which is, nevertheless, not a strong P-point. These results answer the questions of M. Canjar and C. Laflamme.

1. Preliminaries

We use standard notation, ω^{ω} denotes all functions from ω to ω , $[\omega]^{\omega}$ denotes all infinite subsets of ω while $[X]^{<\omega}$ denotes all finite subsets of X. We write $A \subseteq^* B$ if $|A \setminus B| < \omega$ and $f \leq^* g$ if $|\{n : f(n) > g(n)\}| < \omega$. The cardinal number \mathfrak{b} denotes the least cardinality of an unbounded subset of $(\omega^{\omega}, \leq^*)$ and \mathfrak{d} denotes the least cardinality of a dominating (cofinal) subset of $(\omega^{\omega}, \leq^*)$. $\chi(\mathcal{U})$ denotes the *character* of \mathcal{U} , i.e. the least cardinality of a basis of the (ultra)filter \mathcal{U} .

1.1. **Definition** ([10]). A nonprincipal ultrafilter \mathcal{U} is a *P*-point if for any sequence $\langle X_n : n < \omega \rangle \subseteq \mathcal{U}$ there is an $X \in \mathcal{U}$ such that $(\forall n < \omega)(X \subseteq^* X_n)$.

1.2. **Definition** ([9]). An ultrafilter \mathcal{U} is *rapid* if the family $\{e_X : X \in \mathcal{U}\}$ of increasing enumerations of sets in \mathcal{U} is a dominating family of functions in $(\omega^{\omega}, \leq^*)$.

1.3. **Definition.** Let \mathcal{U}, \mathcal{V} be ultrafilters on ω .

(i) (Rudin-Keisler ordering, [4]) $\mathcal{U} \leq_{RK} \mathcal{V}$ if there is a function $f : \omega \to \omega$ such that $\mathcal{U} = f_*(\mathcal{V}) = \{A \subseteq \omega : f^{-1}[A] \in \mathcal{V}\}$. In this situation we also say that \mathcal{U} is an RK-predecessor of \mathcal{V} .

(ii) (Rudin-Blass ordering, [6]) $\mathcal{U} \leq_{RB} \mathcal{V}$ if $\mathcal{U} \leq_{RK} \mathcal{V}$ and the function This is an annotation with an witnessing this can be chosen to be finite-to-one. As above we say Appearance Stream: $2^{\aleph_0} = \aleph_1$. that \mathcal{U} is an RB-predecessor of \mathcal{V} .

1.4. **Definition** ([8]). *Mathias forcing* is the partial order where conditions are pairs (a, X) with $a \in [\omega]^{<\omega}$ and $X \in [\omega]^{\omega}$ ordered as $(a, X) \leq (b, Y)$ if $b \sqsubseteq a, X \subseteq Y$ and $a \setminus b \subseteq Y$. Given an ultrafilter \mathcal{U} , relativized Mathias forcing $\mathbb{M}_{\mathcal{U}}$ is the subset of Mathias forcing consisting of conditions whose second coordinate is in \mathcal{U} .

1.5. **Remark.** Mathias forcing can be written as an iteration $\mathbb{M} = \mathcal{P}(\omega)/\text{fin} * \mathbb{M}_{\dot{G}}$, where \dot{G} is a name for the generic ultrafilter added by the first forcing. It is easy to verify that the generic real for relativized Mathias forcing $\mathbb{M}_{\mathcal{U}}$, which is the union of the first coordinates of conditions in the generic filter, is a pseudointersection of \mathcal{U} .

2. CHARACTERIZATION OF CANJAR ULTRAFILTERS

2.1. **Definition.** A *Canjar ultrafilter* is an ultrafilter on ω such that $\mathbb{M}_{\mathcal{U}}$ does not add dominating reals.

The following observation will motivate the definition of a strong P-point.

2.2. **Observation.** An ultrafilter \mathcal{U} is a *P*-point if and only if for any descending sequence of sets $\langle X_n : n < \omega \rangle$ from \mathcal{U} there is an interval partition $\langle I_n : n < \omega \rangle$ of ω such that

$$X = \bigcup_{n < \omega} (I_n \cap X_n) \in \mathcal{U}.$$