
Identifying the Optimal Energy-Efficient
Operating Points of Parallel Workloads

Ryan Cochran
School of Engineering

Brown University
Providence, RI 02912

ryan_cochran@brown.edu

Can Hankendi
ECE Department
Boston University
Boston, MA 02215
hankendi@bu.edu

Ayse Coskun
ECE Department
Boston University
Boston, MA 02215
acoskun@bu.edu

Sherief Reda
School of Engineering

Brown University
Providence, RI 02912

sherief_reda@brown.edu

ABSTRACT
As the number of cores per processor grows, there is a strong incen-
tive to develop parallel workloads to take advantage of the hardware
parallelism. In comparison to single-threaded applications, parallel
workloads are more complex to characterize due to thread interac-
tions and resource stalls. This paper presents an accurate and scal-
able method for determining the optimal system operating points
(i.e., number of threads and DVFS settings) at runtime for par-
allel workloads under a set of objective functions and constraints
that optimize for energy efficiency in multi-core processors. Using
an extensive training data set gathered for a wide range of parallel
workloads on a commercial multi-core system, we construct multi-
nomial logistic regression (MLR) models that estimate the optimal
system settings as a function of workload characteristics. We use
L1-regularization to automatically determine the relevant workload
metrics for energy optimization. At runtime, our technique deter-
mines the optimal number of threads and the DVFS setting with
negligible overhead. Our experiments demonstrate that our method
outperforms prior techniques with up to 51% improved decision
accuracy. This translates to up to 10.6% average improvement in
energy-performance operation, with a maximum improvement of
30.9%. Our technique also demonstrates superior scalability as the
number of potential system operating points increases.

1. INTRODUCTION
With the energy consumption of large-scale computing systems

increasing by over 15% per year [11], power and energy manage-
ment has assumed central importance in nearly every current and
future computing domain. Most modern systems offer a slew of
power management features, with dynamic voltage frequency scal-
ing (DVFS) being one of the most well known. DVFS is an ex-
tremely powerful technique, and is used for modulating the operat-
ing frequency in order to take advantage of performance slack and
reduce power consumption.

At the same time, with the increased hardware parallelism in
multi-core systems, workloads are becoming increasingly paral-
lel in high performance computing (HPC) clusters and datacenters.
The typical applications in these domains span a diverse set of par-
allel workloads (e.g., modeling, scientific computing, financial ap-
plications, and media processing), all of which require complex
thread synchronization models. This complexity makes the task of
workload characterization for the purposes of energy, power, and
performance optimization for parallel workloads extremely chal-
lenging. Energy, power, and performance characteristics also change
dramatically as a function of the workload. Thus, modern HPC
and datacenter systems require sophisticated management strate-

gies that have extensive knowledge of the workload behavior. An
effective runtime management technique must be capable of select-
ing the optimal system setting as a function of the workload.

This paper proposes a scalable approach for calculating the op-
timal DVFS setting and number of parallel threads for a parallel
workload at runtime as a function of measurable workload charac-
teristics. Our approach can be adapted to work with any conceiv-
able power, energy, and performance objective formulation. For
example, in situations that require maximum performance, the sys-
tem operating point is selected such that execution delay is mini-
mized. When the energy consumption is of primary concern, such
as for battery operated devices, our proposed models can be trained
to select an operating point that minimizes energy. In all cases, spe-
cial care must be taken to avoid violating the system’s peak power
budget or degrading the system performance beyond desirable lim-
its.

The objective of this paper is to provide a systematic approach
for mapping complex parallel workload behavior to an optimal op-
erating point decision. Our contributions are as follows:
• We investigate power, energy, and performance tradeoffs among

the operating points available on a multicore system under vari-
ous power/performance objectives and constraints. These trade-
offs are then used for guiding the power management strategies
for multicore systems running parallel workloads.
• We present an online energy management technique that utilizes

a multinomial logistic regression (MLR) classifier to find the op-
timal number of parallel threads for a multithreaded workload
in conjunction with the optimal DVFS setting. Performance,
power, and temperature data are collected on an Intel i7 based
system and are utilized to train the L1-regularized MLR model.
In addition to the data collected on the target system, the model
also takes an objective-constraint formulation as input. Once
trained, the model can estimate the likelihood of optimality for
each operating point and select the likeliest one.
• We provide a scalable power management methodology that is

highly accurate under a set of objective functions relevant to
HPC clusters and datacenters. We demonstrate the accuracy and
scalability of our technique using the parallel workloads in the
PARSEC benchmark suite [2]. Our technique outperforms previ-
ous DVFS techniques which are mainly guided by the frequency
of the memory operations (e.g., [9, 5]) with 51% higher decision
accuracy, improved scalability with respect to the number of po-
tential operating, and a reduction of 10.6% average EDP across
all workloads.

The rest of the paper is organized as follows. Section 2 provides
an overview of the related work. Section 3 discusses the objec-
tive functions we use in optimizing energy consumption. Section 4

978-1-4577-1400-9/11/$26.00 ©2011 IEEE 608

explains our methodology in detail. Section 5 demonstrates exper-
imental results and Section 6 concludes the paper.

2. BACKGROUND
Dynamic power management on multi-core systems is a well es-

tablished research area, with lower-power idle modes (e.g., [14])
and DVFS being two of the most commonly employed control
knobs. In this work, we contribute a novel control knob in active
thread-count modulation for parallel workloads in addition to con-
ventional DVFS. Many software and hardware-based DVFS con-
trol approaches have been proposed in recent years. Multiple-clock
domain design and voltage frequency island partitioning are exam-
ples of hardware-based DVFS methods [13, 7]. Kim et al. ex-
plore designing on-chip regulators and perform per-core DVFS in
nanosecond granularity [10]. Teodorescu et al. propose process
variation-aware algorithms for power management through schedul-
ing and DVFS [19]. Software-based approaches require application
level or compiler level support for power control [17, 1]. There are
also a number of methods for optimizing energy consumption for
systems where task graphs and deadlines are known a priori (e.g.,
[20, 21]).

The majority of recent work on power/energy-aware DVFS use
information gathered from Performance Monitoring Units (PMUs),
which expose hardware performance counters capable of counting
various architectural events (µ-ops retired, l3-cache misses, etc.)
[12, 3, 18]. Some methods attempt to optimize performance within
power constraints. Etinski et al. propose a job scheduling policy
that optimizes performance for a given power budget [6]. There are
also global power management policies to maximize performance
for a given power budget on multicore systems [8].

Many optimize for Energy Delay Product (EDP) or Energy
Delay2 Product (ED2P), although there are also techniques that
use Energy per Instruction (epi or epi2) [15]. Isci et al. uses phase
categories calculated using a metric for Memory Operations per µ-
op in [9]. Each phase category is linked to a DVFS policy that at-
tempts to minimize EDP . However, this approach requires recon-
figuration of the phase boundaries to handle alternative objective
formulations. Dhiman et al. propose an online learning model that
follows a similar metric classification method for single-core pro-
cessors [5]. In order to characterize workloads, this work breaks
down the Cycles Per Instruction (CPI) into various components,
such as baseline CPI, miss events CPI, and stall CPI, in order to
construct the CPI stack of the executing task. This approach guar-
antees convergence to the optimal DVFS setting via online learn-
ing.

Our work makes several key contributions relative to the state-
of-the-art: (1) Because our approach accesses built-in hardware
performance counters, it does not require modifications to the OS
scheduler or compiler required by many software-based techniques
(e.g., [6]). (2) Many prior methods (e.g., [8]) rely on static trace
analysis, while our approach is dynamic and based on training data.
(3) Our technique shows superior accuracy and scalability relative
to the most similar prior works [5, 9] (see Section 5), and shows that
previous metrics based on memory and stall events are insufficient
to characterize emerging parallel workloads. Our approach utilizes
a large set of performance counter metrics and per-core thermal
sensor measurements to characterize a diverse set of parallel work-
loads. (4) Our technique is general enough to accommodate a wide
range of optimization formulations that are relevant to HPC clusters
and datacenters. It provides a means to change both the optimiza-
tion objective, as well as the constraints types.

1.6 1.8 2 2.2 2.4 2.6
0

50

100

150

Frequency (GHz)

P
ro

ce
ss

or
 P

ow
er

 (
W

)

a.

1.6 1.8 2 2.2 2.4 2.6
0

50

100

150

Frequency (GHz)

T
ot

al
 S

ys
te

m
 P

ow
er

 (
W

)

b.

1.6 1.8 2 2.2 2.4 2.6
0.2

0.4

0.6

0.8

1

Frequency (GHz)

P
ro

ce
ss

or
 E

ne
rg

y
(k

J)

c.

1.6 1.8 2 2.2 2.4 2.6
0

2

4

6

8

Frequency (GHz)

T
ot

al
 S

ys
te

m
 E

ne
rg

y
(k

J)

d.

1 Thread
2 Threads
4 Threads

Figure 1: Power and energy characteristics for segment of
blackscholes benchmark.

3. FORMULATIONS FOR ENERGY EFFI-
CIENT COMPUTING

The fundamental objective of any energy-aware control scheme
is to intelligently manage the trade-off between the energy con-
sumption and execution delay within some system constraints. At
first glance, it might seem that the tradeoff is straightforward: faster
execution reduces the delay which may lead to lower energy. Faster
execution, however, may cause higher power consumption which
maybe offset the reduction in delay. For example, running a par-
allel workload with a higher number of threads or increasing the
processor’s frequency reduces the execution delay, but at the cost
of higher power consumption because of the associated increase in
operating voltage and utilization of processor units.

When minimizing energy or any objective derived from energy
(e.g., EDP and ED2P), the relationship between the control settings
and the objective is not straightforward. The effect of thread-count
and DVFS setting on execution delay is highly workload depen-
dent: some workloads benefit from higher frequencies and higher
parallelism, while others exhibit performance saturation. Further-
more, the optimal energy settings are highly dependent on what
components of the power consumption are considered. When op-
timizing energy, one should only consider the components of the
total power that vary as a function of the control settings, or can be
eliminated during idle periods. For instance, if the components on
a motherboard can be turned off or put in a low-power deep sleep
state once a workload has completed, then they should be included
in the energy optimization because the system can benefit from fin-
ishing faster. However, those components of the total power that
cannot be switched off and invariant with respect to the control
settings should be excluded as their contribution to the energy dis-
sipation cannot be eliminated.

Inclusion/exclusion of various power components has a dramatic
effect on optimization results. Figures 1a. and 1c. show the aver-
age processor power and processor energy dissipation for the first
100 billion microoperations (µ-ops) of the blackscholeswork-
load, which is part of the PARSEC suite, as a function of the DVFS
setting, while Figures 1b. and 1d. show the average total system
power and energy. Including the power consumption of the moth-

609

erboard components (memory, bridge components, fan, etc.) dra-
matically increase the fixed component of the power, and therefore
the workload benefits most from faster execution, and energy de-
creases with higher frequency. If these power components are ex-
cluded, the energy decreases with thread-count but increases with
frequency. The optimal energy point is determined by the balance
between the fixed and variable power components, as well as the
workload-dependent effects on the execution delay.

In this work, we focus on optimizing the processor’s energy, ex-
cluding the contributions of the motherboard components on the
assumption that the whole server system cannot switch to a sleep
or nap mode once execution is finished [14]. In our experiments, we
observe that the system power is higher than the processor power
by an offset that is linearly correlated with the operating frequency.
The range of this offset is changing between 108W and 115W de-
pending on the workload characteristics. We expect future systems
to include energy-proportional power management features (such
as low-power states for memory units or hard disk unit) to help
minimize the overall system energy cost.

There are a variety of energy-aware optimization formulations
that can be used to manage the tradeoff between performance and
energy. Possible formulations include (a) minimize delay under
peak power constraints, (b) minimize energy under peak power and
delay constraints, (c) minimize EDP, (d) minimize ED2P. Because
no single formation dominates the others, we do not attempt to ar-
gue the validity of any single objective. We instead provide a means
of translating knowledge about the workload into an accurate a pri-
ori prediction of the optimal system operating point for any formu-
lation. Table 1 provides a summary of the formulations explored in
this work. We next discuss the details of each formulation.

A. minDPC: The minDPC(P) objective formulation minimizes the
execution delay within a power constraint P . For example, the
formulation minDPC(50W) selects the system operating point that
minimizes the delay of an execution interval such that the maxi-
mum power within that interval never exceeds 50W. Minimizing
delay is important from a user perspective and constraining peak
power is important for data center operators as it is a primary factor
in provisioning costs as well as the utility costs [14]. Even though it
reduces delay and restricts power, it does not necessarily minimize
energy consumption because achieving the minimum energy may
incur higher peak power at the benefit of reduced delay.

B. minEPDC: The minEPDC(P , D) objective minimizes energy
within a power constraint P and a delay degradation lower-bound
D, where D is the maximum allowable percentage increase in run-
time delay relative to the minimum execution delay dmin. For ex-
ample minEPDC(50W, 5%) seeks to minimize energy while oper-
ating the system within a 50W power budget and without degrading
the runtime execution delay by more than 5%. This formulation has
an upper bound on the maximum power for the same reason as for

Abbrevia(on  Objec(ve  Power‐Delay  
Form 

Power  
Constraint 

Delay  
Constraint 

minDPC(P)  Minimize Delay  Minimize (pavg)0(d)1  pmax < P  ‐‐ 

minEPDC(P, D)  Minimize Energy  Minimize (pavg)1(d)1  pmax < P  d/dmin‐ 1 > D 

minEDP  Minimize EDP  Minimize (pavg)1(d)2  ‐‐  ‐‐ 

minED2P  Minimize ED2P  Minimize (pavg)1(d)3  ‐‐  ‐‐ 

Table 1: Energy-aware objective formulations that manage the
tradeoffs between power, energy, and execution delay.

minDPC(P). However, by minimizing energy directly instead of
delay, this formulation does not incur the high power-cost of push-
ing the delay to its minimum level dmin. Instead, it forces the delay
to be below some tolerance with respect to dmin, and the energy
is minimized within this constraint. There is often little value to
pushing the delay to its minimum feasible level. Web servers, for
example, must achieve an expected latency below some tolerance,
beyond which there is little visible improvement to a user. With
this formulation, it is important to note the possibility of select-
ing power and delay constraints that cannot be achieved simultane-
ously.

C and D. minEDP and minED2P: The minEDP and minED2P
objectives minimize the energy-delay-product and energy-delay-
squared-product respectively. By combining the energy and the
delay into a single value, these metrics may balance the need to
minimize energy dissipation with the need to minimize the execu-
tion delay, with the latter skewed more in favor of reducing delay.
While useful in design comparisons, we think that the EDP and
ED2P formulations are much less practical in optimization settings
than the other objectives because by themselves, they fail to guaran-
tee the performance and maximum power consumption are within
an acceptable limits. Depending on the workload, they may also
fail to be truly energy-aware because they do not explicitly mini-
mize the energy dissipation. We nevertheless treat these as viable
formulations in all of our work.

The aforementioned four formulations provide different power, en-
ergy, and performance trade-offs. These trade-offs need to be an-
alyzed carefully to choose the most appropriate formulation that
meets the specific needs of HPC clusters and datacenters. To il-
lustrate the outcomes of the four formulations, we find the optimal
settings for each of the four formulations for the bodytrack and
facesim workloads from the PARSEC suite on a real quad-core
based system. We report in Figure 2 the energy savings and per-
formance degradation percentages with respect to energy and delay
results of the highest frequency-voltage setting (2.67 GHz in our
setup) with maximum number of threads (4). The results lead to
the following insights:

1. minEDP does not provide guarantees on execution delay.

ED^2P EDP minDPC(40W) minEDPC
(20%, 40W)

facesim

bodytrack

facesim

bodytrack

ED^2P

EDP

DPC(40W)

EDPC(20%,
40W)

1.60 1.60 2.40 2.00
2.53 1.73 2.40 2.40

ES PD ES PD ES PD ES PD
52.50 29.37 52.50 29.37 19.82 4.91 38.8 4.91
8.75 3.14 41.3 49.83 15.78 9.64 15.78 9.64

Energy
Savings

Performa
nce Deg.

52.50 29.37 8.75 3.14
52.50 29.37 41.3 49.83
19.82 4.91 15.78 9.64
38.8 4.91 15.78 9.64

0

15

30

45

60

%

Energy Savings Performance Deg.

0

15

30

45

60

%

bodytrack

facesim

ED^2P EDP DPC(40W) EDPC
(40W, 20%)

Figure 2: Energy savings and performance degradation for
bodytrack and facesim for each objective function.

610

0 

5 

10 

15 

20 

25 

30 

35 

40 

4 Threads, 
1.60 GHz 

4 Threads, 
1.73 GHz 

4 Threads, 
2.00 GHz 

4 Threads, 
2.13 GHz 

4 Threads, 
2.40 GHz 

4 Threads, 
2.53 GHz 

1 Thread, 
2.67 GHz 

4 Threads, 
2.67 GHz 

D
is
tr
ib
u(

on
 (%

) 
EDP  ED^2P 

Figure 3: Optimal EDP and ED2P operating point distribu-
tion for data data collected from entire PARSEC benchmark
suite.

For instance, minimizing EDP for bodytrack causes over
45% performance degradation which might not be accept-
able for HPC clusters or data centers which provide services
that must meet an expected latency. This example clearly
demonstrates the downside of having no power or perfor-
mance constraints on the objective function. In contrast, the
minEPDC(40W, 20%) formulation achieves over 30% en-
ergy savings with the specified acceptable performance degra-
dation for facesim.

2. Energy savings and performance degradation forminED2P
objective function show significant variation across two bench-
marks. Depending on the workload characteristics, energy
savings differ by more than 40% and performance degrada-
tion differs over 25%. This high variation might cause unex-
pected outcomes in terms of operating costs and service relia-
bility. Power management policies should be able to provide
reasonable energy savings and performance for any type of
workload, and must be robust to workload variations.

In addition to energy savings and performance degradation, peak
power is an important constraint in many large-scale clusters. The
power infrastructure of any HPC or data center may impose limita-
tions on instantaneous power, which requires a formulation with a
power bound, such as minDPC or minEDPC. These two for-
mulations have two distinct minimization targets, delay and energy,
respectively. As minDPC minimizes delay without any energy lim-
itations, this formulation targets HPC clusters or workloads where
the primary concern is performance. For data centers and HPC
clusters that can tolerate a limited level of performance degrada-
tion, we should optimize for minEDPC by choosing the power
budget and degree of performance degradation. Cluster operators
generally might like to optimize either for delay (minDPC) or en-
ergy (minEPDC) given a set of constraints. Minimizing EDP or
ED2P might bring unpredictable energy-performance tradeoffs.

Within a single formulation, the power-performance trade-offs
get more complicated as the optimal settings (number of threads
and DVFS settings) change within and across workloads. For ex-
ample, Figure 3 shows a histogram of the optimal DVFS and thread-
count settings of the EDP and ED2P metrics for all of the 100
billion UOPs execution segments taken across the entire PARSEC
benchmark suite. With no consistent optimal setting, it is clear that
it is not possible to derive a simple rule for optimizing a chosen
formulation without considering the workload characteristics.

4. METHODOLOGY
Our proposed methodology for selecting the optimal thread-count

and DVFS setting is split between an offline and online step. In the

offline step, we use an extensive data set gathered for the parallel
workloads in the PARSEC benchmark suite to train a multinomial
logistic regression (MLR) classifier for a specific objective. During
runtime, we recall the model associated with the desired objective
from a lookup table, and given real-time measurements of various
input metrics, predict the likeliest optimal operating point. These
models can be trained to predict optimality for any of the formula-
tions detailed in Section 3.

The primary advantage of our approach over previous approaches
lies in the degree of automation in the offline step and the simplic-
ity of our online step. While previous approaches require many
assumptions on which workload metrics that are most relevant to
desired objective, our approach performs this step automatically
using an L1-regularization technique. By accurately and automati-
cally determining the optimal inputs, our approach avoids the need
for multiple models associated with specific workloads to cover a
wide range of workload behavior. We associate a single model with
each objective formulation. In addition, our approach does not re-
quire any intermediate step in which the power, energy, and delay
characteristics are estimated as a function of the system setting.
This step requires extrapolation of the input metric behavior across
the range of operating points. By performing these tasks in an of-
fline fashion and exposing the estimated weights in a lookup table,
the runtime overhead of our technique is minimized.

4.1 Multinomial Logistic Regression
The MLR classifier is a generalized linear model that estimates

the probability of a discrete set of outputs by fitting a multino-
mial logistic function to continuous input data. In this work, the
set of outputs corresponds to the set of feasible system operating
points (i.e., combinations of DVFS settings and workload thread-
counts). The inputs to this model are a set of workload metrics,
which are themselves functions of the system performance-counter
values, the per-core temperatures, as well as the current DVFS set-
ting and thread-count. The MLR model is trained using a set of
sample inputs and outputs gathered for a series of workloads at
every possible control setting. Given the inputs during runtime,
the logistic regression can then calculate a priori the probability of
each candidate operating point being optimal for a particular ob-
jective formulation. The output with the highest probability is then
selected.

Let y denote the output of the MLR classifier, x denote the vector
of input values, and φ(x) ∈ Rm denote a fixed non-linear function
of x. The probability of a particular output c under the multinomial
logistic model is expressed in Equation 1.

Pr(y = c|x,w) =
exp(wc

Tφ(x))PC
c′=1 exp(wc′Tφ(x))

(1)

The variable wc ∈ Rm contains the weights associated with output
c, and w ∈ RCm is a vector concatenating the weights across all
outputs. T denotes the transpose operator. Equation 1 maps a con-
tinuous real-valued argument wT

c φ(x) to a probability y = c such
that the probabilities across all of the possible outputs y ∈ {1, ..., C}
sum to 1. A positive weight wck ∈ wc implies that a positive value
on input φk(x) ∈ φ(x) increases the probability that y = c, and
likewise a negative weight implies a decrease in probability.

The logistic weights are estimated using training data, which
in this case is an extensive set of data gathered for the PARSEC
benchmark suite. Each benchmark is executed to completion at
each available DVFS setting and thread-count, and the resulting
data is divided into windows of fixed size in terms of the number of
instructions executed (100 billion µ-ops). By aligning these fixed

611

instruction windows across all possible DVFS and thread-count set-
tings, we are able to determine the optimal setting under a particu-
lar objective formulation at each stage of execution in the workload.
These true values for y and the measured values for x for each fixed
instruction window are then used to train the model.

The weights w in the logistic model are estimated by minimizing
the conditional log-loss of the training data set, expressed in Equa-
tion 2, in which xi and yi represent the input values and output
value respectively for instruction window i. The weight-estimate
ŵ is found using a standard gradient-descent method, which uses
the gradient of the objective function in Equation 2 to iteratively
search for the optimal value.

ŵ = argmin
w

−
X

i

logPr(yi|xi,w)

!
(2)

During runtime, the probability of each operating point being op-
timal under a particular objective formulation is calculated accord-
ing to Equation 1. The classifier then selects the point that achieves
the highest probability. In order to prevent over-fitting of the model
to the training data, the accuracy of each classifier is calculated on
separate test data. The accuracy is defined as the percentage of
samples for which the true optimal system operating point is pre-
dicted by the classifier. A 5-fold cross validation scheme is used
to measure the accuracy of each classifier on the test data. In this
scheme, the entire PARSEC data set divided in five folds, where
each fold is drawn at random from the data. Each fold then takes
a turn as the test data while the remaining data is used to train the
classifier. The reported classifier accuracies in Table 3 are the av-
erage accuracy across all folds. Cross-validation ensures that the
accuracy results will generalize to an independent data set that is
separate from the training data.

4.2 L1-Regularization and Input Selection
With a large number of inputs, it is possible to over-fit the classi-

fication model to the training data. While the accuracy of model in
classifying the training data will appear to be very high, any devi-
ation from the training data characteristics in the test data will sig-
nificantly decrease the accuracy. One standard means of preventing
over-fitting is L1-regularization, in which an L1 loss term is added
to Equation 2 as in 3. The notation || · ||1 indicates the L1-norm.
As the effect of the regularization is increased via the constant pa-
rameter α, the logistic weight values are forced to smaller magni-
tudes and the number of non-zero weights decreases, as illustrated
in Figure 4. The optimal degree of regularization is experimentally
determined by measuring the cross-validated test accuracy for α
across several orders of magnitude.

ŵ = argmin
w

α ‖w‖1 −

X
i

logPr(yi|xi,w)

!
(3)

L1-regularization also has another extremely useful property in
that it forces sparse solutions for w (i.e., many of the coefficients
are zero). Thus, L1-regularization can be used to identify the inputs
that are most relevant to classification and eliminate irrelevant in-
puts. Given the high complexity of workload behavior, it is not im-
mediately obvious what sort of inputs are useful in classification for
various power/energy/delay objectives. Using L1-regularization,
however, the number of inputs can be almost arbitrarily high, and
the most relevant inputs will be identified through estimating w.

In our implementation, the input vector x consists of the follow-
ing values which can be measured in real-time: µ-ops retired, load

0 10 20
0

0.05

0.1

0.15

0.2

|w|

D
is

tr
ib

ut
io

n

0 10 20
0

0.05

0.1

0.15

0.2

0.25

|w|
0 10 20

0

0.1

0.2

0.3

0.4

0.5

|w|

Figure 4: Distribution of L1-regularized weight magnitudes for
α = 1e− 8, α = 7.74e− 4, and α = 3.6 respectively for mini-
mum EDP classifier.

Input 

1.  (UOPs re)red)/(l2‐cache misses) 

2.  (load locks)/(constant) 

3.  (average core temperature)/(constant) 

4.  (l2‐cache misses)/(thread count) 

5.  (constant)/(UOPs re)red) 

6.   (frequency)/(floa)ng‐point ops) 

7.  (frequency)/(l2‐cache misses) 

8.  (branch misses)/(avgerage core temperature) 

9.  (l2‐cache misses)/(branch misses) 

10.  (l2‐cache misses)/(resource stalls) 

Table 2: The top 10 most relevant workload metrics for the
minEDP classifier as determined by the sum of the absolute
value of the weights across all output classes.

locks, l3-cache misses, l2-cache misses, resource stalls, branch pre-
diction misses, floating point operations, average per-core junction
temperatures, processor frequency, and thread-count. However, the
direct input to the MLR model, or φ(x), has much higher dimen-
sionality, taking the raw inputs and their inverses, as well as every
possible ratio of the raw inputs in x. TheL1-regularized MLR clas-
sifier subsequently determines which ratios are important for a par-
ticular classifier and assigns zero weight to irrelevant input features.
Table 2 shows magnitudes of the top 10 ratios for the minEDP
classifier in terms of the average absolute values of each weight
variable across all outputs.

4.3 Runtime Behavior
The runtime overhead of the proposed technique is minimal.

The system simply logs performance counter and temperature data
and at regular intervals calculates the probability of each operating
point being optimal using Equation 1. The process of training the
model weights is performed in an offline fashion, and our results
show that this single model is capable of predicting a priori the
optimal operating point across the wide range of parallel workload

612

behaviors in the PARSEC suite. Our own experiments verify that
the application of Equation 1 can be performed with an overhead
in the range of 10-50 ms. However, because a control activation
period on the order of several seconds is observed to be sufficient
to respond to changes in workload behavior, this overhead typically
represents a very tiny fraction of the overall execution time.

While our approach is designed to change workload thread-counts
mid-execution, the limitations of our workload infrastructure do
not permit us to change threads in this way without major code
modifications. However, recent literature verifies that there are vi-
able means of changing workload thread-counts after the workload
has already been launched via the native functions provided in the
openMP library. These functions allow thread-count changes for
parallel regions of code with an overhead of 200 µs. [4]. Previous
works also show that it is possible to implement same functionality
on POSIX library with a similar overhead [16]. The task of DVFS
throttling can be performed with around 100 µs overhead [10].

As the runtime overhead is low, the system operator has room to
use additional techniques on top of the proposed method to main-
tain optimality if workloads with highly diverging behavior from
the training data set arrive at the target system. In such a scenario,
the MLR classifier can be used to predict an initial estimate of the
optimal setting. While this initial estimate might not be correct all
of the time, it is still highly likely to be near the optimal setting in
terms of its DVFS value and the number of threads. The system can
then periodically increment or decrement the DVFS setting and/or
number of threads and observe the affect on the objective (energy,
delay, EDP , or ED2P). If the the objective value decreases, then
the system can adopt this new setting. Such techniques can also
be accommodated to adapt to changes in environment and cooling
apparatus.

5. EXPERIMENTAL RESULTS

This section provides the details of the experimental setup and
results. We compare our technique to prior DVFS techniques in
terms of accuracy in selecting optimal points, scalability, and energy-
performance benefits.

We use an extensive data set (4158 samples) of power, tempera-
ture, and performance counter data collected across all workloads
in the PARSEC benchmark suite [2] to train MLR models to pre-
dict optimal operating points. Each PARSEC benchmark is exe-
cuted at all available system operating points, which include vari-
ous combinations of DVFS settings and thread-counts. The data for
each workload’s region-of-interest (ROI), i.e., the parallel phase, is
divided into 100 billion UOP execution intervals, and these data
points are then aligned for each workload across all available sys-
tem settings to determine the optimal point for each interval. We
then train the MLR classifier using the methodology described in
Section 4, and assess the accuracy of our classifier in predicting the
optimal operating point for each interval. Our experimental setup
is as follows.
• All data collection is performed on an Intel Core-i7 940 45nm

quad-core processor, running the 2.6.10.8 Linux kernel OS.
• Performance counter data are collected using the pfmon (ver-

sion 3.9) utility. This utility is configured to poll performance
counters for each core at 100 ms intervals. The performance
counters collect architectural information used for differentiating
workload behavior: µ-ops retired, load locks, l3-cache misses,
l2-cache misses, resource stalls, branch misses, and floating point
operations.
• Each core on the Core-i7 processor is equipped with with a dig-

ital thermal sensor, measuring the maximum junction tempera-

ture. The pfmon tool is interfaced with the Linux lm-sensors
library to report these per-core temperatures at 100 ms intervals
in addition to the performance counter data.
• The power consumption of the processor and the total power

consumption of the motherboard are measured using two Agi-
lent A34401 digital multimeters.
• Power and performance counter data are collected for each work-

load in the PARSEC 2.1 benchmark suite at every available fre-
quency and number of threads. The Core-i7 processor frequen-
cies are manipulated with the Linux cpufreq library function-
ality, and can be set using DVFS to any frequency in the follow-
ing set: {1.60 GHz, 1.73 GHz, 2.00 GHz, 2.13 GHz, 2.40 GHz,
2.53 GHz, 2.67 GHz}. The number of threads employed by each
benchmark is set using the command line options provided in the
PARSEC suite. Within each benchmark execution, data are only
recorded for predefined ROI points, which excludes the serial
boot-up and output phases of the applications.
• The power, temperature, and performance counter data are syn-

chronized and logged with in-house software on a separate ma-
chine via an ethernet connection.

We implement previous methods from Isci et al. [9] and Dhiman
et al. [5] for comparison purposes. Dhiman et al. uses a CPI
based metric, µ , and Isci et al. uses Mem/µ-op metric to choose
the appropriate v-f setting for the current workload. We set the
threshold values for µ and Mem/Uop metrics in a such way that
the overall accuracy is maximized. For each objective function,
we construct specific v-f tables that will produce the most accurate
decision. In the case of three available v-f settings, if µ < 0.85 or
Mem/Uop≥ 0.15, we apply the lowest available frequency (1.60
GHz). If µ ≥ 0.90 or Mem/Uop < 0.03 we apply the highest
frequency (2.67 GHz). For the values in between we use 2.00 GHz.

In our first experiment, we assess the accuracy of our classi-
fier for a series of potential objective functions using the training
methodology described in Section 4. The resulting accuracies are
reported in Table 3. The table shows that the percentage of exe-
cution intervals for which the classifier accurately predicts the op-
timal DVFS setting and thread counts. The candidate operating
points for this experiment include each of the nine DVFS/thread-
count pairings from the sets displayed in the first line of Table 4.
The overall reported accuracy is the number of execution intervals
correctly predicted across all workloads (as opposed to the average
accuracy value).

The proposed technique is able to achieve a minimum of 51%
increase in accuracy for the minEDP classifier in comparison to
the prior approaches. Our MLR-based technique is able to discern
subtle differences in workload characteristics and their effects on
energy and delay. The previous techniques rely on static thresh-
old values that are set during an offline analysis. Thus, they are
not sufficiently flexible to adapt to variations during the execution.
These disadvantages of the previous techniques result in signifi-
cantly lower accuracy values. Our technique also has high accu-
racy in predicting operating points forminDPC andminEPDC
constraints across a range of power-delay constraints as shown in
Table 3.

In our second experiment, we assess the scalability of the pro-
posed technique when a higher number of operating points is avail-
able. In addition to the nine points considered previously, we calcu-
late the overall accuracy of each classifier as the number of points
increases to 12 and to 21 points as specified in Table 4. Increas-
ing the number of possible outputs makes the classification more
difficult. Not only are there fewer training examples for each out-
put that can be used to estimate a classifier, but the differences in

613

Previous Approaches Proposed Approach
Benchmark minEDP minEDP minEDP minED2P minDPC minEPDC minEPDC minEPDC

(Isci et al.) (Dhiman et al.) (20W) (20W, 10%) (20W, 25%) (50W, 25%)
blackscholes 5.9% 5.9% 98.7% 100% 100% 100% 98.8% 100%
bodytrack 63.6% 63.6% 72.9% 92.5% 97.7% 100% 100% 100%
canneal 100% 100% 100% 100% 100% 100% 100% 100%
dedup 50.0% 50.0% 88.3% 90.0% 100% 100% 100% 99.3%
facesim 0% 0% 99.7% 70.6% 100% 100% 97.2% 95.7%
ferret 57.9% 57.9% 62.5% 100% 100% 100% 100% 100%
fluidanimate 0% 8.7% 88.8% 95.0% 99.6% 100% 99.3% 98.6%
freqmine 3.0% 3.0% 77.4% 100% 100% 100% 99.7% 99.7%
raytrace 7.7% 92.3% 96.2% 100% 100% 100% 100% 100%
streamcluster 100% 100% 99.4% 100% 100% 100% 99.2% 100%
swaptions 5.0% 95% 100% 100% 58.6% 100% 97.8% 100%
vips 11.1% 11.1% 77.7% 56.9% 100% 100% 100% 60.7%
x264 16.7% 16.7% 73.2% 97.8% 97.8% 100% 88.1% 95.8%
Overall Accuracy 20.7% 36.4% 87.4% 92.5% 95.5% 100 % 99.3% 98.8%

Table 3: 5-fold cross-validated test accuracies for various objective formulations.

workload behavior among the outputs are much more subtle. Nev-
ertheless, the results in Figure 5 illustrate that the accuracy of our
technique for the minEDP and minED2P is not only greater in
value than for the previous techniques, but also scales better to a
higher number of operating points. This experiment indicates that

# Se%ngs  Frequencies (GHz)  Thread Counts 

9 se%ngs  {1.60, 2.00, 2.67}  {1, 2, 4} 

12 se%ngs  {1.60, 2.00, 2.40, 2.67}  {1, 2, 4} 

21 se%ngs  {1.60, 1.73 , 2.00, 2.13, 2.40, 2.53, 2.67}  {1, 2, 4} 

Table 4: Definition of the operating points used in each of the
experiments.

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 

EDP                   
(Isci et al.) 

EDP        
(Dhiman 
et al.) 

ED^2P             
(Isci et al.) 

ED^2P 
(Dhiman 
et al.) 

EDP  ED^2P 

A
cc
ur
ac
y 
(%

) 

9 Se?ngs  12 Se?ngs  21 Se?ngs 

93 

94 

95 

96 

97 

98 

99 

100 

101 

A
cc
ur
ac
y 
(%

) 

Figure 5: Optimal point accuracy for various methods as a
function of the number of available settings.

through higher sensitivity to fine-grained workload characteristics,
our technique is more viable than previous techniques in an HPC
cluster or datacenter scenario with potentially a very large number
of operating points. Figure 5 shows successful scalability of our
technique for the minDPC and minEPDC classifiers.

Finally, we measure the impact of the classification accuracy on
the EDP for each of the PARSEC workloads with 21 classifier out-
puts. The results show that overall, our MLR-based technique is
capable of reducing the EDP by 16.9% relative to the approach in
Isci et al., and 10.9% relative to the approach by Dhiman et al. on
average. It also achieves a maximum reduction in EDP of 33.2%
and 30.9% relative to Isci et al. and Dhiman et al. respectively for
the vips benchmark.

6. CONCLUSIONS
In this paper we have explored the optimal control settings (e.g.,

number of threads and DVFS settings) of multi-threaded work-
loads running on a multi-core processor. By optimally adjusting
the values of these settings across and within workloads, it is pos-
sible to achieve better performance-energy operation. In contrast
to previous approaches that focused on optimizing one formula-
tion (e.g., minimizing ED2P), we explored the impact on perfor-
mance and energy as a function of a number of problem formu-
lations. We investigate four problems formulations: (i) minimize
EDP, (ii) minimize ED2P, (iii) minimize delay under peak power
constraints, and (iv) minimize energy under peak power and delay
constraints. We have found that these formulations do not neces-
sarily dominate each other, and that the best choice is driven by
the context of the application and operator goals. To handle such
diverse range of formulations, we have proposed a multinomial lo-
gistic regression classifier that is capable of finding the optimal op-
erating points across and within workloads during execution. The
classifier is trained using input data from performance counters,
runtime delays, and energy consumption measurements. To mini-
mize the runtime penalty of classification and to avoid over fitting,
it is necessary that the classifier uses a minimal number of perfor-
mance counters to arrive to its results. Thus, we have proposed
L1-regularization techniques to naturally discover the inputs that
are most relevant towards determining the optimal settings. Using
a solid experimental setup in which performance counter values
and power measurements are collected on a real quad-core based
system running the PARSEC parallel workloads, we have demon-
strated that our method is capable of achieving far greater accuracy
that previous methods. This accuracy in deciding the optimal op-
erating points translates to a 10.9% improvement in EDP over the

614

‐40.00 

‐30.00 

‐20.00 

‐10.00 

0.00 

10.00 

20.00 

30.00 

bl
ac
ks
ch
ol
es
 

bo
dy
tr
ac
k 

ca
nn

ea
l 

de
du

p 

fa
ce
si
m
 

fe
rr
et
 

flu
id
an
im

at
e 

fr
eq

m
in
e 

ra
yt
ra
ce
 

st
re
am

cl
us
te
r 

sw
ap
?o

ns
 

vi
ps
 

x2
64

 

O
ve
ra
ll 
Av
er
ag
e 

ED
P 
Re

du
c*
on

 (%
) 

Isci et al.  Dhiman et al. 

Figure 6: EDP reduction percentage of proposed technique relative to previous methods for 21 candidate operating points.

best performing previous method, with a maximum improvement
of 30.9%.

7. ACKNOWLEDGEMENTS

This research has in part been funded by Dean’s Catalyst Award
at College of Engineering, Boston University. R. Cochran and S.
Reda are partially supported by NSF grants number 0952866 and
1115424.

8. REFERENCES
[1] A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt,

A. Veidenbaum, and A. Nicolau. Profile-based dynamic voltage
scheduling using program checkpoints. In Proceedings of Design,
Automation and Test in Europe Conference, 2002.

[2] C. Bienia and K. Li. Parsec 2.0: A new benchmark suite for
chip-multiprocessors. In Proceedings of the 5th Annual Workshop on
Modeling, Benchmarking and Simulation, June 2009.

[3] K. Choi, R. Soma, and M. Pedram. Dynamic voltage and frequency
scaling based on workload decomposition. In Proceedings of
international symposium on Low power electronics and design, 2004.

[4] M. Curtis-Maury, F. Blagojevic, C. D. Antonopoulos, and D. S.
Nikolopoulos. Prediction-based power-performance adaptation of
multithreaded scientific codes. IEEE Trans. Parallel Distrib. Syst.,
19:1396–1410, October 2008.

[5] G. Dhiman and T. S. Rosing. Dynamic voltage frequency scaling for
multi-tasking systems using online learning. In Proceedings of
International Symposium on Low PowerElectronics and Design,
2007.

[6] M. Etinski, J. Corbalan, J. Labarta, and M. Valero. Optimizing job
performance under a given power constraint in hpc centers. In
Proceedings of the International Conference on Green Computing,
2010.

[7] S. Herbert and D. Marculescu. Analysis of dynamic
voltage/frequency scaling in chip-multiprocessors. In Proceedings of
International Symposium on Low PowerElectronics and Design,
2007.

[8] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi.
An analysis of efficient multi-core global power management
policies: Maximizing performance for a given power budget. In
Proceedings of the 39th International Symposium on
Microarchitecture, 2006.

[9] C. Isci, G. Contreras, and M. Martonosi. Live, runtime phase
monitoring and prediction on real systems with application to
dynamic power management. In Proceedings of the 39th
International Symposium on Microarchitecture, 2006.

[10] W. Kim, M. S. Gupta, G. yeon Wei, and D. Brooks. System level
analysis of fast, per-core dvfs using on-chip switching regulators. In
International Symposium on High-Performance Computer
Architecture, 2008.

[11] J. G. Koomey. Worldwide electricity used in data centers.
Environmental Research Letters, 3(3):034008, 2008.

[12] Li and J. Martinez. Dynamic power-performance adaptation of
parallel computation on chip multiprocessors. In International
Symposium on High-Performance Computer Architecture, 2006.

[13] G. Magklis, M. L. Scott, G. Semeraro, D. H. Albonesi, and
S. Dropsho. Profile-based dynamic voltage and frequency scaling for
a multiple clock domain microprocessor. In International Symposium
on Computer Architecture, 2003.

[14] D. Meisner, B. T. Gold, and T. F. Wenisch. Powernap: eliminating
server idle power. In Proceeding of the 14th international conference
on Architectural support for programming languages and operating
systems, ASPLOS ’09, 2009.

[15] M. Moeng and R. G. Melhem. Applying statistical machine learning
to multicore voltage & frequency scaling. In Conf. Computing
Frontiers, 2010.

[16] G. J. Narlikar and G. E. Blelloch. Pthreads for dynamic and irregular
parallelism. In In Proc. of Supercomputing Õ98, pages 4–1. IEEE,
1998.

[17] D. Shin, J. Kim, and S. Lee. Low-energy intra-task voltage
scheduling using static timing analysis. In Proceedings of the 38th
Conference on Design Automation, 2001.

[18] K. Singh, M. Bhadauria, and S. A. McKee. Real time power
estimation and thread scheduling via performance counters.
SIGARCH Computer Architecture News, 2009.

[19] R. Teodorescu and J. Torrellas. Variation-aware application
scheduling and power management for chip multiprocessors. In
International Symposium on High-Performance Computer
Architecture, 2008.

[20] H. Yu, B. Veeravalli, and Y. Ha. Dynamic scheduling of
imprecise-computation tasks in maximizing qos under energy
constraints for embedded systems. In Proceedings of the 2008 Asia
and South Pacific Design Automation Conference, 2008.

[21] Y. Zhu and F. Mueller. Feedback edf scheduling of realtime tasks
exploiting dynamic voltage scaling. Real-Time Systems Journal,
2005.

615

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Table of Contents

