colored cells are pathway and lonely signal nodes in the graph accordingly. This
experiment shows discovers signal gene pairs more effectively than a normal
SVM, using the graph structure.

Figure 4.3 shows the experiment, in which one of the pathways is located
inside the network. As illustrated in Figure 4.3(b, c), NICK method mostly
chooses the pathway nodes located on the boundaries of the network.

Figure 4.4 illustrates the fact that non-signal features down-weight and pe-
nalize signal features when connected to them. In this example, a normal SVM
detects more signal nodes than NICK.

We used the network provided in [7] for NICK to classify Van ’t Veer data
[111]. As expected, we realize that NICK prefers nodes outside the network to
the nodes that are deep into the given network. This is shown in Figure 4.5,
comparing preferred nodes in a normal SVM and NICK. The first column is
gene ID, and the second is its corresponding degree in the given graph.

These experiments all together, show how such a modification in SVM opti-
mization problem gives a bias towards genes that are not hubs. This is problem-
atic considering many of those hubs in the network are partially, if not mostly,
hubs due to the fact that they were discovered earlier and investigated the most.
Therefore those are the most well-known genes, which in many cases happen to
be biologically most relevant genes. A method such as NICK tends to penal-
ized them because they are connected to many genes that are irrelevant to the
disease in study. This experiment is our motivation to use the fact that such a
biological network exists, but not to use it directly in our method.
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(a) Corresponding network

Original

X196 X196 X53 X53
X233 X233 X39 X39
X88 X88 X196 X133
X116 X116 X127 X127
X197 X197 X127 X148
X148 X148 X150 X150
X148 X273 X116 X133
X160 X160 X96 X96
X95 X95 X273 X273
X88 X115 X40 X40
X53 X8 X53 X164
X195 X195 X56 X56
(b) Discovered nodes (no NICK)

Transformed

X196 X196 X233 X233
X196 X133 X133 X133
X133 X116 X116 X116
X95 X95 X240 X240
X39 X39 X240 X243
X59 X59 X106 X106
X243 X243 X106 X168
X114 X114 X168 X168
X243 X150 X56 X56
X39 X47 X298 X298
X150 X150 X247 X247
X125 X125 X83 X83

(c) Discovered nodes (NICK)

AUC (Original): 60.6
AUC (Transformed): 62.4
wc p-value (paired): 5.669e-09

(d) Performance measures

Figure 1.2: An easy example: here all signal pathways are on the border of the
network.
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(a) Corresponding network

Original

X190 X190 X104 X104
X233 X233 X190 X272
X277 X277 X88 X88
X190 X127 X165 X165
X272 X272 X272 X22
X106 X106 X165 X96
X150 X150 X250 X250
X88 X215 X22 X22
X51 X51 X28 X28
X73 X73 X35 X35
X162 X162 X113 X113
X112 X112 X277 X102
(b) Discovered nodes (no NICK)

Transformed

X233 X233 X190 X190
X112 X112 X240 X240
X190 X272 X240 X243
X86 X86 X243 X243
X243 X150 X190 X127
X150 X150 X272 X272
X246 X246 X298 X298
X106 X106 X125 X125
X35 X35 X125 X82
X247 X247 X272 X69
X272 X22 X82 X82
X100 X100 X257 X257

(c) Discovered nodes (NICK)

AUC (Original): 60.1
AUC (Transformed): 61.5
wc p-value (paired): 1.383e-06

(d) Performance measures

Figure 1.3: A medium example: here some signal pathways are on the border
of the network.
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(a) Corresponding network

Original

X190 X190 X101 X101
X233 X233 X190 X272
X88 X88 X297 X297
X190 X127 X93 X93
X26 X26 X138 X138
X272 X272 X272 X22
X101 X41 X123 X123
X22 X22 X101 X198
X146 X146 X228 X228
X278 X278 X72 X72
X88 X115 X96 X96
X148 X148 X112 X112
(b) Discovered nodes (no NICK)

Transformed

X233 X233 X190 X190
X112 X112 X190 X272
X86 X86 X190 X127
X272 X272 X272 X205
X205 X205 X146 X146
X146 X68 X68 X68
X298 X298 X272 X22
X90 X90 X127 X127
X100 X100 X272 X69
X297 X297 X72 X72
X127 X148 X155 X155
X247 X247 X196 X196

(c) Discovered nodes (NICK)

AUC (Original): 60.2
AUC (Transformed): 62.5
wc p-value (paired): 8.151e-13

(d) Performance measures

Figure 1.4: A hard example: here none of the signal pathways are on the border
of the network.
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Original

Node Degree
85453 12
6605 98
56886 26
10640 16
8817 152
56894 28
5733 150
57758 8
7532 86
51 172
7566 16
3267 56
89953 4
5713 126
5193 32
5365 70
10874 132
5982 172
92140 20
332 328

(a) Discovered nodes (no
NICK)

NICK

Node Degree
9917 0
84279 0
197370 0
51143 0
58475 0
55585 0
25949 0
54892 0
126695 0
57168 0
10456 0
148223 0
9742 0
253558 0
342527 0
10175 0
83930 0
57035 0
145482 0
57465 0

(b) Discovered nodes
(NICK)

Figure 1.5: Comparison of selected nodes on Van ’t Veer data [111] using NICK
and a normal SVM.

1.2.2 Methods

Materials

Data Sources: In this article, our method is applied to two different data
types: gene expression data and DNA methylation data, which we retrieved
from The Cancer Genome Atlas (TCGA) [108]. TCGA is a joint effort of the
National Cancer Institute and the National Human Genome Research Institute
to advance the understanding of the molecular basis of cancer. They provide
access to the different measurements from cancer samples that have been ana-
lyzed to external researchers. Samples are categorized according to diagnosed
cancer from which we use the following groups:

• Acute Myeloid Leukemia (LAML) [110]: At the time of writing, the data
set includes 200 samples. 194 samples contain methylation data and we use
the part of the data measured by JHU-USC HumanMethylation450 arrays.
173 samples contain mRNA data measured by HG-U133 arrays. In this
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article the methylation data is referred to as TCGA-LAML. Among avail-
able characteristics of samples, “risk group” and “vital status” are chosen
as target classes. These labels show the aggressiveness of the disease. In
our analysis, regarding risk group, {favorable} and {intermediate/normal,
poor} samples form our two group, and in the analysis of vital status,
{alive} and {dead} samples form our two groups of samples.

• Breast invasive carcinoma (BRCA) [109]: This data set includes 993 sam-
ples with clinical data, and we use the methylation data component mea-
sured by JHU-USC HumanMethylation450 arrays. Only very few samples
in this data set are indicated as having metastasized (8 samples). Hence
the data are analyzed according to “tumor size”, “affected nearby lymph
nodes”, “stage”, and “estrogen receptor”. Estrogen receptor was shown
to be an important factor in prognosis [61], and along with other factors
directly affects the decision for therapy [49, 76]. For tumor size {T1, T2}
samples are one category and {T3, T4} the other category; in order to
analyze affected nearby lymph nodes, {N0} is compared to {N1, N2, N3};
stage is analyzed as having {stage I, stage II} vs. {stage III} samples. Es-
trogen receptor status of samples is either positive or negative, and they
form our two classes.

Data Preprocessing: To prepare gene expression data for analysis, mi-
croarray probes are mapped to their respective gene. If there are multiple
probes for a gene, the median reported gene expression value of those probes is
adopted as the gene expression for that gene.

Preparing the methylation data, we use the nearby gene for each methylation
site available for each sample and each methylation site. The median beta value
of methylation sites mapped to each gene is taken as the methylation value of
the corresponding gene. In this process only methylation sites located on the
promoter region of a gene are considered and others are discarded.

Learning a Mixture of Disjoint Classifiers

When dealing with cancer, we need to consider the fact that tumors of the same
type of cancer can be very different in nature and they are usually classified as
different cancer subtypes. In fact, even one single tumor can be very hetero-
geneous [54]. This means that the malignancies causing the cancer to happen
are genetically different between subtypes, or even within subtypes, and it is
possible to have multiple underlying cellular processes causing a particular can-
cer. Also it is important to note that the nature of our given data is such that
the input features are properties measured from genes, e.g. gene expression or
methylation values, and these variables are correlated and statistically depen-
dent on each other. Our method tries to exploit these properties of the problem
to infer an interpretable model with state-of-the-art performance.
Our method can be characterized by the following key parts:

Training phase:
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• Fit several individual classifiers to the data, in such a way that the features
of the data they use are disjoint sets.

Prediction phase:

• Calculate the prediction confidence of each individual classifier by:

– Estimating the reliability of input features of the classifier;

– Estimating the confidence of the output based on the decision values.

• Calculate a weighted prediction label based on the individual classifier
confidences.

Properties of the Individual Classifiers: A wide variety of classifiers
can be used within our framework. One requirement is that the classifier is
regularized (i.e., the stronger the regularization, the less complex the model
gets and consequently the less features are used). The classifier is also required
to report the probability of its calculated output, or to give a decision value
according to which it chooses the predicted class. We use an L1 regularized
SVM for this purpose with a linear kernel [16]. The L1 regularization makes
the SVM sparse, i.e. using only a few input features, and the linear kernel allows
us to infer which features are used in the decision function of the SVM after it
is fit to the data.

Training the Individual Classifiers: The model starts with no individual
classifier and an empty set of excluded features. In each step, the excluded set
of features is removed from the data, then a classifier is fit to the data. Next
the features used by the most recent trained classifier are added to the excluded
set. In the case of a linear kernel SVM, this is achieved by finding features
with a non-zero coefficient in the model. This way the features being used by
classifiers are disjoint and might represent different underlying causes of groups
into which samples are to be classified.

Combining Classifiers by Estimating Confidences of Individual Pre-
dictors: Given a set of classifiers, the question is how to combine them to come
up with a joint prediction value for each test sample for which we want to predict
the output label. The intuition behind combining the classifiers is to put more
weight on classifiers that use features whose behavior is similar to the training
data. This is motivated by the fact that some parts of the test data might be-
have very differently to the training data, meaning that a classifier using these
features should have lower performance than a classifier using features that are
distributed similarly to the training data. Therefore we need to evaluate the re-
liability of the input features of each individual classifier. In scenarios like gene
expression or methylation analysis, we usually have many input features. Fur-
thermore, many features are correlated and statistically dependent. The idea of
our new method is to build separate prediction models for each feature of each
classifier. These prediction models can then be used to obtain a confidence for
the feature in a given test sample. These confidences can then be combined for
each classifier to give a weighting of the classifiers for the given test sample. To
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evaluate an observed feature f , we try to choose a few statistically dependent
features, and fit a model to predict f . To find these features, first the estimated
maximal information coefficient (MIC) of all other features with feature f is
calculated [91]. Then, features having MIC value within the top 5% or the 5
features with highest MIC with f (if the top 5% features consist of less than
5 features), are selected as predictors of f . Given a test sample, the closer the
predicted value of f is to the observed value, the more reliable it is. To quantify
this, we need to not only know the predicted value of the feature, but also a
confidence interval for that prediction. This can be achieved using Gaussian pro-
cesses, which give the mean and variance of the posterior probability under the
condition of observed values for selected features. A weighted average of these
values gives us the overall reliability of the features of an individual classifier.
A schematic view of the trained classifier is shown in Fig. 4.6.

Figure 1.6: Schematic view of the method

In addition to the confidence in the classifier estimated by looking at the
confidences of its individual features, we also account for the confidence that
the classifier has in the prediction label of the test sample. If the method
supplies such a confidence value (e.g., Gaussian processes), we can directly use
it. Otherwise, we estimate it using the decision value. In our setting, the linear
SVM gives a decision value whose sign defines the predicted class. Using these
values we estimate a confidence for each individual classifier. Several approaches
exist for deriving a confidence from the decision values [67]. Whether these or
other additional methods could lead to further improvements of our method,
will be topic of further study.

More formally speaking, define X to be the set of input samples, Xs to be
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the input vector of sample s, ys and ŷs to be respectively the original label and
predicted output of sample s, ∆ to be the set of individual classifiers, li to be an
individual classifier, Φli the set of input features of classifier li, li(Xs) to be the
label predicted by classifier li for sample Xs, and f to be a feature, Xs,f to be
the observed value of feature f in sample Xs, |wli(f)| to be the absolute value of
the weight of feature f in the decision function of classifier li, and gf to be the
Gaussian process predicting feature f using feature set Φf . Also µgf (Xs) and
σgf (Xs) are the mean and standard deviation of the posterior probability given
by Gaussian process gf under the condition of observing values of features in Φf ,
and µli and σli are respectively the expected mean and standard deviation of
the decision value of classifier li. Here F is the cumulative distribution function
of a standard normal distribution.

The training phase of the model is shown in Fig. 4.7, in which, N is the
number of individual learners to be included in the model, Φl is the union over
all Φli and X−Φl

is the input X after discarding all features of the set Φl. TOP
is the function which selects the maximum of the top 5 and top 5% features f ′

of all features ordered by MIC with feature f .
Now given a test sample Xs, the estimated confidence of a feature f is:

cf (Xs) := 2 · F
(
−
∣∣∣∣Xs,f − µgf (Xs)

σgf (Xs)

∣∣∣∣) (1.5)

Then the overall feature reliability or confidence of a classifier li is estimated as:

c1li(Xs) :=

∑
f∈Φli

cf (Xs) · |wli(f)|∑
f∈Φli

|wli(f)|
(1.6)

Also the estimated output confidence of the classifier li is:

c2li(Xs) := 1− 2 · F
(
−
∣∣∣∣ li(Xs)− µli

σli

∣∣∣∣) (1.7)

and the final confidence of the classifier li is then:

cli(Xs) := c1li(Xs) · c2li(Xs) (1.8)

Finally, the predicted class ŷs is calculated as the sign of a weighted vote among
individual classifiers:

ŷs := sign

(∑
li∈∆ cli(Xs) · li(Xs)∑

li∈∆ cli(Xs)

)
(1.9)

Visualization of Model Predictions

The interpretation of the model can be understood on two different ways. First
we assume for a given training data set, the model is trained and a new test
sample is given. For the given test sample it is possible to visualize the reliabil-
ity of each used feature in individual classifiers, as well as the overall confidence
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Φl ← {}

i ← 0

i < N

li ← L1-SVM(X−Φl
, y)

Φl ← Φl ∪ Φli

i ← i + 1

f ∈ Φli

Φf ← TOP {(f ′,MI (f, f ′))}

gf ← GP(XΦf
, f)

for

for

while

do

do

ΦlX y

X Φli

Figure 1.7: UML activity diagram of the training process
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of each individual classifier. Used features can be superimposed onto a PPI net-
work as well as their reliability and the confidence of their respective individual
classifier.
Gene expression and methylation level measurements from cancer samples are
usually very noisy. Furthermore, cancers are usually very heterogeneous. Ad-
ditionally, there might be different subgroups for each interesting group (e.g.,
cancer stage), for which the importance of the features also differs. To get a
global picture of the important features, we therefore evaluate how often certain
features are selected by the classifiers using 100 random train test partitionings
with 80% of the data for training and 20% of the data for testing. To visualize
high confidence relationships between features, we create a graph which has a
node for every chosen feature in any of the 100 train partitions in any of the
individual classifiers. The weight of an edge (s, t) is defined as the number of
times the respective features have occurred together in an individual classifier.
Then, all edges with low weights are discarded. In order to find a threshold to
prune edges according to their weights, a Gaussian kernel density estimate is fit
to the weights of the edges, and the threshold is chosen at the 90th percentile.
Nodes that have an appearance frequency higher than the threshold are labeled
by their gene names and edges having a higher weight than the threshold are
kept in the graph.

For illustration purposes, choosing the regularization parameter is done in
a way to maximize the number of genes selected with high confidence, as well
as minimizing the number of genes pruned out in the process. It is important
to remember that considering the results of the method under different regular-
ization parameters is essential to make sure the selected genes possess a high
confidence and are also stable regardless of sampling of the training data set.

Implementation Details

To compare the performance of our method with other methods, the implemen-
tations present in Python scikit-learn(0.14) package are taken. In the case of
stochastic gradient boosting, the representing class is GradientBoostingClassi-
fier, the number of classifiers is set to 100, and to make it sparse and prevent
over-fitting, the maximum number of features for splits in trees is set to 5, and
the maximum number of layers is set to 2. For AdaBoost, AdaBoostClassifier is
used, which is an implementation of AdaBoost-SAMME [125], with weak learner
set to DecisionTreeClassifier with maximum depth set to 2, and the number of
weak classifiers set to 100. Parameters of the two boosting algorithms are chosen
by a grid search on their parameter space over all the data sets and selecting
the parameter sets which give a robust and stable result over all experiments.

As an SVM, ν-SVM with ν = 0.25 is used, once with a linear kernel, and once
with an RBF kernel; γ parameter of the RBF kernel is set to (num of features)

−1
.

The ν parameter is set to the maximum value for which the optimization func-
tion is solvable with libsvm for all analyzed data sets [21]. Smaller values cause
the SVM to overfit to the data and not generalize well. The Gaussian pro-
cess’s correlation function is a squared-exponential, and MIC is estimated using
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minepy package [6].
The PPI network used in our analysis is from the Human Protein Reference

Database (HPRD) [84]. Almost all edges and relationships between proteins
that are added to this database are manually extracted from literature by bi-
ologists, hence it has a lower rate of edges included in the database for which
there is no evidence in the literature.

1.2.3 Results and discussion

Interpretability of Predictions

Here we present the results of running the method on the TCGA-LAML gene
expression data set.

Visualization of Features Important for a Particular Test Sample:
Having a model trained on the data, and given a test sample, it is possible to
infer and visualize which individual classifier(s) is (are) influencing the predic-
tion most. To this end, individual learners as well as the features they use are
visualized as in Fig. 4.8(a). In this figure, nodes with labels starting with “L ”
represent individual classifiers, and other nodes are labeled with their respective
gene name. The color of the node shows its confidence compared to other nodes;
the darker the node, the higher the confidence. In the case of a gene, it is the
confidence or reliability of the feature (cf ), and in the case of an individual clas-
sifier, it is the overall estimated confidence (cli). Edges show which classifier is
using which genes in its decision function. The shape of a node represents the
individual classifier they belong to.

To get a better overview of the individual features that were chosen by the
classifiers for the particular test sample, we visualized the corresponding genes
on a graph containing information about the PPI network in Fig. 4.8(b). We
extracted the PPI information from HPRD as explained before. This way, it
is possible to find over- or under-regulated pathways that might be responsible
for the label (e.g., cancer stage) of the test sample. Since PPI networks can
be quite dense, we removed parts of the induced network. For this purpose we
computed each shortest path between all pairs of selected features. Then, the
minimum spanning tree of that section was plotted, after removing branches
with no selected feature.

Most of the features chosen by any of the classifiers (colored nodes) are not
connected to any other chosen feature. It is known that there is in many cases a
correlation between expression value of the genes whose corresponding proteins
interact [56]. Therefore, a regularized model will only choose a subset of the
correlated features. This explains the observation that features selected by a
single model can be distant from each other on a PPI network; but if multiple
disjoint sparse models are fit to the data, their selected features might happen to
be close to each other on the PPI network (e.g., node TPT1 and node EEF1A1
in Fig. 4.8(b)).

It is worth noting that these plots are the result of analyzing one single given
test sample. Therefore in practice, these interpretations can be used for each
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L_0

DCAF6

RPS20

L_1

RPS3A

SH3KBP1

TPT1

L_2

RPL23A

RPL37A

L_3

EEF1A1

HUWE1

(a)

AR

BMPR1B

C1orf103

CTNNB1

DCAF6

EEF1A1
HSP90AA1

HUWE1

NDRG1

NUP214

PSMD11
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RPL37A

RPS20

RPS3A

SH3GL3

SH3KBP1

SMAD2

SNX6
TGFBR1

TNPO1

TOE1

TP53

TPT1

UBB

(b)

Figure 1.8: Visualization of one model A sample model for TCGA-LAML
gene expression data (a) individual classifiers and their selected features; higher
confidence of a node is shown by a darker color, (b) selected genes plotted over
the PPI network; green and yellow show low and high confidence respectively,
and the thickness of the border of the node shows the respective confidence of
the individual classifier to which it belongs.

patient and if useful, influence the treatment that the oncologist prescribe for
the patient.

Visualization of Important Global Features: As explained in Sec-
tion 4.2.2, a graph is created from model structures of all 100 random training
partitions, and then it is pruned to keep only high confidence nodes and edges.
The density estimation of the graph edge weights and the pruned graph are
plotted in Fig. 4.9 where the nodes with labels are the ones that are not pruned.
The nodes in this figure that do not have any label, are the ones with frequency
lower than the corresponding threshold. Among the features considered to be
important were features that had previously been linked to leukemia such as
SH3KBP1 [1].

What was more intriguing to see was that four out of the seven impor-
tant features of the TCGA-LAML gene expression data set contained ribosomal
proteins when using the risk group label, i.e. RPL37A, RPS20, RPS3A, and
RPL23A. For a long time ribosomes were just considered machines that perform
an unbiased translation of genes from mRNA to amino acid sequences, but this
view has recently been challenged [121]. One new hypothesis is that the ribo-
some introduces an additional regulatory layer. Therefore, it could very well be
that mutations in ribosomal proteins can lead to a misregulation of expression
levels of important genes and ultimately to the development of cancer (in this
case leukemia). One of the ribosomal proteins we found was RPL23A. It has
been shown that loss of RPL23A can impede growth and lead to morphological
abnormalities in Arabidopsis Thaliana [121]. Therefore, a mutation in RPL23A
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Figure 1.9: (a) Determine pruning threshold Threshold is determined by
finding the point after which, 90% of the area under the curve is observed from
left to right. The horizontal axis shows the observed frequency or weight of
the edges. (b) Important Global Features High confidence nodes and edges
of the graph generated from the model on TCGA-LAML gene expression data.
Darker color represents higher rate of being selected by a classifier.

might also have severe effects in humans. A missense mutation in RPL23A
was recently found in patients having Diamond-Blackfan anemia, which is an
inherited form of pure red cell aplasia (related to leukemia) [48]. Note that
the model for LAML has low performance for the regularization value chosen.
Nevertheless, the features shown here are also the ones with the highest confi-
dence for models learnt with less regularization (with several other additional
features). The models with less regularization show similar performance to the
other methods shown in Fig. 4.10

Performance comparison

The performance of the method was compared with that of two ensemble meth-
ods, AdaBoost and stochastic gradient boosting, as well as an SVM with linear
kernel, and an SVM with an RBF kernel. We also included our implementation
of the NICK method [66]. We randomly partitioned the data into training and
test sets with 80% of the data for training and 20% of the data for testing.
To compare the performance of the different methods, Area Under the receiver
operating characteristic Curve (AUC) [33] was calculated on the test set over
the decision values returned by the methods on the individual samples. The
process was repeated 100 times to reduce random effects. As seen in Fig. 4.10,
overall performances of all methods are comparable. In some cases a single SVM
works better, in some other cases ensemble algorithms give a better performance.
However, in most cases an improvement in performance is observed by adding
individual learners to the model, with the greatest gains due to the first few in-
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dividual learners added to the model. In two cases, TCGA-LAML/Vital status
and TCGA-LAML/Risk Group, our reported performance measures are signif-
icantly lower than other methods. This, however, comes from the fact that
we have enforced extreme sparsity measures. The performance of the method
increases and reaches the other methods’ performance levels if this constraint
is relaxed, as reported in supplementary 1. We enforced those sparsity mea-
sures for all models to avoid over-fitting. Optimizing the sparsity constraint
via cross-validation would have been computationally expensive, which is why
we preferred to be conservative. Had we optimized the sparsity constraint, we
would have still been able to find the significant features while having similar
performance as the other methods.
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1.2.4 Conclusions

Machine learning has become more and more popular in many real world scenar-
ios for making sense of large collections of facts. Differences between the data
used for training the method and new data for which the label should be pre-
dicted can limit the performance of prediction methods on those data. In this
work we introduced a method that estimates these potential partial biases and
incorporates them into the prediction function. We applied it to gene expres-
sion and DNA methylation measurements from cancer patients. Our method
has state-of-the-art performance on many different prediction tasks. Further-
more, we show how to make sense of the predictions. Visualizing the important
genes can lead to new biological insights, as shown for the TCGA-LAML data
set with the risk group label. Instead of mapping the genes to PPI networks,
one could also think of mapping them to signaling pathways [59].

Recently, a study showed that most published signatures are not significantly
more associated with cancer outcome than random signatures [114]. One of the
reasons for this finding is that the data comes from slightly different underlying
hidden data distributions. Since our new method estimates this bias and corrects
for it by up-weighting the classifiers that have higher confidence, we expect that
it should be less susceptible to such differences in the data.

In this work we designed and developed a method that besides being a
predictive model, it can be used for two different purposes. It can be used as
an exploratory method to reveal potential features used in future studies; and
it can be used to different underlying causes of the same disease and with its
interpretability help oncologists to choose the treatment accordingly.

We would like to point out that the applicability of our method is not limited
to cancer outcome prediction, and it can apply to many more scenarios. The
method assumes that the data has enough features to select from, and that there
are related features to those selected ones that can be used to estimate their
reliability. These are conditions that almost all biological data satisfy, hence
the method can be applied to them.

The method also works as a skeleton whose components can be easily substi-
tuted. For example, by changing the classifier used in individual learners to a
multi-class classifier, the method would work on multi-class problems. For the
sake of simplicity and without loss of generality we performed the evaluations
only on binary classification problems. Also, due to the structure of our model,
one possible approach would be to use a method such as iRDA and use those
gene sets as features of individual learners. Whether this approach leads to bet-
ter results or not requires further research. Also, the combination of maximal
information coefficient and Gaussian processes is not the only feasible option,
and they can be replaced with other faster methods if the time complexity of
the method is of any concern. Some of these alternatives are already available
on the github repository of the method.
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1.2.5 Enhancements and Parameter Setting

In order to withdraw the hassle of parameter setting from our method, we
utilize a nested cross-validation scheme to automatically search for and find
best parameters for a given data-set. A nested cross-validation scheme tests the
method with different parameters several times, and therefore the method must
be fast enough for it to be feasible. As a result, we modified and enhanced the
method.

In our method, the most time consuming part is MIC calculation for output
against all the features. We included this part because Gaussian Processes in
the normal setting, having as many features as we have, overfit to the data, and
therefore a pre-selected small subset of features is what we feed to each Gaussian
Process. Another way of reducing the complexity of a GP is to use a covariance
function such as squared exponential with automatic relevance determination
(ARD) covariance function [90], which we decided against after observing its
running time.

1.3 Raccoon
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J. Enzor, J. Staats, K. Weinhold, et al. Optimization of a highly standard-
ized carboxyfluorescein succinimidyl ester flow cytometry panel and gat-
ing strategy design using discriminative information measure evaluation.
Cytometry Part A, 77(12):1126–1136, 2010.

[21] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector ma-
chines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–
27:27, 2011.

32



[22] P. Chattopadhyay and M. Roederer. Cytometry: Today’s technology and
tomorrow’s horizons. Methods, 57(3):251–258, Feb 2012.

[23] P. Chattopadhyay, M. Roederer, and D. Price. OMIP-002: Phenotypic
analysis of specific human CD8+ T-cells using peptide-MHC class I mul-
timers for any of four epitopes. Cytometry Part A, 77(9):821–822, 2010.

[24] P. K. Chattopadhyay, C. M. Hogerkorp, and M. Roederer. A chromatic
explosion: the development and future of multiparameter flow cytometry.
Immunology, 125(4):441, 2008.

[25] H.-Y. Chuang, E. Lee, Y.-T. Liu, D. Lee, and T. Ideker. Network-based
classification of breast cancer metastasis. Molecular systems biology, 3:140,
Jan. 2007.

[26] E. Costa, C. Pedreira, S. Barrena, Q. Lecrevisse, J. Flores, S. Quijano,
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