
Privacy Preserving Auctions and Mechanism Design�Moni Naor Benny Pinkas Reuben Sumner
AbstractWe suggest an architecture for executing protocols for auc-tions and, more generally, mechanism design. Our goal is topreserve the privacy of the inputs of the participants (so thatno nonessential information about them is divulged, even aposteriori) while maintaining communication and computa-tional e�ciency. We achieve this goal by adding anotherparty - the auction issuer - that generates the programs forcomputing the auctions but does not take an active partin the protocol. The auction issuer is not a trusted party,but is assumed not to collude with the auctioneer. In thecase of auctions, barring collusion between the auctioneerand the auction issuer, neither party gains any informationabout the bids, even after the auction is over. Moreover,bidders can verify that the auction was performed correctly.The protocols do not require any communication betweenthe bidders and the auction issuer and the computationale�ciency is very reasonable. This architecture can be usedto implement any mechanism design where the importantfactor is the complexity of the decision procedure.1 IntroductionImagine participating in an online auction run by the auc-tioneer eSleaze.com. The auction is a sealed bid second priceauction (also known as Vickrey auction [36]). In this typeof auction the highest bidder wins, and the clearing price,the price that the winner has to pay, is equal to the secondhighest bid. An important property of second price auc-tions is that the optimal strategy of bidders is simply to bidtheir true valuation of the goods for sale. That being thecase, assume that you value the goods at $1000, and this isthe bid you submit. At the end of the auction, eSleaze.comcongratulates you on winning, and announces that the sec-ond highest bid was $999... Would you be convinced thateSleaze.com did not manipulate the second highest bid tomaximize pro�ts?It would seem that the above problem could be solved ifthe value of the bids could be hidden until bidding closes,thus preventing a corrupt auctioneer from manipulating auc-tion results. However, consider the following scenario: youbid $1000 and the second highest bid is only $600. As theauctioneer does not place fake bids, you win and are re-�The authors are with the Dept. of Computer Science and AppliedMath, Weizmann Institute of Science, Rehovot 76100, Israel. Email:fnaor,bennyp,rasumnerg@wisdom.weizmann.ac.il.

quired to pay $600. The following day eSleaze.com put asecond unit of the same product up for auction, and you'reagain interested. This time, however, it sets a reservationprice of $999, meaning that the clearing price would be themaximum of the second highest price and $999. (Alterna-tively you might �nd that this time the second highest bidis $999.) You might suspect that eSleaze.com learned fromyour previous bid that you highly value the product, and setthe reservation price accordingly.Your concern might be justi�ed. It is common to usesealed-bid second-price auctions as a replacement for theopen-cry English auction. In English auctions bidding isinteractive and the winner is the bidder who outbids all otherbidders. Winners are required to pay their last and highestbid, which is essentially only slightly higher than the �nalbid of the second highest bidder. The sealed-bid second-price auction requires less interaction and is therefore easierto run, but its main disadvantage is that unlike the Englishauction, the bid (i.e. the valuation) of the highest bidder isrevealed to the auctioneer [11]. A corrupt auctioneer maytake advantage of this information, either in future auctionsor by reneging on the sale. (In fact, a corrupt auctioneercan also take advantage of learning the bids of the other(non-winning) bidders. The scheme that we introduce hideseven that information from the auctioneer).This problem was stated by Varian [35] as follows: \Evenif current information can be safeguarded, records of pastbehavior can be extremely valuable, since historical data canbe used to estimate the willingness to pay. What should bethe appropriate technological and social safeguards to dealwith this problem?"This paper aims to provide a solution to this problem.We present results which are of interest from di�erent as-pects:Game Theory: The analysis of auctions and of mechanismdesign almost always assumes the trustworthiness of the auc-tioneer (or of the center which computes the output of themechanism); this assumption, unfortunately, might not bejusti�ed in real life. Most auctions currently run on theInternet are open cry auctions [6]. One reason for this phe-nomenon is the mistrust of auctioneers that handle sealedbid auctions. We introduce a simple architecture which en-sures that the auctioneer never gains access to more infor-mation than a legitimate and honest auctioneer. This archi-tecture justi�es the assumption of a trustworthy auctioneer.Cryptography: Although how to securely compute any func-tion is known in principle [18, 40], it was believed thatthese results were theoretical and ine�cient in practice. Wepresent an e�cient example of a secure evaluation protocolfor very useful applications, namely for auctions and mech-anism design. The protocol requires very little interaction.We are currently experimenting with the implementation of

this protocol for auctions with hundreds of bidders.Business: The market for online auctions and procurementis large. There are many security and privacy issues thatmake users suspicious of online auctions, in particular forbusiness-to-business applications involving large sums of money.Our protocols use an established auction issuer which gen-erates `programs' that compute the auctions but is not re-quired to take an active part in the auction itself. Biddersare assured that as long as the auction issuer and the auc-tioneer do not collude then the auction is computed cor-rectly. There seems to be a very promising business op-portunity for implementing and running the auction issuer.Auctions run by an auctioneer and backed by the auctionissuer can be trusted even if the auctioneer is of a somewhatdubious character (say, from an unfamiliar country). Theuse of new protocols might, therefore, develop new marketsfor online auctions.The rest of this section discusses trust issues, presentsthe suggested architecture, and reviews related work. Sec-tion 2 discusses the protocol for computing auctions, whileSection 3 suggests its use in general mechanism design. Fur-ther work and open questions are discussed in Section 4.1.1 Managing TrustWe aim to minimize the level of trust that bidders must placein the auctioneer both in sealed bid auctions and in moregeneral mechanisms. This goal is especially important inonline auctions where long-term relationships between bid-ders and auctioneers often do not exist, and where auctionsmay be run by many small scale parties.Mechanism design deals with the design of protocols forsel�sh parties. The goal of a protocol is to aggregate thepreferences of the parties to reach some \social choice" (e.g.decide whether a community should build a bridge, how toroute packets in a network, or who wins an auction). Eachparty has a utility function expressing its valuation of eachpossible outcome of the protocol. The party sends informa-tion about its utility function to a center (of course, it mightchoose to report according to an untrue utility function, ifit believes bene�t will be derived). The center determinesthe outcome of the protocol based on the reports received.The goal is to develop mechanism designs in which partieshave no incentive to report a false utility function. The Rev-elation Principle states that for any mechanism there is adirect, incentive-compatible mechanism with the same result(see [31] Chapter 10). That is to say, there is an equivalentmechanism in which the optimal strategy for each party isto report its true utility function. It is often assumed thatthe parties can trust the center , however this may not al-ways be the case, particularly in an Internet setting. Therevelation principle might not be applicable if the center iscorrupt and misuses the truthful bids it receives. Privacy istherefore essential to ensure the credibility of the center.The method we present controls the amount of informa-tion revealed to the auctioneer, and, in fact, o�ers biddersmore privacy than in the physical realm, such as in sealedbid auctions using (physical) envelopes, paper, etc. Withour scheme the outcome of the auction will be the only in-formation that the auctioneer gains. For example, in thecase of second price auctions, the auctioneer should learnthe identity of the highest bidder (but not the bid!) andthe clearing price which is the second highest bid. The auc-tioneer (and all other parties) should not learn the identityof the second highest bidder or any information about the

Bidder nBidder 1 Bidder 2

Auctioneer mAuctioneer 1 Auctioneer 2

Auction Issuer

Figure 1: The di�erent entities: A single auction issuer,multiple auctioneers, and numerous bidders.other bids. Still, all parties should be able to verify that theauction was run properly, that the highest bidder won, andthat the clearing price is correct.Auctioneers can use the bids to gather useful and legiti-mate information. There might be tension between bidderswho prefer that auctioneers not gain any information otherthan the �nal outcome of the auction, and auctioneers whostrive to gather as much information as possible. The ar-chitecture we present enables precise control of the informa-tion the auctioneer receives. For example, the auctioneermight be allowed to learn some aggregate statistics of thebids (e.g., the average bid, the number of bids in a certainrange), but not the identity of the bidders associated with agiven bid. All these variants can be easily incorporated intoour schemes.1.2 Architecture and EntitiesThe architecture we present introduces a new entity { theAuction Issuer (AI). This entity runs in the background andensures that the auctions are executed properly. The archi-tecture contains the following types of entities, which aredepicted in Figure 1:Bidders In the simplest case one or several bidders wishto sell items, and the remaining bidders are interested inbuying the items. In the general case the bidders are par-ties who should allocate some resources using a prede�nedmechanism. The bidders send a message describing (in an\encrypted" manner) their utility function, to the auction-eer, and at the end of the protocol they receive an allocationand can verify that it was computed correctly.Auctioneer The auctioneer runs the show: it advertisesthe auction, receives the bids from the bidders, communi-cates with the auction issuer and computes the output ofthe protocol. The auctioneer might be a party that merelyorganizes the auction or the mechanism. It can also be oneof the bidders (for example selling an item which all otherbidders are interested in buying). The protocol ensures thatthe auctioneer cannot uncover any information about thebids that it receives, except for computing the desired out-come of the protocol (unless it colludes with the auctionissuer).Auction issuer The auction issuer (AI) is responsible for\coding the program" that computes the output of the pro-tocol so as to preserve privacy, and supplying this programto the auctioneer. Preparation of the program can be com-pleted ahead of time and is not dependent on the identitiesof the auctioneer or the bidders. The AI is not required to

interact with bidders, but only performs a single, one-roundinteraction with the auctioneer after the auctioneer receivesthe bids. The AI is, therefore, a service provider that canprovide programs for many auctions carried out by manyauctioneers.The scheme is very e�cient. The communication patternused is identical to that of an insecure auction { each bidderis only required to send a single message to the auctioneer.The running time of the procedure which determines theoutcome of the auction is just a few seconds on a moderncomputer.In the remainder of the paper we concentrate on a so-lution for second price sealed bid auctions. This solution,however, can be used to privately implement other mech-anisms such as �rst price or kth price auctions, auctionswith reservation prices, double auctions, Generalized Vick-rey auctions, Groves-Clarke mechanisms, etc. This is demon-strated in Section 3. Furthermore, it is possible to use thisarchitecture for tasks such as stable matching (e.g. for resi-dents and hospitals [20, 33]), or decision making.1.3 TrustIn our architecture the auction is secure providing the auc-tioneer and the auction issuer do not collude. Note that theAI is not required to be a trusted third party, but rather se-curity is guaranteed as long as the auctioneer and the AI donot collude. That is, the architecture ensures that neitherthe auctioneer nor the AI can uncover alone any informationabout the bids.More precisely, consider an ideal model where there is aspecial party which is fully trusted by all other parties. Anauction in this model can be conducted in a trivial man-ner : all parties submit bids to the trusted party who thencomputes and outputs the results. Note that even in thismodel some information is leaked about the bids1, but thisis inevitable.The protocol we suggest ensures that no party gains moreinformation than in the ideal model. Likewise the auctioneerand auction issuer are also blocked from learning more thanin the ideal model2.Only an act of collusion by both the auctioneer and auc-tion issuer enables the privacy of the bidders to be breached.Therefore, bidders need only trust that the AI and the auc-tioneer are not in collusion, and are assured that neither theAI nor the auctioneer alone learn anything more than in theideal model. In a sense, the bids are locked in a double lockvault, where one key is in the hands of the auctioneer andthe other in the hands of the AI.More generally, a coalition of at most one of the the auc-tioneer or auction issuer with several bidders is at most aspowerful as in the ideal model, for the bids submitted byother bidders cannot be learned. Consequently, the extentto which the bidders should trust the auctioneer or the auc-tion issuer is less than that they usually put in their banks,credit card companies, or software vendors. The auctioneercan be any party wanting to organize an auction, while the1There are many possible variations regarding the informationlearned by di�erent parties. For example, the highest bidder andthe clearing price might be publicly announced. On the other ex-treme this information might be revealed only to the highest bidderand to the seller. Even here, winner learn that they met the winningcriteria, which itself reveals limited information about the other bids.2The protocol di�ers from one in the ideal model in that it enablesthe auction issuer to learn the number of bidders. By placing anupper bound on the number of bidders, it is simple to prevent thisinformation from being revealed to the auction issuer.

auction issuer is typically an established party such as a �-nancial institution or large company, which supplies servicesto numerous auctioneers. The auction issuer does not needto communicate directly with bidders and does not evenneed to know their identities (thus eliminating the dangerof it \stealing" customers from the auctioneers). Biddersare assured that their privacy is preserved provided theyparticipate in an auction in which the auctioneer uses theAI's \programs".Another appealing property of our schemes is that theyprevent disputes regarding the operation of the auctioneer.At the end of the protocol, all parties can verify that theauctioneer computed the desired auction or mechanism cor-rectly.We assume throughout the paper that the Public Key ofthe auction issuer is known to the bidders. Beyond this, wedo not require any Public Key Infrastructure (PKI).1.4 Related workInternet auctions are the topic of major commercial and re-search e�orts. Kumar and Feldman [25] describe severalissues concerning Internet auctions as well as an applicationfor auctioning goods over the Internet. Chui and Zwick [6]present a thorough survey of commercial Internet auctions.There are also several academic auction servers on the Inter-net, which enable experimentation with more complex auc-tions than those o�ered by commercial sites. For example,the AuctioBot server of the University of Michigan [1, 38]supports Mth and (M + 1)th price double auctions withmultiple sellers. A recent design of an academic auctionserver, eAuctionHouse [22], supports combinatorial auctionsand bidding by automated agents.An exciting topic of cryptographic research is secure func-tion evaluation (see e.g. [18, 40] and [16] for an up-to-dateand erudite discussion). For any function f(x1; x2; : : : ; xn)it is possible in principle to construct a protocol that allowsa group of n parties, where party i has as its private in-put �i, to jointly evaluate f(�1; �2; : : : ; �n). Following theprotocol, the parties learn f(�1; �2; : : : ; �n) but no party ican learn about the other inputs f�jgj 6=i more than can becomputed from �i and f(�1; �2; : : : �n). Since an auctioncan be considered an evaluation of a function of the bids,it is tempting to try to use such a protocol to conduct anauction. The drawback, however, is that these protocols arerather complex and require signi�cant interaction betweenthe parties. They are secure as long as less than a certainnumber of the parties collude maliciously. (Such protocolsare the basis for the auction protocols of [21], see below.)There are suggestions for distributing the operation of anauctioneer among multiple servers in a manner that is secureas long as not too many of these servers operate maliciously.Franklin and Reiter [14] developed a distributed system forsealed-bid auctions which ensures the con�dentiality of thebids until end of the bidding period. Their system furtherenables the bids to be backed by escrowing �nancial com-mitments of the bidders. Harkavy, Tygar, and Kikuchi [21]present systems for secure �rst price and second price sealedbid auctions that preserve the privacy of the bids even af-ter the winning bid is chosen (this variant was also brie
ymentioned in [14], Section 5.2.5). Both systems distributethe operation of the auctioneer among several servers, andprivacy is guaranteed as long as not too many of the serverscollude (most of the protocols require that less than a thirdof the servers collude, and therefore need a minimum of fourservers). A di�erent auction scheme was suggested very re-

cently by Cachin [5], involving two auction servers, but re-quiring users to contact just a single server. After receivingthe bids, the auction servers engage in several rounds ofcommunication, at the end of which they have a list of thebidders sorted by their bids, but not the bids themselves.The systems of [14, 21] require bidders to communi-cate directly with all the servers. Furthermore, the sys-tems of [21, 5] require high interactivity between the serverswhich exchange numerous rounds of interaction. These re-quirements impose bandwidth and latency problems on allthe auction servers. There is no motivation for a globalparty such as the auction issuer to participate as a serverin many auctions, as a considerable amount of resourcesmust be invested in each auction. The implication mightbe that all auction servers would essentially be managed bythe same organization { the auctioneer. Note the distinc-tion between this architecture and the architecture that wesuggest. In the former, privacy is guaranteed only if theauctioneer is trusted not to combine the information heldby the di�erent servers it controls. This assumption is notenforceable and cannot be veri�ed by an outsider. Conse-quently, the only protection is against external break-ins tothe auctioneer's servers (under the presumption that thresh-old of servers break-ins is not exceeded). This architecturetherefore requires complete trust in the auctioneer, which,in the case of small Internet auctioneers, might not justi�ed(see [25]).Compared to these solutions our architecture providesbid privacy after the auction is over and does not requiredistribution of the auctioneer between several noncollusiveservers. It uses a single round of communication betweenthe auctioneer and auction issuer and can, therefore, use aseparate organization as the auction issuer. In addition, ourscheme can be used to implement general mechanisms.The work of [34] considers online English auctions with asingle auctioneer (which might be corrupt) and secures themagainst selective blocking of bids based on their amount,and selective early termination of the auction. Our schemesobtain similar properties for sealed bid auctions.Our work employs several techniques developed for two-party secure function evaluation and obtains communica-tion e�cient multi-party protocols for computing auctions.In particular, we employ the garbled circuit technique at-tributed to Yao [40, 18]. We are able to obtain rather ef-�cient protocols, as we assign di�erent roles to the players,i.e., the bidders, the auctioneer, and the auction issuer. (Seea similar phenomenon in [13].)2 The ProtocolIn Section 2.1 we provide a high-level description of the pro-tocol for running secure auctions. The protocol rests ona number of cryptographic tools described in Sections 2.2and 2.3. Section 2.4 describes the complete protocol, Sec-tion 2.5 discusses its overhead and possible optimizations,and Section 2.6 describes a prototype implementation.2.1 High-level Description of the ProtocolThe protocol comprises the following steps (as depicted inFigure 2):1. The auctioneer publishes the details of the auction it isorganizing. These should include the rules for selectionof winning bids are chosen, closing time and auctionissuer (AI) supporting the auction.

Bidder 2

Bidder n

Bidder 1

(4)

(2)

(1)
(3)

Auctioneer

Auction Issuer

Figure 2: High-level description of the protocol with a singleauction issuer: (1) The auctioneer publishes the auction. (2)Bidders place their bids. (3) The auctioneer sends a messageto the auction issuer, and receives garbled circuit inputs. (4)The auctioneer computes the result of the auction.2. Bidders submit encrypted bids to the auctioneer. (TheAI can decrypt part of the encryption, but even itcannot discover the actual bids).3. The AI generates a program to compute the outputof the auction. More precisely, it generates a circuit(composed of Boolean gates such as AND, OR andNOT) that performs this task and then \garbles" thecircuit (this step can be performed in advance, priorto the submission of the bids). The auctioneer for-wards portions of the bids to the AI, which decryptsthe bids and uses them to compute \garbled inputs" tothe circuit. It sends the circuit and the inputs to theauctioneer, along with a signed translation table that\decrypts" the output of the circuit (alternatively, theAI can send the garbled program, which is the bulk ofthe communication, in advance).4. The auctioneer uses the garbled inputs and the en-crypted circuit to compute the output of the circuit.It publishes the result and the signed translation tablereceived from the AI.Most previous designs of multi-party protocols (e.g. [18,16]) require all parties to interact with each other, and fur-thermore to exchange many rounds of communication. Thenovelty of our approach is the design of a secure multi-partyprotocol which preserves the communication pattern of anauction protocol, in which a bidder is only required to ex-change a limited number of messages with a single auction-eer. Notice that the only new communication channel re-quired by our protocol (compared to a protocol with no se-curity at all) is a single back and forth communication roundbetween the auctioneer and AI after bids are received.We examine the overhead of the protocol in Section 2.5.Circuits which compute the output of auctions are of rea-sonable size. For example, if there are N bidders and bidsare in a range of L = 2` possible values, then the numberof gates in a circuit which computes a second price auctionis O(N logL) = O(N`) with a small constant (see details inSection 2.5). The AI and auctioneer should perform severalapplications of a pseudo-random function per gate and sev-eral applications of a public key operation per input wire.On a modern processor it is possible to perform hundreds ofthousands of applications of a pseudo-random function anddozens of public-key operations in a single second. Thus,the computational overhead of the protocol is of the orderof less than one second per bidder.

OT Sender ChooserInput m0;m1 � 2 f0; 1gOutput | m�Table 1: 1-out-of-2 Oblivious Transfer2.2 Cryptographic ToolsThe protocol uses two types of cryptographic tools: pseudo-random functions and oblivious transfer.2.2.1 Pseudo-random functionsA pseudo-random function is a function that cannot be dis-tinguished from a truly random one by an observer grantedaccess to the function in a black-box manner. Assume, forexample, a function FK , speci�ed by a short key K whichcan only be accessed by the observer by adaptively specify-ing inputs and obtaining the value of the function on theseinputs. (See [17, 26] for precise de�nition and various con-structions). Our working assumption is that block ciphers(such as DES, or triple DES) or keyed one-way hash func-tions (such as HMAC), can be modeled as a pseudo-randomfunction. Therefore, the function FK(x) can be implementedby keying a block cipher with the key K and encrypting x,or keying a hash function with K and applying it to x. Theevaluation of a pseudo-random function is therefore consid-erably cheaper than a typical public-key operation.2.2.2 Oblivious Transfer and Proxy-Oblivious TransferThe following two-party protocol is known as 1-out-of-2 obliv-ious transfer (1-out-of-2 OT). The protocol involves two par-ties, a sender that knows two secret values hm0;m1i, and achooser whose input is � 2 f0; 1g. At the end of the pro-tocol, the chooser learns m�, while learning nothing aboutm1��, and the sender learns nothing about �. This is sum-marized in Table 1.The notion of 1-out-2 oblivious transfer was suggested byEven, Goldreich and Lempel [12] as a generalization of Ra-bin's \oblivious transfer" [32]. For an up-to-date discussionof OT, see Goldreich [16].Oblivious transfer protocols are rather e�cient, and thenoninteractive OT protocols of Bellare and Micali [4] areparticularly attractive. The combination of their protocolswith the proof techniques of [8] yields an e�cient 1-out-of-2OT protocol that is based on the Decision Di�e-Hellmanassumption. We describe this protocol in Appendix A. Themain computational overhead of the protocol is two publickey encryptions conducted by the sender, and one publickey decryption conducted by the chooser3.Proxy Oblivious Transfer: We extend the notion of OT to1-out-of-2 proxy oblivious transfer. This protocol involvesthree parties: A sender (that knows two inputs m0 and m1),and a chooser (with an input � 2 f0; 1g), as well as a athird party, the proxy, which has no input and serves asthe chooser's proxy for learning the output. At the endof the protocol, the proxy learns m�, while the two other3This overhead is achieved if the protocol uses a random oraclefunction H, i.e., a concrete function assumed to behave as a randomfunction. If it is not assumed that such functions exist, then theprotocol should use the proof techniques of [8] which require severaladditional exponentiations.

proxy-OT Sender Chooser ProxyInput m0;m1 � 2 f0; 1g |Output | | m�Table 2: 1-out-of-2 Proxy-Oblivious Transferparties learn nothing. Note that the proxy does not learn�. The de�nition is summarized in Table 2. In Appendix Awe describe a protocol that implements 1-out-of-2 proxy OT,with an overhead identical to the protocol for 1-out-of-2 OT.In our protocol for computing auctions, the auction is-suer is the sender, the bidders are the choosers, and theauctioneer is the proxy.2.3 Secure Function Evaluation for Two PartiesWe describe a secure function evaluation protocol for twoparties, which is a variant of the protocol of Yao [40] (seealso [18]). The protocol is run between two parties, the InputOwner A and the Program Owner B. The input of A is avalue x, and the input of B is a description of a functionf . At the end of the protocol, A should learn f(x) (andno other information about f), and B should learn nothingabout x. We will apply this protocol as a key componentin our auction protocol, where the Program owner B is theauction issuer, and the input owner A corresponds to theauctioneer. The program computes the result of an auction.The protocol is based on expressing f as a combinatorialcircuit with gates de�ned over some �xed base B (e.g. Bcan include all the functions g : f0; 1g � f0; 1g 7! f0; 1g).The bits of the input are entered into input wires and arepropagated through the gates.Protocol for two-party secure function evaluationInput: A's input is a value x, B's input is a combinatorialcircuit which computes f .Output: A's output should be f(x).The Protocol:� Encrypting the circuit: B assigns to each wire i ofthe circuit two random values (W 0i ;W 1i) correspondingto 0 and 1 values of the wire (the random values shouldbe long enough to be used as keys to a pseudo-randomfunction, say 80 bits long). Denote the value of thewire by bi 2 f0; 1g, B also assigns to the wire a randompermutation over f0; 1g, �i : bi 7! ci. Denote hW bii ; ciias the `garbled value' of wire i.Consider a gate g which computes the value of thewire k as a function of wires i and j, bk = g(bi; bj). Bprepares a table Tg which enables computation of thegarbled output of g, hW bkk ; cki, from the garbled inputsto g, namely the values hW bii ; cii; hW bjj ; cji. Given thetwo garbled inputs to g, the table does not discloseinformation about the output of g for any other inputs,nor does it not reveal the values of the bits bi; bj ; bk ofthe inputs and output of g.The construction of Tg uses a pseudo-random functionF whose output length is jW bkk j+1. Assume �rst thatthe fan out of each gate is one. The table contains four

entries of the formci; cj : h(W g(bi;bj)k ; ck)� FW bii (cj)� FW bjj (ci)ifor 0 � i; j � 1, where ci = �(bi); cj = �(bj), and ck =�k(bk) = �k(g(bi; bj)). (The entry does not include itsindex ci; cj explicitly, as it can be deduced from thelocation.) The table masks the garbled value of theoutput wire using the output of the pseudo-randomfunction F keyed by the garbled values of the inputwires.To verify that the table enables computation of thegarbled output value given the garbled input values,assume that A knows hW bii ; cii; hW bjj ; cji. A should�nd the entry (ci; cj) in the table Tk, and compute itsexclusive-or with (FW bii (cj)�FW bjj (ci)). The result ishW bkk =W g(bi;bj)k ; cki.� Coding the input: The tables described above en-able to compute the garbled output of every gate fromits garbled inputs. Therefore given these tables andthe garbled values hW bii ; cii of the input wires of thecircuit, it is possible to compute the garbled values ofits output wires. Party A should therefore obtain thegarbled values of the input wires.For each input wire, B and A engage in a 1-out-of-2oblivious transfer protocol in which B is the senderwhose inputs are the two garbled values of this wire,and A is the chooser whose input is the input bit. Asa result of the oblivious transfer protocol A learns thegarbled value of its input bit (and nothing about thegarbled value of the other bit), and B learns nothing.B sends to A the tables that encode the circuit gatesand a translation table from the garbled values of theoutput wires to output bits.� Computing the circuit: At the end of the oblivioustransfer stages party A has su�cient information tocompute the output of the circuit for the input x byits own.To show that the protocol is secure it should be proved thatno party can gain more information than in the ideal model,in which there is a trusted third party which receives x fromA and f from B, and sends f(x) to A.The main observation regarding the security of each gate,is that every masking value (e.g. FW bii (cj)) is used onlyonce, and that the pseudo-randomness of F ensures thatwithout knowledge of the correct key these values look ran-dom. Therefore knowledge of one garbled value of each ofthe input wires discloses only a single garbled output valueof the gate; the other output values are indistinguishablefrom random to A.As for the security of the complete circuit, the oblivi-ous transfer protocol ensures that the A learns just a singlegarbled value for each input wire, and B does not learnwhich value it was. Inductively, A can compute just a singlegarbled output value of each gate, and in particular of thecircuit. The use of permuted bit values ck, hides the valuesof intermediate results (i.e. of gates inside the circuit).Observe that the tables must use the output of a pseudo-random function F to mask the garbled output values of thegate. If this masking were accomplished by simply xoringthe garbled input values to the corresponding garbled output

values, then one could just xor the table entries, cancel outthe masking elements, and discover the relations betweengarbled values. The pseudo-random function is thereforeessential to hide relations between the di�erent masking el-ements. If the fan out of a gate is greater than 1 then adi�erent input to the pseudo-random function must be usedat each gate where the wire is used. A simple method forachieving this is to assign to each gate a unique identi�erIg, and use FW bii (cj ; Ig)� FW bjj (ci; Ig) for masking.It is also possible to adapt the protocol for circuits inwhich gates have more than two inputs, and even for wireswith more than two possible values. The size of the tablefor a gate with ` inputs which each can have d values is d`.OverheadNote that the communication between the two parties canbe done in a single back and forth round, and B can preparethe circuit in advance, before the input is known to A.Consider a circuit with n inputs and m gates. The pro-tocol requires B to prepare m tables and send them to A.This is the major communication overhead of the protocoland can be performed o�ine, prior to disclosure of the in-put to A. In the case of binary gates, the communicationoverhead is 4m times the length of the output of the pseudo-random function (typically 8 to 16 bytes long).The main computational overhead of the protocol is thecomputation of the n oblivious transfers. They require eachof the two parties to perform a total of O(n) exponentiations.Afterwards party A computes the output of the circuit, andthis stage involves m applications of a pseudo-random func-tion. The overhead of this stage is typically negligible com-pared to the oblivious transfer stage.2.4 Secure Function Evaluation for AuctionsThe computation of auctions involves three types of par-ties: Bidders who know the inputs, an auction issuer thatprepares the circuit and and auctioneer that learns the out-put of the circuit. The secure protocol we present preservesthe original communication pattern of auctions in which abidder only interacts with the auctioneer. It uses a singleadditional round of communication between the auctioneerand the auction issuer.The protocol evaluates a function f which computes theresult of the auction. For a second price auction, wherethe bids are (x1; : : : ; xn), this function is f(x1; : : : ; xn) =hi; pi, where i is the identity of the highest bidder (xi =max(x1; : : : ; xn)) and p = max(x1; : : : ; xi�1; xi+1; : : : xn) isthe second highest bid. (The speci�cation of the functionshould also de�ne how ties are broken.)Consider the protocol of Section 2.3 for two-party securefunction evaluation. A key observation about this proto-col is that if there are multiple inputs x1; : : : ; xn (knownto di�erent parties) and somehow, party A who was giventhe garbled version of a circuit that evaluates f is given thegarbled values for each of the bits of the xi's, then A canevaluate f(x1; : : : ; xn) without learning anything else aboutthe xi's themselves. This observation shows how to trans-form the two-party protocol into a multi-party protocol forcomputing auctions: the auctioneer is party A, the inputsare known to the bidders, and the auction issuer is partyB. The only step missing is allowing the auctioneer to learnthe garbled values of the bidders' inputs. This is done usingproxy oblivious transfer.

Protocol for secure evaluation of an auctionInput: Bidder i'a input is a bid xi. The auction issuerhas a description of a function f that computes the auction.Output: The auctioneer should compute f(x1; : : : ; xn).Protocol:� Encrypting the circuit: The AI constructs a cir-cuit that computes the auction. It garbles the circuitidentically in the manner in which party B garbled thecircuit in the two-party protocol.� The auctioneer advertises the auction, its terms andthe public-key of the AI and invites bids.� Coding the input: Each bidder i engages in a a 1-out-of-2 proxy oblivious transfer protocol for each ofthe bits of xi. In this protocol, the AI is the sender,and its two inputs are the garbled values for the inputbit. The bidder is the chooser, and its input is its inputbit, and the auctioneer is the proxy. At the end of theprotocol, the auctioneer learns the garbled value of theinput bit (i.e. W xii), but not the value of xi.� Computing the circuit: At the end of the proxyoblivious transfer stage, the auctioneer possesses suf-�cient information to compute the circuit indepen-dently, exactly as in the two-party protocol.To complete the speci�cation of the protocol we shoulddiscuss several issues.Communication pattern: Bidders communicate only withthe auctioneer and not with the auction issuer or with otherbidders. The naive communication pattern of the proxy OTprotocol consists of a �rst stage in which each bidder sendsa message to the auctioneer and a message to the AI, and asecond stage in which the AI sends a message to the auction-eer. This structure requires direct communication betweenthe bidder and the AI, which we are trying to avoid. How-ever, the bidders can use the auctioneer as a communicationchannel to the AI. Each bidder takes the message that shouldbe sent to the AI and encrypts it with the AI's public key(using a non-malleable encryption scheme, see below) andsends it to the auctioneer. When all bidders have completedthis phase, the auctioneer can send the messages to the AI.Encryption scheme security: It is crucial to encrypt themessages from the bidders using a non-malleable encryptionscheme (de�ned and introduced in [10]). Such a schemeprevents the auctioneer from causing meaningful changes inthe cleartext by changing the ciphertext (in fact auctionsare the example given in [10] for the need for non-malleableencryption: Suppose, for example, that the encryption wassimply xoring the bid with a one-time pad. Then it is easy toreverse some bits of the bid by reversing the correspondingbits of the ciphertext). If the public-key of the AI is to beused for several auctions that it should be secure againstchosen ciphertext attacks in the post-processing mode (see[10, 9, 3] for an up-to-date discussion of the issues).Care should also be taken to prevent a replay attack thatrepeats a bid from an old auction in a new one. This cansimply be handled by adding names to the auctions (say auc-tioneer name and date). The bidders add this name to theirplaintext messages and then encrypt. The non-malleability

property assures that the name cannot be modi�ed. The AIshould make sure it does not engage in an auction with thesame name twice, and that it uses a fresh garbled circuit forevery auction.Verifying the output: Bidders should verify that the auc-tioneer has computed the circuit constructed by the AI, andthat the auctioneer indeed sent the bids to the AI (if not,the bids were not considered in computing the outcome).A naive veri�cation procedure is to require the auction-eer to publish the tables and garbled input values of thecircuit (signed by the AI), and allow suspecting bidders tosimulate its computation. However, a more e�cient veri�ca-tion method is to use a signed `translation' table that the AIgenerates for the output wires of the circuit. For each out-put wire, i, the table should contain the entries h0; G(W 0i)iand h1; G(W 1i)i, where G is a one-way function4. The auc-tioneer displays the values hbi;W bii i for each output wire.Each bidder can verify that hbi; G(W bii)i appears in the ta-ble. Since G is one-way, the only way that the auctioneercan generate W bii is by computing the circuit.A simple method for verifying that all bids were consid-ered in the auction requires the AI to sign a list of hashvalues of each of the messages it received from the bidders.These hash values are displayed by the auctioneer. Bidderscan check that the AI signed the hash of their messages.A corrupt auction issuer: A di�erent type of attack in-volves a corrupt auction issuer. If the AI colludes with abidder (or subset of bidders), it can, for example, provide aprogram that always declares a certain bidder the winner.Alternatively, it can disrupt the computation by sending in-correct values to the input wires. These types of attackscan be detected using a \cut-and-choose" technique: the AIis required to provide m copies of the program (includingcommitments to the garbled input wires). The auctioneerthen asks it to remove the garbling and provide the inputsfor half of the copies, examines that they compute the de-sired function, and runs the protocol with the remainingcopies, verifying that they all yield the same output. Theprobability that a corrupt AI is not caught is exponentiallysmall in m. It seems that even using m = 2 copies andopening one of them is su�cient, as an AI caught cheatingeven once would (at least) lose its credibility, and so therisk-to-bene�t ratio of such collusion is quite small (in fact,it might be su�cient for the auctioneer to decide at randomwhether to require more than a single copy of the program,setting the probability according to the risk that it is willingto take.).Denial of service attack by bidder: A corrupt bidder mightdisrupt the computation of the auction by preventing theauctioneer from receiving correct garbled input values in theproxy-OT stage (see Appendix A). The solution to this at-tack should enable the auctioneer to prove to the AI thatthis event took place, and receive the garbled values corre-sponding to a `0' bid of that bidder. However, care must betaken to prevent a corrupt auctioneer from using this mech-anism to complain against innocent bidders and learn theirbids. See Appendix A for the details of this solution.4G(x) can be de�ned, for example, as Fx(0), where F is thepseudo-random function used for garbling the circuit.

2.5 Computational and Communication OverheadThe di�erent parties of the above protocol incur di�erentcomputational and communication loads. We will surveythem now. Each bidder engages as a chooser in a proxyoblivious transfer protocol a number of times proportionalto the number of bits in its input. Under the implemen-tation we propose this implies a number of exponentiationsproportional to its input length. For an application like anauction this yields a modest load. Note that the encryp-tion with the AI public-key can be done as one message forall the inputs bits of each bidder, and hence does not addsigni�cantly to the load.The AI has to prepare the garbled circuit (which canbe done o�ine) and send it to the auctioneer, and it has toengage as the sender in the proxy oblivious transfer protocola number of times proportional to the total number of inputbits. This last part may be signi�cant, so we have attemptedto reduce it (see below).The auctioneer has to participate as proxy in the proxyoblivious transfer protocol a number of times proportionalto the total number of input bits. It has to evaluate thegarbled circuit, which means a number of pseudo-randomfunction evaluations proportional to the circuit size. Sincethe circuit size a�ects both the communication between theAI and the auctioneer (in total table size) and the workthe auctioneer must perform, it makes sense to put e�ort inoptimizing it (see below).Optimizing the proxy OT: The computation of the expo-nentiations in the proxy oblivious transfer stage the maincomputational overhead of the protocol (unless the circuitis extremely large, which is not the case for auctions). Theproxy oblivious transfer protocol uses El Gamal encryptionswhich are of the form (gr; (gx)r �m), where r is chosen by theAI and x by the bidder (see App. A). It is therefore tempt-ing to minimize the work and the communication by reusingthe same r for several encryptions. Care should be taken notto hamper the security by such an optimization. Given thatthe total length of these encryptions may be the bulk of thecommunication (and these messages cannot be sent o�ine)it makes sense perhaps to employ El Gamal encryptions overelliptic curves which have more succinct representation thanGF [P].Optimizing the circuit size: Consider an auction with Nbidders, where a bid is an integer in the range [1; L] (i.e.it can be represented by ` = logL bits). Our best circuitdesign for second price auctions uses approximately 30N`table entries. In order to optimize the size of the tablesthat describe this circuit, it uses some wires which are notbinary but can rather have one of three values. Assumingthat each entry is of 10 bytes, the table size is about 300bytes per input bit. Note that even for N = 1000 users, andbids with one million possible values, the size of the circuit ismoderate, 30 �1000 �20 = 600; 000 table entries, or 6Mbytes.A circuit for �rst price auctions is about half as large.It is possible to further reduce the size of the tables by afactor of 25%. For the case of gates with two binary inputwires the saving is achieved by setting one garbled outputvalue to be a function of the corresponding garbled inputvalues (and then the table does not have to contain an entryfor this output value).

2.6 Implementation of the ProtocolWe are developing a prototype of the architecture for thecase of second price auctions with hundreds of bidders. Theimplementation is done in the Python scripting language.The entire implementation takes about 1500 lines of pythoncode, together with about 800 lines of C code for the com-putation of the pseudo-random function and the encryption.It uses El Gamal public key encryption and DSA signatures,which use exponentiations over a 768-bit modulos. The ex-ponentiations are coded in assembler.The proxy oblivious transfer protocol incurs most of thecommunication and computation overhead. As for the com-munication overhead, the tables that code the circuit canbe sent from the AI to the auctioneer in advance, beforethe auction begins ,possibly on a CD-ROM or DVD. (Thestructure of the circuit does not have to be sent, since theauctioneer can compute it by itself, given the number ofbidders and the size of the bids.) Most of the online com-munication between the AI and the auctioneer is for theproxy OT protocol in which for each bit the AI receives onepublic key and sends two encryptions.The proxy OT stage incurs also most of the computationoverhead. A straightforward implementation requires the AIto compute, for every input bit, two online exponentiations(for encryption), and requires the auctioneer to computeone exponentiation (for decryption). It is possible to usea variant of oblivious transfer with low amortized overheadto reduce this overhead to one exponentiation per severalinput bits. The circuit itself contains about four gates perinput bit, and its evaluation is less computation intensive.To evaluate each gate the auctioneer computes two values ofa pseudo-random function. The throughput of the pseudo-random function is hundreds of thousands of operations persecond and thus the total overhead is marginal.3 Other Auctions and MechanismsThe overhead of the protocol depends only on the size of thecombinatorial circuit that evaluates the function decidingthe outcome of the auction. It is, therefore, possible touse the same protocol for computing various other typesof auctions and mechanisms which can be expressed as acircuit of moderate size.3.1 AuctionsThe di�erence between a protocol for a �rst-price auctionand a protocol for a second-price auction is only that theyuse di�erent circuits to compute the result of the auction(the circuit for �rst-price auctions being simpler). Similarcircuits can be used to express k-th price auctions, wherethe winner is the highest bidder and the clearing price isthe k-th highest bid. Note that unlike �rst or second priceauctions, k-th price auctions do not have an interactive im-plementation (similar to the English or the Dutch auction)which guarantees that the auctioneer does not misuse thesubmitted sealed bids. The size of the circuit for a k-thprice auction is not k times the size of a circuit for �rstprice auction, but is rather just O(N` + k`). (This can bedone via a binary search on the value of the k largest bid)The number of inputs, determining the number of oblivioustransfers and thus of public key operations, is the same asfor �rst price auctions. k-th price auctions where proposedas suitable for risk seeking bidders [28, 29].Wurman, Walsh, and Wellman [39] discuss the designof double auctions supported by the AuctionBot [1]. In

particular they consider the case where there are M sello�ers and N buy o�ers, and analyze the Mth-price and(M + 1)st-price rules. These rules can be easily expressedas circuits similar to those for k-th price auctions, and can,consequently, be implemented by our protocol.MacKie-Mason and Varian [27, 35] present an expositionof the Generalized Vickrey Auction (GVA) as a power-ful mechanism capable of solving many complex problems.In this mechanism each party reports a utility function, andthe center calculates the allocation that maximizes the sumof the reported utilities subject to the resource constraints.The payment of party i depends on the di�erence betweenthe sum of the utilities of the other parties in the chosen al-location and the sum of their utilities in the allocation whichdoes not take party i into account. This mechanism can beused to sell multiple units of the same goods to consumerswho have a utility function which depends on the numberof units they receive The GVA can be expressed as a smallcircuit, if the consumer utility functions are not overly com-plex. For example, in the problem of selling M units of thesame goods, each consumer utility function can be a merelist of the values for the 1st, 2nd, and up to the Mth unit ofthe goods. Therefore, each consumer's input is composed ofM values, and the circuit that decides the outcome of themechanism is relatively simple.Finally note that auctions are sometimes implemented byseveral rounds where in each round the bidders may get toadd some inputs (e.g. the notable FCC spectrum auctions).Such auctions can also be handled in our framework, thoughit may be the case that in some instances the need for severalrounds is to reduce leaking information, which is taken careof directly by our architecture.3.2 Other MechanismsThere are e�orts to design algorithms based on mechanismdesign, which involve many sel�sh agents where the goal is tosolve a `global' problem. (e.g. routing, or some cooperationbetween the agents). See for example Walsh et al [37], orNisan and Ronen [30]. Our protocols can be used to computethese algorithms without requiring trust in the center5. Theplausibility of using our protocols for this task depends onthe complexity of expressing the utility functions and thedecision procedure as circuits.A particular case of interest is Groves-Clarke mecha-nisms [19, 7], where a public good is produced if the sumof reported values is higher than a given threshold. Thecircuit that computes this function is quite simple, as is acircuit that computes the sum of the reported values for sev-eral options and decides on the option with the highest sum.It is, therefore, simple to provide a private protocol whichcomputes these mechanisms.Another relevant application is the design of mechanismsto elicit opinions of a group of independent experts. Glazerand Rubinstein [15] observe that in a \culture" in which ex-perts care that their recommendations are accepted, thereis a mechanism with a single equilibrium which achieves thepublic target (and such a mechanism does not exist if ex-perts only care about the public good). The mechanism theysuggest can be computed very e�ciently by our architecture(essentially the mechanism requires that one expert choosea subset of the experts whose opinions are considered, learntheir opinions, and then add his/her own opinion. The deci-5However, this task might be computationally di�cult regardlessof privacy requirements. The work of [24] shows that occasionally theprocedures that compute the outcome are NP-hard

sion is the majority opinion. Note that this process requiresprivacy { the expert choosing the subset must do so beforelearning their opinions. A privacy preserving implementa-tion of this application might be useful in organizations thatwant to poll the opinions of their members, but realize thatindividuals might bias their reported opinion if they believeit will be revealed.Stable matching [20, 33] is yet another example of aglobal decision which depends on the private preferences ofmany parties. In many scenarios it is quite plausible thatparties would be hesitant to reveal their matching prefer-ences, even to the center computing the matching (considerfor example matching couples for a prom...). Our archi-tecture enables the parties to reveal their true preferenceswithout fearing that the center will learn them. The over-head of implementing our architecture for this applicationdepends on the complexity of expressing the matching al-gorithm as a combinatorial circuit. Finding a reasonablysmall circuit for this problem is an interesting problem, asthe classical Gale-Shapley algorithm requires the power ofindirect addressing of a RAM, and hence its translation intoa circuit is rather cumbersome.4 Further ResearchThere are many issues for further research, both in inves-tigating how to improve the properties of the architectureand in making the protocol more e�cient.It is possible to further reduce the trust that biddersshould put in the architecture, by distributing the task of theauction issuer between several parties. Ideally, these couldbe di�erent companies, with none of them knowing all theinformation currently known to the AI. A more modest goal(for which we have promising preliminary results) is to havea single party generate the garbled circuit (o�ine) and thendistribute each garbled gate between several AI servers. Thesystem should have a threshold k, such that the auctioneershould have to contact k servers in order to compute theauction, and collusion between the auctioneer and any k�1servers reveals nothing about the bids (note that a naiveuse of secret sharing does not achieve this property). As fordistributing the garbling part, one can use the techniques of[2], but they seem to incur a signi�cant overhead.The problem of backing the bids with �nancial commit-ments is somewhat orthogonal to the main issues we con-sider. The solutions of [14] for this problem should be adapt-able to our architecture.Our current techniques implement second price auctionsfor hundreds or even thousands of users with very reason-able overhead. A great deal of research remains to be donein improving the e�ciency of the protocol. One directionis designing e�cient circuits for auctions and other mech-anisms, while another direction is improving the e�ciencyof the cryptographic tools we use, mostly of the extensiveapplication of oblivious transfer.5 AcknowledgmentsWe thank Noam Nisan and Uri Zwick for useful discussionsand the anonymous referees for their comments.References[1] http://auction.eecs.umich.edu

[2] D. Beaver, S. Micali and P. Rogaway, \The round com-plexity of secure protocols", Proc. 22nd ACM Symp. onTheory of Computing, 1990, 503{513.[3] M. Bellare, A. Desai, D. Pointcheval and P. Rogaway,\Relations among notions of security for public-key en-cryption schemes", Advances in Cryptology - Crypto'98, Springer-Verlag LNCS 1462 (1998), 26{45.[4] M. Bellare and S. Micali, \Non-interactive oblivioustransfer and applications", Proc. Adv. in Cryptology -Crypto '89, Springer-Verlag LNCS 435 (1990), 547-557.[5] C. Cachin, \E�cient private bidding and auctionswith an oblivious third party", to appear, Proc. 6thACM Conf. on Computer and Communications Secu-rity, 1999.[6] K. Chui and R. Zwick, \Auction on the Internet {A preliminary study", manuscript, 1999. Available athttp://home.ust.hk/~mkzwick/Internet_Auction.html[7] E. Clarke, \Multiparty pricing of public goods", PublicChoice, 11:17-23, 1971.[8] R. Cramer, I. Damgard and B. Schoenmakers, \Proofsof partial knowledge and simpli�ed design of wit-ness hiding protocols", Proc. Advances in Cryptology{ Crypto '94, Springer-Verlag LNCS 839 (1994), 174{187.[9] R. Cramer and V. Shoup, \A practical public keycryptosystem provably secure against adaptive chosenciphertext attacks", Proc. Advances in Cryptology -Crypto '98, Springer-Verlag LNCS 1462 (1998), 13{25.[10] D. Dolev, C. Dwork and M. Naor, \Non-malleable cryp-tography", Proc. 23th ACM Symp. on Theory of Com-puting, 1991. Full version: to appear Siam J. on Com-puting. Available athttp://www.wisdom.weizmann.ac.il/~naor/onpub.html[11] R. Engelbrecht-Wiggans and C. M. Kahn, \Protectingthe winner: second price vs. ascending bid auctions",Economic Letters, Vol. 35, 1991, 243{248.[12] S. Even, O. Goldreich and A. Lempel, \A Random-ized Protocol for Signing Contracts", Communicationsof the ACM 28, 1985, pp. 637{647.[13] U. Feige, J. Kilian and M. Naor, \On minimal modelsfor secure computation", Proc. 26th ACM Symp. onTheory of Computing, 1994, pp. 554{563.[14] M. K. Franklin and M. K. Reiter, \The design and im-plementation of a secure auction server", IEEE Tran.on Software Engineering, 22(5), pp. 302{312, 1996.[15] J. Glazer and A. Rubinstein, \Motives and implemen-tation: on the design of mechanisms to elicit opinions",J. of Economic Theory 79, 157{173, 1998.[16] O. Goldreich, Secure Multi-Party Compu-tation (working draft) Version 1.1, 1998. Available athttp://philby.ucsd.edu/books.html[17] O. Goldreich, S. Goldwasser and S. Micali, \How toconstruct random functions", J. of the ACM., vol. 33,1986, 792{807.

[18] O. Goldreich, M. Micali and A. Wigderson, \How toplay any mental game", Proc. 19th ACM Symp. on The-ory of Computing, 1987, pp. 218{229.[19] T. Groves, \Incentives in teams", Econometrica,41:617{631, 1973.[20] D. Gus�eld and R. Irving, The Stable MarriageProblem : Structure and Algorithms, MIT Press,1989.[21] M. Harkavy, J. D. Tygar and H. Kikuchi, \Electronicauctions with private bids", 3rd USENIX Workshop onElectronic Commerce, pp. 61{73, 1999.[22] Q. Huai and T. Sandholm, \Mobile Agents in an Elec-tronic Auction House", Mobile Agents in the Context ofCompetition and Cooperation (MAC3-workshop), 1999.[23] R. Impagliazzo and S. Rudich, \Limits on the ProvableConsequences of One-Way Permutations", 20th ACMSymp. on the Theory of Computing, 1989, 44{61.[24] N. K�r-Dahav, D. Monderer and M. Tennenholtz,\Mechanism design for resource bounded agents", 1998.[25] M. Kumar and S. I. Feldman, \Internet auctions", 3rdUSENIX Workshop on Electronic Commerce, 1999.[26] Luby M., Pseudorandomness and CryptographicApplications, Princeton University Press, 1996.[27] J. K. MacKie-Mason and H. R. Varian, \GeneralizedVickrey auctions", 1994.[28] D. Monderer and M. Tennenholtz, \K-Price auctions",Working Paper, 1998.[29] D. Monderer and M. Tennenholtz, "Internet auctions",Working Paper, 1998.[30] N. Nisan and A. Ronen, \Algorithmic mechanism de-sign", Proc. 31st ACM Symp. on Theory of Computing,1999, 129-140.[31] A. J. Osborne and A. Rubinstein, A Course in GameTheory, MIT Press, 1994.[32] M. O. Rabin, \How to exchange secrets by oblivi-ous transfer", Tech. Memo TR-81, Aiken ComputationLaboratory, 1981.[33] A. E. Roth and M. A. Sotomayor, Two-Sided Match-ing : A Study in Game-Theoretic Modeling andAnalysis, Cambridge Univ Press, 1990.[34] S. G. Stubblebine and P. F. Syverson, \Fair on-line auc-tions without special trusted parties", Proc. of Finan-cial Cryptography '99, 1999.[35] H. R. Varian, \Economic mechanism design for comput-erized agents", First USENIX Workshop on ElectronicCommerce, 1995.[36] D. Vickrey,\Counter speculation, auctions, and com-petitive sealed tenders", Journal of Finance, March1961, pp. 9{37.[37] W. Walsh, M. Wellman, P. Wurman and J.K. MacKie-Mason, \Auction protocols for decentralized schedul-ing", 18th Int. Conf. on Distributed Computing Sys.,1998.

[38] M. Wellman and P. Wurman, \Real time issues for In-ternet auctions", First IEEE Workshop on Dependableand Real-Time E-commerce Systems, 1998.[39] P. Wurman, W. Walsh and M. Wellman, \Flexible dou-ble auctions for electronic commerce: theory and imple-mentation", Decision Support Systems 24:17-27, 1998.[40] A.C. Yao, \How to generate and exchange secrets",Proc. of the 27th IEEE Symp. on Foundations of Com-puter Science, 1986, pp. 162{167.A Oblivious TransferEssentially every known suggestion of public-key cryptog-raphy also allows implementation of oblivious transfer, (butthere is no general theorem that implies this state of a�airs).OT can be based on the existence of trapdoor permutations,factoring, the Di�e-Hellman assumption (both the searchand the decision problems, the latter yielding more e�cientconstructions) and the hardness of �nding short vectors ina lattice (the Ajtai-Dwork cryptosystem). In contrast itseems to be highly unlikely that OT can be based on one-way functions (the reason being that given an OT protocol,it is simple to implement secret-key exchange using it. Ittherefore follows from the work of Impagliazzo and Rudich[23] that there is no black-box reduction of OT from one-wayfunctions).Following we describe a protocol which is based on theprotocols of Bellare and Micali [4]. The inputs and the re-quired outputs of the protocol were described in section 2.2.2.Initialization: The sender S and the chooser C agreeon a large cyclic group Gg generated by g, in which thediscrete log problem is believed to be hard. In addition,they agree on a value c 2 Gg whose discrete log is unknownto C.Preparing the query: C chooses a random value 0 <r < jGgj, calculates PK� = gr and PK1�� = c=PK� andsends PK0 to S. In the El Gamal public key encryptionsystem these PKi's are public keys, and r is the private keycorresponding to PK�.Sending the values: S calculates PK1 = c=PK0. Us-ing El Gamal encryption, S then sends to C the encryptionsEPK0(m0); EPK1(m1).Receiving the desired value: Knowing the privatekey corresponding to PK�, C decryptsEPK� (m�) to recoverm�.Assuming that C knows the private key for PK� it can-not possibly know the private key for PK1�� since if it did,it could calculate the discrete log of c = PK� � PK1��. Itwould therefore appear that C can only decrypt one of themessages it receives from S. Note though that while it isimpossible for C to know both private keys, the protocoldoes not rule out the possibility that C possesses partialinformation about each of the keys (although there seemsto be no obvious way in which C can obtain such informa-tion). This problem can be solved if we require C to proveto S that it knows the discrete log of one of the public keys(without disclosing to S of which one). This proof can bee�ciently done using the techniques of Cramer et al [8], atthe cost of a few more exponentiations. The resulting pro-tocol is, therefore, as secure as the Decision Di�e-Hellmanassumption, which is believed to be secure.Alternatively, if one postulates the existence of randomoracles (i.e., of a function H which behaves as a randomfunction), it is possible to run the protocol without the

proofs of [8]. To send the values the sender should selecta random value k, and send the messagehgk; H(PKk0)�m0; H(PKk1)�m1ito the chooser. The chooser can only decrypt m� by com-puting PKk� = (gk)r.1-out-of-2 Proxy OTThe protocol for proxy OT involves a third party P whichis C's proxy. The roles of the parties were de�ned in Sec-tion 2.2.2. The protocol is as follows:Initialization: The parties agree on a large cyclic groupGg and a generator g, as in the 1-out-of-2 OT protocol.Preparing the query: C chooses a random 0 < r <jGg j, calculates PK� = gr and PK1�� = c=PK�. It sendsPK0 to S, and sends the private key r to P . S computesPK1 = c=PK0. Using El Gamal encryption, it then sendsto P the following pair, in random order,hEPK0(C(m0)); EPK1(C(m1))i;where C is a good error detecting code.Receiving the desired value: P knows the privatekey corresponding to PK�. It tries to decrypt both valuesand uses the error detecting code C to determine which onewas decrypted correctly.Note that P does not learn the value of �, C's choice. Inorder to achieve security which depends only on the De-cisional Di�e-Hellman assumption C must prove that itknows the discrete log of one of the keys, as in the pro-tocol for 1-out-of-2 OT. Alternatively, one can use a \ran-dom oracle" H as in the 1-out-of-2 OT protocol describedabove. This is the method currently used by our prototypeimplementation.Preventing a denial of service attack: The denial of ser-vice attack described in section 2.4 involves a bidder whichprevents the auctioneer from retrieving correct garbled val-ues in the proxy OT stage. In more details, the bidder (thechooser C) sends to the auctioneer (the proxy P) a privatekey which does not correspond to any of the public keyssent to the auction issuer (the sender S). The auctioneer,therefore, cannot decrypt any of the messages received fromthe auction issuer.A straightforward solution is to require the bidder toprove to the auctioneer that it sent it a correct private key.Such a proof is, however, quite ine�cient.A di�erent approach is to enable the auctioneer to proveto the AI that the auctioneer received an incorrect privatekey from the bidder. Care must be taken to prevent a cor-rupt auctioneer from accusing an innocent bidder. A con-crete solution is as follows: (1) The AI chooses a key Kb forevery bidder b, and uses it to encrypt all the garbled valuescorresponding to the input bits of this bidder. (2) The proxyOT protocol is used to transfer these encrypted values. (3)The auctioneer checks whether it received legitimate values(using the error detection code C). (4) If all the values of in-put wires of bidder b were received correctly, the auctioneerasks to receive the key Kb from the AI. It uses the key todecrypt the received values and retrieve the garbled valuesof the input wires. Otherwise the auctioneer asks to receivethe garbled inputs corresponding to a `0' input of this bid-der. Note that this solution adds a communication roundbetween the auctioneer and the AI, but it typically consistsof a message containing a single key for every bidder, andits length is quite short.

