
Dr. Michael Eichberg
Software Engineering
Department of Computer Science
Technische Universität Darmstadt

Introduction to Software Engineering

The Decorator Pattern
For details see Gamma et al. in “Design Patterns”

|The GoF Design Patterns 2

The Decorator Design Pattern
Example Scenario

InputStream

File
InputStream

Piped
InputStream

ByteArray
InputStream

Given:

Given:

Goal:
Adding functionality to a ByteArrayInputStream to read whole
sentences and not just single bytes.

|The GoF Design Patterns 3

The Decorator Design Pattern
Example Scenario

Given:

Given:

Goal:
We also want to have the possibility to read whole sentences
using FileInputStreams...

InputStream

File
InputStream

Piped
InputStream

ByteArray
InputStream

ByteArrayData
InputStream

|The GoF Design Patterns 4

The Decorator Design Pattern
Example Scenario

.. after n iterations:

Given:

InputStream

File
InputStream

Piped
InputStream

ByteArray
InputStream

PipedData
InputStream

PipedBu!ered
InputStream

PipedPushback
InputStream

ByteArrayData
InputStream

ByteArrayBu!ered
InputStream

ByteArrayPushback
InputStream

...

...

...

|The GoF Design Patterns 5

The Decorator Design Pattern
Motivation
Problems with (Single-)Inheritance

• Large number of independent extensions are possible
•… a new class for each responsibility

(How about PipedDataBufferedInputStream?)
• explosion of subclasses to support every combination

•Non-reusable extensions; code duplication;
Maintenance nightmare: exponential growth of number of
classes!
•No support for dynamic adaptation

Responsibility mix fixed statically
•A class definition may be hidden or otherwise unavailable

for subclassing

|Excursion - Fragile Base Class Problem 6

Base classes are considered fragile because… you can
modify a base class in a seemingly safe way, but this new
behavior, when inherited by the derived classes, might
cause the derived classes to malfunction.

Problems with Inheritance
Fragile Base Class Problem

|Excursion - Fragile Base Class Problem 7

You can't tell whether a base class change is safe simply by
examining the base class' methods in isolation.
•you must look at (and test) all derived classes as well
•moreover, you must check all code that uses the base

class and also the derived class, since this code might
also be broken by the new behavior

A simple change to a key base class can render an entire
program inoperable.

Problems with Inheritance
Fragile Base Class Problem

|Excursion - Fragile Base Class Problem 8

write(byte b)
write(byte[] bb)

«interface»
OutputStream

write(byte b)
- count : int

LineCouterOutputStream

write(byte b)
write(byte []bb)

- out : OutputStream
FilterOutputStream

«method»
out.write(b)

«method»
if (b == '\n')

count++;
super.write(b)

«method»
for (byte b: bb)
 out.write(b)

OutputStream and FilterOuputStream are developed as part of a
library; LineCounterOuputStream is a user extension

|Excursion - Fragile Base Class Problem 9

write(byte b)
write(byte[] bb)

«interface»
OutputStream

write(byte b)
- count : int

LineCouterOutputStream

write(byte b)
write(byte []bb)

- out : OutputStream
FilterOutputStream

«method»
out.write(b)

«method»
if (b == '\n')

count++;
super.write(b)

«method»
for (byte b: bb)
 out.write(b)

For performance reasons write(byte [] bb) is reimplemented to write
all bytes at once. LineCounterOutputStream does no longer work
correctly if write(byte[]) is used.

write(byte b)
write(byte[] bb)

«interface»
OutputStream

write(byte b)
- count : int

LineCouterOutputStream

write(byte b)
write(byte []bb)

- out : OutputStream
FilterOutputStream

«method»
out.write(b)

«method»
if (b == '\n')

count++;
super.write(b)

«method»
out.write(bb)

|The GoF Design Patterns 10

The Decorator Design Pattern
Motivation
Disadvantages of Multiple Inheritance

• static responsibility mix
• naming conflicts
• hard to dispatch super calls correctly

InputStream

File
InputStream

Filter
InputStream

ByteArray
InputStream

Bu!ered
InputStream

Data
InputStream

ByteArrayData
InputStream

ByteArrayBu!ered
InputStream

...

...

...

|The GoF Design Patterns

InputStream

File
InputStream

Filter
InputStream

ByteArray
InputStream

Bu!ered
InputStream

Data
InputStream

ByteArrayData
InputStream

ByteArrayBu!ered
InputStream

...

...

...

11

The Decorator Design Pattern
Motivation
Disadvantages of Multiple Inheritance

• static responsibility mix
• naming conflicts
• hard to dispatch super calls correctly

Multiple inheritance is good,
but there is no good way to
do it.
A. Snyder

|The GoF Design Patterns 12

Intent
We need to add responsibilities to existing objects
dynamically and transparently, without affecting
other objects.

|The GoF Design Patterns 13

The Decorator Design Pattern
Structure

operation()

Component

operation()

ConcreteComponent

operation()

Decorator

operation()
addedBehavior()

ConcreteDecoratorB

operation()
addedState
ConcreteDecoratorA

«method»
component.operation()

«method»
super.operation()
addedBehavior()

|The GoF Design Patterns 14

The Decorator Design Pattern
Example: The Decorator Pattern and “java.io.*”

InputStream

File
InputStream

Piped
InputStream

ByteArray
InputStream

Filter
InputStream

Data
InputStream

Bu!ered
InputStream

Pushback
InputStream

java.io abstracts over various data sources and destinations, as well as
processing algorithms:
▶ Programs operate on stream objects ...
▶! independently of ultimate data source / destination / shape of data.
Example:

new DataInputStream(new FileInputStream(“…”)).readUnsignedByte()

|The GoF Design Patterns 15

The Decorator Design Pattern
Advantages

Decorator enables more flexibility than inheritance
•Responsibilities can be added / removed at run-time
•Different Decorator classes for a specific Component class

enable to mix and match responsibilities
•Easy to add a responsibility twice; e.g., for a double border,

attach two BorderDecorators

|The GoF Design Patterns 16

The Decorator Design Pattern
Advantages

•Decorator avoids incoherent classes
• feature-laden classes high up in the hierarchy

(This also breaks encapsulation.)
• pay-as-you-go approach don't bloat, but extend using fine-

grained Decorator classes
• functionality can be composed from simple pieces
• an application does not need to pay for features it doesn't

use
• a fine-grained Decorator hierarchy is easy to extend

|The GoF Design Patterns 17

The Decorator Design Pattern
Problems

Lots of little objects
•A design that uses Decorator often results in systems

composed of lots of little objects that all look alike
•Objects differ only in the way they are interconnected, not

in their class or in the value of their variables
•Such systems are easy to customize by those who

understand them, but can be hard to learn and debug

|The GoF Design Patterns 18

The Decorator Design Pattern
Problems

Object identity
•A decorator and its component aren't identical

From an object identity point of view, a decorated component is not
identical to the component itself.
• You shouldn't rely on object identity when you use

decorators

|The GoF Design Patterns 19

The Decorator Design Pattern
Example: The Decorator Pattern and “java.io.*”

▶ A stream is normally addressed via the outermost
Decorator

▶ Sometimes, a reference to one of the internal objects is
maintained and operated on;
good style: all read() operations are performed only to
the head decorator in the composite stream object

▶ Reading from an internal object breaks the illusion of a
single object accessed via a single reference, and makes
the code more difficult to understand

FileInputStream fin = new FileInputStream(“a.txt”);
BufferedInputStream din = new BufferedInputStream(fin);
fin.read(); //⚠

|The GoF Design Patterns 20
Delegation vs. Forwarding Semantics

Forwarding Delegation

message
receiver

message
holder

this

message
receiver

message
holder

this

Forwarding with
binding of this to
method holder;
"ask" an object to
do something on
its own.

Binding of this to
message receiver:
“ask” an object to
do something on
behalf of the
message receiver.

|The GoF Design Patterns 21

The Decorator Design Pattern
No Late Binding (Delegation vs. Forwarding Semantics)

getType() : String
printHistory()

type : String

Account
{abstract}

printHistory()

CheckingAccount

getType() : String
printHistory()

OnlineAccount

«method»
... getType(); ...

«method»
... getType(); ...

printHistory()

SavingsAccount

«method»
return type;

«method»
return "online"+account.getType();

«method»
account.printHistory();

account

|The GoF Design Patterns 22

The Decorator Design Pattern
No Late Binding (Delegation vs. Forwarding Semantics)

getType() : String
printHistory()

type : String

Account
{abstract}

printHistory()

CheckingAccount

getType() : String
printHistory()

OnlineAccount

«method»
... getType(); ...

«method»
... getType(); ...

printHistory()

SavingsAccount

«method»
return type;

«method»
return "online"+account.getType();

«method»
account.printHistory();

account

Consider the following scenario:
1. A checking account, ca, is created
2. An online decorator, od, is created with ca as its account attribute
3. Call to od.printHistory()

a. call to ca.printHistory()...as the result of the forwarding by the call
to account.printHistory() in the implementation of
OnlineDecorator.printHistrory()

b. execution of CheckingAccount.printHistory()
Call to getType() inherited from Account.

|The GoF Design Patterns 23

The Decorator Design Pattern
No Late Binding (Delegation vs. Forwarding Semantics)

getType() : String
printHistory()

type : String

Account
{abstract}

printHistory()

CheckingAccount

getType() : String
printHistory()

OnlineAccount

«method»
... getType(); ...

«method»
... getType(); ...

printHistory()

SavingsAccount

«method»
return type;

«method»
return "online"+account.getType();

«method»
account.printHistory();

account

Consider the following scenario:
1. A checking account, ca, is created
2. An online decorator, od, is created

with ca as its account attribute
3. Call to od.printHistory()

a. call to ca.printHistory()...as the result
of the forwarding by the call to
account.printHistory() in the implementation
of OnlineDecorator.printHistrory()

b. execution of CheckingAccount.printHistory()
Call to getType() inherited from Account.

Problem:
▶ OnlineDecorator decorates both printHistory and getType
▶ Yet, since CheckingAccount.printHistory calls getType via this, the

execution escapes the decoration of getType in OnlineDecorator

|The GoF Design Patterns 24

The Decorator Design Pattern
Implementation

▶ Keep the common class (Component) lightweight:
▶ it should focus on defining an interface
▶ defer defining data representation to subclasses
▶ otherwise the complexity of Component might make

the decorators too heavyweight to use in quantity
▶ Putting a lot of functionality into Component makes it

likely that subclasses will pay for features they don't
need

▶ These issues require pre-planning
Difficult to apply decorator pattern to 3rd-party
component class.

|The GoF Design Patterns 25

The Decorator Design Pattern
Implementation

▶ A decorator's interface must conform to the interface of
the component it decorates; ConcreteDecorator classes
must therefore inherit from a common class (C++) or
implement a common interface (Java)

▶ There is no need to define an abstract Decorator class
when you only need to add one responsibility...
▶ that's often the case when you're dealing with an

existing class hierarchy rather than designing a new
one

▶ can merge Decorator's responsibility for forwarding
requests to the component into the ConcreteDecorator

