
B. Luttik and F. D. Valencia (Eds.): 18th International Workshop on
Expressiveness in Concurrency (EXPRESS 2011)
EPTCS ??, 2011, pp. 1–15, doi:10.4204/EPTCS.??.??

c© D.E. Nadales Agut & M.A. Reniers
This work is licensed under the Creative Commons
Attribution-Share Alike License.

Linearization of CIF Through SOS

D.E. Nadales Agut M.A. Reniers
Systems Engineering

Department of Mechanical Engineering
Eindhoven University of Technology (TU/e)

{d.e.nadales.agut, m.a.reniers}@tue.nl

Linearization is the procedure of rewriting a process term into a linear form, which consist only of
basic operators of the process language. This procedure is interesting both from a theoretical and
a practical point of view. In particular, a linearization algorithm is needed for the Compositional
Interchange Format (CIF), an automaton based modeling language.

The problem of devising efficient linearization algorithmsis not trivial, and has been already
addressed in literature. However, the linearization algorithms obtained are the result of an inventive
process, and the proof of correctness comes as an afterthought. Furthermore, the semantic specifica-
tion of the language does not play an important role on the design of the algorithm.

In this work we present a method for obtaining an efficient linearization algorithm, through a
step-wise refinement of the SOS rules of CIF. As a result, we show how the semantic specifica-
tion of the language can guide the implementation of such a procedure, yielding a simple proof of
correctness.

1 Introduction

Linearization is the procedure of rewriting a process term into a linear form, which consist only ofbasic
operatorsof a process language [10, 4, 15]. Linearization is also referred to aseliminationin ACP style
process algebras [1].

From a theoretical perspective, linearization of process terms is an interesting result. It allows to get a
better understanding about the expressiveness of the language constructs, since it shows that all its terms
are reducible to some normal form (which contains only a limited set of operators of the language). Also,
linearization is useful in proving properties about closedterms, since the number of cases that needs to
be dealt with in a proof by structural induction becomes smaller.

The Compositional Interchange Format (CIF) [2], is a language for modeling real-time, hybrid and
embedded systems. CIF is developed to establish inter-operability of a wide range of tools by means
of model transformations to and from the CIF. As such it playsa central role in the European projects
Multiform [12], HYCON [9], C4C [5], and HYCON 2 [8]. CIF has a formal semantics [2], which is
defined in terms of Structured Operational Semantics Rules (SOS) in the style of Plotkin [14].

Besides its theoretical importance, linearization of CIF models eliminates operators, such as urgency,
that cannot be handled in other languages. Since CIF is meantto be used as an interchange format, the
elimination of the operators broadens the set of models thatcan be translated to other languages. For the
hierarchical extension of CIF [3], hCIF, linearization makes the elimination of hierarchy possible, and
thus, all the tools available for CIF become available for use with hCIF models as well.

It is our goal to build a linearization algorithm for CIF, which results in an efficient representation
of the original model, and such that all the operators of the language, such as parallel composition or
synchronization are eliminated. The problem of efficient linearization has been already studied in lit-
erature [15, 4, 10] for process-algebraic languages for describing and analyzing discrete-event systems

http://dx.doi.org/10.4204/EPTCS.??.??
http://creativecommons.org
http://creativecommons.org/licenses/by-sa/3.0/

2 Linearization Through SOS

and hybrid systems. However, in the previous cases, the linearization algorithm is the result of an inven-
tive process, and the proof of correctness comes as an afterthought. The semantic specification of the
language does not play an important role on the design of the algorithm.

Previously, we studied the problem of implementing a simulator from the SOS specification of
CIF [13]. The semantics of CIF is defined in terms of SOS rules,which induce a hybrid transition
system, where each state contains a CIF term followed by a valuation (assignment of values to vari-
ables). This kind of semantics, even though useful for specification purposes, was not suitable for the
implementation of a simulator (interpreter) for the language. This problem was solved by giving a set of
SOS rules, calledsymbolic rules, which induced transition systems that do not contain the valuation part.
It was also noted that the symbolic transition system induced by these rules is finite, and it resembles a
(CIF) automaton. Thus, the symbolic SOS rules for CIF offer astraightforward algorithm for linearizing
CIF models. However, the resulting automaton has a size thatmay be exponential in the size of the input
model.

In this work we study the possibility of reusing the existingresults on efficient linearization algo-
rithms for obtaining a linear form of CIF from SOS rules. The idea is to give a more concrete version of
the symbolic SOS rules of CIF (which is in turn a concrete version of the SOS rules with data), such that
the transition system they induce can be translated to an automaton whose size does not grow exponen-
tially as the result of interleaving actions (for synchronizing action the growth is still exponential, but in
practice this is not a serious limitation since synchronization takes place only among a limited number
of components).

As a result, we show a linearization procedure, which is obtained from the SOS specification of the
language. In this way, the design of the algorithm requires less invention steps, reducing the opportunities
to introduce mistakes, and at the same time it yields a simpleproof of correctness.

2 Setting the Scene

For the discussion presented here, we consider a simplified version of CIF, which is untimed and contains
only automata, a parallel composition operator, and a synchronizing action operator. This helps to keep
the focus on the ideas, without distracting the reader with the complexity of CIF1. The techniques and
results presented here can be easily extended to the settingof timed and hybrid systems, since we handle
concepts such as invariants and time-can-progress conditions in a symbolic manner.

We begin by defining automata and the terms of our language. Throughout this work, notationP
is used to refer to a set of predicates,V is a set of variables,A is a set of actions,τ is the silent action
(τ /∈ A), andAτ , A ∪{τ}.

Definition 1 (Automaton) An automaton is a tuple(V, init , inv,E,actS), where V⊆ L is a set of lo-
cations, init ∈ V → P is the initial predicate function,inv ∈ V → P is the invariant function, E⊆
V ×Aτ ×P×V is the set of edges, andactS⊆ A is a set of synchronizing actions.

Figure 1 presents a model of a railroad gate. It has two modes of operation (locations), closed and
opened, denotedC andO respectively. Its initial predicate function associates the conditionwq= [] to
locationC (represented graphically with an incoming arrow without source location), and the predicate
false to locationO (represented by the absence of such an arrow). Herewq is the waiting queue that
contains the id’s of the trains waiting to pass through the gate, [] is the empty list, and we denote lists by

1This language contains over 30 deduction rules

D.E. Nadales Agut & M.A. Reniers 3

writing their elements between brackets, and separated by commas. LocationC hasn= 0 as invariant,
wheren is the numbers of trains crossing the gate, and locationO has invariantn≤ 1. The automaton
synchronizes with other components in actionsrq, go, andout.

The automaton has four edges. Two edges(C, rq,wq+ = wq++ [id+],C), and(O, rq,wq+ = wq+
+ [id+],O), which are used to enqueue requests from the trains that wantto pass the gate. Given two
sequencesxs andys, xs++ ys denotes their concatenation. The predicatewq+ = wq++ [id+] expresses
that the new value of the waiting queue after performing action rq will be the old waiting queue (wq)
extended with the id of the train that request access (this idis contained in variableid+). Graphically
these edges are represented by two self loops in locationsC andO, labeledrq,wq+ = wq++ [id+]. The
gate can make a transition from the closed state to the openedstate, by issuing ago action, which sends
the id at the front of the waiting queue using variablep.

C
inv : n= 0

wq= []
O

inv : n≤ 1

go, [p+]++ wq+ = wq

out

rq,wq+ = wq++ [id+]rq,wq+ = wq++ [id+]

Gate actS= {rq,go,out}

Figure 1: CIF model of a gate.

In Figure 2 we present the model of a train, which will be run inparallel with the gate model. It
has a parameteri, which represents the train’s id. It has four locations: far(F), near (N), stopped (S),
and passing (P). LocationF is the only initial location. When the train approaches the gate it issues a
request to pass the gate by sending its id though variableid. Once in the near location, it can only go to
the passing state if variablep is updated to its id (this update is carried out by the gate, aswe have seen
above). Otherwise it makes a transition to the stopped state. When the train enters the gate it increments
variablen, and it decrements it upon departure.

These models can be composed in parallel using the parallel composition operator, denoted as‖.
Actions in CIF are not synchronizing by default. Thus in the parallel composition

Train(0) ‖ Train(1)

the actions of the two trains will be interleaved.
We want to put the parallel composition of the two trains in parallel with the gate automaton, in such

a way that the trains synchronize with the actionsrq, go, andout of the gate. This can be achieved using
thesynchronizing actionoperator, denoted asγA. Informally, compositionγA(p) behaves as composition
p, except that all the actions of the setA are made synchronizing inp. Below we explain this. Using
these operators, we can express train gate model in CIF as follows:

γ{rq,go,out}(Train(0) ‖ Train(1)) ‖ Gate (1)

4 Linearization Through SOS

F

N

S

P

rq, id+ = i stop

go,
p+ = i ∧
n+ = n+1

go,
p+ = i ∧
n+ = n+1

out,n+ = n−1

Train(i)

Figure 2: CIF model of a train.

As a consequence of the use of the synchronizing action operator in (1), action i ∈ {rq,go,out} in
Train(j), j ∈ {0,1}, will synchronize with actioni in the gate. Actions in the set{rq,go,out} are in-
terleaved in the parallel compositions of the trains (theydo notsynchronize) since the scope operator
only make actions synchronizing in the outer scope. For moredetails see the rules of and their explana-
tion Table 1.

Formally, the set of all CIF compositions is defined as follows:

Definition 2 (Compositions) The setC of all compositions is defined through the following abstract
grammar:C ::= α | C ‖ C | γA(C), whereα is an automaton and A⊆ A .

In the next section we present the formal semantics of CIF compositions, both its explicit version
and its symbolic counterpart.

2.1 Explicit and Symbolic Semantics of CIF

The semantics of CIF is defined in terms of hybrid transition systems [6]. In the context of the present
work, we restrict our attention to ordinary transition systems (thus omitting time transitions), extended
with environment transitions(see below).

The labeled transition systems we are considering have states of the form(p,σ). Herep∈ C , and
σ ∈ Σ is a valuation, whereΣ = V → Λ, andΛ denotes a set of values. The valuation records the values
of the model variables at a certain moment. There are two types of transitions in these labeled transition
systems.Action transitions, of the form

(p,σ)
a,b
−→ (p′,σ ′)

model the execution of an actiona by compositionp in an initial valuationσ , which changes composition
p into p′ and results in a new valuationσ ′. Label b is a boolean that indicates whether actiona is
synchronizing.Environment transitions, of the form

(p,σ)
A

99K (p′,σ ′)

D.E. Nadales Agut & M.A. Reniers 5

model the fact that the initial conditions and invariants ofp (p′ respectively) are satisfied inσ (σ ′), and
A is the set of synchronizing actions ofp and p′. Environment transitions are used to obtain the state
changes allowed by a model in a parallel composition context.

The transition system associated to a composition can be obtained by means of SOS rules. Below we
present the explicit rules, where we have omitted the symmetric version of the parallel composition rule.
Given a valuationσ , we defineσ ′+ , {(x+,v) | (x,v) ∈ σ}. We use notationα to refer to the automaton
(V, init , inv,E,actS), andα [x] to refer to(V, idx, inv,E,actS), where idx(w) , w ≡ x. Throughout this
work, FV(p) is the set of free variables ofp.

(v,a, r,v′) ∈ E,σ |= init(v)∧ inv(v),
σ ′ |= inv(v′),σ ′+∪σ |= r,

〈∀x :: x+ /∈ FV(r)⇒ σ(x) = σ ′(x)〉

(α ,σ)
a,a∈actS
−−−−→ (α [v′],σ ′)

1

v∈V,σ |= init(v)∧ inv(v),
σ ′ |= inv(v)

(α ,σ)
actS
99K (α [v],σ ′)

2

(p,σ)
a,true
−−−→ (p′,σ ′),(q,σ)

a,true
−−−→ (q′,σ ′)

(p ‖ q,σ)
a,true
−−−→ (p′ ‖ q′,σ ′)

3
(p,σ)

a,b
−→ (p′,σ ′),(q,σ)

A
99K (q′,σ ′),a /∈ A

(p ‖ q,σ)
a,b
−→ (p′ ‖ q′,σ ′)

4

(p,σ)
Ap
99K (p′,σ ′),(q,σ)

Aq
99K (q′,σ ′)

(p ‖ q,σ)
Ap∪Aq
99K (p′ ‖ q′,σ ′)

5
(p,σ)

a,b,X
−−−→ (p′,σ ′)

(γA(p),σ)
a,b∨a∈A,X
−−−−−−→ (γA(p′),σ ′)

6

(p,σ)
A′

99K (p′,σ ′)

(γA(p),σ)
A∪A′

99K (γA(p′),σ ′)
7

Table 1: Explicit rules for CIF

Rule 1 states that an action can be triggered by an automaton,if there is an edge(v,a, r,v′) such that
the initial predicate and the invariant are satisfied in the initial valuationσ , and it is possible to find a new
valuationσ ′ in which the invariant and the reset predicate are satisfied.The only variables that change
in σ ′ w.r.t. σ are those free variables ofr that are of the formx+. Rule 2 states that an automaton is
consistent in initial valuationσ if the initial predicate and invariant are satisfied inσ , and the valuation
can be changed toσ ′ only if the invariant is preserved. Rule 3 expresses that an action a can be executed
synchronously if it ismarked as synchronizingin both components. The interleaving behavior is modeled
in Rule 4, where an actiona can be executed inp if it is not synchronizingin q. In Rule 6 an actiona is
marked as synchronizing ifa∈A, ora is synchronizing inp. The environment rule for the synchronizing
action operator (Rule 7) addsA to the set of synchronizing actions ofp.

As noted in [13], the explicit rules are not suitable for implementation purposes. These rules often
induce infinitely branching transition systems, and as a consequence it is not possible to obtain the set of
possible successor states. In particular, the labels of thehybrid transition systems containtrajectories,
of an dense domain, which are defined in the rules through computations over these dense sets. Another
problem is that the valuations specify implicit constraints, such as “variables owned by a certain automa-
ton cannot be changed in a parallel composition”, which require to compute operations on infinite sets

6 Linearization Through SOS

of valuations to get the set of possible successor states.
The solution to the problem explained above was to obtain a set of symbolic rules[7] from the explicit

SOS specification. These symbolic rules represent the possible state changes by means of predicates, and
thus, the state change caused by an action is visible on the arrows of the transitions. The symbolic rules
for the language considered in this paper are shown in Table 2.

(v,a, r,v′) ∈ E

〈α〉
a,a∈actS,init(v),inv(v),inv(v′),r
−−−−−−−−−−−−−−−−−→ 〈α [v′]〉

8
v∈V

〈α〉
init(v),inv(v),actS

99K 〈α [v]〉
9

〈p〉
a,true,up,np,n′p,rp
−−−−−−−−−→ 〈p′〉,〈q〉

a,true,uq,nq,n′q,rq
−−−−−−−−−→ 〈q′〉

〈p ‖ q〉
a,true,up∧uq,np∧nq,n′p∧n′q,rp∧r ′p
−−−−−−−−−−−−−−−−−−→ 〈p′ ‖ q′〉

10
〈p〉

a,b,up,np,n′p,r
−−−−−−−→ 〈p′〉,〈q〉

uq,nq,A
99K 〈q′〉,a /∈ A

〈p ‖ q〉
a,b,up∧uq,np∧nq,n′p∧nq,r
−−−−−−−−−−−−−−→ 〈p′ ‖ q′〉

11

〈p〉
up,np,Ap
99K 〈p′〉,〈q〉

uq,nq,Aq
99K 〈q′〉

〈p ‖ q〉
up∧uq,np∧nq,Ap∪Aq

99K 〈p′ ‖ q′〉
12

〈p〉
a,b,u,n,n′ ,r
−−−−−−→ 〈p′〉

〈γA(p)〉
a,b∨a∈A,u,n,n′ ,r
−−−−−−−−−→ 〈γA(p′)〉

13

〈p〉
u,n,A′

99K 〈p′〉

〈γA(p)〉
u,n,A∪A′

99K 〈γA(p′)〉
14

Table 2: Symbolic rules for CIF

The explicit and symbolic rules are related by the followingsoundness and completeness theorems.
These theorems state how an explicit transition system can be reconstructed from its symbolic version,
and vice-versa.

Theorem 1 (Soundness of action transitions)For all p, p′, a, b, u, n, n′, r, σ , andσ ′ we have that if
the following conditions hold:

1. 〈p〉
a,b,u,n,n′ ,r
−−−−−−→ 〈p′〉

2. σ |= u, σ |= n, σ ′ |= n′, andσ ′+∪σ |= r

3. 〈∀x :: x+ /∈ FV(r)⇒ σ(x) = σ ′(x)〉

then, there is a explicit action transition(p,σ)
a,b
−→ (p′,σ ′).

Theorem 2 (Completeness of action transitions)For all p, p′, a, b,σ , andσ ′ we have that if there is

a explicit transition(p,σ)
a,b
−→ (p′,σ ′) then there exists u, n, n′, and r such that the following conditions

hold:

1. 〈p〉
a,b,u,n,n′ ,r
−−−−−−→ 〈p′〉

2. σ |= u, σ |= n, σ ′ |= n′, andσ ′+∪σ |= r

3. 〈∀x :: x+ /∈ FV(r)⇒ σ(x) = σ ′(x)〉

D.E. Nadales Agut & M.A. Reniers 7

Theorem 3 (Soundness of environment transitions)For all p, p′, u, A,σ , andσ ′ we have that if the
following conditions hold:

1. 〈p〉
u,n,A
99K 〈p′〉

2. σ |= u, σ |= n, σ ′ |= n

then, there is a explicit environment transition(p,σ)
A

99K (p′,σ ′).

Theorem 4 (Completeness of environment transitions)For all p, p′, A,σ , andσ ′ we have that if there

is an explicit transition(p,σ)
A

99K (p′,σ ′) then there exists u, and n such that the following conditions
hold:

1. 〈p〉
u,n,A
99K 〈p′〉

2. σ |= u, σ |= n, σ ′ |= n

It is not hard to see that given a CIF composition, the symbolic rules induce afinite transition system.
For the model of the train gate presented in Section 2, a part of its associated symbolic transition system
is shown in Figure 3 (the whole transition system contains 16states), where we use the convention that
for all x, y, z:

〈x,y,z〉 ≡ γ{rq,go,out}(Train(0)[x] ‖ Train(1)[y]) ‖ Gate[z]

In this transition system, two problems can be noted. The size of the symbolic transition system grows
exponentially as more trains are added. This is the result ofthe interleaving actions that are executed
between these models. Secondly, there is a great deal ofredundant information. The invariants of
the source and the target states are present not only in the labels of action transitions, but also in the
environment transition of these states. Similarly, the initialization conditions are meaningful only for the
initial environment transition. For the remaining environment transitions in the systems, the initialization
predicate is always true. In the next section we show how to overcome these problems using a new kind
of symbolic rules.

3 Linear Transition Systems

In this section we define a structure calledlinear transition system(LiTS), which contains all the infor-
mation necessary to represent any arbitrary CIF composition, and that can be translated to an equivalent
automaton.

Consider the symbolic transition system of the train gate model. In Figure 3, we show a transition of
the form:

〈N,F,C〉
go,p+=0∧n+=n+1∧wq+++ [p+]=wq,n=0,n≤1
−−−−−−−−−−−−−−−−−−−−−−−−−→ 〈P,F,O〉

The complete symbolic transition system also contains these transitions:

〈N,N,C〉
go,p+=0∧n+=n+1∧wq+++ [p+]=wq,n=0,n≤1
−−−−−−−−−−−−−−−−−−−−−−−−−→ 〈P,N,O〉

〈N,S,C〉
go,p+=0∧n+=n+1∧wq+++ [p+]=wq,n=0,n≤1
−−−−−−−−−−−−−−−−−−−−−−−−−→ 〈P,S,O〉

These three transitions only differ in the second componentof the symbolic state, that is, the location in
which the second train is. However, this information is not relevant for computing the state change. If
we replace the above transitions by a unique transition of the form:

〈N, ,C〉
go,p+=0∧n+=n+1∧wq+++ [p+]=wq,n=0,n≤1
−−−−−−−−−−−−−−−−−−−−−−−−−→ 〈P, ,O〉

8 Linearization Through SOS

〈γ{rq,go,out}(Train(0) ‖ Train(1)) ‖ Gate〉

〈N,F,C〉 〈F,F,C〉 〈F,N,C〉

〈P,F,O〉 〈F,P,O〉

wq= [],n= 0

rq, id+ = 0∧
wq+ = wq++ [id+],
n= 0,n= 0

rq, id+ = 1∧
wq+ = wq++ [id+],
n= 0,n= 0

true,
n= 0

true,
n≤ 1

true,
n≤ 1

true,
n= 0

true,
n= 0

rq, id+ = 0∧
wq+ = wq++ [id+],
n= 0,n= 0

rq, id+ = 1∧
wq+ = wq++ [id+],
n= 0,n= 0go,

p+ = 0∧
n+ = n+1∧
wq+++ [p+] = wq,
n= 0,n≤ 1

go,
p+ = 1∧
n+ = n+1∧
wq+++ [p+] = wq,
n= 0,n≤ 1

Figure 3: A part of the symbolic transition system for the train gate controller

then we can avoid the state explosion caused by the interleaving actions. Here thewild-card symbol
can be read as “for any location”.

Furthermore, in Figure 3 we see that there is no need to replicate the entire structure in a given
transition, since it suffices to keep track of the locations that change.

From the observation above, we want a linear transition system where the states aresequences of
locations, containing alsowild-cards. These wild-cards are used to denote the fact that the location of a
certain automaton does not change in the transition. Formally the states of the LiTS belong to the set

(L ×{ })∗ (2)

where is the wild-card symbol, andA∗ is the set of all sequences whose elements are taken from the set
A. An example of such state is the list[F, ,C].

The next thing to define is the transitions of the LiTS’s, in such a way that the redundancy introduced
by the STS’s is eliminated. To accomplish this, we split action and environment transitions into several
transitions, which are described next.

Action Transitions They are of the formp |= 〈vs〉
a,r
−→ 〈vs′〉, wherep∈ C is a composition,a∈ Aτ is

an action label, andr ∈ P is the update predicate associated to the action.

Synchronizing Actions They are of the formp
sync
❀ A, wherep∈ C is a composition, andA⊆ A is the

set of synchronizing actions ofp.

Initialization Transitions They are of the formp
ipred
❀ fs, wherep ∈ C and fs∈ (L ⇀ P)∗ is a list

containing the initialization predicate function of each automaton inp.

D.E. Nadales Agut & M.A. Reniers 9

Invariant Transitions They are of the formp
inv
❀ fs, wherep∈ C is a composition, andfs∈ (L →P)∗

is a list containing the invariant function associated to each automaton inp.

The reader may have expected initialization or invariant transitions of the form:

vs
inv
❀ p

wherevs is a list of locations, andp is a predicate. However this approach requires enumerating

the state space explicitly to construct the
inv
❀ relation. By using lists of functions we avoid this

explicit construction.

Wild-card Transitions They are of the formp
#
❀ xs, wherep∈ C is a composition, andxs∈ ()∗ is a

sequence of wild-cards whose size coincides with the numberof automata that are composed in
parallel inp. These transition are not needed for reconstructing the environment transitions, they
are used in the linear SOS rules to model the fact that nothingchanges in a component of a parallel
composition, when the other component performs an action.

In Table 3 we show some of the linear SOS rules for CIF compositions. We have omitted the rules
for synchronizing actions, initialization, and wild-cardtransitions since they are similar to the invariant
transitions.

The linear rules can be easily to obtained from the symbolic ones. For action rules, invariants and
initialization predicates, and the synchronizing action label are simply omitted (since they can be ob-
tained from other transitions). The linear rule for interleaving parallel composition is almost identical to
the symbolic rule. The only differences are that the setA is obtained from a

sync
❀ transition, and we use

the wild-card transition to represent the fact that the locations of the other automaton are not relevant (at
the symbolic level at least). A similar observation can be made for the rule for parallel composition. In
this case since we do not have the synchronizing label, we reconstruct it from the

sync
❀ transition. This

label is equivalent toa∈ A, thus a label true in both components is equivalent toa∈ Ap∧a∈ Aq, which
is in turn equivalent toa∈ Ap∩Aq.

If a compositionp contains no synchronizing actions, then the size of its induced transition system
is linear w.r.t. the size ofp. However, the size of the LiTS also depends on the number of synchronizing
actions. The following property gives the formal details.

Property 1 (Size of the linear transition system)Let p be a CIF composition, such that it contains n
automataαi ≡ (Vi , init i , invi,E,actSi), 0≤ i < n. Let a be the only synchronizing action in these automata.
Then the number of transitions in the LiTS associated to p is given by:

∑
0≤i<n

#{x | (v,g,x,u,v′) ∈ Ei ∧x 6= a}+ ∏
0≤i<n

#{x | (v,g,x,u,v′) ∈ Ei ∧x= a} (3)

where#A is the number of elements in set A.

In spite of the fact that the number in (3) can be significantlylarge, in practice, communication
among components is usually restricted to a few automata, and the number of edges of an automaton that
contain a given synchronizing actiona is small.

3.1 Relating LiTS and STS

In the same way symbolic transitions are related to explicitones via soundness and completeness results,
linear transitions have the same property w.r.t. symbolic transitions.

10 Linearization Through SOS

(V, init , inv, tcp,E,actS)
inv
❀ [inv]

15 p
inv
❀ fsp,q

inv
❀ fsq

p ‖ q
inv
❀ fsp++ fsq

16

(v,a, r,v′) ∈ E

(V, init, inv, tcp,E,actS) |= 〈[v]〉
a,r
−→ 〈[v′]〉

17
p |= 〈vs〉

a,r
−→ 〈vs′〉,q

sync
❀ A,q

#
❀ ,a /∈ A,

p ‖ q |= 〈vs++ 〉
a,r
−→ 〈vs′++ 〉

18

p |= 〈vsp〉
a,rp
−−→ 〈vs′p〉,q |= 〈vsq〉

a,rq
−−→ 〈vs′q〉, p

sync
❀ Ap,q

sync
❀ Aq,a∈ Ap∩Aq

p ‖ q |= 〈vsp++ vsq〉
a,rp∧rq
−−−−→ 〈vs′p++ vs′q〉

19

p
inv
❀ fs

γA(p)
inv
❀ fs

20
p |= 〈vs〉

a,r
−→ 〈vs′〉

γA(p) |= 〈vs〉
a,r
−→ 〈vs′〉

21

Table 3: Linear SOS rules for CIF compositions

The first two results state that a LiTS contains all the necessary information to reconstruct the envi-
ronment transitions in the symbolic transition system and vice-versa. Here “leads to transitions” refers
to the initialization, invariant, and synchronizing actions transitions in the LiTS. Given a compositionp,
which containsn atomic automata, and a sequencels of n locations,p[ls] is the composition obtained
by replacing the initial predicate function of theith automaton by idls.i , for 0≤ i < n, wherels.i is the
element of sequencels at positioni (sequences are numbered starting from 0). locsof(p) refers to the set
of sequencesls, where #ls= n andls.i is a location of theith automaton of compositionp (0≤ i < n).

Theorem 5 (Soundness of leads to transitions)For all p, is, fs, gs, A, u, and n we have that if the
following conditions hold:

1. is∈ locsof(p)

2. p
ipred
❀ fs, p

inv
❀ gs, p

sync
❀ A

3. u=
∧

0≤i<#fs

fs.i(is.i), and n=
∧

0≤i<#gs

gs.i(is.i)

then there is a symbolic transition〈p〉
u,n,A
99K 〈p[is]〉.

Theorem 6 (Completeness of leads to Transitions)For all p, u, n, A, and p′ we have that if there is an

environment transition〈p〉
u,n,A
99K 〈p′〉 then there are is, fs, gs, u, and n such that the following conditions

hold:

1. is∈ locsof(p)

2. p
ipred
❀ fs, p

inv
❀ gs, p

sync
❀ A

3. u=
∧

0≤i<#fs

fs.i(is.i), and n=
∧

0≤i<#gs

gs.i(is.i), p′ ≡ p[is]

D.E. Nadales Agut & M.A. Reniers 11

The soundness theorem for linear action transitions shows how a symbolic action transition can be
obtained, using the leads to transitions as well. Functions⊑ and≻ are defined below, wherex : xs is the
list that results after appending the elementx to the front ofxs.

Definition 3 (Sub-sequence and sequence overwriting)Function⊑∈ A∗ ⇀ A∗ ⇀ B is defined as fol-
lows:

[]⊑ xs, true

(x : xs)⊑ (y : ys), ((x≡)∨ (x≡ y))∧xs⊑ ys

Function≻∈ A∗ ⇀ A∗ ⇀ A∗ is defined as follows:

[]≻ xs, xs

(x : xs)≻ (y : ys),

{

x : (xs≻ ys) if x 6=

y : (xs≻ ys) if x =

Theorem 7 (Soundness of Linear Action Transitions)For all p, vs, a, r, vs′, is, fs, gs, u, n, n, and A
we have that if the following conditions hold:

1. is∈ locsof(p)

2. p|= 〈vs〉
a,r
−→ 〈vs′〉, p

ipred
❀ fs, p

inv
❀ gs, p

sync
❀ A

3. u=
∧

0≤i<#fs

fs.i(is.i), and n=
∧

0≤i<#gs

gs.i(is.i), n′ =
∧

0≤i<#gs

gs.i((vs′ ≻ is).i), vs⊑ is, b≡ a∈ A

then there is a symbolic transition:〈p〉
a,b,u,n,n′ ,r
−−−−−−→ 〈p[vs′ ≻ is]〉.

Theorem 8 (Completeness of Linear Action Transitions)For all p, p′, a, b, u, n, n′, and r we have
that if there is a symbolic transition:

〈p〉
a,b,u,n,n′ ,r
−−−−−−→ 〈p′〉

then there are vs, vs′, is, fs, gs, and A such that the following conditions hold:

1. is∈ locsof(p)

2. p|= 〈vs〉
a,r
−→ 〈vs′〉, p

ipred
❀ fs, p

inv
❀ gs, p

sync
❀ A

3. u=
∧

0≤i<#fs

fs.i(is.i), and n=
∧

0≤i<#gs

gs.i(is.i), n′ =
∧

0≤i<#gs

gs.i((vs′ ≻ is).i), vs⊑ is, b≡ a ∈ A,

p′ ≡ p[vs′ ≻ is]

These theorems can be proved using structural induction. The proofs are relatively simple, and are
omitted due to space constraints.

4 Obtaining a Linear Automaton from a LiTS

Once a linear transition system is induced by the SOS rules, we need a way to obtain a linear automaton
from it. In this section we describe the procedure, and we show that the generated automaton is stateless
bisimilar [11] to the composition that induced the transition system. Both from a theoretical and a

12 Linearization Through SOS

practical point of view this is an interesting result, whichtells us that every composition can be reduced
to an automaton (this is intuitively obvious for the language we present here, but it is not for CIF and its
hierarchical extension).

Formally, given an compositionp and its associated LiTSM, we want to build an automatonαp

such thatp has the same behavior asαp. The idea is to simulate the execution ofM, usingαp. To
this end, we need to introduce a sequence of variablesls, which are used to represent the active state in
M in a given execution. We call these variableslocation pointers[10]. Below, we give the definition2

of the linearization function, which returns the automatonassociated to a given composition and the
location pointers used in it. The second component returnedby the function is used later to formulate
the correctness result.

Definition 4 (Linearization Function) Let p be a CIF composition. FunctionL ∈ C → (C ×V ∗) is
defined as the least function that satisfies:

L(p) = (({x}, init , inv,E,actS), ls)

where

• p
#
❀ xs,#xs= n, p

ipred
❀ fs, p

inv
❀ gs, p

sync
❀ A

• 〈∀i :: 0≤ i < n⇒ ls.i /∈ FV(p)〉, x∈ L

• init(x) = (
∧

0≤i<n

∧

v∈dom(fs.i)

(ls.i = v⇒ fs.i(v)))∧ (
∧

0≤i<n

ls.i ∈ dom(f s.i))

• inv(x) =
∧

0≤i<n

∧

v∈dom(gs.i)

(ls.i = v⇒ gs.i(v))

• E = {(x,a, r ∧
∧

0≤ i < n
vs.i 6=

ls.i = vs.i ∧ ls.i+ = vs′.i,x) | p |= 〈vs〉
a,r
−→ 〈vs′〉}

In the above definition we introducen free variables, which are used as location pointers, and we use
a locationx (which can be defined as the least location inL) as the unique location of the automaton. The
initial predicate and invariant functions are conditionalexpressions, which ensure that the right predicate
is chosen according to the values of the location pointers. In the definition of the init function, the second
part of the conjunction forces the choice of an initial location (otherwise this predicate can be trivially
satisfied). The set of edges is constructed from the action transition of the linear transition system. The
reset mapping in the action transitions is extended with updates to the location pointers to keep track of
the state in the linear transition system.

The well-definedness of function L is a consequence of the finiteness of LiTSs. Given a composition
p, such that L(p) = (αp, ls), we say thatαp is the linear automaton associated to it.

For the train gate model, the linear automaton associated toit is shown in Figure 4, where the initial
predicate and invariant functions are (once they aresimplified):

init(x) = (l0 = F ∧ l1 = F ∧ l2 =C∧wq= [])

inv(x) = (l2 =C ⇒ n= 0)∧ (l2 = O⇒ n≤ 1)

2Strictly speaking, function L is not uniquely determined, since it is possible to pick different location pointers. This can
be avoided by defining a function that returns the leastn fresh variables in a given composition (assuming variablesare totally
ordered). A similar observation can be done about locationx.

D.E. Nadales Agut & M.A. Reniers 13

x

rq, id+ = 0∧wq+ = wq++ [id+]∧ l0 = F ∧ l+0 = N∧ l2 =C∧ l+2 =C

stop, l0 = N∧ l+0 = S

go, p+ = 0∧n+ = n+1∧wq+++ [p+] = wq∧ l0 = N∧ l+0 = P∧ l2 =C∧ l+2 = O

go, p+ = 0∧n+ = n+1∧wq+++ [p+] = wq∧ l0 = S∧ l+0 = P∧ l2 =C∧ l+2 = O

out,n+ = n+1∧ l0 = P∧ l+0 = F ∧ l2 = O∧ l+2 =C

rq, id+ = 1∧wq+ = wq++ [id+]∧ l1 = F ∧ l+1 = N∧ l2 =C∧ l+2 =C

stop, l1 = N∧ l+1 = S

go, p+ = 1∧n+ = n+1∧wq+++ [p+] = wq∧ l1 = N∧ l+1 = P∧ l2 =C∧ l+2 = O

go, p+ = 1∧n+ = n+1∧wq+++ [p+] = wq∧ l1 = S∧ l+1 = P∧ l2 =C∧ l+2 = O

out,n+ = n+1∧ l1 = P∧ l+1 = F ∧ l2 = O∧ l+2 =C

Train Gate actS= {rq,go,out}

Figure 4: Linear version of the gateway model

The next step is to prove that the linear version of a composition is indeed equivalent to it. If we
consider the transition systems they induce, we find that these differ significantly among each other: they
have different labels, invariants, etc. Thus if we want to prove equivalence at the LiTS level, we need a
non-trivial definition of equivalence.

A better strategy is to prove equivalence at the labeled transition level (using the explicit semantics).
Therefore, we prove thatp and its associated linear automaton are stateless bisimilar, after abstracting
away the values of the program counters (or location pointers). The standard notion of strong bisimilar-
ity [11] is defined below.

Definition 5 (Strong Bisimilarity for SOS) A symmetric relation R is a strong bisimulation relation if
for all (p,q) ∈ R, and for allσ , ℓ, p′, σ ′ the following transfer conditions hold:

1. (p,σ)
ℓ
−→ (p′,σ ′)⇒ 〈∃q′ :: (q,σ)

ℓ
−→ (q′,σ ′)∧ (p′,q′) ∈ R〉

2. (p,σ)
ℓ

99K (p′,σ ′)⇒ 〈∃q′ :: (q,σ)
ℓ

99K (q′,σ ′)∧ (p′,q′) ∈ R〉
Two closed terms p and q are strongly bisimilar, denoted SOS|= p↔ q, if (p,q) ∈ R for some strong
bisimulation relation R.

Next, we present the SOS rules for the variable scope operator in Table 4 (the rules for environment
transitions are similar and therefore omitted). In these rules we make use of the following notations:

• Given two sequencesxsandys, such that #xs= #ys, {xs 7→ ys} ∈ ran(xs)→ ran(ys) is a function
defined as follows:

{xs 7→ ys}= {(xs.i,ys.i) | 0≤ i < #xs}

14 Linearization Through SOS

• The notation above is overloaded to denote a similar function. We believe this keeps the notation
concise and it does not bring confusion. Given a sequencexs and an elementy, {xs 7→ y} ∈
ran(xs)→{y} is a function defined as follows:

{xs 7→ y}= {(xs.i,y) | 0≤ i < #xs}

• Symbol⊥ denotes the undefined value.

(p,{xs 7→ vs} ≻ σ)
a,b
−→ (p′,{xs 7→ vs′} ≻ σ ′)

(|[V {xs 7→ vs} :: p]|,σ)
a,b
−→ (|[V {xs 7→ vs′} :: p′]|,σ ′)

22

(|[V {xs 7→ vs} :: p]|,σ)
a,b
−→ (|[V {xs 7→ vs′} :: p′]|,σ ′)

(|[V {xs 7→ ⊥} :: p]|,σ)
a,b
−→ (|[V {xs 7→ vs′} :: p′]|,σ ′)

23

Table 4: SOS rules for the variable scope operator

Using the previously defined operator and the notion of stateless bisimilarity, we can enunciate the
theorem which states that the linearization procedure is correct.

Theorem 9 (Correctness of the Linearization)Let p be a composition, andL(p) = (αp, ls). Then we
have:

SOS|= p↔ |[V {ls 7→ ⊥} :: αp]|

Proof 1 It is possible to prove that the following relation:

R,{(p, |[V {ls 7→ ⊥} :: αp]|) | (αp, ls) = L(p)}∪

{(p[is], |[V {ls 7→ is} :: αp]|) | (αp, ls) = L(p), is∈ locsof(p)} (4)

is a witness of the bisimulation. The proof uses the soundness and completeness results presented in
Sections 2.1 and 3.1, and it does not require the use of structural induction.

5 Concluding Remarks

We have presented linearization algorithm for a subset of CIF, which shows that every CIF composition
can be reduced to an automaton. The linearization procedurewas obtained in a stepwise manner from
the SOS specification of this language. In this way, SOS rulesare used not only to specify the behavior
of CIF, but also as a specification formalism for performing semantic preserving manipulations on the
syntactic elements of the language.

The soundness and completeness results between the different transition systems give us a simple
proof of correctness on the linearization procedure. The different levels in which a language is described
(explicit, symbolic, and linear semantics) provide a convenient way to tackle specific problems. The
explicit semantics is useful for achieving an abstract and succinct specification of the language. The

D.E. Nadales Agut & M.A. Reniers 15

symbolic semantics give us the means for specifying symbolic computations. Finally, the linear seman-
tics yields an efficient representation of the state space associated to a given composition.

We conjecture the method presented here can be applied to anyautomaton based language. For
process algebraic specification language it may not be suitable due to the presence of recursion.

As future work, we plan to extension the linearization algorithm to the full CIF, and therefore, to
a hybrid setting. Time-can-progress predicates and dynamic types can be extracted in the same way
invariants were extracted in this work, and therefore we expect no problems in this regard.

References

[1] J. C. M. Baeten, T. Basten & M. A. Reniers (2009):Process Algebra: Equational Theories of Communicating
Processes (Cambridge Tracts in Theoretical Computer Science), 1 edition. Cambridge University Press.

[2] J.C.M. Baeten, D.A. van Beek, D. Hendriks, A.T. Hofkamp,D.E. Nadales Agut,
J.E. Rooda & R.R.H. Schiffelers (2010): Definition of the Compositional Inter-
change Format. Technical Report Deliverable D1.1.2, Multiform. Available at
www.multiform.bci.tu-dortmund.de/images/stories/multiform/deliverables/multiform_d112.pdf.

[3] Harsh Beohar, Damian E. Nadales Agut, Dirk A. van Beek & Pieter J. L. Cuijpers (2010):Hierarchical states
in the Compositional Interchange Format. Electronic Proceedings in Theoretical Computer Science32, pp.
42–56, doi:10.4204/EPTCS.32.4.

[4] P. van de Brand, M. A. Reniers & P. J. L. Cuijpers (2006):Linearization of Hybrid Processes. Journal of
Logic and Algebraic Programming68(1–2), pp. 54–104, doi:10.1016/j.jlap.2005.10.003.

[5] C4C consortium (2008):Control for Coordination of Distributed Systems. http://www.c4c-project.eu/.

[6] P.J.L. Cuijpers & M.A. Reniers (2008): Lost in Translation: Hybrid-Time Flows vs Real-Time
Transitions. In: HSCC 2008, Lecture Notes in Computer Science4981, Springer, pp. 116–129,
doi:10.1007/978-3-540-78929-19.

[7] M. Hennessy & H. Lin (1995): Symbolic bisimulations. In: Selected papers of the meeting on
Mathematical foundations of programming semantics, Elsevier Science Publishers B. V., Amsterdam,
The Netherlands, The Netherlands, pp. 353–389, doi:10.1016/0304-3975(94)00172-F. Available at
http://portal.acm.org/citation.cfm?id=202463.202370.

[8] HYCON 2: Highly-complex & networked control systems (2010): http:// www.hycon2.eu/ .

[9] HYCON Network of Excellence (2005):http://www.ist-hycon.org/.

[10] U. Khadim, D. A. van Beek & P. J. L. Cuijpers (2007):Linearization of Hybrid Chi Using Program Counters.
Technical Report CS-Report 07-18, Eindhoven University ofTechnology, Department of Computer Science,
The Netherlands.

[11] M. R. Mousavi, M. A. Reniers & J. F. Groote (2005):Notions of bisimulation and congruence formats for
SOS with data. Information and Computation200(1), pp. 107–147, doi:10.1016/j.ic.2005.03.002.

[12] MULTIFORM consortium (2008):Integrated Multi-formalism Tool Support for the Design of networked
Embedded Control Systems MULTIFORM. http://www.multiform.bci.tu-dortmund.de.

[13] D. E. Nadales Agut & M. A. Reniers (2011):Deriving a Simulator for a Hybrid Language Using SOS Rules.
http://se.wtb.tue.nl/sewiki/cif/publications2.

[14] Gordon D. Plotkin (2004):A structural approach to operational semantics. Journal of Logic and Algebraic
Programming60-61, pp. 17–139, doi:10.1016/j.jlap.2004.05.001.

[15] Yaroslav S. Usenko (2002):Linearization inµCRL. Ph.D. thesis, Eindhoven University of Technology.

www.multiform.bci.tu-dortmund.de/images/stories/multiform/deliverables/multiform_d112.pdf
http://dx.doi.org/10.4204/EPTCS.32.4
http://dx.doi.org/10.1016/j.jlap.2005.10.003
http://dx.doi.org/10.1007/978-3-540-78929-1_9
http://dx.doi.org/10.1016/0304-3975(94)00172-F
http://portal.acm.org/citation.cfm?id=202463.202370
http://www.hycon2.eu/
http://dx.doi.org/10.1016/j.ic.2005.03.002
http://se.wtb.tue.nl/sewiki/cif/publications2
http://dx.doi.org/10.1016/j.jlap.2004.05.001

	1 Introduction
	2 Setting the Scene
	2.1 Explicit and Symbolic Semantics of CIF

	3 Linear Transition Systems
	3.1 Relating LiTS and STS

	4 Obtaining a Linear Automaton from a LiTS
	5 Concluding Remarks

