
This file has been created with pslib 0.2.3

Shading
pslib supports a PostScript level 3 feature called shading.

A shading starts at a certain point on the page with a

given color and ends at a second point with different color.

The type of shading can be ’axial’ or ’radial’. Shadings are

used for many purposes like shadows, three dimensional

appearance or simply to make a nice background for a

diagramm.

The bar’s gradient fill to the right of this page starts at

(500, 0) and ends at (590, 0). It extends over the whole

page in y direction which is normal. I you want to restrict

the gradient fill to a given area, one will have to apply

PS_clip() on a path before calling PS_shfill() (see Shading

1).

A grandient fill can easily be drawn in an angle if the start

and end position have different x and y coordinates like in

Shading 2.

As you can see at the bar, the shading extends orthogonal

to the drawing direction but does not extend in the drawing

direction. This behaviour can also be altered by the two

parameters ’extend0’ and ’extend1’. Both are passed as

part of the option list. Setting them to ’true’ will extend the

gradient fill towards the drawing direction with the color

where it left off or starts (see Shading 3).

The second class of gradient fills are of type ’radial’. They

start at one circle and grow/shrink towards a second circle.

The coordinates mentioned above now specify the middle

points of the circles. The radi of both circles are passed

again within the option list, named ’r0’ and ’r1’ (see

Shading 4).

The previous example starts with a circle whose radius is

0. Making this a value greater 0 will punch a whole into the

gradient fill.

Shading 1

Shading 2

Shading 3

Shading 4

Shading 5



The world of color shading
I suppose it does not really supprise you that gradient fills

can be colorful. The first example is the background of this

page which is a radial gradient fill from white to red (RGB

[0,0,0.7]). Its outer circle has a very large radius of 795

pixels. The inner circle’s radius is just 40 pixels. If there

was something behind the gradient fill it would shine

through the inner circle, because the gradient fill does not

extend into that direction. There is a continuation of the

red color beyond the outer circle, but that does not make a

difference in this case, because its outside of the page and

therefore not visible.

Shading 1 and Shading 2 illustrate the difference of the

extend1 parameter being set to false in Shading 1 or true

in Shading 2. Using extend is always a bit dangerous

because it easily fills up the whole page, unless you clip

the drawing area, which was done in all the examples on

this page.

Using white as the start or end color is quite common but

not nessecary. Shading 3 shows that any other color can

be used as well.

The tube in Shading 4 is a bit of a misuse of shadings. It

used alsmost identical start and end colors for the shading

without any extend parameter set. This only works if the

two colors are not identical. If they were identical you

would see just the start and circle overlapping, because

the gradient function has no domain it can run over. Well,

this is anyway not the way to draw tubes.

You wonder if this all works with CMYK colors? Yes, of

course it does! And what about spot colors? No problem

either, with one little restriction. The start and end spot

color must be same one, but with different tint value. That

means that the gradient just changes the tint value but not

the color itself. I am not sure if this is an unbearable

restriction or not. Shading 5 shows an example of Pantone

5565 C starting at a tint value of 0.2 (the outer circle) and

ending with 0.8 (the middle point).

Shading 1

Shading 2

Shading 3

Shading 4

Shading 5



Shading pattern
The examples so far were using the PS_shading() and PS_shfill() in combination

wiht PS_clip(). They are more than sufficient in most cases, but pslib has a

second approach to create areas with a gradient fill. Beside regular patterns —

which are used like regular colors — used for filling an area with a drawing, one

can use shading pattern in the same way. The results are similar, they way of

doing it is different. Each filled rectangle below this text uses the same shading

pattern for filling.

The line of rectangles illustrates one important aspect of shading. The shading is

defined relativ to the current coordinate system. In this case it starts at x-position

50 and ends at x-position 470 in an unmodified coordinate system. The right

most rectangle is not filled completly because of the shadings end. Filling areas

is like punching wholes in a white coat on top of the page and peeking through.

This is mostly not what you want. If you would like to fill the rectangle with the full

range of the shading, you will have to create a shading starting at 0 and ending at

the width of the rectangle. Before filling the rectangle you will have to translate

the coordinate system to the lower left corner of the rectangle, create the pattern

in the modified coordinate system and draw a filled rectangle at (0, 0). The

pattern must be created after the translation, because it always uses the active

coordinate system.



Using shading patterns for drawing
A pattern is like a color and be used like one. The examples on the previous

pages used the pattern for filling rectangles. Why not use it for something more

fancy like filling the outline of a text or drawing with a pattern.

Some text.


