Linearization of CIF Through SOS

D.E. Nadales Agut M.A. Reniers

Systems Engineering
Department of Mechanical Engineering
Eindhoven University of Technology (TU/e)

{d.e.nadales.agut, m.a.reniers}@tue.nl

Linearization is the procedure of rewriting a process tamto a linear form, which consist only of
basic operators of the process language. This procedunéeiesting both from a theoretical and
a practical point of view. In particular, a linearizatiorgatithm is needed for the Compositional
Interchange Format (CIF), an automaton based modeling gy

The problem of devising efficient linearization algorithimmsnot trivial, and has been already
addressed in literature. However, the linearization dligors obtained are the result of an inventive
process, and the proof of correctness comes as an aftehthdugthermore, the semantic specifica-
tion of the language does not play an important role on thgydes the algorithm.

In this work we present a method for obtaining an efficiengdinzation algorithm, through a
step-wise refinement of the SOS rules of CIF. As a result, vesvdfiow the semantic specifica-
tion of the language can guide the implementation of sucloaquture, yielding a simple proof of
correctness.

1 Introduction

Linearization is the procedure of rewriting a process terto a linear form, which consist only dfasic
operatorsof a process language [10, 4, 15]. Linearization is alsamefieto aseliminationin ACP style
process algebrasi[1].

From a theoretical perspective, linearization of processs is an interesting result. It allows to get a
better understanding about the expressiveness of thedgegionstructs, since it shows that all its terms
are reducible to some normal form (which contains only atbohset of operators of the language). Also,
linearization is useful in proving properties about clogemins, since the number of cases that needs to
be dealt with in a proof by structural induction becomes $enal

The Compositional Interchange Format (CIE) [2], is a lamgu#or modeling real-time, hybrid and
embedded systems. CIF is developed to establish inteabitiey of a wide range of tools by means
of model transformations to and from the CIF. As such it playsentral role in the European projects
Multiform [12], HYCON [9], C4C [E], and HYCON 2[[8]. CIF has aofmal semantics [2], which is
defined in terms of Structured Operational Semantics RAES| in the style of Plotkir [14].

Besides its theoretical importance, linearization of Ciédels eliminates operators, such as urgency,
that cannot be handled in other languages. Since CIF is nieéet used as an interchange format, the
elimination of the operators broadens the set of modelsctrabe translated to other languages. For the
hierarchical extension of CIE][3], hCIF, linearization neakthe elimination of hierarchy possible, and
thus, all the tools available for CIF become available fa& with hCIF models as well.

It is our goal to build a linearization algorithm for CIF, vahi results in an efficient representation
of the original model, and such that all the operators of #mgliage, such as parallel composition or
synchronization are eliminated. The problem of efficieneédrization has been already studied in lit-
erature [[15] 4, 10] for process-algebraic languages farrdesg and analyzing discrete-event systems

B. Luttik and F. D. Valencia (Eds.): 18th International Wshlkop on © D.E. Nadales Agut & M.A. Reniers
Expressiveness in Concurrency (EXPRESS 2011) This work is licensed under the Creative Commions
EPTCS ??, 2011, pp.[1315, doi:10.4204/EPTCS.??.?? Attribution-Share Aliké License.

http://dx.doi.org/10.4204/EPTCS.??.??
http://creativecommons.org
http://creativecommons.org/licenses/by-sa/3.0/

2 Linearization Through SOS

and hybrid systems. However, in the previous cases, tharlaation algorithm is the result of an inven-
tive process, and the proof of correctness comes as anhafigfit. The semantic specification of the
language does not play an important role on the design ofigjoeitam.

Previously, we studied the problem of implementing a sitauldrom the SOS specification of
CIF [13]. The semantics of CIF is defined in terms of SOS rulesich induce a hybrid transition
system, where each state contains a CIF term followed bywatrah (assignment of values to vari-
ables). This kind of semantics, even though useful for $ijgation purposes, was not suitable for the
implementation of a simulator (interpreter) for the langeiaThis problem was solved by giving a set of
SOS rules, calledymbolic ruleswhich induced transition systems that do not contain theatimn part.

It was also noted that the symbolic transition system indumethese rules is finite, and it resembles a
(CIF) automaton. Thus, the symbolic SOS rules for CIF offstraightforward algorithm for linearizing
CIF models. However, the resulting automaton has a sizenthgtbe exponential in the size of the input
model.

In this work we study the possibility of reusing the existirggults on efficient linearization algo-
rithms for obtaining a linear form of CIF from SOS rules. THea is to give a more concrete version of
the symbolic SOS rules of CIF (which is in turn a concrete ieersf the SOS rules with data), such that
the transition system they induce can be translated to ameibn whose size does not grow exponen-
tially as the result of interleaving actions (for synchmingy action the growth is still exponential, but in
practice this is not a serious limitation since synchramiratakes place only among a limited number
of components).

As a result, we show a linearization procedure, which isinbthfrom the SOS specification of the
language. In this way, the design of the algorithm requigss invention steps, reducing the opportunities
to introduce mistakes, and at the same time it yields a sipnglef of correctness.

2 Setting the Scene

For the discussion presented here, we consider a simpliiesion of CIF, which is untimed and contains
only automata, a parallel composition operator, and a spmiting action operator. This helps to keep
the focus on the ideas, without distracting the reader viighadomplexity of CIf. The techniques and
results presented here can be easily extended to the sefttinged and hybrid systems, since we handle
concepts such as invariants and time-can-progress comglith a symbolic manner.

We begin by defining automata and the terms of our languageoughout this work, notatios??
is used to refer to a set of predicatés,is a set of variables¢Z is a set of actionst is the silent action
(t ¢ o), and.oty = of U{T}.

Definition 1 (Automaton) An automaton is a tupléV,init,inv,E,actk), where VC . is a set of lo-
cations, init € V — £ is the initial predicate functioninv e V — &2 is the invariant function, EC
V x o x & xV is the set of edges, amtis C o7 is a set of synchronizing actions.

Figure[1 presents a model of a railroad gate. It has two mofileparation (locations), closed and
opened, denote@ andO respectively. Its initial predicate function associates ¢onditionwg= [| to
locationC (represented graphically with an incoming arrow withoutrse location), and the predicate
false to locationO (represented by the absence of such an arrow). Weris the waiting queue that
contains the id’s of the trains waiting to pass through ttte ,gais the empty list, and we denote lists by

1This language contains over 30 deduction rules

D.E. Nadales Agut & M.A. Reniers 3

writing their elements between brackets, and separatedimynas. LocatiolC hasn = 0 as invariant,
wheren is the numbers of trains crossing the gate, and localidras invariann < 1. The automaton
synchronizes with other components in actiomsgo, andout.

The automaton has four edges. Two ed¢@gq,wq" = wg+ [id*],C), and (O, rg,wq" = wg+
+ [id™],0), which are used to enqueue requests from the trains thatteauatss the gate. Given two
sequencegsandys xs- ysdenotes their concatenation. The predicatg = wqg [id"] expresses
that the new value of the waiting queue after performingoaaty will be the old waiting queuewq)
extended with the id of the train that request access (this antained in variabléd ™). Graphically
these edges are represented by two self loops in locafl@rl O, labeledrg, wq™ = wq+ [id*™]. The
gate can make a transition from the closed state to the optat] by issuing go action, which sends
the id at the front of the waiting queue using variaple

Gate | ack = {rg,go,out}
go, [p*] + wa" = wq

wg=[] —

out

rq, wg" = wq- [id*] rq, wq" = wq- [id*]

Figure 1: CIF model of a gate.

In Figure[2 we present the model of a train, which will be rurparallel with the gate model. It
has a parametédr which represents the train’s id. It has four locations: (f), near), stopped §),
and passingR). LocationF is the only initial location. When the train approaches th&egt issues a
request to pass the gate by sending its id though varidbl®nce in the near location, it can only go to
the passing state if variableis updated to its id (this update is carried out by the gateyeahave seen
above). Otherwise it makes a transition to the stopped. adten the train enters the gate it increments
variablen, and it decrements it upon departure.

These models can be composed in parallel using the paralepasition operator, denoted @s
Actions in CIF are not synchronizing by default. Thus in tlaegblel composition

Train(0) || Train(1)

the actions of the two trains will be interleaved.

We want to put the parallel composition of the two trains irgfial with the gate automaton, in such
a way that the trains synchronize with the actiomsgo, andout of the gate. This can be achieved using
the synchronizing actiomperator, denoted 3a. Informally, compositiorya(p) behaves as composition
p, except that all the actions of the s&efare made synchronizing ip. Below we explain this. Using
these operators, we can express train gate model in CIFlag/$ol

Yirq,goout} (Train(0) || Train(1)) || Gate 1)

4 Linearization Through SOS

Train(i)

Figure 2: CIF model of a train.

As a consequence of the use of the synchronizing action wpeira (I), actioni € {rq,go,out} in
Train(j), j € {0,1}, will synchronize with action in the gate. Actions in the sdtq,go,out} are in-
terleaved in the parallel compositions of the trains (tdeynotsynchronize) since the scope operator
only make actions synchronizing in the outer scope. For rdetails see the rules of and their explana-
tion Table[1.

Formally, the set of all CIF compositions is defined as fokow

Definition 2 (Compositions) The set# of all compositions is defined through the following abstrac
grammar:¢ ::=a | € || € | ya(¥), wherea is an automaton and A <.

In the next section we present the formal semantics of ClIFpomitions, both its explicit version
and its symbolic counterpart.

2.1 Explicit and Symbolic Semantics of CIF

The semantics of CIF is defined in terms of hybrid transitigstams|([6]. In the context of the present
work, we restrict our attention to ordinary transition gyss (thus omitting time transitions), extended
with environment transitionésee below).

The labeled transition systems we are considering havesstditthe form(p, o). Herep € ¢, and
o € 2 is a valuation, wher& = ¥ — A, and/\ denotes a set of values. The valuation records the values
of the model variables at a certain moment. There are twaestgpeansitions in these labeled transition
systemsAction transitions of the form

(p.0) 2% (p, ")

model the execution of an acti@by compositionp in an initial valuationo, which changes composition
p into P’ and results in a new valuatioo’. Labelb is a boolean that indicates whether actiiis
synchronizing.Environment transitionsof the form

(p.0) - (P, ")

D.E. Nadales Agut & M.A. Reniers 5

model the fact that the initial conditions and invariantgdip’ respectively) are satisfied m (o), and
Ais the set of synchronizing actions pfand p’. Environment transitions are used to obtain the state
changes allowed by a model in a parallel composition context

The transition system associated to a composition can laénelot by means of SOS rules. Below we
present the explicit rules, where we have omitted the symenedrsion of the parallel composition rule.
Given a valuatioro, we defined’™ £ {(x",v) | (x,v) € 0}. We use notatiom to refer to the automaton
(V,init,inv, E,act), and a[x] to refer to(V,idy,inv,E,ack), where ig(w) = w = x. Throughout this
work, FV(p) is the set of free variables qf

(va,r,V) € E, 0 = init(v) Ainv(v),

o' = inv(v), 0"t Ug =T, veV,o = init(v) Ainv(v),

(Vx::x ¢ FV(r) = o(x) = d’(x)) o aiinv(v) 2
(a,0) 2225, (q[v],0") ! (a,0) -5 (a[v],0")
(p.0) *5 (9,0),(4.0) 5 (d,0) , (p.0) 2 (9.0).(a0) -5 (¢, 0)akA
(plla.0) 25 (0 | . 0") (plla.0) 2> (0 | d.0")
(.0) ™ (P,0'),(6,0) > (d,0") (p.0) =5 (pL0)
(pll6.0) 25 (9 |1 4. 0) (a(p), 0) 22525, (),)
(p7 0) _é/_) (p/7OJ)

7

AUA

(VA(p)7 0) -2 (VA(p/)7 OJ)

Table 1: Explicit rules for CIF

Rule[1 states that an action can be triggered by an autonmiatbare is an edgév,a,r,V') such that
the initial predicate and the invariant are satisfied in thigail valuationg, and it is possible to find a new
valuationg’ in which the invariant and the reset predicate are satisfies. only variables that change
in 0’ w.r.t. o are those free variables ofthat are of the formx™. Rule[2 states that an automaton is
consistent in initial valuatiow if the initial predicate and invariant are satisfiedanand the valuation
can be changed to’ only if the invariant is preserved. Rule 3 expresses thattarea can be executed
synchronously if it isnarked as synchronizirig both components. The interleaving behavior is modeled
in Rule[4, where an actioa can be executed ipif it is not synchronizingn g. In Rule[6 an actiora is
marked as synchronizingafc A, orais synchronizing imp. The environment rule for the synchronizing
action operator (Ruléel 7) addsto the set of synchronizing actions pf

As noted in[[13], the explicit rules are not suitable for ieplentation purposes. These rules often
induce infinitely branching transition systems, and as @&eguence it is not possible to obtain the set of
possible successor states. In particular, the labels diybdd transition systems contairajectories
of an dense domain, which are defined in the rules through atatipns over these dense sets. Another
problem is that the valuations specify implicit constrajrduch as “variables owned by a certain automa-
ton cannot be changed in a parallel composition”, which iregio compute operations on infinite sets

6 Linearization Through SOS

of valuations to get the set of possible successor states.

The solution to the problem explained above was to obtaih@f sgmbolic ruleg7] from the explicit
SOS specification. These symbolic rules represent thelpesdate changes by means of predicates, and
thus, the state change caused by an action is visible onrivesaof the transitions. The symbolic rules
for the language considered in this paper are shown in Table 2

(va,r,V)eE 8 veV 9
a,acact,init(v),inv(v),inv(v),r init(v),inv(v),act
G (alv)) (a) =T ()
atrue,up,ny,n,,r a,true,Ug,Ng,NG,I a,b,up,np, N, r Ug,Ng,A
) ——> (@ — ")) B @ S daga
a,true,upAug,NpANg, Ny AN Al a,b,upAUg,NpANg, N ANg, I
(pla > R) (plla) —————=—= (P [l d)
Up,Np,A Ug,Ng,Aq b,un,n’,
(P =T A) (p) === (P) 13
Up/AUg,NpANg,ApU bvacA,u,n,n’,
la T) (Ya(p)) Z2EALTL, 1y (1))
u,nA
(p) ==> (F)

Table 2: Symbolic rules for CIF

The explicit and symbolic rules are related by the followsmyndness and completeness theorems.
These theorems state how an explicit transition system eaedbnstructed from its symbolic version,
and vice-versa.

Theorem 1 (Soundness of action transitions¥or all p, p, a, b, u, n, A r, g, and g’ we have that if
the following conditions hold:

L. (p) 2075 ()
2.0Eu,0kENO ENanddtUuoEr
3. (Wxuxt ¢ FV(r) = a(x) = d'(x))

then, there is a explicit action transitiaip, o) ab, (p,o0").

Theorem 2 (Completeness of action transitions)or all p, p, a, b, g, and g’ we have that if there is

a explicit transition(p, o) 25 (p',0d’) then there exists u, n/,rand r such that the following conditions
hold:

1.(p) ()
2.0Eu,0kENO ENanddtUuoEr
3. (Wxuxt ¢ FV(r) = a(x) = d'(x))

ab,unn’r
—

D.E. Nadales Agut & M.A. Reniers 7

Theorem 3 (Soundness of environment transitions)or all p, p/, u, A, g, and g’ we have that if the

following conditions hold:
u,n,A

1 (p) - (P)
2.0FuU,0E=n0d En

, . , L A
then, there is a explicit environment transitiop, o) --» (p/, 0’).

Theorem 4 (Completeness of environment transitions)or all p, g/, A, g, andag’ we have that if there

: . iy A . , iy
is an explicit transition(p, o) --» (p’,0’) then there exists u, and n such that the following conditions
hold:

u,n,A

1 (p) - (P)
2. 0Fu,ocE=NO0 En

It is not hard to see that given a CIF composition, the synelyalies induce éinite transition system
For the model of the train gate presented in Sedtlon 2, a pad @ssociated symbolic transition system
is shown in Figur&l3 (the whole transition system containstaées), where we use the convention that
forallx,y, z

(X.¥:2) = Yjrqgoout (Train(0)[X] || Train(1)[y]) | GatelZ
In this transition system, two problems can be noted. The gizhe symbolic transition system grows
exponentially as more trains are added. This is the resuhefnterleaving actions that are executed
between these models. Secondly, there is a great de@dohdant information The invariants of
the source and the target states are present not only inlibés laf action transitions, but also in the
environment transition of these states. Similarly, theahzation conditions are meaningful only for the
initial environment transition. For the remaining envinoent transitions in the systems, the initialization
predicate is always true. In the next section we show how éoamme these problems using a new kind
of symbolic rules.

3 Linear Transition Systems

In this section we define a structure calledkar transition systenfLiTS), which contains all the infor-
mation necessary to represent any arbitrary CIF compasitiod that can be translated to an equivalent
automaton.

Consider the symbolic transition system of the train gatdehdn Figurd 8, we show a transition of

the form:
go,pt=0AnT=n+1Awq+ [p*]=wa,n=0,n<1

(N,F,C) (P,F,0)
The complete symbolic transition system also containsthrasisitions:

(N, N,C> go,pt=0AnT=n+1Awq+ [p*]=wa,n=0,n<1 (P, N,O>

(N,SC) (RSO

These three transitions only differ in the second compoagtite symbolic state, that is, the location in
which the second train is. However, this information is redevant for computing the state change. If
we replace the above transitions by a unique transitioneofdhm:

go,p"=0AnT=n+1Awqgt [pT]=wq,n=0,n<1

go,pt=0AnT=n+1Awqt [pT]=wqn=0,n<1

(N,-C) (P-,0)

8 Linearization Through SOS

— <V{rq4,go4,out} (Train(0) || Train(1)) || Gate)

rg,idt =0A rg,idt = 1A
wa* = wg+ [id*], wa" = wag-+ [id*],
n=0n=0 n=0,n=0

R G

true, > true, .--=
n=0 ___<N,F,C>\,10/<F, ~,C>_ny<F,N,C>
rq,idt =0A rg,idt = 1A
wqg™ = wq-- [id], wat = wa [id*],
g0 n=0n=0 n=0n=0 go
p+7:OA p+7:1/\
nt=n+1A Nt =n4 1A
wq* + [p*] = wg, wa™ + [pt] = waq,
n=0n<1 n=0,n<1
true, oo true, .-->
n<1i ... (PFRO) ne1 C(FPO)

Figure 3: A part of the symbolic transition system for thertigate controller

then we can avoid the state explosion caused by the intérpactions. Here thavild-card symbol _
can be read as “for any location”.

Furthermore, in Figure]3 we see that there is no need to etplithe entire structure in a given
transition, since it suffices to keep track of the locatidret thange.

From the observation above, we want a linear transitionegysthere the states asequences of
locations containing alsavild-cards These wild-cards are used to denote the fact that the ¢tocafia
certain automaton does not change in the transition. Foyrifed states of the LiTS belong to the set

(Zx {1 2

where_is the wild-card symbol, and* is the set of all sequences whose elements are taken froratthe s
A. An example of such state is the li§t _,C].

The next thing to define is the transitions of the LiTS’s, iolsa way that the redundancy introduced
by the STS’s is eliminated. To accomplish this, we split@ttind environment transitions into several
transitions, which are described next.

Action Transitions They are of the fornp = (vs) 2 (vs), wherep € ¢ is a compositiona € .« is
an action label, and € 2 is the update predicate associated to the action.

Synchronizing Actions They are of the fornp LA, wherep € € is a composition, anék C 7 is the
set of synchronizing actions @t

Initialization Transitions They are of the formp 14 fs, wherep € ¥ andfse (¥ — £2)* is a list
containing the initialization predicate function of eachiamaton inp.

D.E. Nadales Agut & M.A. Reniers 9

Invariant Transitions They are of the forrrpi«"/‘i fs, wherep € ¢ is a composition, antse€ (. — £)*
is a list containing the invariant function associated tcheautomaton irp.

The reader may have expected initialization or invariaamgitions of the form:

inv
VS~ P

wherevsis a list of locations, angh is a predicate. However this approach requires enumerating

the state space explicitly to construct {R& relation. By using lists of functions we avoid this
explicit construction.

Wild-card Transitions They are of the fomp«’i XS, wherep € ¢ is a composition, angse (_)* is a
sequence of wild-cards whose size coincides with the numbautomata that are composed in
parallel inp. These transition are not needed for reconstructing theament transitions, they
are used in the linear SOS rules to model the fact that nottliagges in a component of a parallel
composition, when the other component performs an action.

In Table[3 we show some of the linear SOS rules for CIF comiposit We have omitted the rules
for synchronizing actions, initialization, and wild-caradnsitions since they are similar to the invariant
transitions.

The linear rules can be easily to obtained from the symbai&so For action rules, invariants and
initialization predicates, and the synchronizing actiabdl are simply omitted (since they can be ob-
tained from other transitions). The linear rule for intexling parallel composition is almost identical to
the symbolic rule. The only differences are that thefset obtained from &l transition, and we use
the wild-card transition to represent the fact that thetioos of the other automaton are not relevant (at
the symbolic level at least). A similar observation can belenfor the rule for parallel composition. In
this case since we do not have the synchronizing label, wenstaict it from the>° transition. This
label is equivalent ta < A, thus a label true in both components is equivalerat €0A, A a € Ag, which
is in turn equivalent ta € Ap N Aq.

If a compositionp contains no synchronizing actions, then the size of itséeduransition system
is linear w.r.t. the size op. However, the size of the LiTS also depends on the numbermaffsgnizing
actions. The following property gives the formal details.

Property 1 (Size of the linear transition system) Let p be a CIF composition, such that it contains n
automataa; = (M, init;,inv;, E, ack;), 0<i < n. Let a be the only synchronizing action in these automata.
Then the number of transitions in the LiTS associated to prangby:

#{x | (v,g,x,u,V) € EEAX#a} + |_| #{x| (v,g,x,u,V) € EEAX=a} (3)

0<i<n 0<i<n

where#A is the number of elements in set A.

In spite of the fact that the number inl (3) can be significatdlge, in practice, communication
among components is usually restricted to a few automatkthemnumber of edges of an automaton that
contain a given synchronizing actiaris small.

3.1 Relating LiTS and STS

In the same way symbolic transitions are related to expioés via soundness and completeness results,
linear transitions have the same property w.r.t. symbaddioditions.

10 Linearization Through SOS

inv inv

15 p~ fsp, g~ fsy 16
V, E inv
(V,init,inv, tcp, acts) X [inv] ol q ™ fs, 4 fs,
(varv)eE 17 pE(v9 25 <vs>,qs«yﬂch«»_,a¢A, 18
(V,init,inv,tcp,E,acts)F([v]>ﬂ><[\/]> pll gk (vs+) 2 (ve 4)
Pl (vsp) % (vs,).q = (vey) —> v,) p A A ac AA
Pl At (vp+ vey) T2 (v, 4 v
pvl:vs 20 P (vs) — <V§> 1
ya(p) ~> fs Va(p) = (v9) =5 (vS)

Table 3: Linear SOS rules for CIF compositions

The first two results state that a LiTS contains all the nergssformation to reconstruct the envi-
ronment transitions in the symbolic transition system aicd-versa. Here “leads to transitions” refers
to the initialization, invariant, and synchronizing acisatransitions in the LiTS. Given a compositipn
which containsn atomic automata, and a sequensef n locations, p[Is] is the composition obtained
by replacing the initial predicate function of tfif8 automaton by id;, for 0 <i < n, wherels.i is the
element of sequends at positioni (sequences are numbered starting from 0). ldgsatefers to the set
of sequencels, where #s = n andls.i is a location of thé™™ automaton of compositiop (0 < i < n).

Theorem 5 (Soundness of leads to transitionsfor all p, is, fs, gs, A, u, and n we have that if the
following conditions hold:

1. ise locsof(p)

ipred sync

2. p~ fs, p gs p~ A
3. u= A fsi(isi),andn= A\ gsi(is.i)
0<i<#fs 0<i<#gs

then there is a symbolic transitiofp) ke (plis]).

Theorem 6 (Completeness of leads to Transitionskor all p, u, n, A, and pwe have that if there is an
A . o
environment transitior{ p) e (p) then there are is, fs, gs, u, and n such that the following itimms
hold:
1. ise locsof(p)

|pred sync

2. p~ fs, p N gs, po
3. u= A fsi(isi),andn=A gsi(is.i), p’ = plis]

O<i<#ffs O<i<#gs

D.E. Nadales Agut & M.A. Reniers 11

The soundness theorem for linear action transitions shamsshsymbolic action transition can be
obtained, using the leads to transitions as well. Functiomasd > are defined below, whebe: xsis the
list that results after appending the elemeit the front ofxs

Definition 3 (Sub-sequence and sequence overwritingrunctionCe A* — A* — B is defined as fol-
lows:
[] E xs= true
(X:x9 L (y:ys) 2 ((X=_)V(X=Y))AXSCys

Function>-c A* — A* — A* is defined as follows:

[] > Xxs= xs
X:(Xs>ys) ifx#_
y:(xs>-ys) ifx=_

(x:xs)>(y:ys)é{

Theorem 7 (Soundness of Linear Action Transitions)For all p, vs, a, r, V§ is, fs, gs, u, n, n, and A
we have that if the following conditions hold:

1. ise locsof(p)
2. pk=(v9 25 (vs), pirir,e»dfs, pi«"X gs, po A
3. u= A fsi(isi),andn=A gsi(isi), "=/ gsi((vs~is).i),vsCis,b=acA

0<i<#fs 0<i<#gs 0<i<#gs

then there is a symbolic transitionp)

Theorem 8 (Completeness of Linear Action Transitions)For all p, g/, a, b, u, n, A and r we have
that if there is a symbolic transition:

ab,u,nn'r
(p) ———=(p)
then there are vs, (sis, fs, gs, and A such that the following conditions hold:

1. ise locsof(p)
2. pk=(v9 25 (vs), pirir,e»dfs, pm gs, po A

3. u= A fsi(isi),and n=/\ gsi(isi), "= A gsi((vs =is).i), vsCis, b=ac A,
0<i<#fs 0<i<#gs 0<i<#gs
p = p|vs = is]

These theorems can be proved using structural inductioe. pfdofs are relatively simple, and are
omitted due to space constraints.

4 Obtaining a Linear Automaton from a LiTS

Once a linear transition system is induced by the SOS rulesiegd a way to obtain a linear automaton
from it. In this section we describe the procedure, and wevghat the generated automaton is stateless
bisimilar [11] to the composition that induced the tramsitisystem. Both from a theoretical and a

12 Linearization Through SOS

practical point of view this is an interesting result, whiells us that every composition can be reduced
to an automaton (this is intuitively obvious for the langeage present here, but it is not for CIF and its
hierarchical extension).

Formally, given an compositiop and its associated LiT$!, we want to build an automatomy
such thatp has the same behavior ag. The idea is to simulate the execution Mf usingap. To
this end, we need to introduce a sequence of varidbleshich are used to represent the active state in
M in a given execution. We call these variablesation pointers[10]. Below, we give the definitidh
of the linearization function, which returns the automasssociated to a given composition and the
location pointers used in it. The second component retubyetthe function is used later to formulate
the correctness result.

Definition 4 (Linearization Function) Let p be a CIF composition. Functidne € — (¢ x ¥*) is
defined as the least function that satisfies:

L(p) = (({x},init,inv,E,ack),ls)

where
o pxstxs=n, p%s, p gs, po°
o (Vi "O<|<n:>IS|§éFV(p), xe.Z

init(x) = (/\ N\ (si=v=fsi(v))A(A Isiedom(fsi))

0<i<n vedom(fs.i) 0<i<n

inv(x)= A\ N\ (si=v=gsi(v))
0<i<n vedom(gsi)
e E={(xarn A Isi=vsiAlsit=vs.i,x)|pk (v 25 (vs)}
0<i<n
VSi # _

In the above definition we introdugefree variables, which are used as location pointers, andsee u
a locationx (which can be defined as the least locatiot¥ihas the unique location of the automaton. The
initial predicate and invariant functions are conditioegpressions, which ensure that the right predicate
is chosen according to the values of the location pointerthd definition of the init function, the second
part of the conjunction forces the choice of an initial lagat(otherwise this predicate can be trivially
satisfied). The set of edges is constructed from the actasition of the linear transition system. The
reset mapping in the action transitions is extended withatgglto the location pointers to keep track of
the state in the linear transition system.

The well-definedness of function L is a consequence of thiefiess of LiTSs. Given a composition
p, such that I(p) = (ayp,Is), we say thaty, is the linear automaton associated to it.

For the train gate model, the linear automaton associatadstshown in Figuré 4, where the initial
predicate and invariant functions are (once theysarelified:

init(x) = (lo=FAli=FAl,=CAwq=1[])
inv(x) =(l=C=n=0)A(I,=0=n<1)

2strictly speaking, function L is not uniquely determineiice it is possible to pick different location pointers. Flsan
be avoided by defining a function that returns the legfsesh variables in a given composition (assuming variahtegotally
ordered). A similar observation can be done about location

D.E. Nadales Agut & M.A. Reniers 13

Train Gate acts = {rg,go,out}

rg,id™ = 0Awqg" =wg+ [id] Alo=F Al =NAl;=CAly =C

stoplo=NAl =S
go,pt =0Ant =n+1Awg" + [p]=wagAlp=NAI§ =PAl,=CAlJ =0

go,p" =0ANt =n+1Awqg" + [pT] =wgAlp=SAl§ =PAl,=CAlf =0

outn" =n+1Alg=PAlf =FAl,=0Aly =C
_>®3
rg,id* = 1Awg" =wa+ [idT]Ali=F Al =NAl,=CAl} =C
stopl; =NAIl] =S
go,pt =1Ant =n+1Awg" + [pT]=wgAli =NAIf =PAl,=CAlJ =0

go,pt =1Ant =n+1Awg" + [p] =wgAly =SAlf =PAl,=CALJ =0

outnt =n+1AlL=PAlf =FAl,=0AIl; =C

Figure 4: Linear version of the gateway model

The next step is to prove that the linear version of a comiposit indeed equivalent to it. If we
consider the transition systems they induce, we find thatthédfer significantly among each other: they
have different labels, invariants, etc. Thus if we want toverequivalence at the LiTS level, we need a
non-trivial definition of equivalence.

A better strategy is to prove equivalence at the labeleditian level (using the explicit semantics).
Therefore, we prove thagt and its associated linear automaton are stateless bisim@ftar abstracting
away the values of the program counters (or location pahtérhe standard notion of strong bisimilar-
ity [11] is defined below.

Definition 5 (Strong Bisimilarity for SOS) A symmetric relation R is a strong bisimulation relation if
for all (p,q) € R, and for allg, ¢, p, o’ the following transfer conditions hold:

1 (p,0) 5 (p,0") = (3d : (9,0) 5 (¢,0") A (P.d) €R)

2. (p,0) %> (p/,0") = (3¢ : (4,0) - (d,0") A (P,) €R)
Two closed terms p and g are strongly bisimilar, denoted $O%<« q, if (p,q) € R for some strong
bisimulation relation R.

Next, we present the SOS rules for the variable scope operal@blel4 (the rules for environment
transitions are similar and therefore omitted). In thedesrwe make use of the following notations:
e Given two sequencessandys such that #s= #ys {xs— ys} € ran(xs) — ran(ys) is a function
defined as follows:
{Xs+>ys} = {(xsi,ysi) | 0 <i < #xs}

14 Linearization Through SOS

e The notation above is overloaded to denote a similar functilde believe this keeps the notation
concise and it does not bring confusion. Given a sequesa@nd an elemeny, {xs— y} €
ran(xs) — {y} is a function defined as follows:

{xs—y} ={(xsi,y) | 0<i < #xs}

e Symbol_L denotes the undefined value.

ab

(p,{xs—vs} = 0) = (p/,{xs—vs} > od’) 29
(v {xs— vs} :: p]l,0) 2% ([v {xs— v} p']|, 0")
(v x5 vs} :p).0) 3 (v (xsvsy 2 p' o)

([v{xs— L} pll,o) 25 (v {xs v} p'], 0")

Table 4: SOS rules for the variable scope operator

Using the previously defined operator and the notion of lesgebisimilarity, we can enunciate the
theorem which states that the linearization procedurerigcb

Theorem 9 (Correctness of the Linearization) Let p be a composition, and(p) = (ap,ls). Then we
have:

SOS=pe v{ls— L} ap]
Proof 1 Itis possible to prove that the following relation:

RE{(p,[v{ls+ L} ap]) | (ap,ls)=L(p)}U
{(plis],[[lv {Is —is} :: ap]}) | (ap,Is) = L(p),is € locsof(p) } (4)

is a witness of the bisimulation. The proof uses the soursdaed completeness results presented in
Sectiong 2]1 anld 3.1, and it does not require the use of sialdhduction.

5 Concluding Remarks

We have presented linearization algorithm for a subset Bf @hich shows that every CIF composition
can be reduced to an automaton. The linearization procedaseobtained in a stepwise manner from
the SOS specification of this language. In this way, SOS mafesised not only to specify the behavior
of CIF, but also as a specification formalism for performiegnantic preserving manipulations on the
syntactic elements of the language.

The soundness and completeness results between the miiffemasition systems give us a simple
proof of correctness on the linearization procedure. Tfierdnt levels in which a language is described
(explicit, symbolic, and linear semantics) provide a caonget way to tackle specific problems. The
explicit semantics is useful for achieving an abstract amtigict specification of the language. The

D.E. Nadales Agut & M.A. Reniers 15

symbolic semantics give us the means for specifying symlmoimputations. Finally, the linear seman-
tics yields an efficient representation of the state spasecesged to a given composition.

We conjecture the method presented here can be applied tawdognaton based language. For
process algebraic specification language it may not betdeaithue to the presence of recursion.

As future work, we plan to extension the linearization aildon to the full CIF, and therefore, to
a hybrid setting. Time-can-progress predicates and dyn#ypes can be extracted in the same way
invariants were extracted in this work, and therefore weeekpo problems in this regard.

References

[1] J.C. M. Baeten, T. Basten & M. A. Reniers (2008)ncess Algebra: Equational Theories of Communicating
Processes (Cambridge Tracts in Theoretical Computer $ejeh edition. Cambridge University Press.

[2] J.C.M. Baeten, D.A. van Beek, D. Hendriks, A.T. HofkampD.E. Nadales Agut,
JE. Rooda & R.R.H. Schiffelers (2010): Definition of the Compositional Inter-
change Format Technical Report Deliverable D1.1.2, Multiform. Availab at
www.multiform.bci.tu-dortmund.de/images/stories/multiform/deliverables/multiform_d112.pdf.
[3] Harsh Beohar, Damian E. Nadales Agut, Dirk A. van Beek &tBi J. L. Cuijpers (2010Hierarchical states
in the Compositional Interchange FormaElectronic Proceedings in Theoretical Computer Sci&&;ep.
42-56, doi:10.4204/EPTCS.32.4.

[4] P. van de Brand, M. A. Reniers & P. J. L. Cuijpers (2006nearization of Hybrid ProcessesJournal of
Logic and Algebraic ProgrammirGg(1-2), pp. 54-104, doi:10.1016/].jlap.2005.10.003.

[5] C4C consortium (2008)Control for Coordination of Distributed Systentsttp://www.c4c-project.eul/.
[6] P.J.L. Cuijpers & M.A. Reniers (2008):Lost in Translation: Hybrid-Time Flows vs Real-Time

Transitions In: HSCC 2008 Lecture Notes in Computer Sciene®81, Springer, pp. 116-129,
doi{10.1007/978-3-540-789299l

[71 M. Hennessy & H. Lin (1995): Symbolic bisimulations In: Selected papers of the meeting on
Mathematical foundations of programming semantigtsevier Science Publishers B. V., Amsterdam,
The Netherlands, The Netherlands, pp. 353-389,/ doi:16/0804-3975(94)00172-F. Available at
http://portal.acm.org/citation.cfm?id=202463.202370.

[8] HYCON 2: Highly-complex & networked control systems (@0): http: //www. hycon2. eu/.

[9] HYCON Network of Excellence (2005nttp://www.ist-hycon.org/

[10] U.Khadim, D. A. van Beek & P. J. L. Cuijpers (200)nearization of Hybrid Chi Using Program Counters
Technical Report CS-Report 07-18, Eindhoven Universityexfhnology, Department of Computer Science,
The Netherlands.

[11] M. R. Mousavi, M. A. Reniers & J. F. Groote (2009iotions of bisimulation and congruence formats for
SOS with datalnformation and Computatic200(1), pp. 107-147, d0i:10.1016/j.ic.2005.03,002.

[12] MULTIFORM consortium (2008):Integrated Multi-formalism Tool Support for the Design @ftworked
Embedded Control Systems MULTIFORMtp://www.multiform.bci.tu-dortmund.de.

[13] D. E. Nadales Agut & M. A. Reniers (2011Deriving a Simulator for a Hybrid Language Using SOS Rules
http://se.wtb.tue.nl/sewiki/cif/publications2.

[14] Gordon D. Plotkin (2004)A structural approach to operational semantickurnal of Logic and Algebraic
Programming0-61, pp. 17-139, d0i:10.1016/j.jlap.2004.05/001.

[15] Yaroslav S. Usenko (2002)inearization inuCRL Ph.D. thesis, Eindhoven University of Technology.

www.multiform.bci.tu-dortmund.de/images/stories/multiform/deliverables/multiform_d112.pdf
http://dx.doi.org/10.4204/EPTCS.32.4
http://dx.doi.org/10.1016/j.jlap.2005.10.003
http://dx.doi.org/10.1007/978-3-540-78929-1_9
http://dx.doi.org/10.1016/0304-3975(94)00172-F
http://portal.acm.org/citation.cfm?id=202463.202370
http://www.hycon2.eu/
http://dx.doi.org/10.1016/j.ic.2005.03.002
http://se.wtb.tue.nl/sewiki/cif/publications2
http://dx.doi.org/10.1016/j.jlap.2004.05.001

	1 Introduction
	2 Setting the Scene
	2.1 Explicit and Symbolic Semantics of CIF

	3 Linear Transition Systems
	3.1 Relating LiTS and STS

	4 Obtaining a Linear Automaton from a LiTS
	5 Concluding Remarks

