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Goals of today’s lecture

Given a program that outputs 1 on exactly one input value, and 0
otherwise. We will study the obfuscation of this program.

I Is it possible? Yes! Although with some assumptions. So we
should understand the implications of the assumptions.

I How to construct the obfuscator.

We as well will hopefully learn more about one-way functions and
permutations as our obfuscator is based on a probabilistic hash
function.
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Interesting aspects of this paper

I It is the first positive result about obfuscators for a general
and interesting class of programs.

I One of the few instances in cryptography where a random
oracle can be replaced by a cryptographic construction.
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Short Repetition: (probabilistic) circuits

Circuit: standard boolean circuit with AND, OR and NOT gates.

input randomness

output



Short Repetition: Obfuscation (intuitive)

Program P
.LC1:
.string "secret"

Obfuscator OO

Obfuscated Program O(P)
.LC1:
.string "secret"

Figure: Idealized obfuscation



Short Repetition: Obfuscation (more formal)

Definition
A probabilistic polynomial-time algorithm O is an obfuscator for
the family of circuits Cn (where Cn is the set of circuits in C that
take inputs of length n) if the following three conditions hold:

I approximate functionality

I polynomial slowdown

I “virtual black-box” property
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Obfuscation: “Virtual black-box” property (I)

For every adversary A, there exists a simulator S , that only has
black-box access to the circuit C . It should be indistinguishable
whether A runs, or the simulator.

simulator

adversary on
obfuscated program

Distinguisher

1

0

Figure: Indistinguishability of simulator and adversary



“Virtual black-box” property with a weak simulator (I)

Definition
An obfuscator O for a set of circuits Cn is (K , s, ε)-virtual black-
box if it satifies the following: for any probabilistic circuit A of size
s, there exists a probabilistic circuit SA of size K such that for all
circuits C ∈ Cn,∣∣∣Pr[A(O(C )) = 1]− Pr[SC

A = 1]
∣∣∣ < ε



“Virtual black-box” property with a weak simulator (II)

I We work with circuits.

I Probability not negligible as in last week’s definition.

I Adversary’s circuit is bounded (by s).
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Didn’t Barak show the impossibility of such obfuscators?

I Yes and no.

I Barak et al. showed in their paper that efficient program
obfuscators do not exist.

I However this proof only holds if we need to obfuscate an
arbitrary program.

I So we can still hope to find an efficient obfuscator for
restricted but nonethless useful classes of programs.
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Constructing Obfuscators: The big picture

strong one-way permutation π

hashfunction h

obfuscator O



Assumption: A special one-way permutation exists

I strong one-way permutation π : {0, 1}n → {0, 1}n wherein
any polynomial-sized circuit A of size p(n) inverts the
permutation on at most a polynomial number of inputs q(n).

Prx∈Un [An(π(x)) = x ] ≤ q(n)/2n.

I Standard cryptographic assumptions assert hardness with
respect to work, i.e. time over success probability.



Assumption: A special one-way permutation exists

I strong one-way permutation π : {0, 1}n → {0, 1}n wherein
any polynomial-sized circuit A of size p(n) inverts the
permutation on at most a polynomial number of inputs q(n).

Prx∈Un [An(π(x)) = x ] ≤ q(n)/2n.

I Standard cryptographic assumptions assert hardness with
respect to work, i.e. time over success probability.



A statistically collision-resistant hash function

Construction
Let π : {0, 1}n → {0, 1}n be a permutation. We define a
(public-coin) probabilistic function
h : {0, 1}n × {0, 1}3n2 → {0, 1}3n2+3n as follows:

h(x ; τ1, . . . , τ3n) :=

(τ1, . . . , τ3n, 〈x , τ1〉, 〈π(x), τ2〉, . . . , 〈π3n−1(x), τ3n〉)

〈x , y〉 denotes the XOR of the AND of all bits (inner product):

〈x , y〉 :=
n⊕

i=1

xi ∧ yi



A statistically collision-resistant hash function

Construction
Let π : {0, 1}n → {0, 1}n be a permutation. We define a
(public-coin) probabilistic function
h : {0, 1}n × {0, 1}3n2 → {0, 1}3n2+3n as follows:

h(x ; τ1, . . . , τ3n) :=

(τ1, . . . , τ3n, 〈x , τ1〉, 〈π(x), τ2〉, . . . , 〈π3n−1(x), τ3n〉)

〈x , y〉 denotes the XOR of the AND of all bits (inner product):

〈x , y〉 :=
n⊕

i=1

xi ∧ yi



A statistically collision-resistant hash function

Construction
Let π : {0, 1}n → {0, 1}n be a permutation. We define a
(public-coin) probabilistic function
h : {0, 1}n × {0, 1}3n2 → {0, 1}3n2+3n as follows:

h(x ; τ1, . . . , τ3n) :=

(τ1, . . . , τ3n, 〈x , τ1〉, 〈π(x), τ2〉, . . . , 〈π3n−1(x), τ3n〉)

〈x , y〉 denotes the XOR of the AND of all bits (inner product):

〈x , y〉 :=
n⊕

i=1

xi ∧ yi



Constructing the obfuscator: Some (possible) approaches

Random oracle
Apply a random oracle to the secret value and store output.
Works. Approach taken by Lynn et al. however not very ingenious
as RO has already obfuscator properties.

Pseudorandom function
Use secret value as seed for pseudorandom function and store
output of generator.
Will not work as pseudorandomness is only guranteed when secret
value is chosen uniformly at random.

The construction of Wee
Won’t need a random oracle, but the hash function from the
previous slide.
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Obfuscators for point functions exist

Theorem
Suppose there exists a (poly(n, 1/ε)s, εK

16n ·
1
2n )-one-way

permutation, then there exists a public-coin obfuscator for the
family of point functions {Ix}x∈{0,1}n which is (Kpoly(n), s, ε)-
virtual black-box.



The obfuscator for point functions

Given

I π a (poly(n, 1/ε)s, εK
16n ·

1
2n )-one-way permutation.

I h: hash function from previous construction based on π.

The obfuscator O(Ix ; R)

1. store h(x ;R) (which contains R as a substring)

2. on input y check whether h(y ;R) = h(x ;R). If so, output 1,
0 otherwise.
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The simulator for point functions (I)

Non-uniform advice
Simulator SA of size Kpoly(n), that has non-uniform advice L
about adversary hardwired into it:

L = {x ∈ {0, 1}n : |PrR [A(h(x ;R)) = 1]− Pr[A(U3n2+3n) = 1]| ≥ ε}

What’s this set?
The set of all point functions (which are completely determined by
x), for which A is able to distinguish the obfuscation of the point
function from a random string.
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The simulator for point functions (II)

1. SA queries Ix on each element of L.

2. If x ∈ L.

2.1 Create the point function circuit.
2.2 Obfuscate the resulting circuit.
2.3 Output this obfuscated circuit to the adversary.

3. If x 6∈ L:

3.1 Output a random string of correct length to the adversary.
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The simulator for point functions (III)

L
... Ix

x 6∈ L

randomness

x ∈ L

create Ix O(Ix)

A

SA



The obfuscator satisfies “virtual black-box”

We will show

|L| ≤ K − 1

But this implies “virtual black-box”

I As |L| ≤ K − 1 we can hardwire all the advice L into the
simulator.

I If x ∈ L, SA computes a correct obfuscation of the point
function Ix . A can by no means distinguish this from an
obfuscation of the same point function.

I Else if x 6∈ L, the adversary will succeed with probability less
than ε by the definition of L.



The obfuscator satisfies “virtual black-box”

We will show

|L| ≤ K − 1

But this implies “virtual black-box”

I As |L| ≤ K − 1 we can hardwire all the advice L into the
simulator.

I If x ∈ L, SA computes a correct obfuscation of the point
function Ix . A can by no means distinguish this from an
obfuscation of the same point function.

I Else if x 6∈ L, the adversary will succeed with probability less
than ε by the definition of L.



The obfuscator satisfies “virtual black-box”

We will show

|L| ≤ K − 1

But this implies “virtual black-box”

I As |L| ≤ K − 1 we can hardwire all the advice L into the
simulator.

I If x ∈ L, SA computes a correct obfuscation of the point
function Ix . A can by no means distinguish this from an
obfuscation of the same point function.

I Else if x 6∈ L, the adversary will succeed with probability less
than ε by the definition of L.



The obfuscator satisfies “virtual black-box”

We will show

|L| ≤ K − 1

But this implies “virtual black-box”

I As |L| ≤ K − 1 we can hardwire all the advice L into the
simulator.

I If x ∈ L, SA computes a correct obfuscation of the point
function Ix . A can by no means distinguish this from an
obfuscation of the same point function.

I Else if x 6∈ L, the adversary will succeed with probability less
than ε by the definition of L.



Excursus: Hybrid argument - Key idea

If m instances of a problem are easy, one instance of
the same problem can not be hard.

I Given a distinguisher A for m instances of a problem, which is
successful with probability ε.

I We can then create a distinguisher A′ based on A for one
instance of the same problem, with advantage ε/m.
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Excursus: Hybrid argument - Example (semantic security)

Given: Distinguisher A with advantage ε

which is able to distinguish m encryptions

c1, . . . , cm

from random values
r1, . . . , rm.

One can create: Distinguisher for only one sample α

1. select a random i for 1 ≤ i ≤ m.

2. Create the distribution

c1, . . . , ci−1, α, ri+1, . . . , rm

3. Let A run on this distribution. We have advantage ε/m.
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Proof of |L| ≤ K − 1: Overview / Getting started

Contradiction if |L| ≥ K

We can construct a circuit that inverts the one-way function on
εK
16n inputs. In the following we set |L| = K .

L = {x ∈ {0, 1}n : |PrR [A(h(x ;R)) = 1]− Pr[A(U3n2+3n) = 1]| ≥ ε}

Getting rid of the absolute value

There exists a subset L′ of L of size at least K/2 such that for all
x ∈ L′:

PrR [A(h(x ;R)) = 1]− Pr[A(U3n2+3n) = 1] ≥ ε
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Proof of |L| ≤ K − 1: Hybrid argument

for all x ∈ L′:

PrR [A(h(x ;R)) = 1]− Pr[A(U3n2+3n) = 1] ≥ ε

The hybrid argument

yields an j , for which we can distinguish 〈πj−1(x), τj〉 from a
random bit, with advantage (average over x ∈ L′)

≥ 1/2 + ε/3n



Proof of |L| ≤ K − 1: Averaging argument

For x ∈ L′ we have advantage (average)

≥ 1/2 + ε/3n

Now there must be at least a ε/6n fraction of x in L′, for which we
have advantage

≥ 1/2 + ε/6n

To see this, examine the worst case: Nearly all x with probability
1/2 + ε/6n − δ (δ → 0) and very few with probability 1:

ε

6n
· 1 +

(
1− ε

6n

)
·
(

1

2
+

ε

6n
− δ

)
=

1

2
+

ε

3n
+ δ

ε

6n
− ε

12n
− ε2

36n2
− δ ≤ 1

2
+

ε

3n

In the worst case we get a smaller average than we should get.
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Proof of |L| ≤ K − 1: Putting it all together

I For a ε/6n fraction of L′ we have advantage ≥ 1/2 + ε/6n.

I An older theorem of Goldreich and Levin proves that we can
invert π(x) (i.e. find the x) with probability 3/4, if we can
guess 〈π(x), τ〉 with some advantage.

I |L′| ≥ K/2.

So the total advantage is:

ε

6n
· K

2
· 3
4

=
εK

16n



I hope you don’t feel this way . . .

Take home message

Obfuscation of point functions is possible, although with some
assumptions/simplifications.
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