Face Recognition Using FPGA
Techniques

Diego Gonzalez Gonzélez

November 12, 2005

Abstract

In recent years there has been a great interest in face recognition techniques. While many of
these techniques perform very well under controlled conditions it is very difficult to solve the more
general problem in which pose, expression and lighting vary significantly. Whilst systems have
been developed that address face detection, feature extraction and face recognition these systems

operate at very low frame rates.

In this work a color-segmentation technique is used for face-detection, a method based on
integral projections is used for face normalization and a modified ” Eigenface” approach was selected
for face recognition. Usually these systems have a low performance as require of big computers,
one of the aims of the thesis is to place as much as possible into a Field Programmable Gate
Array (FPGA), with the hope to be able to embedded the system in a chip and to improve its

performance.

FPGA design imposes certain constrictions of its own to the problem that needs to be solved,
these are based on the fact that FPGA have limited capacity and trade offs have to be done in
order to improve speed or size, also there are parts of the original algorithms that will need to be

changed in order to implement and keep them performant.

Contents

1 Introduction

2 Face Detection

2.1 Color-Skin based face detection
2.2 Algorithm

3 Face Normalization

3.1 Imtegral projection L
3.2 Finelocation of eye center
3.3 Algorithm o e

4 Face Recognition

4.1 Eigenfaces L
4.2 Onmne Image per Subject

5 On-Chip Face Recognition System

5.1 Introduction to FPGA devices e
5.2 Face Detection e e
5.3 Face Normalization

5.4 Face Recognition L

6 ToDO

A Face Detection Matlab Algorithm
B Feature Extraction Matlab Algorithm

C Matlab Functions Used

iii

ot

o o N

13
13
14
14
14

17

19

21

23

iv

CONTENTS

List of Figures

2.1 Face detection pipeline 4
2.2 Image in different steps of the face detection pipeline. 4
2.3 3D and 2D representation of RGB to YCrCb surface 5
2.4 Face detection algorithm workflow 6
5.1 FPGA development workflow 14

vi

LIST OF FIGURES

Chapter 1

Introduction

Automated face recognition systems have been a topic of great interest for a long time, interesting
applications are robotics [14], automatic systems that act depending on the person that addresses
them, human-machine interfaces [2], domotic systems [13] and security applications [12] which are
experiencing a big growth.

A system for face recognition is composed by several subsystems, each being very important
for the successful recognition of a known face.

e Face detection. Whose aim is finding the faces available in a picture or frame, different
techniques can be applied depending on the type of input (a single image or a video). The
output of these stage is a list of rectangular regions in which each face face lies.

e Face normalization. Before a face is fed to the recognition system, it should be normalized.
Normalization implies one or more transformations, the final goal is to have the eyes at a
certain distance for one another and in a given position, also the face needs to be of certain
size. This step greatly improves the performance of the next stage, face recognition. To
achieve the goal just exposed the face limits have to be found, and the eyes located, for a
finer adjustment the center of the eyes also needs to be located.

e Face recognition. Once the face has been isolated and normalized it is given as an input
to the face recognition system, whose only task it is to find a match between the input and
the database of faces it has. The output of this step is a signal that encodes whether the face
detected is known or not. The signal might be used as input to a system that can perform
some action, e.g. opening a door depending on whether the face was recognized or not.

In the following sections each of these stages will be introduced briefly, a summary of the
available techniques will be presented, next the method selected will be explained in depth and
some parts of the algorithms developed in Matlab will be given. Afterwards, Field Programmable
Gate Array (FPGA) devices are introduced, to continue with an introduction to the problems
found when implementing the face recognition system and solutions taken to those.

Chapter 1. Introduction

Chapter 2

Face Detection

Face detection is the first step that any face recognition system should perform. Detecting faces has
been a research topic for more than 20 years now, however the general problem remains unsolved
due to the many uncontrolled variables that can change in a significant way the images taken:
illumination, occlusions, face orientation and position (up-right, rotated), pose (profile, frontal)
and facial expression. However the systems in which face detection is needed impose a set of
constraints that make the problem easier to solve.

Face detection systems are given an input image in which they try to locate the faces and
return the position and extents of each face found. The methods developed so far can be classified
in different groups:

¢ Knowledge-based methods. These algorithms are based in a set of rules that encode
human knowledge about what a face is. Whilst is easy to come up with rules it is a lot more
difficult to translate these rules into a working system with precision. These systems usually
start looking for simple features such as the eyes and then look for the face around them, if
the background is complex they can easily found false-positives.

e Feature invariant approaches. These methods look for structural features of a face even
when conditions change (pose, viewpoint, lighting, etc.). Many of these approaches are based
on the fact that it is effortless for the brain to detect a face in an image, thus the first steps
must imply very simple processing. Systems have been build that look for lines, circles,
textures and colors. The most successful approach in this group is that based in color-skin
segmentation (used when color images are available) or the Viola-Jones detector [7] (when
gray level images are given).

e Template matching methods. This approach doesn’t try to find individual components
of a face, instead it considers the face as a whole. To achieve a detection a set of hand-build
templates that encode facial appearance and pose are provided to the system, pattern clas-
sification techniques are used to compare the templates against the input images. Although
quite easy to implement, these methods lack robustness.

e Appearance-based methods. The algorithms in this group try to build a template by
themselves, this being the main difference with the template matching methods introduced
before. Several ways have been tried to build the templates and classify the input image, from
statistical-based algorithms (such as Principal Component Analysis -PCA- and Independent
Component Analysis -ICA-) to biological based approaches (such as Neural Networks), other
systems tried have been Bayesian classifiers, Hidden Markov models and Support Vector
Machines (SVM).

From the methods presented those based on color-skin segmentation are the most popular,
simplicity being the main reason behind this approach but also high performance and low resource
consumption, given these advantages this method was selected for the face detection subsystem
used in this thesis.

4 Chapter 2. Face Detection

2.1 Color-Skin based face detection

Color skin segmentation provides useful information about what pixels in an image have skin color
or are very close to it, as human skin-color, no matter which race, lies in a relatively tight cluster
in chrominance space. This method is pose invariant, but produces a number of false-positives
due to objects’ color being close to that of the skin. The method proposed is composed of two
steps that try to reduce the number of false positives: morphological operations are applied to the
image to remove the noise, afterwards a connectivity analysis is performed and then the regions
are analyzed to select which of them belong to a face. Figure 2.1 show the work-flow of the system.

Pixel Classification -
(Color Segmentation) ”~

Connectivity Analysis > Region Selection

Figure 2.1: Face detection pipeline

Pixel Classification

Several color spaces can be used to perform the classification of the skin pixels, the most
commonly used are: HSV and YCbCr or YUV. The last two are very similar and are frequently
interchanged, and they match human color perception more closely than the standard RGB, which

has its color cues tightly coupled.

(a) Input image (b) Mask before region (¢) Mask after region) Final mask (e) Output image
analysis analysis

Figure 2.2: Image in different steps of the face detection pipeline.

In HSV space the H cue stands for hue, which describes the color, the S cue or saturation
describes how pure the color is, the last cue is value and describes how bright the color is, thus if
this model is selected the V cue can be ignored and the resulting system will be relatively robust
against changes in illumination. In YCrCb space the Y cue stands for luminance which describes
the brightness of the color, Cb and Cr are Blue and Red Chrominance values respectively, the
reason for this separation is that the eye is less sensitive to chrominance than to luminance, thus
the chrominance values can be subsampled 2.1.

Y 0.299 0.587 0.114 R
Cb)=1-0169 -0.331 0.500 G (2.1)
Cr 0.500 —0.419 -0.081 B

The YUV color space is very close to that described by YCrCb and sometimes is also used,
in YUV space Y cue stands for luma or luminance, U and V cues provide color information and
are ”color difference” signals U = B—Y and V = R — Y. Equation 2.2 describes the color
transformation.

Y 0299 0587 0114\ (R
Ul=|{-0147 —028 0436 | |G (2.2)
1% 0.615 —0.515 —0.100/ \B

2.2. Algorithm 5

To classify the pixels a histogram is built, such histogram contains the frequencies of the color
pixels in Cr-Cb or H-S space, after normalization each of the values lie in the 0-1 range, the
histogram can be though of as begin the probability of a color in Cr-Cb or H-S space to be a
skin color. Currently the training set is composed of about 618000 skin pixels, this is a very small
quantity but given the fact that it is not the goal of this thesis to develop a new face detection
algorithm it will be enough for demonstration purposes. Figure 2.3 shows the histogram in 2D and
3D views.

Figure 2.3: 3D and 2D representation of RGB to YCrCb surface

Connectivity Analysis

Using skin classification one only knows which pixels are skin or are skin color-like, a higher level
analysis is needed to know which pixels really belong to a face. We have to form meaningful groups
of pixels, it makes sense in this analysis to remove regions that are too small and to merge regions
that are very close to each other into a single one. For this purpose 8-connected neighborhood is
required to classify pixels into regions.

There will be a high number of very small regions that can be considered as noise, to remove such
regions a morphological open operation is performed (morphological open is an erosion followed by
a dilation) using a disk shaped structuring element of radius 3 pixels. To improve the connectivity
(it usually happens that a face might be divided into several regions that are very close to each
other) a morphological dilation is performed and then the holes are filled.

Region Selection

After performing the last step only big connected regions should be left, for each region the
area, bounding box and inertia moments are calculated, we are interested in regions that have an
aspect ratio close to the golden ratio:

L1tV
2

+ tolerance (2.3)

Also the area of the figure will be analyzed, regions taking less than 20% of the image are
automatically rejected as face candidates. Using the minor axis of the ellipse defined by the inertia
moments the image will be rotated, so that the minor axis is horizontal, this step makes it easier
to look for eyes in the normalization step.

2.2 Algorithm

Figure 2.4 shows a high level view of the already explained algorithm.

Figure shows the image at each processing steps in the pipeline.

Chapter 2. Face Detection

Color Space Transformation > Skin Segmentation > Connectivity Analysis > Region Selection
Noise Removal -) Improve Pixel Connectivity -) Fill Holes

Connectivity Analysis

Aspect Ratio > 0.75 > Area > 20%

Coonectivity Analysis

Figure 2.4: Face detection algorithm workflow

Chapter 3

Face Normalization

One of the problems with face recognition is that pictures of the face taken at different moments
without any constraint can vary enormously in size, position, illumination and facial expression.
Thus, to compare an input face image with those of the system some transformations have to be
done to the input image. To solve the first set of problems a normalization stage is required in
which several facial features are found and used to do size and position transformations on the
original image.

Many exist for feature extraction, from using neural networks, algebraic and statistical meth-
ods (eigenfeatures), methods based on wavelets (mainly Gabor and Haar) and others build upon
geometrical knowledge. The technique used in this work, integral projection, uses geometrical
knowledge to locate the area where the eyes lay, afterwards to precisely locate the center of each
eye a new method is used based on intensity projection. The distance between both eyes is used to
normalize the position, rotation and size of the face. This method requires the rotation of the face
to be quite small, which is achieved with an initial rotation using the inertia moments calculated
in the previous stage.

3.1 Integral projection

Integral projection was a method first used by Takeo Kanade in his work on recognition of human
faces, afterwards the method was improved using binary dominance maps (generated by perform-
ing edge detecting with algorithms sensible to horizontal and vertical segments). Vertical and
horizontal integral projection functions are defined in equations 3.2 and 3.2, where I(z,y), is the
input image of dimension M = r X ¢, r is the number of rows and ¢ the number of columns.

Viz) =Y I(x,y) (3.1)

H(y)=) I(z,y) (3-2)

Using these expressions combined with the binary dominance maps we can isolate with regions
of the face that are interesting to us only by studying the projections.

Extraction of face region

The algorithm described here is based on the one proposed by Y.-S. Ryu and S.-Y. Oh in [11]
with a some minor modifications to improve the boundary selection.

Calculating the binary vertical and horizontal dominance maps (trought the use of an edge
detector operator that can discriminate between horizontal and vertical segments, like the sobel
operator) and applying the integral projection method previously discussed the main features of
the face can be extracted.

8 Chapter 3. Face Normalization

If the horizontal projection is calculated using the horizontal dominance map and the fact that
in the hair and mouth regions the horizontal components dominate. Thus if we look in the upper
face region for a spike in the projection we should find the hair. Also, looking for the highest value
in the bottom half part of the face image should provide us with the vertical mouth position.

—_

<j< (3.3)

wl =

ynr = argmax Hy ()

yr, = argmax Hp(j) + Ay, <j<r (3.4)
J

N3

To calculate the horizontal limits (i.e. right and left sides) of the face the vertical dominance
map an its vertical projection are used, the faces is divided in two halfs, in the left we look for
a maximum in the projection, this is the left side of the face, the same method is applied to the
right side of the face.

—_

xR = argmax H, (i), <i< (3.5)

N o

xr = argmax H, (i), <i<c (3.6)
7

N o

With these for limits we can obtain the an extent that is the face region, in this region we will
perform the search for the eyes. Note that from now on all the operations will be performed in
this extent if not specified.

Extraction of eyes

In order to look for the eyes it is supposed that they will be found on the upper half of the
extent. To properly find the eyes it is needed to separate them from the eyebrows, this is done
using the information on the binary maps and taking into account that the eyebrows contain mostly
horizontal components. This is, we will look for maximum in the vertical dominance map, in the
region that goes from % to % of the extent’s height.

. . . 1 o2
Hyo(j) =Y Ivi(i,j), qWr —ym) <5< 5L —yn) (3.7)
i=1
E. = argmax Hp,(j). (3.8)
J

The horizontal line defined by E. is the row with the strongest vertical edge component within
the region containing both eyes, the eyes are around this region, considering a tolerance up and
down this line a extent can be defined where the eyes lay.

3.2 Fine location of eye center

3.3 Algorithm

[11]

Chapter 4

Face Recognition

Face recognition tries to match the face given as input with one of the faces that the system knows
about, and output a signal that will encode whether the face is known or not.

Many systems have been developed that try to cope with some aspects of the variability of the
input faces: expressions, occlusions, pose, position and so on, but up until now no system is able
to deal with all the variations, it is a field where a lot of research is being done. To perform the
matching several techniques have been developed [15] which can be classified into several groups:

e Subspace based methods. Faces often share a lot of characteristics this fact makes it possi-
ble to map a high-dimensional pixel array to a subspace of lower dimension. These methods
use statistical and algebraic tools to extract and analyze the underlying subspace. Some
algorithms that lay in this group are: Principal Component Analysis (PCA), Independent
Component Analysis (ICA) and Linear Discriminant Analysis (LDA).

e Feature based (structural) matching methods. Local features are localized and ex-
tracted, its location and statistics are used for matching. Techniques such as neural networks,
hidden Markov models and pure geometrical methods can be applied.

e Hybrid methods. The brain uses both models to analyze faces, the problem of such
approach would be the computational power needed to perform them, but the performance
of these methods combined should be better than the previous ones.

From these groups the first one has seen most of the research, quite a lot of approaches have
been tried in this field, each one having its goodness and flaws. The better known method is that
called Eigenfaces [1] which laid the foundations for all the existing methods, it is also a method
that even today, 15 years after is original publication, exhibits great performances and requires an
acceptable computing power.

The LDA[10] based method requires a lot more computing resources and to surpass the Eigen-
faces method it requires a several images per subject, which is not a real life requirement[8]. Other
methods have not seen such a warm acceptation, which might be due to its complexity, Independent
Component Analysis has been one of them [9].

After analyzing the methods available the Eigenfaces was chosen due to its low complexity and
real life requirements (it doesn’t need a great amount of pictures per subject), and there is at least
one published method on how to use only one picture per subject[16]).

4.1 Eigenfaces

The eigenface method tries to project the input image into a subspace whose orthogonal basis is
composed by a set of vectors, also known as eigenfaces. This vectors contain the most significant
features from a set of training faces. A face projected into the subspace is encoded by a set of
weights, which are used to compare the image in the face space.

10 Chapter 4. Face Recognition

After doing this brief and rough introduction, the Eigenface method is going to be described
in depth from a mathematical point of view.

The eigenface approach tries to extract the set of facial regions that are most different in the
set of faces and to encode this variation, the regions just described can be considered features
(note that the set of features that the algorithm may choose are not necessarily the ones that
human would consider features - eyebrows, eyes, nose, mouth -). Mathematically this means that
we are looking for the principal components of the distribution of faces, or the eigenvectors of the
covariance matrix of the set of training images. These vectors will be ordered according to the
amount of variation that they encode. If we represent each eigenvector as an image we can see a
set of ghostly images, which are called eigenfaces. Figure 4.1 shows the steps that are needed to
initialize the eigenfaces algorithm.

1. Get the set of training faces
2. Calculate eigenfaces from the training set

3. Select those eigenfaces whose eigenvalue is higher

4. Calculate the weight vector of each known individual

Table 4.1: Eigenface initialization algorithm

Figure 4.2 shows the steps performed when a new input face is fed into the face recognition
system.

1. When a new face is presented project it into the face space
2. Calculate the distance from this new face to the others in the face space

3. A low value means that the face is know, otherwise it is not known to
the system

Table 4.2: Eigenface matching procedure

Calculating Eigenfaces

We would like to find a subspace in which the basis is orthogonal and will maximize the
variance in the training set. Principal Component Analysis, sometimes called Karhunen-Loeve
transformation (KL), is used to find the linear representation of faces using only covariance of data
and determines the set of orthogonal components (also known as eigenvectors, feature vectors or
eigenfaces) which minimize the reconstruction error of a set of input vectors (training set).

Let ' = [’y To .. Tp] be the training set with M faces, let each face in the set be of
size m = w X h, being m the dimension of each face. To ensure that only significant features
are captured in to the model the general face information should be removed, which is achieved
calculating the average face vector and subtracting it from each of the faces in the training set,
this results in a new set of face images @, see equations 4.2 and 4.2.

v o= (4.1)

=|-
I
-

©
I
—

¢, =

e
|
S

(4.2)

To compute the basis for the images in set ® we define a matrix of dimension m x M in which
each column corresponds to each face in the training set ® (each face is ”stacked”, one column will
be placed after another creating a vector), next the covariance is calculated as shown in equation
4.4. The constant ﬁ in equation 4.4 is introduced for convenience.

4.1. Eigenfaces 11

® = \/LM[% Dy ... Dy (4.3)
M
C o=) o9 (4.4)

The only thing left to do is to calculate the eigenvectors u; and eigenvalues \; of the covariance
matrix as shown in equation 4.6.

M
c = ZululT (4.6)
i=1

However there exists a pitfall in the approach just exposed, it is a computationally intractable
problem due to the size of covariance matrix (assume the we have a face of size 100 x 100 and M
images in the training set, the covariance matrix would be of dimension 1000002 which would take
around 800 megs of ram and a very powerful processor), the key to a solution is to realize that the
eigenvectors of &)1&)? can (an m X m matrix) be found from the eigenvectors of &)?&)1 (an M x M
matrix). The covariance matrix can be calculated as:

M
C=> o/, (4.7)
1=1

Also as the number of data points in the image space is less than the dimension of the space
M < m, there will be only M — 1 meaningful eigenvectors, thus, we can calculate the covariance
matrix in the new way exposed without loosing any generality, as the eigenvectors whose eigenvalues
are bigger will be preserved. To recover the eigenfaces we can apply equation 4.8.

VIAI
In this way we can recover the eigenfaces from the modified equation (which is reconstructed
using its SVD). A method has been presented that permits the computation of eigenfaces from
a reduced covariance matrix, after applying the modification the matrix is of size M?, this it is
dependant on the number of faces in the training set, if the training set is very big there exists
some approaches to solve the problem [5].

Choosing the basis

For a face recognition system a good reconstruction is not required, it is only necessary that
the features distinguish between those known and not known individuals [6], thus the basis can be
trimmed down quite a bit. If the eigenfaces with the higher associated eigenvalues are removed then
the reconstruction error will be very high, if we remove those eigenfaces with the lower eigenvalues
the reconstruction error will be small. If fact, the reconstruction error when using the PCA method
is a combination of the truncated eigenvalues, see equation 4.9, where s are the number of faces
selected.

M
error = Z Ai (4.9)

i=s+1

It has also be shown that if the first three eigenfaces are removed from the set of selected
eigenfaces the accuracy of the recognition improves because the first eigenvectors seem to represent
changes in illumination [17], which is a bit surprising because in this way the reconstruction error
would be quite big.

12 Chapter 4. Face Recognition

During the years several other techniques have been published, this eigenvector selection tech-
niques try to improve the recognition rate of the system under different conditions, e.g: considering
only one image per subject [16], improving robustness under changes of facial expression [4].

Classifying a Face

To classify an incoming face it has to be projected into the subspace described by the eigen-
faces, the result of this operation is a weight vector with as many components as the basis has.
The resulting vector is used to compare this face against the set of known faces, the most easy
comparison can done using a simple euclidean distance metric. The following figure contains the
algorithm.

1. Project the new face into the face space

2. Calculate the distance of this face to each of the faces known by the
system

3. If the distance is below a threshold then the face is known otherwise it is
unknown

The following set of equations explain how the projection is done into the face space and how
the closest face in the set is selected, where wy, is the set of weight vectors from each of the faces
in the training set, x is the weight vector of the input face and wy is the face in the training set
closest to the input face.

w, = ul (T —0) (4.10)
r = ul(z—0) (4.11)
wy = arg 1g}i§nM [|z — wg]] (4.12)

Thus the smaller the distance to an already known face the more likely the input face belongs
to the subject whose distance is smaller. This method can even be used to know if an object is a
face, if the input image is close enough to the face space, then it can be considered as a face.

Eigenfaces problems

The algorithm explained is the original one proposed by Turk and Pentland, this algorithm
is quite good at obtaining the most expressive subset of eigenfaces to form the basis of the new
subspace, however it is not the most discriminating subset, which is due to the way the way the
covariance matrix is build, it contains all the faces that belong not only to the same subject but
also to different ones. The best possible basis is that in which we have a very low intrapersonal
variation while the interpersonal variation is as large as possible. It happens that the eigenfaces
with the largest eigenvalues are the most expressive ones, but retain a large component of the
intrapersonal variation and the eigenfaces with lower eigenvalues have no intrapersonal variation,
however they contain almost no discriminating power.

If a basis could be built that retains the most interpersonal variation while keeping the intrap-
ersonal variation as low as possible we could have only one sample image per subject. In the next
section an eigenface basis selection method with such properties is investigated.

4.2 One Image per Subject

Chapter 5

On-Chip Face Recognition System

5.1 Introduction to FPGA devices

Today electronics are dominated by digital electronics integrated circuits ranging from general
purpose microchips (such as those found in computers) to application specific integrated circuits
(ASIC) which can be found on most electronic devices, this circuits are targeted to specific ap-
plications (e.g. MPEG decoders, controllers, signal processors, etc.). Most of these circuits are
build upon standard cells (gates, flip-flops and memory blocks) instead of at the transistor level.
Using standard cells layout is optimal for most of applications and reduces the production costs
and time a lot, since most of the cost of producing the integrated circuits are eliminated (the cost
of producing extremely expensive chip masks is removed).

Field Programmable Gate Arrays (FPGA) are standard chips that can be programmed in the
field. These devices contain standard cells (logic gates, flip-flops and memory blocks), the developer
has to specify how to wire those elements together. Powerful tools have been build around FPGAs
that enable developers to dramatically cut the production time:

e Hardware Description Languages (HDL) such as Verilog (primarily used in the United
States) and VHDL (VHSIC Hardware Description Language) have also been developed to
ease the developer work.

e Simulators that enable the debugging of the circuits before actually using the FPGA.

e Synthesis Tools that translate the hardware description into a bitstream targeted at each
device, in this step the different cells in the chip are wired as the developer specified.

VHDL is the main description language used today, it has several levels each tailored to specific
needs, while the language considered as a whole can be close to C or other low-level programming
languages, there is only a much restricted subset that is actually synthesizable (i.e. translatable
to hardware) by most tools, this subset is composed only by the most basic constructions of the
VHDL language. Advanced and expensive tools are also available which bring new languages closer
C (like Handel-C) into the hardware design world.

As expected FPGAs and these development tools have changed the way in which ASICs are
developed next, the most important steps followed to develop a new system are described and
figure 5.1 shows the work-flow.

e Arquitecture partitioning decide which modules will be developed in software and which
ones will be designed in hardware.

e Hardware Description Language design for hardware modules.

e Simulation of the hardware description.

13

14 Chapter 5. On-Chip Face Recognition System

Specification
Y
/, Arquitecture Partitionir?, I
/ /7 VHDL Description
—
/ \ 4
N |
Simulation
/ /7 (Static analysis)
l Y
N

\ Synthesis
Hardware Translation
\ Place & Route

Test

Figure 5.1: FPGA development workflow

e Synthesis the design is translated to a bitstream that the target hardware can understand,
in this step the cells are wired (this is also called place & route).

e Verification, which involves the testing of the hardware.

During the last years FPGAs use in digital signal processing (DSP) has been growing due to
their increasing power and the introduction of special cells geared towards DSP processing, cur-
rently FPGAs easily surpass general purpose DSPs and are starting to be used for application

specific DSP. The main fields where FPGAs are used are: telecommunications industry (network-
ing, telecom and DSP processing), consumer electronics (MPEG decoders and encoders), etc.

5.2 Face Detection
5.3 Face Normalization

5.4 Face Recognition

Bibliography

[1] M. Turk and A. Pentland. Eigenfaces for Recognition. In Journal of Cognitive Neuroscience
1991.

[2] Md. Al-Amin Bhuiyan, V. Ampornaramveth, S. Muto and H. Ueno. Face Detection and Facial
Feature Localization for Human-machine Interface. NII Journal, (no.5), 2003.

[3] G. Shakhnarovich and B. Moghaddam. Face Recognition in Subspaces. Mitsubishi Electric
Research Laboratories Technical Report TR2004-041. May 2004.

[4] S. Chen and B.C. Lovell. Illumination and Expression Invariant Face Recognition with One
Sample Image. In proceedings of the International Conference on Pattern Recognition. August
2004.

[5] S. Chandrasekaran, B.S. Manjunath, Y.F. Wang, J. Winkeler and H. Zhang. An eigenspace
update algorithm for image analysis. Graphical Models and Image Processing, vol.59, (no.5),
Academic Press, pp.321-32, Sep 1997

[6] N. Muller, L. Magaia and B.M. Herbst. Singular Value Decomposition, Eigenfaces, and 3D
Reconstructions. In STAM Review, Vol. 46, No. 3. September 2004.

[7] P. Viola and M. Jones. Robust Real-time Object Detection. In International Journal of Com-
puter Vision. 2001.

[8] A. Martinez and A.C. Kak. PCA versus LDA. In IEEE Transactions on Pattern Analysis and
Machine Intelligence. February 2001.

[9] M.S. Bartlett, J.R. Movellan, T.J. Sejnowski. Face recognition by independent component
analysis. In IEEE Transactions on Neural Networks. 2002.

[10] PN. Belhumeur, J.P. Hespanha and D.J. Kriegman. Eigenfaces vs Fisherfaces: recognition
using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine
Intelligence. 1997.

[11] Y-S. Ryu and S-Y Oh. Automatic extraction of eye and mouth fields from a face image using
eigenfeatures and multilayer perceptrons. Journal of Pattern Recognition. December 2001.

[12] J. Heo, B. Abidi, J. Paik and M. Abidi. Face recognition: evaluation report for Facelt Identi-
fication and Surveillance. In Proceedings the International Conference on Quality Control by
Artifical Intelligence, May 2003.

[13] F. Zuo and P.H.N de With. Real-time Face Recognition for Smart Home Applications. Inter-
national Conference on Consumer Electronics. February 2005.

[14] G. Littlewort, M.S. Bartlett, I. Fasel, J. Chenu, T. Kanda, H.Ishiguro and J.R. Movel-
lan. Toweards social robots: Automatic evaluation of human-robot interaction by face detection
and expression classification. Advances in Neural Information Processing Systems. 2003.

[15] W. Zhao, R. Chellappa, P.J. Phillips and A. Rosenfeld. Face Recognition: A Literature Survey.
In ACM Cumputing Surveys, December 2003.

15

16 BIBLIOGRAPHY

[16] J. Wang, Y. Gu, K.N. Plataniotis and A.N. Venetsanopoulos. Select Eigenfaces for face recog-
nition with one training sample per subject. In proceedings of the International Conference on
Control, Automation, Robotics and Vision, December 2004.

[17] A. Pentland, T. Starner, N. Etcoff, N. Masoiu, O. Oliyide and M. Turk. Experiments with
eigenfaces. Workshop of International Joint Conference on Artificial Intelligence, 1993.

Chapter 6

ToDO

e Incluir datos reales de pruebas
e Incluir imagenes de eigenfaces

e Incluir seccion en cada sitio que hable de las restricciones que impone la FPGA

17

18

Chapter 6. ToDO

Appendix A

Face Detection Matlab Algorithm

% Remove those pizels that are not on the skin

% histogram
for i=1:height
for j=1:width

h = h_cue (i,j) + 1;
s =s_cue (Lj) + 1,

if (histogram (h, s) > 0.10)

im (i, j) = 1,
else
im (i, j) = 0;
end
end
end

% Remove small regions (noise)
se = strel (’disk’, 3);
mask2 = imopen (mask, se);

% Dilate pizels to 1mprove pizel connectivity

se = strel (’disk’, 4);
mask2 = imdilate (mask2, se);

% Fill inside regions
mask2 = imfill (mask2, *holes’);

% Mark clusters of pizels

[mask3, numObjects] = bwlabel (mask2, 8);

grain = regionprops (mask3, ’all’);

% Get the dimensions of each region found and test its

% size ratio and area

for i=1:numObjects
bbox = grain(i).BoundingBox;
area = grain (i).Area;
ratiol = bbox(4)/bbox(3);

19

10

20

30

40

20 Chapter A. Face Detection Matlab Algorithm

% Filter image regions whose aspect ratio is below
% 0.75 or above 2.0
if (ratiol < 0.75 || ratiol > 2.0)
mask3 = face_filter_out (mask3, i);
else
% Only consider those cluster that take 19% or
% more of the picture
if ((100 * area / imsize) < 15.0)
mask3 = face_filter_out (mask3, i); 50
if (numObjects == 1)
disp (’Warn: filtering object, it is not big enough’);
end
else
face_box = bbox;
orientation = grain(i).Orientation;
g = grain(i);
end
end
end 60
% Close any holes in the mask
se = strel (°disk’, 3);
mask3 = imfill (mask3, holes’);

Appendix B

Feature Extraction Matlab
Algorithm

% Load the image containing the face
base_dir = fullfile (>. .7, *.?);

face = fullfile (*. .?, *face.jpg’);

x = imread (face);

xgray = double (rgh2gray (x));
[height, width] = size (xgray);

xbw = im2bw(xgray, 0.01);
10

% Horizontal Projection
h_edge_map = edge (xgray, ’sobel’, *horizontal’);

hproj = zeros(height,1);
for i=1:height
for j=1:width
hproj(i, 1) = hproj (i, 1) + h_edge_map(ij);
end
end 20

% Get the start of the face with more precision

% *) Look for the hair in the region 0 - Height/4

% *) Look for the mouth in the region Height/2 - Height

%

% [1] Y-S. Ryu and S-Y. Oh. Automatic extraction of eye and mouth fields from

% from a face image using eigenfeatures and multilayer perceptrons. Pattern

% Recognition 34.

t = round (height/6);

temp = hproj (1:t, 1); 30
[v, y-max] = max (temp); % y-maz is the hair line

temp = hproj (height/2:height, 1);
[v, y-min] = max (temp) % y-min is the chin line
y_min = y_min-+height/2;

%% Vertical Projection

21

Chapter B. Feature Extraction Matlab Algorithm

v_edge_map = edge (xgray, ’sobel’, ’vertical’);
vproj=zeros (width, 1);

for i=1:width
for j=y_max:y_min
vproj(i,1) = vproj(i,1) + v_edge_map(j,i);
end
end

% Get the vertical limits of the face

% *) Look for the left side in the region enclosed by 0 - width/2

% *) Look for the right side in the region enclosed by width/2 - width
t = round (width/2);

temp = vproj(1:t, 1);

[v, x_left] = max (temp);

temp = vproj(t:width, 1);
[v, x_right] = max (temp);
x_right = x_right + t;

% FExtraction of eyes ——————— -
t1 = round(2/8*(y_min—y_max))
t2 = round(2/3*(y_min—y_max))

proj = zeros(height,1);

for i=t1:t2
for j=x_left:x_right
proj(i,1) = proj(i,1) + v_edge_map(ij);
end
end

[v, eye_line] = max(proj)

% We take 20 as the initial eye threshold
[v, eyeThreshold] = min(proj(eye_line—20:eye_line,1));
eyeThreshold = 20—eyeThreshold;

eye_max = eye_line — eyeThreshold;
eye_min = eye_line + eyeThreshold;

proj = zeros(width,1);

for i=x_left:x_right
for j=eye_max:eye_min
proj(i,1) = proj(i,1) + h_edge_map(j i);
end
end

t=(x_right—x_left) /2+x_left;

[v, indx_right]=max(proj(t:x_right,1));
indx_right=indx_right+t;

[v, indx_left |[=max(proj(x_left:t,1));
indx_left=indx_left-+x_left;

40

50

60

70

80

90

Appendix C

Matlab Functions Used

B
bwlabel

E
edge

G
graythresh

I
im2bw
1mMcrop
imdilate

imfill
imopen
imread
imshow
Imwrite

R
reglonprops
rgb2gray
rgb2hsv

strel

