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Floating-Point Arithmetic

1 Floating-Point Numbers

Computer numbers:

:l:d().dl v dp—l X Be
(: base,
e: exponent,

p: precision.
IEEE standard

exp fraction

01 89 31

Figure 1: IEEE single precision floating-point word format.

Four parameters

Base f:
e IEEE standard: 2

e Other commonly used: 10, 16
Base 16 provides wider range, but wastes bits in fraction. For example,
1.0 = .000100004 x 16%.

Exponents enin and ey

e IEEE standard: ey, = —126, epa = 127
biased representation, bias 127.

e Overflow and underflow
when the exponent is too large or too small.

Example 1 In IEEE single precision, if a = 3.0 x 10730, then a * a
underflows, usually set to zero. If a = 3.0 x 10*°, a * a overflows, set
to +oc.
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e The infinity symbol is represented by exponent e, + 1 and a zero
fraction.

e Usual mathematical convention for infinity

00 + 00 = 00, (finite) /00 = 0.
e Avoiding unnecessary underflow and overflow by scaling.

Example 2 Given z = (a,b)", a =1.0 x 10*°, b = 1.0,
compute ¢ = ||z||s = vVa? + b

scaling: s = max{|al, |b|} = 1.0 x 103°

a+afs (1.0),
b<b/s (1.0 x 1073°)
t=+vaxa+bxb (1.0)

ctxs (1.0 x 10%)

Study the following BLAS code for its robustness, accuracy, and efficiency.

¥ K X K X K X X X X ¥ X ¥ * *

DOUBLE PRECISION FUNCTION DNRM2 ( N, X, INCX )
. Scalar Arguments ..

INTEGER INCX, N
. Array Arguments ..
DOUBLE PRECISION X( * )

DNRM2 returns the euclidean norm of a vector via the function
name, so that

DNRM2 := sqrt( x’*x )

—- This version written on 25-0October-1982.
Modified on 14-October-1993 to inline the call to DLASSQ.
Sven Hammarling, Nag Ltd.

. Parameters ..
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DOUBLE PRECISION ONE , ZERO

PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* .. Local Scalars ..

INTEGER IX

DOUBLE PRECISION ABSXI, NORM, SCALE, SSQ
* .. Intrinsic Functions ..

INTRINSIC ABS, SQRT

. Executable Statements ..
IF( N.LT.1 .OR. INCX.LT.1 )THEN
NORM ZERO
ELSE IF( N.EQ.1 )THEN

NORM = ABS( X( 1) )
ELSE

SCALE = ZERD

SSQ = ONE

The following loop is equivalent to this call to the
LAPACK auxiliary routine:
CALL DLASSQ( N, X, INCX, SCALE, SSQ )

* ¥ ¥ *

DO 10, IX =1, 1 + ( N - 1 )*INCX, INCX
IF( X( IX ).NE.ZERO )THEN
ABSXI = ABS( X( IX ) )
IF( SCALE.LT.ABSXI )THEN

SSQ = ONE + SSQ*( SCALE/ABSXI )*%2
SCALE = ABSXI
ELSE
55Q =8sQq + ( ABSXI/SCALE ) *%2
END IF
END IF

10 CONTINUE
NORM = SCALE * SQRT( SSQ )
END IF

DNRM2 = NORM
RETURN

End of DNRM2.

END



CS708, S. Qiao Part 1, Page 4

Operation | NaN Produced By

+ 00 + (—00)

* 0*o00

/ 0/0, co/o0
REM | z REM 0, oo REM y
sqrt sqrt(z) when z < 0

Table 1: Operations that Produce a NaN

e What is oo + (—00)?
NaN, Not a Number

Precision

e IEEE standard, single precision: p = 24, one hidden bit.

e Rounding error
Due to finite precision arithmetic, a computed result must be rounded
to fit storage format.

Example 3 §=10,p=14
a=1.234x 10, b= 3.156 x 107!
T=a-+b=1.26556 x 10' (ezact)
& =fl(a+b) =1.266 x 10"

the result rounded to the nearest computer number. The relative error

2=l 035 x 1072,
kq
e In general, )
e Unit of roundoff . 1
u= 5,8_” )

When 6 =2, u =277,
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e Computing u: the largest e such that fi(1.0 +¢) = 1.0.

eps = 1.0;
while (1.0 + eps) != 1.0
eps = eps/2;

return eps
Some compilers optimize the test (1.0 + eps) != 1.0 to eps != 0.
e Denormals are represented by exponent e.,;, —1 and a nonzero fraction.
e Zeros are represented by exponent e;, — 1 and a zero fraction.

e Correctly rounded operations
The computed result must be the same as if it were computed exactly
and then rounded, usually to the nearest floating-point number.

Example 4
adb="flla+b)=(a+b)(1+e€) e <u,
for operations +, —, %, /, v

e Floating-point operations are commutative, but not associative, not
distributive. (Examples?)

2 Backward Error Analysis
We can write

adb=flla+b)=(a+b)(1+e€) =a(l+e)+bl+e) |e]<u.

The computed result is the exact result with slightly perturbed data a(1+€)
and b(1 + ¢).

Example 5 Computing the sum:
Sp=f(z1+ 20+ ---+ 1)

Denote the partial sum s; = fl(xy + 22 + - - - + x;), then
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sg = fl(z14+22) =21(1 +€1) + 22(1 + €1)

S3 = ﬂ(82 + IE3) = (82 + l‘3)(1 + 62)

= CEl(l =+ 61)(1 =+ 62) =+ .’EQ(]. + 61)(1 + 62)

+ $3(1 + 62)
Sn = z1(14+e)(1+e) - (1+e-1)

+ .’172(1 + 61)(1 + 62) cee (1 + En—l)

+ ./Eg(]. + 62) s (1 + €n_1)
+
+ xn—l(l + Gn_g)(l + en—l)
+ z,(1+€,-1)

Define

I+m = (I+ea)l+e) -(1+e)

I+ = (14+e)(l+e) - (1+en1)

1+773 = (1+€2)"‘(1+6n,1)

1+ hm—1 = (1 + en—Z)(l + en—l)
1+ M = (1 + 6nfl)
Ml = len1| < u
1+ h-1 = 1+ (en—2 + en—l) + €p_2€p_1
-1l = [en—2+ €n-1] < 2u
In general,

ml < (n—1)u
mil < (m—i+Du, i=2,3,..,n

A more rigorous bound: If nu < 0.1 and || <wu (i=1,2,...,n), then
QI+e)l4+e) -(1+e)=1+n

where
In| < 1.06nu.
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Thus
By + ) = 22(L 1)+ 201+ 7)

im| < 1.06(n — 1)u
il <1.06(n—i+1)u, i=2,3,....n
How bad is the accumulation error? Using double precision, u = 10715,

for nu > 0.1, n > 10**. How long does it take to perform 10** additions?

Backward error analysis

The computed result (fi(xz1 + -+ z,)) is the exact result of the problem
with slightly perturbed data (z1(1+ 1), ..., Zn(1 4+ 1,)).

3 Perturbation Analysis

Disregard rounding errors and consider the perturbed data

T =zi(1+ &) e <,

in the sum
§=XT1+ To+ - Tp,
we have
S=21+To+---+2Zn
and ~
5 —s| _ |zaf+J@a[+ -+ [on]
‘S‘ - |$1+$2+"'l‘n‘ )
Set
ol [l e [
|$1+£L’2+"'1’n‘ ’
then
|5 — s
< Ke.
]

The number & tells how the relative errors in the data are magnified in
the relative error in the result. This is called the condition number for the
problem. In the above example, k > 1 and x = 1 when x; > 0.
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In general, we can view a problem with data x and result y as a function
y = f(x). The result of the perturbed problem is ¥y = f(x + Ax). The
sensitivity is measured by

Y —yl/lyl _ [fx+Ax) - f)] x|
| Ax|/]x| |Ax| £ (x)]

|
IF &)

Note that the conditioning of a problem is independent of rounding errors
and algorithms for solving the problem.

~|f'(x)

cond =

The power of the backward error analysis

e Separates the properties of the problem to be computed and those of
the algorithm used;

e [ll-conditioned problem:
small perturbations on data can cause large errors in the solution;

e Stable algorithm:
the computed solution is the exact solution of the problem with slightly
perturbed data. If the perturbation is smaller than the measurement
errors in the data, can’t blame computer for large error in the result.

Does a well-conditioned problem always lead to good results (regardless
of the algorithm used)?

Does a stable algorithm always compute accurate solution (regardless of
the conditioning of the problem)?

Summary

A computer number system is determined by four parameters: Base,
precision, ey, and epay

IEEE floating-point standards, single precision and double precision.
Special values: Denormals, oo, NaN, 0, and their binary represen-
tations.

e Error measurements: Absolute and relative errors, unit of roundoff

Issues in floating-point computation: Overflow, underflow, cancellation
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e Error analysis: Forward and backward errors, sensitivity of a problem
and stability of an algorithm
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