

Small Antennas

Contents

- Definition of a small antenna
- Important parameters:
 - Electrical or magnetic nature
 - Effective volume
 - Radiation power factor
- Equivalent circuit
- Radiation shield
- Examples from the paper

Definition of a small antenna

- Greatest dimension is smaller than λ/4
- Radiansphere:
 - $-r < \lambda/(2\pi)$
 - For a small antenna, mostly reactive power
 - Antenna element only a fraction of the sphere

Electric and magnetic dipole

- A small antenna can be considered
 - As a capacitor (electric dipole)
 - As an inductor (magnetic dipole)
- The antenna is tuned by a reactor
- Resonance is achieved with opposite type reactor

Effective volume

Defined as

$$V' = kV$$

- k is shape factor (> 1)
- Depending on the antenna nature, k is different (C or L type antenna)
- V is volume occupied by the antenna structure
- Also used to compare antennas' bandwidths

Effective volume

Fig. 6. Effective volume of axial electric dipole.

Source: Wheeler, Small Antennas

Effective volume

Fig. 7. Effective volume of square loop.

Source: Wheeler, Small Antennas

Radiation power factor

Defined using

- Radiancube =
$$V_c = \left(\frac{\lambda}{2\pi}\right)^3 = \frac{3}{4\pi}V_S$$
 or

- Radiansphere =
$$V_S = \frac{4\pi}{3} \left(\frac{\lambda}{2\pi}\right)^3 = \frac{4\pi}{3} V_C$$

General formula:

- Rad. PF =
$$p = \frac{1}{6\pi} \frac{V'}{V_c} = \frac{2}{9} \frac{V'}{V_s}$$

Equivalent circuit

Fig. 2. Radiation power factor of small antenna.

Source: Wheeler, Small Antennas

Radiation shield

- A method to measure the rad. PF and loss
 PF
- Using a "shield box", rad. PF is removed
- Other properties stay about the same
- Measurements with and without the shield
- Comparison to evaluate useful radiation

Examples from the paper

- Very small loop antenna (0.04 λ)
- Superseded multiturn loop designs
- Smallest 50% radiation efficiency antenna (at the time of article publication)

Examples from the paper

- Flush antenna configurations
- Flat antennas near a ground plane
- Antennas attached to aircraft hull

Examples from the paper

- Coil antenna
- Coil antenna's V' can be increased using ferrite core
- Coil turns can be used to set impedance
- Long coil as magnetic dipole, filled with PMC
 - V' is comparable to an electric dipole of coil's length

Conclusion

- If largest dimension $<\frac{\lambda}{4}$, small antenna
- C or L type
- Effective volume can be used to characterize a small antenna
- Radiation PF is small