28 Chapter 1. An Overview in Five Examples

If the stack is nonempty we return its top-most value and a nil error value.
Since Go uses 0-based indexing the first element in a slice or array is at position
0 and the last element is at position len(sliceOrArray) - 1.

There is no formality when returning more than one value from a function or
method; we simply list the types we are returning after the function or method’s
name and ensure that we have at least one return statement that has a corre-
sponding list of values.

func (stack *Stack) Pop() (interface{}, error) {
theStack := *stack
if len(theStack) == 0 {
return nil, errors.New("can't Pop() an empty stack")
}
X := theStack[len(theStack)-1] @
xstack = theStack[:len(theStack)-1] @
return x, nil

}

The Stack.Pop() method is used to remove and return the top (last added) item
from the stack. Like the Stack.Top() method it returns the item and a nil error,
or if the stack is empty, a nil item and a non-nil error.

The method must have a receiver that is a pointer since it modifies the stack
by removing the returned item. For syntactic convenience, rather than refer
to *stack (the actual stack that the stack variable points to) throughout the
method, we assign the actual stack to a local variable (theStack), and work with
that variable instead. This is quite cheap because *stack is pointing to a Stack,
which uses a slice for its representation, so we are really assigning little more
than a reference to a slice.

If the stack is empty we return a suitable error. Otherwise we retrieve the
stack’s top (last) item and store it in a local variable (x). Then we take a slice of
the stack (which itself is a slice). The new slice has one less element than the
original and is immediately set to be the value that the stack pointer points to.
And at the end, we return the retrieved value and a nil error. We can reasonably
expect any decent Go compiler to reuse the slice, simply reducing the slice’s
length by one, while leaving its capacity unchanged, rather than copying all the
data to a new slice.

The item to return is retrieved (28 <;-@) using the [] index operator with a
single index; in this case the index of the slice’s last element.

The new slice is obtained by using the [] slice operator with an index range
(28<;@). An index range has the form first:end.If first is omitted—as here—0
is assumed, and if end is omitted, the len() of the slice is assumed. The slice
thus obtained has elements with indexes from and including the first up to and


Audrey Doyle
Cross-Out
delete hyphen and close up

Audrey Doyle
Cross-Out

Audrey Doyle
Cross-Out

Audrey Doyle
Replacement Text
referring

Audrey Doyle
Inserted Text
,


2.3. Numeric Types 63

func m(places int) *big.Int {
digits := big.NewInt(int64(places))
unity := big.NewInt(0)
ten := big.NewInt(10)
exponent := big.NewInt(0)
unity.Exp(ten, exponent.Add(digits, ten), nil) @
pi := big.NewInt(4)
left := arccot(big.NewInt(5), unity)
left.Mul(left, big.NewInt(4)) @
right := arccot(big.NewInt(239), unity)
left.Sub(left, right)
pi.Mul(pi, left) ©
return pi.Div(pi, big.NewInt(0).Exp(ten, ten, nil)) @

The n() function begins by computing a value for the unity variable (10%Eits+10)

which we use as a scale factor so that we can do all our calculations using inte-
gers. The +10 adds an extra ten digits to those given by the user, to avoid round-
ing errors. We then use Machin’s formula with our modified arccot() function
(not shown) that takes the unity variable as its second argument. Finally, we

return the result divided by 10" to reverse the effects of the unity scale factor.

To get the unity variable to hold the correct value we begin by creating four vari-
ables, all of type *big.Int (i.e., pointer to big.Int; see §4.1-Values; Pointers;and
RefereneeTypes » 138). The unity and exponent variables are initialized to 0,
the ten variable to 10, and the digits variable to the number of digits requested
by the user. The unity computation is performed in a single line (63—<-@). The
big.Int.Add() method adds 10 to the number of digits. Then the big.Int.Exp()
method is used to raise 10 to the power of its second argument (digits+ 10).
When used with a nil third argument—as here—big.Int.Exp(x, y, nil); per-
forms the computation x”; with three non-nil arguments, big.Int.Exp(x, y, z);
computes x¥’mod z. Notice that we did not need to assign to unity; this is because
most big.Int methods modify their receiver as well as return it, so here, unity is
modified to have the resultant value.

The rest of the computation follows a similar pattern. We set an initial value of
pi to 4 and then compute the inner left-hand part of Machin’s formula. Again
notice that we don’t need to assign to left after creating it (63—<-®), since the
big.Int.Mul() method storesthe resultinitsreceiver (i.e.,in this case in variable
left) as well as returning the result (which we can safely ignore). Next we com-
pute the inner right-hand part of the formula and subtract the right from the
left (leaving the result in left). Now we multiply pi (of value 4) by left (which
holds the result of Machin’s formula). This produces the result but scaled by uni-
ty. So in the final line (63— @) we reverse the scaling by dividing the result (in

pi) by 10".


Audrey Doyle
Cross-Out

Audrey Doyle
Cross-Out

Audrey Doyle
Cross-Out

Anna Popick
Cross-Out

Anna Popick
Cross-Out


5.6. Custom Functions 233

xs := [lint{2, 4, 6, 8}

fmt.Println("5 @", Index(xs, 5), " 6 @", Index(xs, 6))

ys := []String{"c", IIBII’ IIKII’ IIAII}

fmt.Println("Z @", Index(ys, "Z"), " A @", Index(ys, "A"))

5@-1 6@2
Z@-1 A@3

What we really need to be able to do is treat the slice generically—that way
we could have just one loop and do the type-specific testing inside it. Here is a
function that achieves this—and it produces the same output as the above code
snippet if we replace calls to Index() with calls to IndexReflectX().

func IndexReflectX(xs interface{}, x interface{}) int { // Long-winded way
if slice := reflect.ValueOf(xs); slice.Kind() == reflect.Slice {
for i := 0; i < slice.Len(); i++ {
switch y := slice.Index(i).Interface(). (type) {
case int:
if y == x.(int) {
return i
}
case string:
if y == x.(string) {
return i

}

}
}

return -1

}

The function begins by using Go’s reflection support (provided by the reflect
package; §9.4.9, » 425), to convert the xs interface{} into a slice-typed re-
flect.Value. Such values provide the methods we need to traverse the slice’s
items and to extract any items we are interested in. Here, we access each item
in turn and use the reflect.Value.Interface() function to pull out the value as
an interface{} which we immediately assign to y inside a type switch. This en-
sures that y has the item’s actual type (e.g., int or string) which can be directly
compared with the unchecked type-asserted x value.

In fact, the reflect package can take on far more of the work, so we can eensid-
erably-simplify this function.

func IndexReflect(xs interface{}, x interface{}) int {
if slice := reflect.ValueOf(xs); slice.Kind() == reflect.Slice {


Audrey Doyle
Inserted Text
 considerably

Audrey Doyle
Cross-Out


