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in patch r when it wins against its subordinate strategy, and −cri1

(i.e. the cost to the loser) be the payoff to strategy i in patch r when2

it loses against the dominant strategy. Under these assumptions,3

the payoff matrix in patch r is given by4

A(r) = ar +

 0 −cr1 br1
br2 0 −cr2

−cr3 br3 0


. (3)5

Throughout this article, we assume that ar > 0, 0 < cri < ar , bri >6

0. The assumption ar > cri ensures that payoffs remain positive.7

2.2. Analytical and numerical methods8

To understand whether the strategies persist in the long term,9

we analyze (2) using a combination of analytical and numerical10

methods. Long-term persistence of all the strategies is equated11

with permanence: there exists a minimal frequency ρ > 0 such12

that13

xri (t) ≥ ρ for all i, r14

whenever t is sufficiently large and all strategies are initially15

present (i.e.


r x
r
i (0) > 0 for i = 1, 2, 3). Permanence ensures16

that populations recover from rare large perturbations and contin-17

ual small stochastic perturbations (Schreiber, 2007; Benaïm et al.,18

2008). Using analytical techniques developed by Hofbauer and19

Schreiber (2010),wederive an analytical condition for permanence20

in terms of products of eigenvalues at the single strategy equilibria21

of the model. These criteria take on an explicit, interpretable form22

when (i) populations are relatively sedentary (i.e. drr ≈ 1 for all r)23

and (ii) populations are well mixed (i.e. there exists a probability24

vector v = (v1, . . . , vn) such that drs ≈ vs for all r, s). To better un-25

derstand permanence at intermediate dispersal rates, we derive an26

analytical result about critical dispersal thresholds for persistence27

of metacommunity exhibiting unconditional dispersal (i.e. proba-28

bility of leaving a patch is independent of location) andnumerically29

simulate (2) using the deSolve package of R (R Development Core30

Team, 2008). To simplify our exposition, we present our results un-31

der the assumption that mr
= m and ar = a for all r , i.e. there is32

only spatial heterogeneity in the benefits and in the costs. More33

general results are presented in the Appendices.34

3. Results35

3.1. Local coexistence36

We begin by studying the behavior of the within-patch37

dynamics (1) in the absence of dispersal. If only strategy i is present38

in patch r , then the per-capita growth rate of the strategy, call it j,39

dominated by strategy i is −mcri /a. Alternatively, the per-capita40

growth rate of the strategy j dominating strategy i equals mbri /a.41

The three single-strategy equilibria are connected by population42

trajectories in which dominant strategies replace subordinate43

strategies (Fig. 1). This cycle of population trajectories in patch44

j is known as a heteroclinic cycle (Hofbauer and Sigmund, 1998).45

Using average Lyapunov functions, time-one maps, or measure-46

theoretic techniques (Hofbauer, 1981; Krupa and Melbourne,47

1995; Schreiber, 2000), one can show that the strategies in patch48

r locally coexist in the sense of permanence provided that the49

product of the invasion rates exceeds the product of the exclusion50

rates:51 
i

bri >

i

cri . (4)52

Interestingly, inequality (4) is equivalent to the determinant of the53

payoff matrix being positive.54

When coexistence occurs, the heteroclinic cycle of the bound- 55

ary of the population state space is repelling and there is a positive 56

global attractor for the within-patch dynamics (Fig. 1(a)). When 57

inequality (4) is reversed, the heteroclinic cycle on the bound- 58

ary is attracting (Fig. 1(b)). The strategies asymptotically cycle 59

between three states (rock-dominated, paper-dominated, scissors- 60

dominated), and the frequencies of the under-represented strate- 61

gies asymptotically approach zero. Hence, all but one strategy goes 62

extinct when accounting for finite population sizes. 63

3.2. Metacommunity coexistence 64

Analytical results. When the patches are coupled by dispersal, we 65

show in Appendix A that for any pair of strategies, the dominant 66

strategy competitively excludes the subordinate strategy. Hence, 67

as in the case of the dynamics within a single patch, the 68

metacommunity exhibits a heteroclinic cycle on the boundary of 69

the metacommunity phase space. 70

Work of Hofbauer and Schreiber (2010) on permanence for 71

structured populations (see Appendix B) implies that metapopu- 72

lation persistence is determined by invasion rates and exclusion 73

rates at single strategy equilibria. More specifically, consider the 74

rock strategy equilibrium where xr1 = 1 and xr2 = xr3 = 0 for all 75

patches r . Linearizing the paper strategy dynamics at the rock equi- 76

librium yields 77

dxr2
dt

≈ −mxr2 + m


s
dsr(a + bs2)x

s
2

s
dsra

. 78

Equivalently, ifx2 = (x12, . . . , x
n
2)

T where T denotes transpose, then 79

dx2
dt

≈

−mI + mΨDT (aI + B2)


x2 80

where I is the identitymatrix,Ψ is the diagonalmatrixwith entries 81

1/


s d1sa
s, . . . , 1/


s dnsa

s, B2 is the diagonalmatrixwith diago- 82

nal entries b12, . . . , b
n
2, and DT is the transpose of the dispersal ma- 83

trix. Corresponding to the fact that the paper strategy can invade 84

the rock strategy, the stability modulus of −mI + mΨDT (aI + B2) 85

(i.e. the largest real part of the eigenvalues) is positive. Call this sta- 86

bility modulus I2, the invasion rate of strategy 2. Linearizing the 87

scissors strategy dynamics at the rock equilibrium yields 88

dx3
dt

≈

−mI + mΨDT (aI − C3)


x3 89

where C3 is the diagonal matrix with diagonal entries c13 , . . . , c
n
3 . 90

Corresponding to the fact that the scissors strategy is displaced by 91

the rock strategy, the stability modulus of −mI + mΨDT (aI − C3) 92

is negative. We call this negative of this stability modulus E3, the 93

exclusion rate of strategy 3. By linearizing around the other pure 94

strategy equilibria, we can define the invasion rates Ii for each 95

strategy invading its subordinate strategy and the exclusion rates 96

Ei for each strategy being excluded by its dominant strategy. 97

Appendix A shows that the metapopulation persists if the 98

product of the invasion rates exceeds the product of the exclusion 99

rates: 100

3
i=1

Ii >

3
i=1

Ei. (5) 101

If the inequality (5) is reversed, then the metapopulation is 102

extinction prone as initial conditions near the boundary converge 103

to the heteroclinic cycle and all but one strategy is lost regionally. 104

While inequality (5) can be easily evaluated numerically, one 105

cannot, in general, write down a more explicit expression for 106

this permanence condition. However, when the metapopulation 107


