GLSL Shading with
OpenSceneGraph

Mike Weiblen
July 31, 2005
Los Angeles

3 D/ a /75

Summary of this talk

Overview of GLSL pipeline & syntax
OSG support for GLSL

Tips, Tricks, Gotchas, and Tools
Demos

What we're not covering
Our focus will be the OSG API, not OpenGL API
Not lots of detail on the GLSL language itself

3Di.bs.

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

Our dependencies

OpenGL 2.0

OpenGL Shading Language 1.10 rev 59
Specs on opengl.org and CDROM

OpenSceneGraph 0.9.9
Note: GLSL support continues to evolve in CVS

3Di.bs.

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

GLSL / OSG timeline

Fall 2001: 3Dlabs “GL2.0" whitepapers,
shading language is the centerpiece

July 2003: ARB approves GL1.5, GLSL as
ARB extension

Fall 2003: osgGL2 Nodekit

Sep 2004: ARB approves GL2.0, GLSL In
the core.

Spring 2005: 2"d generation GLSL support
Integrated into OSG core

Supports both OpenGL 2.0 and 1.5 extensions

SD)abs

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

Overview of GLSL

The OpenGL 2.0 Pipeline

(Pixels)

Vertices > Pi .
Programmable Unit
Fragments -=> Textures

3D/abs

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005 6

GLSL pipeline architecture

GLSL exposes programmability at two
points in the OpenGL 2.0 pipeline
Vertex processor
Fragment processor

Compiled code to run on a particular
processor is a glShader

A linked executable unit to be activated on
the pipeline is a glProgram

SD)abs

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

GLSL compilation model

Similar to familiar C build model

glShader = “object file”
Contains shader source code
Compiled to become an “.obj file”
Must be recompiled when source changes

glProgram = “executable file”
Contains a list of shaders
Linked to become an “.exe file”
Must be relinked when set of shaders changes

As with C, a glShader “.obj” can be
shared across multiple glPrograms “.exe”

3DVt |

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

Vertex Processor Overview

Standard

OpenGL Generic
attributes attributes

gl_color 0,1,2, ...

gl_normal
etc.
Vertex User-defined uniforms:
< epsilon, myLightPos, surfColor, etc.
Texture Maps — /Processor < Built-in uniforms:

gl_FogColor, gl_ModelViewMatrix, etc.

MK

Standard Special User-defined
Varying Variables Varying

gl_FrontColor gl_Position normal

gl_BackColor gl_ClipVertex refraction

3D[db$, etc. gl_PointSize etc.

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005 9

Fragment Processor Overview

Standard Special User-defined
Varying Variables Varying
gl_Color gl_FragCoord normal
gl_SecondaryColor gl_FrontFacing refraction
etc. etc.
Fragment User-defined uniforms:
_ > -« epsilon, myLightPos, surfColor, etc.
Texture Maps ——p/Processor < Built-in uniforms:

gl_FogColor, gl _ModelViewMatrix, etc.

Special
Variables
gl_FragColor
gl_FragDepth

gl_FragData[n]

SD)abs

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005 10

GLSL language design

Based on syntax of ANSI C

Includes preprocessor

Additions for graphics functionality
Additions from C++

Some refactoring for cleaner design
Designed for parallelization on SIMD array

SD)abs

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

11

SD)abs

Language enhanced for graphics

Added Vector and Matrix types

Added Sampler type for textures
Qualifiers: attribute, uniform, varying
Built-in variables to access GL state
Built-in functions

Vector component notation (swizzling)

discard keyword to cease fragment
processing

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

12

Additions from C++

Function overloading

Variables declared when needed
struct definition performs typedef

bool datatype

SD)abs

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

13

Differences from C/C++

No automatic type conversion

Constructor notation rather than type cast
iInt x = Int(5.0);

Function parameters passed by value-

return

NO pointers or strings

SD)abs

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

14

SD)abs

GLSL compiler

The GLSL compiler is in the GL driver and
part of the core OpenGL API

No external compiler tools required.

So the compiler is always available at
runtime

Compile shaders whenever convenient
Tight integration allows every vendor to
exploit their architecture for best possible
performance

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

15

Cg

[Cg Code]

o

Cg Compiler

<

Intermediate Lang) Too
(e.g. ARB vp/fp) far

apart

IL Translator

Driver

Graphics HW

3Di.bs.

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

Comparing architectures

GLSL

| GLSLCode |

V

Compiler

Driver

Graphics HW

)

Tightly
coupled

16

3Di.bs.

GLSL datatypes

Scalars: float, int, bool
Vectors: float, int, bool
Matrices: float
Samplers

Arrays

Structs

Note

Int and bool types are semantic, not expected to
be supported natively

Int at least as 16 bits plus sign bit

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

17

GLSL datatype qualifiers

uniform

Relatively constant data from app or OpenGL
Input to both vertex and fragment shaders

attribute

Per-vertex data from app or OpenGL
Input to vertex shader only

varying
Perspective-correct interpolated value
Output from vertex, input to fragment
const

IN, out, I1nout (for function parameters)

SD)abs

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005 18

3DVt |

OpenGL state tracking

Common OpenGL state Is available to
GLSL via built-in variables

Built-in variables do not need declaration
All begin with reserved prefix “gl _”

Includes uniforms, attributes, and varyings
Makes it easier to interface w/ legacy app code

However, recommend just defining your
own variables for semantic clarity; resist
temptation to overload built-ins

FYI OpenGL/ES will have no or few built-ins

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

19

uniform variables

Input to vertex and fragment shaders

Values from OpenGL or app
e.g.: gl_ModelViewProjectionMatrix

Changes relatively infrequently
Typically constant over several primitives

Queriable limit on number of floats
App sets values with glUniform*() API

3Di.bs.

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

20

attribute variables

Input to vertex shader only
Values from OpenGL or app
e.g.: gl _Color, gl Normal
Can change per-vertex
But doesn’t have to

Queriable limit on the # of vec4 slots
Scalars/vectors take a slot
Matrices take a slot per column

Apps sends with per-vertex API or vertex
arrays

3Di.bs.

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

21

varyling variables

Output from vertex, input to fragment
Name & type must match across shaders

Values from vertex stage are perspective-
corrected, interpolated, sent to fragment
stage

Queriable limit on number of floats

Usually defined by GLSL code

although GLSL defines some built-ins; e.g.:
gl_FrontColor (necessary when combining GLSL
with fixed-functionality)

3Di.bs.

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005 22

SD)abs

Defining variables in GLSL

Uniform, varying, attribute must be global
to a glShader

Over-declaring variables in GLSL code
doesn’t cost

Only those variables actually used in the
code (the “active” variables) consume
resources

After linking, the app queries uniforms
and attributes from glProgram

Runtime introspection; useful e.g. for
building a GUI on the fly

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

23

Texture access

GLSL supports texture access in both
vertex and fragment stages

However, some hardware may not yet

support texture access in vertex

Vertex texturing Is available when
GL_MAX VERTEX TEXTURE IMAGE_UNITS >0

Mipmap LOD is handled differently
between Vertex and Fragment stages

SD)abs

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

24

Shader Configurations

May have more than 1 glShader per stage
attached to a glProgram

But there must be exactly one main() per
stage

Useful for a library of shared GLSL code
to be reused across several glPrograms

SD)abs

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005 25

Program Configurations

GLSL permits mixing a fixed-functionality
stage with a programmable stage

Prog Vertex + Prog Fragment

Prog Vertex + FF Fragment

FF Vertex + Prog Fragment

GLSL Bulilt-in varyings are key when
mixing programmable stages w/ FF

3Di.bs.

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

26

GLSL Versioning & Extensions

#version min_version_number
Default is “#version 110"
Good idea to always declare expected version

#extension name : behavior
Default is “#extension all : disable”

Extension names/capabilies defined In
usual GL extensions specifications

Special name “all” indicates all
extensions supported by a compiler

Details in GLSL 1.10 spec ppl1-12

3Di.bs.

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

27

Using GLSL extensions

Recommended approach

#1fdef ARB_ texture rectangle
#endif

uniform sampler2DRect mysampler;

SD)abs

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

#extension ARB_texture_rectangle :

require

28

GLSL Future

Expect GLSL to evolve

Possible new language features
More built-in functions, datatypes
Interfaces
Shader trees

Possible new programmable stages in
pipeline

Geometry

Blending

- Use #version and #extension
=] » JAT2

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

29

OSG support for
GLSL

3 D/ a /75

OSG GLSL design goals

Continue OSG’s straightforward mapping
of classes to the underlying GL concepts

Leverage OSG’s state stack to apply GLSL
state with proper scoping
App specifies where/what GLSL will do.

OSG determines when/how to apply, restoring to
previous state afterwards.

Let OSG deal with the tedious GL stuff

Management of contexts, constructors, indices,
compile/link, etc.

SD)abs

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

31

Mapping GL API to OSG AP

glShader object -> osg::Shader
glProgram object -> 0sg::Program
glUniform*() -> osg::Uniform

SD)abs

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005 32

SD)abs

OSG GLSL benefits over GL

Decouples shaders from GL contexts

Handles multiple instancing when multiple
GL contexts

0sg::Uniform values correctly applied via
OSG's state update mechanism at the
appropriate time

Compilation and linking automatically
handled when osg::Shader/osg::Program
are dirtied by modification

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

33

SD)abs

0sg..Shader

Derived from 0sg::Object

Stores the shader’s source code text and
manages its compilation

Attach osg::Shader to 0sg::Program
0sg:.:Shader be attached to more than one
0sg::Program

More than one osg:.:Shader may be
attached to an osg::Program

Encapsulates per-context glShaders

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

34

0sg:.:Shader API subset

Shader Type
VERTEX or FRAGMENT

Sourcecode text management
setShaderSource() / getShaderSource()
loadShaderSourceFromFile()
readShaderFile()

Queries

getType()
getGlShaderinfoLog()

3D/abs.

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

35

SD)abs

0sg::Program

Derived from osg::StateAttribute

Defines a set of osg::Shaders, manages
their linkage, and activates for rendering

0sg:.:Programs may be attached anywhere
In the scenegraph

An “empty” osg::Program (i.e.: no
attached osg::Shaders) indicates fixed-
functionality

Automatically performs relink if attached
0sg:.:Shaders are modified

Encapsulates per-context glPrograms

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

36

0sg::Program API subset

Shader management
addShader()
removeShader()
getNumShaders()
getShader()

Attribute binding management
addBindAttribLocation()
removeBindAttribLocation()
getAttribBindingList()

Queries
getActiveUniforms()
getActiveAttribs()

3D/ getGlPrograminfoLog()

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

37

SD)abs

0sg::Uniform

Derived from 0sg::Object
Attaches to 0sg::StateSet

May be attached anywhere in the
scenegraph, not just near osg::Program
e.g.: set default values at root of scenegraph

Their effect inherits/overrides through the
scenegraph, like osg::StateAttributes

OSG handles the uniform index
management automatically

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

38

0sg::Uniform API subset

Uniform Types
All defined GLSL types (float, vec, mat, etc)

Value management
Many convenient constructors
Many get()/set() methods

Callback support

setUpdateCallback() / getUpdateCallback()
setEventCallback() / getEventCallback()

3D/abs.

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

39

Simple source example

Putting it all together...

0sg: :Program* pgm = new o0sg::Program;

pgm->setName("'simple™);

pgm->addShader(new osg::Shader(osg::Shader::VERTEX, vsrc));
pgm->addShader(new osg::Shader(osg::Shader: :FRAGMENT, fsrc));

0sg: :StateSet* ss = getOrCreateStateSet();

ss->setAttributeAndModes(pgm, osg::StateAttribute::0ON);

ss->addUniform(new osg::Uniform("color"™, osg::Vec3(1.0f, 0.0F, 0.0F)));
ss->addUniform(new osg::Uniform("vall", 0.0Ff));

SD)abs

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005 40

Attributes & osg::Program

GL supports both explicit and automatic
attribute binding
GLSL will dynamically assign attribute indices if
not otherwise specified
However, OSG currently supports only
explicit binding, so app must assign
Indices
Automatic binding makes display lists dependent
on 0sg::Program, and has impact on DL sharing
GLSL specifies much freedom in selecting
attribute indices, but some current drivers
Impose restrictions

3Di.bs.

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005 41

Using textures

In the OSG app code
Construct an osg:: Texture
Load image data, set filtering, wrap modes
Attach Texture to StateSet on any texunit

Create an int osg::Uniform with the texunit 1D,
attach to StateSet

In GLSL code
Declare a unitform sampler*D foo;

Access the texture with texture*D(foo,
coord);

SD)abs

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

42

OSG preset uniforms

“Always available” values, like OpenGL
bullt-in uniforms

In osgUtil::SceneView
Int osg FrameNumber;
float osg FrameTime;
float osg DeltaFrameTime;
mat4 osg ViewMatrix;
mat4 osg_InverseViewMatrix;

Automatically updated once per frame by
SceneView

Bitmask to disable updating if desired

3Di.bs.

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

43

SD)abs

OSG file formats & GLSL

.0sg & .ive formats have full read/write
support for GLSL objects

OSG formats can serve as a GLSL effect
file.

Today’s demos consist simply of a .0sg
file
no runtime app other than osgviewer required

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

44

Tips, Tricks,
Gotchas, and Tools

3 D/ a /75

SD)abs

Tips for Shader Debugging

Name your osg::Shaders/osg::Programs

Review the infologs displayed at notify
0sSg::INFO level.

Assign internal vecs to color
Use discard like assert
Verify your code for conformance

Try glsl dataflag.osg to see values inside
your scene

New in CVS: glValidateProgram() support

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

46

3DVt |

GLSL performance tips

Put algorithm In the right stage

Don’t compute in fragment if could be passed
from vertex stage or app

Don’t interpolate more than necessary
If your texture coord is a vec2, don't pass as vec4

Try passing data as attributes rather than
uniforms

Changing uniforms sometimes have a setup cost
Use built-in functions and types

Review the infologs
Driver may give hints on non-optimal code

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

47

GLSL language gotchas

Comparing float values
Use an epsilon

Varyings are interpolated
Interpolating from A to A may not exactly ==
iInt is semantic (usually float internally)

3Di.bs.

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

48

SD)abs

GLSL implementation gotchas

Drivers are new, there's room for improvement
Don’t learn GLSL empirically on your driver

Example portability issues
“Any extended behavior must first be enabled.” (p11)
“There are no implicit conversions between types.” (p16)
Writes to read-only variables
Additional resource constraints (attribute slots, texture units)
Loops forced to constant number of iterations

Review your driver’s release notes, take heed
Note the driver’'s GLSL version string

Depend on the GL and GLSL specs

Be vigilant now for compatibility later

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

49

On the CDROM

Documentation
OpenGL 2.0, GLSL 1.10 specifications
GLSL Overview whitepaper & Quick Reference
OpenGL manpages (HTML & VS.net help)

Open-source tools from 3Dlabs website
GLSL Demo
GLSL Parser Test
GLSL Validate 0
ShaderGen 0S| certified
GLSL Compiler Front-end

SD)abs

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005 50

SD)abs

GLSL Validate

Open source, including commercial use

Uses the 3Dlabs GLSL compiler front-end
to check the validity of a shader

Contains both command line and GUI
Interface

Does NOT require a GLSL-capable driver

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

51

SD)abs

GLSL Parse Test

Open source, including commercial use
Suite of over 140 GLSL shader tests

Includes both known-good and known-
bad test cases

Compiles each shader, compares to
expected results

Results are summarized, written to HTML
nfo logs can be examined

t tests a driver's GLSL compiler, so a
GLSL-capable driver required (duh)

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

52

3Di.bs.

GLSL Compiler Front-End

Open source, including commercial use
Part of 3Dlabs’ production compiler
Compiles on Windows and Linux
Performs:

Preprocessing

Lexical analysis

Syntactic analysis

Semantic analysis
Constructs a high-level parse tree.

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

53

3Di.bs.

osgToy::GlslLint

Proof-of-concept GLSLvalidate-like
functionality integrated with OSG

Uses the 3Dlabs GLSL compiler front-end
No GLSL driver or hardware necessary

Currently part of the osgToy collection
http://sourceforge.net/projects/osgtoy/

Accessible from C++ as a NodeVisitor:
osgToy::GlIslLintVisitor

Or from cmdline as a pseudoloader:
osgviewer myScene.osg.glsllint

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

54

osgshaders example

The original OSG/GLSL example in C++

Demonstrates multiple osg::Programs,
time-varying uniforms, multi-texture

SD)abs

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

56

glsl_simple.osg

The first GLSL scene In a .0sg file

Block colors are uniforms distributed
around the scenegraph

SD)abs

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

57

glsl _confetti.osg

Demonstrates generic vertex attributes
and particle animation in a vertex shader

SD)abs

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005 58

compactdisc.osg

A vertex-only shader using generic vertex
attributes

SD)abs

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

59

glsl dataflag.osg

Displays GLSL-internal values as ASCII
strings

SD)abs

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

60

3dataflags

different data

1 05G/Producer Window

-6.16490
-1 .49551
-1.36922

) |I'- . l"’l

",,,...:-5\

Multiple dataflag instances can show

-7.41155
-1.49079
1.359479

SD)abs

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

61

For more info

nttp://openscenegraph.org/
nttp://developer.3Dlabs.com/
nttp://mew.cx/osg/
nttp://sourceforge.net/projects/osgtoy/

SD)abs

Copyright © 2005, 3Dlabs, Inc. Ltd July 31, 2005

Thank you!

	GLSL Shading with OpenSceneGraph
	Summary of this talk
	Our dependencies
	GLSL / OSG timeline
	Overview of GLSL
	The OpenGL 2.0 Pipeline
	GLSL pipeline architecture
	GLSL compilation model
	Vertex Processor Overview
	Fragment Processor Overview
	GLSL language design
	Language enhanced for graphics
	Additions from C++
	Differences from C/C++
	GLSL compiler
	Comparing architectures
	GLSL datatypes
	GLSL datatype qualifiers
	OpenGL state tracking
	uniform variables
	attribute variables
	varying variables
	Defining variables in GLSL
	Texture access
	Shader Configurations
	Program Configurations
	GLSL Versioning & Extensions
	Using GLSL extensions
	GLSL Future
	OSG support for GLSL
	OSG GLSL design goals
	Mapping GL API to OSG API
	OSG GLSL benefits over GL
	osg::Shader
	osg::Shader API subset
	osg::Program
	osg::Program API subset
	osg::Uniform
	osg::Uniform API subset
	Simple source example
	Attributes & osg::Program
	Using textures
	OSG preset uniforms
	OSG file formats & GLSL
	Tips, Tricks, Gotchas, and Tools
	Tips for Shader Debugging
	GLSL performance tips
	GLSL language gotchas
	GLSL implementation gotchas
	On the CDROM
	GLSL Validate
	GLSL Parse Test
	GLSL Compiler Front-End
	osgToy::GlslLint
	Demos!
	osgshaders example
	glsl_simple.osg
	glsl_confetti.osg
	compactdisc.osg
	glsl_dataflag.osg
	3dataflags
	For more info
	Thank you!

