
ELK, a New Protocol for Efficient Large-Group Key Distribution
�

Adrian Perrig Dawn Song J. D. Tygar
University of California Berkeley�

perrig,dawnsong,tygar � @cs.berkeley.edu

Abstract

Secure media broadcast over the Internet poses unique
security challenges. One problem access control to a large
number of subscribers in a public broadcast. A common
solution is to encrypt the broadcast data and to disclose
the decryption key to legitimate receivers only. However,
how do we securely and efficiently establish a shared secret
among the legitimate receivers? And most importantly, how
can we efficiently update the group key securely if receivers
join or leave? How can we provide reliability for key update
messages in a way that scales up to large groups?

Recent research makes substantial progress to address
these challenges. Current schemes feature efficient key up-
date mechanisms assuming that the key updates are com-
municated reliably to the receivers. In practice, however,
the principal impediment to achieve a scalable system is
to distribute the key updates reliably to all receivers. We
have designed and implemented ELK, a novel key distribu-
tion protocol, to address these challenges with the following
features:

� ELK features perfectly reliable, super-efficient member
joins.

� ELK uses smaller key update messages than previous
protocols.

� ELK features a mechanism that allows short hint mes-
sages to be used for key recovery allowing a tradeoff of
communication overhead with member computation.

� ELK proposes to append a small amount of key update
information to data packets, such that the majority of
receivers can recover from lost key update messages.

�
This publication was sponsered in part by the Defense Advanced Re-

search Projects Agency under DARPA contract N6601-99-28913 (under
supervision of the Space and Naval Warfare Systems Center San Diego),
by the National Science foundation under grant FD99-79852, and by the
United States Postal Service under grant USPS 102592-01-Z-0236. Views
and conclusions contained in this document are those of the authors and do
not necessarily represent the official opinion or policies, either expressed
or implied of the US government or any of its agencies, DARPA, NSF,
USPS.

� ELK allows to trade off security with communication
overhead.

1 Introduction

This paper introduces ELK, an efficient, scalable, secure
method for distributing group keys. ELK has widespread
applications, such as access control in streaming multime-
dia broadcasts.

A common solution for controlling access to the broad-
cast information is to encrypt the data and to distribute the
secret decryption key (group key) only to the legitimate re-
ceivers. The general approach is to use a central server for
key management. Key management is complicated by dy-
namic groups, where members may join and leave at any
time. Members should only be able to decrypt the data
while they are members of the group, and so the key server
needs to update the group key on member join and leave
events.

Changing the key for large groups in a scalable, robust,
and efficient manner is particularly challenging [14, 34, 37].
A solution must deal with arbitrary packet loss, including
lost key update messages. In general, previous approaches
have built on reliable multicast (which has high communi-
cation overhead in large-scale use) or queries to a central
server to request retransmission of keys (which introduces
substantial load for a central server.)

In general, a system designer faces a variety of trade-
offs between scalability, security, efficiency, and reliability.
Here is the scenario we consider:

� We put a premium on scalability. We are interested
in situations where we have widespread video or au-
dio streaming over a network to a large number of re-
ceivers.

� We are interested in moderate security. We consider
the case when many receivers use commodity hard-
ware, e.g., PCs without tamper-resistant hardware.
Note that the absence of tamper-resistant hardware
limits the ultimate security of keys [42, 43].

1

� Since the key server broadcasts key update messages to
all the group members, the communication overhead
can be prohibitively high for large dynamic groups.
Due to the continuous increase in computation power,
we design ELK to trade off computation for lower
communication overhead. More concretely, we de-
sign a member join protocol that does not require any
broadcast but requires that the server computes a one-
way function on all keys in each time interval. ELK
also introduces hints, a technique which makes key up-
dates smaller but requires receiver computation.

� We must provide high reliability, but we do not assume
that we can build a reliable multicast system.

We have designed and implemented ELK, a novel key
distribution protocol that addresses these issues. In particu-
lar, ELK addresses reliability for key update messages, un-
like prior work. ELK also allows a content provider to di-
rectly trade-off security and communications efficency.

Here are some features of ELK:

� ELK does not depend on reliable multicast.

� ELK uses smaller key update messages than previous
protocols.

� ELK features perfectly reliable, super-efficient mem-
ber joins.

� ELK addresses reliability by using short hint mes-
sages. This improves reliability and allows a trade-
off of communication overhead with member compu-
tation.

To study the application of ELK, we consider two differ-
ent types of information goods: low-cost goods and “perish-
able” information goods. We apply new ways to assess the
desired level of security. For low-cost goods we consider
the system to be secure as long as the cost of the attacker to
break the key is larger than the cost of the information. For
perishable information goods we require that the minimum
time to break the key surpasses the lifetime of value of the
data.

2 Security Requirements for Group Key Dis-
tribution

We consider dynamic groups where users can join or
leave the group at any time. The main security properties of
a group key management system for dynamic groups are:

1. Group Key Secrecy – guarantees that it is computation-
ally infeasible for an adversary to discover any group
key.

2. Forward Secrecy – (not to be confused with Perfect
Forward Secrecy or PFS in key establishment proto-
cols) guarantees that a passive adversary who knows
a contiguous subset of old group keys cannot discover
subsequent group keys. This property ensures that a
member cannot learn about the new group keys after it
leaves the group.

3. Backward Secrecy – guarantees that a passive adver-
sary who knows a subset of group keys cannot discover
preceding group keys. This property ensures that when
a new member joins the group, he cannot learn about
the previous group keys.

These properties are commonly used in secure group
communication. Steiner, Tsudik, and Waidner give a more
formal definition [31].

3 Notation and Background

We use the following notation.

� To encrypt message � with key � we write ������� .

� To concatenate the messages ��� and �
	 we write
� ��� � 	 .

� In the following description, we use many different
pseudo-random functions (PRFs) with varying input
and output lengths. The notion of a PRF family was
proposed by Goldreich, Goldwasser, and Micali [12].
Instead of defining one PRF for each purpose, we de-
fine a family of PRFs that use key � on input � of
length bits, and output � bits:�����������������! #" �%$'&)(*� �,+ �-$'&.(�� � . We write����� ���������� / �10 .

� The function 2�354 �6��� / �10 returns the � least significant
bits of � (assuming that � is longer than � bits).

� We use a number of key derivation functions to ensure
that the keys and arguments in various places are inde-
pendent. The following keys are derived from �87 as
follows:
�:97:; �<�<� �������=��?> / (-0 , �A@7 ; �<�<� �������=��?> /CB 0 ,
�AD7 ; ����� �����E���� > /GF 0 , and �:H7 ; ���<� ���=������ > /GI 0
(Note that (�& B & F and I are arguments to the PRFs. This
key derivation is solely to ensure independence of keys
for security reasons. However, to simplify understand-
ing of the protocols we advise ignoring the Greek su-
perscripts on a first reading of this paper.)

2

4 Review of Previous Key Distribution
Schemes

4.1 Setting

In broadcast key distribution, we assume a central key
distribution server that can authenticate and authorize in-
dividual receivers. The model is that the receiver wishing
to decrypt the broadcast content contacts the key server by
unicast and requests the decryption key. The key server au-
thenticates the receiver with a standard authentication pro-
tocol and sets up a secure channel (offering confidentiality,
integrity, authenticity). The server sends key information
to the client, which consists of a group key to decrypt the
content, as well as a set of member-specific keys for key
management purposes.

The broadcast information is encrypted with the group
key to achieve confidentiality and access control. To en-
sure forward and backward secrecy after receivers join or
leave the broadcast (defined in section 2), the key server
broadcasts encrypted key updates that only the legitimate
members can decrypt.

To analyze the overhead of key distribution schemes, we
consider the following resources. (Note that the total num-
ber of receivers is �).

� Receiver storage. Each receiver stores a number of
member-specific keys and one group key. Since the
number of keys to store is usually small (� /�������/ � 0 0),
receiver storage is not an issue.

� Key server storage. The key server stores all the
member-specific keys. In current schemes the number
of member-specific keys is about B � . For groups with
millions of receivers, the key server storage can be on
the order of multiple megabytes. Researchers have in-
vestigated schemes that reduce the server storage over-
head [7, 16]. However, in this work we assume that the
key server has sufficient storage, because a broadcaster
that sends data to millions of paying subscribers should
have ample key storage.

� Receiver and key server computation. Since the pro-
cessing speed of workstations continues to increase,
computation overhead is not as important.

� Bandwidth is the most constrained resource. In partic-
ular, key update information broadcast to all receivers
needs to be as small as possible. Since we assume
abundant storage and computation resources, our goal
is to trade off computation or storage to lower commu-
nication cost. We put a premium on broadcasts, how-
ever we also try to limit unicasts.

4.2 Review of Logical Key Hierarchy (LKH)

To ensure forward and backward secrecy, the group
key needs to be updated and distributed whenever a mem-
ber joins or leaves the group. ELK is based on a key
tree, and extends the logical key hierarchy (also called
LKH [14, 34, 36, 37]) and one-way function tree (OFT [2])
approaches to achieve an efficient and secure key distribu-
tion system. We include a brief review of LKH below. In
LKH, a key distribution center (or key server) maintains a
key tree which will be used for group key updates and dis-
tribution. Figure 1 shows a sample key tree. Each node in
the tree represents a cryptographic symmetric key. The key
distribution center associates each group member with one
leaf node of the tree and the following invariant will always
hold: Each group member knows all the keys from its leaf
node up to the root node, but no other node in the key tree.
We call the set of keys that a member knows the key path.
Since all members know the key at the root node, that key
is used as the group key, that we denote with �	� . For illus-
tration, the key path of member � 	 in figure 1 is the nodes
associated with the keys �-��
�& � 	�& � �%� . When a member
joins the group, it receives all the keys on the path from its
leaf node up to the root from the key distribution center, sent
over a secure channel.1 When a member leaves the group,
all the keys that the member knows, including the group key
and its key path, need to be updated. The main reason for
using such a key tree is to efficiently update the group key
if a member joins or leaves the group.

PSfrag replacements

��

��� ���

��� ���
� ��� �	�

��� ���
� �

Figure 1. Sample hierarchical key tree

If a member joins the group, the key server authenti-
cates the member and assigns it to a leaf node of the key
tree. The key server will then send all the keys on the key
path to the member. To preserve backward secrecy all the
keys that the new member receives need to be independent
from any previous keys (the new member should not be able

1The issues of member authentication and secure channel setup are or-
thogonal to the main thrust of this paper and we assume that secure mech-
anisms are used.

3

to decrypt traffic that was sent before it joined the group).
Hence, the key server replaces all keys on the new mem-
ber’s keypath with fresh, random keys and sends each of
these new keys to the group on a “need to know” basis. We
illustrate this protocol with an example. Assume the set-
ting depicted by figure 1 and for simplicity we assume that
a new member ��� joins the group. Assuming that the last
leaf of the tree is empty, the key server places the new mem-
ber � � at that leaf, chooses new the keys on � � ’s key path
and sends � �� , � �� , and � �� to � � over a secure link. To
update the key paths of the previous members, the server
broadcasts the following key update message to the group:
�%� �� � ��� &.�%� �� � ���	 &.�%� �� � ��
 . Member � � needs to update
keys � � and �8� on its key path. Since � � knows ��� , it can
decrypt the first part of the key update message and recover
� �� , and as soon as it knows � �� it can decrypt the new group
key � �� . Members � � and � 	 both know � 	 , so they can
decrypt the new group key � �� from the final part of the key
update message. Below we show how to improve on this
join protocol so no broadcast message is necessary.

The group leave, however, is more difficult to perform
efficiently. The challenge is to replace the current group
key such that only the legitimate members receive the new
key but the leaving member does not. In fact, all keys that
the leaving member knows need to be changed to ensure
forward secrecy. The keys are replaced sequentially from
the leaf up to the root key. This protocol is best explained
with an example. We assume the group that figure 1 shows,
where member � � leaves the group. The key server up-
dates the keys �8��& � � and generates the new keys � �� & � �� .
It then broadcasts the message �%� �� � �� &.�%� �� � � �	 &.�%� �� � ��
 .
Member � � knows � � and can hence decrypt and obtain
� �� , which allows it to obtain � �� . Members ��� and �
	
know � 	 and so they can directly obtain the new group key
� �� . Leaves are efficient because they only require updating� � � ��/ � 0�� keys, where � is the number of group members
and assuming that the key tree is balanced.

5 Reliability for Key Update Messages

When members join or leave a group, the key server up-
dates the group key and broadcasts a key update message
to the group. If a group member does not receive the key
update message, it will not be able to decrypt the subse-
quent messages encrypted with the new group key. With
the exception of the recently proposed Keystone protocol by
Wong and Lam [38], previous systems addressed the prob-
lem of lost key updates only marginally. Previous schemes
assume to recover from lost key updates through the follow-
ing mechanisms:

1. A naive approach is to let members request a key up-
date by unicast from the key server. Clearly the naive

unicast recovery mechanism does not scale, although
it can be used in conjunction with other techniques as
a fallback recovery mechanism. In fact, both ELK and
the Keystone protocol use unicast as a fallback mech-
anism. We sketch such a recovery protocol in Ap-
pendix A.

2. Another approach is to replicate key update pack-
ets (multi-send). Although replication is a powerful
method to achieve robustness, it is well known that
packet loss in the Internet is correlated [26]. This im-
plies that key update packets sent in close succession
risk loss if the first one is lost. A strategy which sepa-
rates redundant packets would cause the client to wait
for replicated key update messages when it receives
data that it cannot decrypt.

3. Reliable multicast schemes, such as SRM [11] or
STORM [40] may be used to achieve reliable delivery
of key updates. These schemes add substantial com-
plexity and might not scale to TV-size audiences. Fur-
thermore, these systems are not designed for robust-
ness in an adversarial environment, and hence oppor-
tunities for denial-of-service attacks exist. Similarly,
a reliable group communication toolkit, such as those
used in small-group key agreement protocols, such as
TOTEM [23], or HORUS [33] are prohibitively expen-
sive and would not scale to large groups.

4. Wong and Lam [38] use forward-error correction or
error-correcting codes for key update packets [17, 27].
More specifically, the idea is to use a scheme such
as Rabin’s IDA [28], Reed-Solomon [29] codes, or
Digital Fountain codes [5] to split up a key update
packet into � packets, and when the receiver gets any
 packets it can reconstruct the key update. In such
a scheme the receiver needs to receive sufficient pack-
ets to reconstruct the desired information. Moreover,
since packet loss is correlated, packets that are sent in
close succession may all be dropped [26]. Wong and
Lam assume statistical independent loss, which does
not cover correlated packet loss (e.g. due to temporary
congestion) [38].

In this work, we use a combination of new mechanisms
to achieve reliable key updates. Our work is motivated by
the following observations:

1. Member joins are free in our model if no broadcast is
necessary. Our member join protocol does not require
any broadcast message. However, if a large number of
members join concurrently, the key server may need
to distribute a message of length

� ����� 	 / � 0�� bits to en-
code the location of the joining node, where � is the
number of group members. Since member join events

4

usually require no broadcast information, no informa-
tion can get lost.

2. In the case of a key update message after a member
leaves, half the members only need a single key in
the key update message (assuming our key tree is bal-
anced). Similarly, one quarter of the members only
need two keys to update their key path. In general (�� B 7
of the members only need � keys to update their key
path. Another way of viewing this is that sending �
keys will help (�� B�� 7 of the members to update their
key path. We call the keys that help more members the
maximum impact keys (MIK).

3. Most key management protocols separate key update
messages and encrypted data packets. The receiver
must receive both of them to read encrypted data. In
ELK, we add the key update directly to the data pack-
ets. Since space in data packets is limited, we can at
most add a small amount of key update information.
Previous protocols had lengthy key update messages,
so they could not use this approach.

ELK features a method to compress key updates by trad-
ing off key update message size and receiver computation.
The resulting key update is small enough that the sender
can piggyback it in data packets. The details are described
below.

With these mechanisms in place, the majority of group
members can recover from a lost key update if they receive
the hints in a data packet. The remaining small fraction
needs to contact the key server through unicast.

6 ELK: An Efficient Large-Group Key Dis-
tribution Protocol

ELK stands for Efficient Large-Group Key distribution
protocol. We describe ELK in this section. We first describe
the basic key update mechanism, followed by the join and
leave protocols. We then analyze the security of ELK, and
discuss ELK’s advantages. Later we will show how ELK
allows member joins without requiring broadcasts. (Only
unicasts to adjacent members of the new member are re-
quired. See Section 6.2.1 for details.)

6.1 Basic ELK Mechanisms

In ELK all members are at leaves in the logical key hier-
archy. ELK is composed of two basic mechanisms:

� Key update

� Key recovery (through hints)

From now on we assume that the key length is � bits.

6.1.1 Child Contribution for Parent Key Update

As we discuss in section 3, the server updates the keys of the
key tree when members leave the group. We use a new key
update protocol in ELK, where the left and right child keys
contribute to update the parent key. This approach is sim-
ilar in nature to the OFT protocol [2], but our construction
allows small hints that allow legitimate members to recon-
struct the key without the key update, as we shall see in the
next section.

We consider the case where we want to update a key
� that has the two child keys ��� and �
	 . The new key
� � is derived from � and contributions from both chil-
dren. The left child key � � contributes � � bits to the new
key, which are derived by a pseudo-random function using
key � � and applied to � . We call the left contribution� � ; �<�<� �������� ����� / �:0 (��� bits long). Similarly,

� 	 is � 	
bits long and is derived from the right child key ��	 and
� as follows:

� 	 ; �<�<� �������
 ����� / �:0 . The right child key
� 	 contributes � 	 bits, hence

� 	 is � 	 bits long. We con-
catenate the two contributions to form a new key of length
����� � 	 : � ��	 ; � � � � 	 . To compute � � we compute a
pseudo-random function with

� ��	 as the key and the pre-
vious key � as the data: � � ; ���<��� ��� / � 0 . Without loss
of generality we assume that �<����� 	 . Since the security of
this key distribution scheme is at most � /CB � 0 (because of
the � bit key length), we have �<���
� 	�� � .

The key update message needs to contain enough infor-
mation that the members on the left who know ��� can re-
compute � � , as well as the members on the right who know
��	 . The left members can derive

� � themselves, but they
need

� 	 . Hence the key update message contains � � 	 �-� � ,
which is � 	 bits long. Similarly, for the members on the
right, the key update contains � � � �%� � , which is � � bits
long.

The details of this key update are listed in the box la-
beled Procedure 1. This construction allows us to construct
compact hint messages, that enable the legitimate receivers
to reconstruct the updated key, as we will see below.

6.1.2 Key Recovering Using Hints

Instead of broadcasting the key update message that has
length of � � � � 	 bits, legitimate members who know �
and either � � or � 	 can also recover the new key � � from
a hint that is smaller than the key update message, by trad-
ing off computation for communication. If we assume that
a member can perform B ��� computations, we can construct
a smaller key update that we call a hint.

Consider first the right-hand members that know � and
� 	 . They can derive the right contribution

� 	 that is � 	
bits long. If they would also have a checksum, they could
brute force the missing �<� bits of � � from the left side con-

5

The left-hand contribution is
� � ; �<�<� �������� ����� / �:0

The right-hand contribution is
� 	 ; ����� �����E�
 ����� / �:0

Hence
� ��	 ; � � � � 	

The new key becomes � � ; ����� �����E���� ��� / � 0
Recall from section 3 that � 9� ; ���<� ���=������ � / (%0 and

� @� ; �<�<� �6�������� � /CB 0 . The purpose of this key derivation is

to make � 9� and �A@� independent.

To update the key, the server broadcasts

� ����� �������
 ����� / �:0 � ���� & � ���<� ���=����� ����� / � 0 � ���� .

This key update message has a length of ��� ��� 	 bits.

The members who know ��� can derive �A@� , decrypt�<�<� �6�����
 ����� / � 0 from the key update, and compute � � . The

same applies to the members who know ��	 .

Procedure 1: Key update

tribution. The hint message contains the key verification� � � , which is derived from the new key
� � � ; ����� � � / $ 0

and has a length of � � bits. The right-hand members com-
pute the following candidate keys. For each possibility
for

� � , they compute
� ���	 and obtain a candidate key�� ; ����� � ���� / �:0 . The member verifies the candidate key

by checking against the key verification
���<���� / $ 0 to see if

it equals
� � � .

If ��� ; � 	 , the left-hand members compute the key
in the same way as the right-hand members. In the usual
case, however, �<��� � 	 ; and the left-hand members need to
obtain � 	 � ��� bits of the right contribution, so that they
still only need to brute-force �<� bits. So the hint mes-
sage also contains the least ��	 � ��� bits of

� 	 , encrypted
with �
� . With this help, the left-hand members compute
the B � � possibilities for

� ���	 and obtain a candidate key�� ; ����� � ���� / �:0 . They verify the candidate key by check-
ing the key verification

�<�<���� / $=0 to see if it equals
� � � .

(The above description is simplified, see the box labeled
Procedure 2 for the details.)

It is clear that the correct key is output by this procedure.
A problem is that the procedure might deliver more than
one candidate key, in which case some of them are false
positives. If the key verification is also �<� bits long, we
might expect to receive one false positive key next to the
correct key. If a member recomputes multiple keys, it will
receive an additional key on each level, since a false positive
key produces on average just one false positive key, but the
correct key will most likely result in the correct key for the
next level along with another false positive key. To prevent
this, we set � ��� � � . Generally setting � � ; � � ��(results
in “half a false positive key” on average, which works well
in practice.

The hint message is composed of the key verification and

the partial right contribution:
� � � ; �<�<� ������� 	 �� �
	 / $=0 & � 2�354 ���
 � ��� � / ���<� �6�����
 ����� / � 0 0 � � �� .

Recall that � � D ; ���<� �6�������� � /GF 0 . The key reconstruction

is slightly different for the members in the left and right

sub tree. Recall that the updated key is

� � ; �<�<� �������=�� ��� / � 0 and� ��	 ; �<�<� �������� ����� / �:0 � ���<� �6�����
 ����� / � 0 .
The members on the left know �
� , derive � @� , and

can hence decrypt part of the right key’s contribution

2�354 ���
 � ��� � / �<�<� �������
 ����� / �:0 0 . Now they know all but �<�
bits to compute

�� ; �<�<� ������� �
 �E���� ���� / �:0 , with� ���	 ; �<�<� �������� ����� / �:0 �� � 2�354 �6�
 � � � � / �<�<� �������
 ����� / �:0 0 .
The members can exhaustively try all B ��� possibilities

for and verify the resulting guess
�� by using the key

verification:
���<� ������� 	 ��� 	 / $=0

�
; � � � . If they match, the key is

a candidate.

The members on the right know ��	 and they can com-

pute � 	 bits of
� ��	 , so they only need to exhaustively try

B ��� combinations for :
�� ; �<�<� �6� � � �
 �E���� ���� / � 0 , where� ���	 ;
� ���<� �6�����
 ����� / � 0 . They also use the same hint

information to verify the validity of the key.

Procedure 2: Key recovery from hint

The advantage of the hint is that it is B � � � � � bits shorter
than the key update (In general, � � ; � � ��(and hence
the hint is �<��� (bits shorter than the full key update). In
the ideal case ��� ; � 	 and then the hint is only half the
size of the key update. However, ��	 is determined by the
security parameter, which we discuss further in section 7.
We discuss the security in Appendix B.

6.2 The ELK Key Distribution Protocol

The previous subsection introduces the mechanisms we
use to construct ELK. We now use these mechanisms to de-
scribe ELK in detail. We show how the protocol works for
member join and leave events. For the following protocol
description, we assume that a large number of members are
present in the group (we do not discuss the boundary cases
when only a few group members are present).

Even though group key distribution protocols allow users
to join or leave the group at any time, in general it is
considered a good practice to aggregate join and leave re-
quests that occur in one time interval into one group key
update [30]. Also as we will see below, the key update

6

message is smaller when the key server aggregates multi-
ple membership events. Therefore we assume that in our
system the key server divides the time up into intervals.
The key server aggregates all membership events that oc-
cur within one time interval into one group key update. The
duration of the aggregation interval is application specific
and we do not discuss it here.

6.2.1 Member Join Event

In a member join event, the key server assigns the new
member to a node in the key tree and the new member re-
ceives all the keys on the path from its leaf node to the root.
To preserve backward secrecy, all the keys that the new
member receives must be independent of previous group
keys. Looking at independence from a computational per-
spective, we require that it be computationally infeasible for
the new member to derive previous group keys. In most pre-
vious schemes, the updated keys need to be broadcast to the
affected group members.

Since the key server broadcasts key update messages to
all the group members, the communication overhead can
be prohibitively high for large dynamic groups. Due to the
continuous increase in computation power, we design ELK
to trade off computation for lower communication over-
head. To support efficient member join events, we propose
a novel approach where no broadcast messages are needed
but requires that the server computes a one-way function on
all keys in each time interval. In ELK the entire key tree is
updated in each time interval using the following procedure.
To update a key � 7 in the key tree, the new key � �7 is derived

by � �7
; ���<� �6����������> / � �?0 , where � H7�; ����� �����E���� > / I 0
and ��� is the current group key. To update the group key
we use the derivation � �� ; �<�<� �6����������� / $=0 . Each member

can update its key path independently in each time interval.
Hence no broadcast messages are needed for a member join
event. Since the computation of the PRF is efficient, the
computational overhead of the receiver is negligible. The
overhead at the server is larger, but still tractable. First,
the server can pre-compute the future keys of the tree in a
low-priority background process. A second approach is to
recompute keys on the fly based on need. The major ad-
vantage of this approach is that no broadcast information is
necessary when members join.

Even though no broadcast messages are necessary when
members join, the key server might still need to send a few
unicast messages as some members might be moved to new
locations in the key tree as new nodes are added to the key
tree. In the rest of this section, we first describe the com-
plete join protocol for single members join and give an ex-
ample.

M4 joins

PSfrag replacements

�� ���

���� ����

� ��

� ��

� � � �

��� ���
� �

� � � �� �

� �

���

� �
� �

Figure 2. Member join event

Protocol 1. Single Member Join

1. The key server updates all keys � 7 in the key tree:
� �7 ; ����� �����E������> / � � 0 , and the new group key is

� �� ; ���<� �6����������� / $=0 .
2. If an empty leaf node is available, the server assigns

a new random key to the leaf node and sends it over a
secure channel to the new member along with the up-
dated keys on the key path. Thus the join event is done,
and no more exchanges or broadcasts are necessary.

3. If no leaf node is available, the key server assigns the
new member � to a new leaf node ��� of the key tree
and assigns it a new random key ��� .

4. The key server picks a node �	� of the key tree to insert
the new member. Assume that the key at that node is
��� . The server demotes the node �	� and generates
a new parent node ��
 for the leaf ��� and node ��� .
The node ��� becomes the left child, and the node ���
the right child of �
 . The key value of the parent be-
comes �
 ; ����� �����E������� / (-0 .

5. The key server sends the new member all updated keys
on its key path from the leaf node up to the root over a
secure channel.

6. The key server sends the joining location to the mem-
bers that are below node �	� , which allows them to in-
dependently update their own key paths. In the general
case, ��� is a leaf node and the key server unicasts the
message to that member. If a larger number of mem-
bers are present, the server includes �	� in the key up-
date message, which takes at most

� ����� 	 / � 0�� bits.

Figure 2 shows an example join event where member � �
joins the group an the server decides to insert it at the leaf
node of � � . We illustrate the steps of the ELK join proto-
col on this example. In the first step, the server updates all

7

keys in the key tree. Step 2 does not apply since no empty
leaf nodes are available. In step 3 the key server generates
the new leaf node and assigns it a new random key � � . In
step 4, the server decides to merge � � to the node of � �
 ,
and generates the parent node � � of � �
 and � � . The server
computes the new key: � � ; ���<� �6����������� / (%0 . In step 5 the

server sends � � the message �-� �� & � �� & ���*� �� . In step 6,
the server sends the joining location of the new member to
� � by unicast, which tells � � to update its key tree and to
compute � � .

(Multiple member join events work equally well. Several
possibilities exist to deal with them. Here is one way. If
the members are placed into empty leaf nodes no overhead
is generated besides registering new members with the key
server. If no empty leaf nodes exist, the key server can first
generate a smaller key tree with the new members, and join
that tree to one node of the current group key tree. In this
case the server only needs to communicate the location of
a single node to the members that live below the joining
node.)

6.2.2 Member Leave Event

The member leave event is more complicated than the mem-
ber join event, because all the keys that the leaving mem-
ber knows need to be replaced with new keys that the leav-
ing member must not be able to compute (forward secrecy,
see Section 2). The key server uses the child contribution
scheme outlined in Section 6.1.1 to update the keys on the
path from the leaf node of the leaving member up to the
root. The server broadcasts a key update message contain-
ing the updated keys and also attach hint messages to data
packets to enable key recovery in case the key update mes-
sage is lost.

Protocol 2. Member Leave

1. The server deletes the leaf node corresponding to the
leaving member, as well as the parent node of the leaf
node, and promotes the sibling node.

2. All remaining nodes on the key path of the leaving
member need to be updated. For each of these keys,
the update procedure for key � 7 is as follows. The new
key is
� �7 ; �<�<� �������=�� ��� / � 7 0 , with� ��	 ; ���<� ���=��� � ����>�� / � 7 0 � �<�<� �������
 ����>�� / � 7 0 , where
� 7�� and � 7�� are the left and right child keys, respec-
tively.

3. The server broadcasts the key update message of
all keys that were updated in the previous step.
Hence, for each key � �7 the update message contains

� ���<� �����E��� ����>�� / � 7 0 � � �>�� &.� ���<�
���=���
 ����>�� / � 7 0 � � �>�� .

M3 leaves

PSfrag replacements

�� ���

� ��� � � �� �

��� ���

� �

� �

���

� �

� �
� �

��� ���
�	� � �

Figure 3. Member leave event

4. The server attaches the following hint message to data
packets. For each new key � �7 the server may send����� �����E� 	 �

� � 	> / $=0 & �=2�3 4 ���
 � � � � / ���<� �6�����
 ����>�� / � 7 0 0 � ���>�� .2

This is clearer in an example. See Figure 3 and the box
labeled Example 1.

6.2.3 Multiple Member Leave Events

Above, we write that there are several good ways to realize
multiple member join events. Multiple member leave events
have some subtlety though, so we sketch the approach in
slightly greater detail.

In case multiple members leave in the same interval, the
key server aggregates all the leaving members and creates
a joint leave key update message. ELK can aggregate the
concurrent member leave events particularly well and pro-
vides (in addition to current savings) a

� $
	 savings over
OFT [2]3 for keys when both children change. The rea-
son for OFT’s inefficiency is that if both child keys change,
OFT needs two key updates (one for each child), whereas
ELK only needs one. ELK factors fresh contributions from
both child keys into the parent key on a leave key update,
regardless on whether the children changed. The size of the
key update message in ELK is /�� �� 0 / �<� � � 	%0 , where � is
the number of updated keys and is the number of leaving
members. Since the number of updated keys is always less
than the sum of all keys in each key path, it is always ad-
vantageous to aggregate multiple member leave events. In

2It seems that a pre-computation attack is possible here, since an at-

tacker could pre-compute the image ������������� 	��� ���! for all the keys " .

In this case, when the server publishes ���#��������� 	��� �
	> ���! the adversary can

look up the $&% ��'�� 	 pre-images that are candidates for the key. In prac-
tice, however, (is larger than)+* bits, foiling such an attack. Note that the
size of ELK key updates remains the same regardless of the length (of
keys.

3We discuss OFT in Section 8. Like OFT, we derive keys using a binary
tree with members represented at leaves.

8

Consider the example in Figure 3. Member � � leaves the

group. In step 1, the key server deletes the nodes that cor-

respond to the keys � � and ��� . The server promotes the

node of ��
 . In step 2, the server updates the keys on the

key path of the leaving member � � and �8� .
The server computes the new key � �� as follows:

� �� ; ���<� ���=������ ��� 	 / � � 0 , with� ��	 � ; ���<� ���=��� � ����� / � � 0 � ����� �����E�
 ���� / � � 0 .
To update key � � the key server computes

� �� ; ���<� ���=������ ��� � / � � 0 and� ��	 � ; ���<� ���=����� �� �
 / � �.0 � ����� �����E�
 �� � �	 / � �.0 .
In step 3 the server broadcasts the key update, which con-

tains the following:

� ����� �������� ����� / � � 0 � � � & � �<�<�
�6�����
 ���� / � � 0 � � �� for � �� , and

� ����� �������� ����
 / � � 0 � � � �	 &.� �����
�������
 �� � �	 / � � 0 � ���
 for � �� .

Finally, subsequent data packets contain the following hint

(step 4):�<�<� �6����� 	 �
� �
	� / $ 0 &.�=2�354 �6�
 � ��� � / ����� �����E�
 �� � �	 / � �)0 0 � � � �
 ,

�<�<� �6����� 	 �
� � 		 / $ 0 &.�=2�354 �6�
 � � � � / ����� �����E�
 ���� / � � 0 0 � ����

Example 1: Member leave protocol

M4 leaves

M5 joins
M6 joins

M3 leaves

PSfrag replacements

� � �

� ��

����

����

����

��� ������

���

������

� �

� �� � � �
���

���
� �

���

� �

Figure 4. Member leave event

contrast, the size of the OFT key update message is /�� � (-0 �
bits.

We illustrate multiple member leave events with an ex-
ample. Assume the setting of Figure 4. For this example
we assume that the leaving member nodes are not collapsed,
because the key server replaces the leaving member nodes
with new members. If members � � and � � both leave, and
new members �
 and � � take their spot, the keys ��� , � � ,
and � � need to be updated. If the member leave events are
processed sequentially, the update message for � � leaving

is F / ��� � � 	.0 bits long, and the message for � � is B / ��� � � 	.0
bits long. If the server aggregates leaves, the message is
only F�/ � � � � 	 0 bits long.

6.3 Security Analysis

A sketch of the security analysis appears in Appendix B.
There we show the following observations hold:

� With overwhelming probability, a passive adversary
needs to perform � /CB � 0 operations to brute-force an
ELK group key.

� With overwhelming probability, an active adversary
needs to perform � / B � 0 operations to brute-force any
ELK group key preceeding the time it joins the group.

� After the active adversary leaves the group, with over-
whelming probability it needs to perform � /CB � � � �
 0
operations to derive the new ELK group key.

We also show that pre-computation does not reduce the
effort to brute-force a later ELK group key.

6.4 Advantages

ELK provides advantages over previous solutions for
multicast group key distribution protocols. The join pro-
tocol uses key server computation to achieve member joins
that do not require any broadcast message, hence greatly
improving the scalability. Other advantages are the reduced
size of group key updates, as well as the further reduced hint
messages that allow legitimate members to recover from
lost key updates. The hint messages can drastically reduce
the number of members that need to contact the key server
to recover from lost key update messages.

Because of the small footprint of the hint message, each
data packet may carry a hint with it. Hence, if the receiver
missed a key update, but receives the corresponding data
packet, it will be able to recover the group key from the hint
with high probability and decrypt the message.

Since the encrypted data without the decryption key is
useless, as well as a key without corresponding data is use-
less, combining the two seems natural. This linking of the
hint with the message, however, is a powerful mechanism
that ELK makes possible, due to the small footprint of the
hint.

Another innovation of ELK is to distribute partial key
tree update information. Key update information provides
diminishing returns. Hence the idea is to disseminate a
small amount of information that enables the majority of
the members to recover from a lost update message. The
remaining members (a small fraction) can be dealt with on
an individual basis.

9

7 Applications and Practical Issues

In this section we discuss the choice for the parameters
for ELK and arguments for its security. The parameters we
discuss are: � , � � , � 	 , and � � , (the number of bits of the
key, the left contribution, the right contribution, and the size
of the key verification, respectively), and the number of lev-
els of keys that are added to the hint. The choice of these pa-
rameters is driven by the tradeoff between efficiency (com-
munication and computation) and security.

7.1 Security Model

Our attacker model assumes a “reasonable” attacker who
breaks a system by breaking the weakest link. The main
application of this work is a broadcast environment where
the receivers do not have tamper-resistant security devices.
This implies that a user has access to the decryption keys,
because they are stored in memory. Hence, an attacker can
always obtain the current group key by subscribing to the
service. From another perspective, how secret can a group
key be if it is shared by ()$
 members? We judge our key
distribution protocol as secure if it is considerably more dif-
ficult and expensive to get the key by breaking the key dis-
tribution protocol than by other means.

7.2 System Requirements

Besides the security requirements, we also have system
requirements. We want to have have a key update pro-
tocol that has low computation and communication over-
head. For the hint messages we require that at least ���
	
of all receivers can recover the key from the hint message.
This implies that the hint message includes the keys from
at least � levels. The hint to a key of level � may help a
fraction of B�� 7 members, in the case of a single member
leave event (assuming that the key tree is balanced). Since� �7���� B�� 7 ; $�� �	� I , � levels are sufficient to reach ��� 	 of
the members.

Furthermore we require that the key reconstruction be
faster than requesting a key update by unicast from the key
server. We assume that such a request message may take
around B $=$ ms. Hence the requirement is that a fast (e.g.
��$�$ MHz Pentium) workstation could reconstruct � keys in
less than B $=$ ms.

As we discuss in the implementation section, our test
workstation computes 5,000,000 PRF functions per second.

7.3 Parameters

The first parameter we choose is the group key size � .
In this instance we assume that ELK is used for a medium-
security environment, and we choose the key size of � I bits.

Next, we want to achieve that the key reconstruction
from a hint takes at most 200 ms, which allows us to com-
pute � � . In the worst case, a member needs to reconstruct 6
keys. Considering that it can compute 5,000,000 PRFs per
second, this leaves 166,666 PRF computations per key. For
each key guess, two PRF computations are necessary, one
to compute the key, and the other to verify the key with the
hint. Therefore, we chose to use 16 bits for ��� , which trans-
lates into B�
*B � � = 131,072 computations for each key. As
we discussed previously, if the hint message is also 16 bits
long, the member expects to get one additional false positive
key per level. This implies that the member who computes
6 keys will end up with 7 candidate keys for the group key,
which requires 6 times more work to compute the group
key. For this reason, we make the key hint � � ; (� bits
long, which reduces the false positives. (Table 2 shows the
number of candidates for different levels. For our recom-
mended parameters, the number of false positives averages
around $�� � .)

We now compute the number of bits for ��	 based on a
sample scenario.

Protecting Perishable Information Goods

Perishable information goods loose their value with time.
An example is a live “pay-per-view” media transmissions
such as a sports event video feed. Consider an example of
perishable data that we want to protect for ()$ minutes. The
security requirements dictate that an attacker needs at least
()$=$�$ computers to break the key in less than ()$ minutes.

We assume that the attacker has fast machines that com-
pute ()$ � PRFs per second. The (%$�$=$ computers can hence
compute F � �
 (%$ � � PRFs in (%$ minutes. Since we know that
the attacker needs at least B�
 B � � � �
 operations to break the
key, we can derive �<� � � 	�� I�I , and � 	 ; B � bits. The
key update per key is �<� �
� 	 ; I�I bits long, and the total
size per key of a hint is � 	 �:��� � � � ; B � bits. Hence the
savings of the hint message are F�I 	 . For each key hint we
also encode the position of the hint in the key tree with an
additional bit (left or right). Hence the cost for � key hints
is � � F $; (��=$ bits, which translates into B�F bytes.

7.4 Advantages

As computers get faster, the savings of ELK improve.
We achieve the largest savings for the hint messages if
� � ; � 	 , in which case the hint is only half the size of the
key update. In this case the legitimate members perform B ���
operations, but the attacker cannot perform B ��� � �
 ; B 	 ���
operations. Merkle used a similar argument to construct a
public/private key encryption algorithm [20]. In his Merkle
Puzzle system, he assumes that legitimate users can per-
form B � operations, but an attacker would need to perform

10

B � � � operations to break the encrypted message. Brute-
force search for a parameter was also used by Dwork and
Naor to fight spam mail [10]. Similarly, Manber [18], and
Abadi, Lomas, and Needham [1] used brute-force search to
improve the security of the UNIX one-way password func-
tion.

The above examples demonstrate that ELK can trade off
security and efficiency. It allows the content distributor to
choose the desired level of security on a fine-grained scale
and lower security directly translates into smaller key up-
date messages. Note that previous protocols do not offer
this feature. If one desires a lower security margin it is
not safe to shorten the key length, because new attacks that
exploit short key lengths become possible. For instance,
an attacker may perform pre-computation and use memory
lookup tables to break the short group key. ELK does not
suffer from these attacks, as we show in the security analy-
sis in appendix B.

8 Comparison and Related Work

Harney and Muckenhirn introduced GKMP [15], a cen-
tralized server approach that distributes group keys through
unicast. We refer to this approach as Secure Key Distri-
bution Center (SKDC). Mittra’s Iolus aims for scalability
through distributed hierarchical key servers [21]. Molva and
Pannetrat involve routers on the multicast distribution path
into the security [22].

The logical key tree hierarchy was independently discov-
ered by Wallner et al. [34, 35], and by Wong, Gouda, and
Lam [36, 37]. We call this algorithm the Logical Key Hi-
erarchy (LKH). An optimization that halves the size of the
key update message is described by Canetti et al. [6]. This
optimization to LKH is called LKH+, which Harney and
Harder described in more detail in their Internet Draft [14].

To reduce the overhead of join, the current approach is
to simply compute a one-way function on each key that the
new member obtains, which is proposed by the Versakey
framework [8] and the LKH+ protocol [14].

Another method to halve the size of the key update
message is the One-way Function Tree protocol (OFT) by
Balenson, McGrew and Sherman [2, 19]. In OFT, the key of
the node is derived from the two sibling keys. The protocol
we present in this paper resembles the OFT approach.

Even though the LKH+ protocol greatly diminishes the
overhead of a group key change to � / � � �5/ � 0 0 (where �
is the number of group members), the constant key change
with the resulting key update messages can still result in an
unscalable protocol in large dynamic groups. If members
join and leave frequently, the resulting key update traffic
can overwhelm the group. Setia, Koussih, and Jajodia [30]
attempted to solve this problem. They proposed periodic re-
keying, which results in an aggregating members that join

or leave during a short time interval. They do not address
the issue of reliability of key updates, however. Their ap-
proach to scalability uses a hierarchy of key servers (similar
to Iolus) that aggregate join and leave events. (Within one
subgroup the Kronos protocol would minimize the commu-
nication overhead by using our ELK protocol.)

Briscoe designed the MARKS protocol [4]. MARKS is
scalable and does not require any key update messages, but
the protocol only works if the leaving time of the member
is fixed when the member joins the group and so members
cannot be expelled.

Trappe et al. [32] also observed that key updates should
be distributed with the data. In fact, they propose that the
key updates be embedded within the data, for example us-
ing techniques similar to watermarking. The focus of their
work, however, is different. While the ELK key updates
encode the same key as was used to encrypt the data, [32]
proposed embedding future keys in current data.

Wong and Lam designed Keystone [38], which addresses
the reliable delivery for key update messages, which is
also the primary motivation of this work. Since most reli-
able multicast transport protocols do not scale well to large
groups, they propose that the key server uses forward er-
ror correction (FEC) to encode the key update message. As
long as the member receives a sufficient fraction of the key
update packets, it can reconstruct the information. If too
many packets are lost, the member uses a unicast connec-
tion to the key server to recover the missing keys. Since
the authors assume independent packet loss, this scheme
is quite effective. In practice, however, the packet loss in
the Internet is correlated, which means that the probabil-
ity of loss for a packet increases drastically if the previous
packet was lost [3, 41]. This means that even though the key
update packets are replicated, sending them in close suc-
cession introduces considerable vulnerability against corre-
lated packet loss.

8.1 Comparison

In this work we focus on broadcast overhead, since we
consider it to be the most important quantity. Unicast cost,
memory overhead at the key server, and computation over-
head are of lesser concern. (If a broadcasting company has
()$ � paying customers, it can also afford a server with suf-
ficient memory to store the B
 ()$ � keys.) By reducing the
size of the key updates, one can have a higher level of redun-
dancy (assuming that a constant fraction of the bandwidth
is dedicated for key updates) which results in higher relia-
bility.

Table 1 shows a comparison of the standard key distribu-
tion protocols. � is the number of users in the group and

�

is the height of the key tree. Assuming that the tree is bal-
anced, we have

� ; � � � � 	 / � 0�� . The location information

11

SKDC LKH+ OFT Keystone ELK
(binary) Full Hint (B�� �) Hint ((� B�� 7)

Single member join
Broadcast size � � � � � B � � $ $ $
Multiple member join (j members)
Broadcast size � � � � �.� B � � � $ $ $
Single member leave
Broadcast size / � � (%0 � / � ��(-0 � � � B � � / � � (%0 / �<� �
� 	%0 � 	 � � 	
Multiple member leave (j members)
Broadcast size / � � 0 � / � � � 0 � / � � � (%0 � B � � � /�� � � 0 / � � � � 	 0 � � � 	 � � � 	

Table 1. Comparison between current key distribution schemes. All quantities are in number
of bits, and we do not account for the tree location information that needs to be passed along
with each key. The parameters � � , � � , and � � are explained in the text.

of a node in the tree also takes
�

bits. The quantity � � de-
termines the number of keys that change in the tree when
members join or leave.

The SKDC protocol is the simplest protocol, but since it
is not based on key trees it clearly does not scale to large
groups. The Keystone protocol is based on key trees, but
since it does not incorporate recent developments to reduce
the size of the key update messages it is more expensive
than LKH+ or OFT. We can clearly see that ELK is the most
efficient protocol, even in the case where ELK has the same
security parameter as the other protocols (��� � � 	 ; �). Our
new join protocol does not require any broadcast message,
since the entire tree changes in each interval. In particular
for the case of leaving members, ELK provides savings
with a factor of � ��� factor instead of the OFT’s � ����(
factor.

To display the overhead of the hint message, we list two
cases: One where the hint helps half the members to re-
construct the group key, and the other that helps a fraction
of (� B�� 7 members. To simplify the table, we marked
the size of the hint message as � 	 4 In the case when
members leave the group, the size of the hint message
is more difficult to give. The expected number of keys
that allows half the members to recover the group key is

� � ; ��� � �� ��� B � / (� / (� B�� � 0 � 0 with � ; � � � 	�
� � � 	��
��� ���

� 	�
� 	 � �
The formula for the case where a fraction of (�� B�� 7 mem-
ber wish to recover the group key from the hint is

� � ; � � � �� ��� B � / (� / (� B � � 0 � 0 with � ; � � � 	�
�� � � 	�� >
� ���

� 	�
� 	 � �

4If the hint size is (��� (�� (� , and (��� (���� , the hint size would
actually be (� ���

.

9 Implementation

We implemented the ELK protocol. In this section, we
discuss our choice for the cryptographic primitives and re-
port measured performance numbers. We have not yet mea-
sureed the savings in a real multicast group communication
environment.

9.1 PRF

As we pointed out in Section 7, the savings of the hint
increases with the speed of the members. The only func-
tion that is relevant for the hint computation is the speed of
the PRF, because the PRF is the only function that is used
repeatedly to derive the lost key in the exhaustive search.

We use a MAC function to construct the PRF. For all the
PRFs needed, the required input size is less or equal to �
bits, and the output size is also always less or equal to � bits.
In our application, we chose � ; � I bits. We compared
the speed of a variety of MAC functions, HMAC with a
hash function, and CBC-MAC based on a block cipher. We
used the functions provided by the OpenSSL library [25],
and the fast Rijndael (Advanced Encryption Standard) im-
plementation provided by NIST [24]. The HMAC based
on hash functions are slower than the fastest CBC-MACs.
Rijndael performed well on our ��$�$ MHz Pentium work-
station with 1,200,000 MACs per second (the input, output,
and key sizes are (B � bits). However, RC5 is faster with
5,000,000 MACs per second (with � I bit input and output
size). Since we do not need more than � I bits input or out-
put size, RC5 is over four times faster than Rijndael, and
hence, we use one encryption with RC5 as our PRF func-
tion.

12

Path length 1 2 3 4 5 6
Reconstruction (ms) 18 42 51 102 124 153
Candidates 1.41 1.59 1.72 1.63 1.63 1.59
Member fraction 50% 25% 12.5% 6.25% 3.125% 1.5625%

Table 2. Reconstruction time and number of candidates for paths of varying length. The last
row lists the fraction of members that recomputes the key path of the given length.

9.2 Encryption Function

To save space in our key updates and hints we cannot af-
ford the data expansion caused by a block cipher. Therefore
we used a stream cipher. Since the speed of the encryption
is not as important as that of the PRF function and since we
already use RC5 for the PRF function, we use RC5 in OFB
mode as our stream cipher. We use the group key for the
IV. This is secure because we never encrypt twice with the
same key/IV pair.5

9.3 Results

We implemented ELK with the parameters of � � ; (��
bits, � 	 ; F � bits, and � � ; (� bits to prevent an in-
crease of false positive candidate keys. We report the per-
formance results from the key reconstruction algorithm. Ta-
ble 2 shows the average number of milliseconds to recon-
struct a path of a certain length.

10 Conclusion

We summarize with some major contributions of ELK.
� ELK features smaller key updates than previous pro-

tocols. Most notably, ELK member join events do not
require any data broadcast to current group members
in the general case.

� ELK generates small hint messages that trades off
communication overhead with member computation.
These small hints enable legitimate receivers to derive
a group key through computation in case they missed
a key update message.

� ELK is one of the first protocols to provide reliabil-
ity of key update messages without relying on reliable
multicast protocols. Instead, ELK uses small key up-
date footprints composed of hints carried in data pack-
ets. This approach allows the majority of the members
to recover the new group key when the key update mes-
sage is lost.

5An exception is the encryption of part of the hint message and part of
the key update message. In this case, however, not only the key/IV pair is
the same for both encryptions, but also the plaintext data.

11 Acknowledgments

We would like to thank David Wagner for his helpful fee-
back and fruitful discussions. We would also like to thank
Nikita Borisov, Ran Canetti, Yongdae Kim, Radha Pooven-
dran, and Gene Tsudik and for helpful discussions. We are
also indebted to the anonymous referees for their detailed
and insightful comments.

References

[1] Martin Abadi, T. Mark A. Lomas, and Roger Need-
ham. Strengthening passwords, September 1997. SRC
Technical Note 1997-033.

[2] D. Balenson, D. McGrew, and A. Sherman. Key man-
agement for large dynamic groups: One-way function
trees and amortized initialization. Internet Draft, In-
ternet Engineering Task Force, March 1999. Work in
progress.

[3] M. Borella, D. Swider, S. Uludag, and G. Brewster.
Internet packet loss: Measurement and implications
for end-to-end QoS. In International Conference on
Parallel Processing, August 1998.

[4] Bob Briscoe. MARKS: Zero side-effect multicast key
management using arbitrarily revealed key sequences.
In First International Workshop on Networked Group
Communication, November 1999.

[5] John W. Byers, Michael Luby, Michael Mitzen-
macher, and Ashutosh Rege. A Digital Fountain ap-
proach to reliable distribution of bulk data. In Pro-
ceedings of the ACM SIGCOMM ’98 Conference on
Applications, Technologies, Architectures, and Proto-
cols for Computer Communication, 1998.

[6] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor,
and B. Pinkas. Multicast security: A taxonomy and
some efficient constructions. In INFOCOMM’99,
March 1999.

[7] Ran Canetti, Tal Malkin, and Kobbi Nissim. Effi-
cient communication-storage tradeoffs for multicast

13

encryption. In Jacques Stern, editor, Advances in
Cryptology – EUROCRYPT ’99, number 1599 in Lec-
ture Notes in Computer Science. International As-
sociation for Cryptologic Research, Springer-Verlag,
Berlin Germany, 1999.

[8] G. Caronni, M. Waldvogel, D. Sun, N. Weiler, and
B. Plattner. The VersaKey framework: Versatile group
key management. IEEE Journal on Selected Areas in
Communications, 17(9), September 1999.

[9] Isabella Chang, Robert Engel, Dilip Kandlur, Dim-
itrios Pendarakis, and Debanjan Saha. Key man-
agement for secure Internet multicast using boolean
function minimization techniques. INFOCOM 1999,
September 1998.

[10] C. Dwork and M. Naor. Pricing via processing or
combatting junk mail. In Ernest F. Brickell, editor,
Advances in Cryptology - Crypto ’92, pages 139–147,
Berlin, 1992. Springer-Verlag. Lecture Notes in Com-
puter Science Volume 740.

[11] S. Floyd, V. Jacobson, S. McCanne, C. G. Liu, and
L. Zhang. A reliable multicast framework for light-
weight sessions and application level framing. In Pro-
ceedings of the ACM SIGCOMM 95, pages 342–356,
Boston, MA, August 1995.

[12] Oded Goldreich, Shafi Goldwasser, and Silvio Micali.
How to construct random functions. Journal of the
ACM, 33(4):792–807, October 1986.

[13] Li Gong. Enclaves: Enabling secure collaboration
over the Internet. In Proc. 6th USENIX Unix and Net-
work Security Symposium, 1996.

[14] H. Harney and E. Harder. Logical key hierarchy pro-
tocol. Internet Draft, Internet Engineering Task Force,
April 1999. Work in progress.

[15] H. Harney and C. Muckenhirn. Group Key Manage-
ment Protocol (GKMP) Specification / Architecture.
Request for Comments RFC-2093 and RFC-2094, In-
ternet Engineering Task Force, July 1997.

[16] Mingyan Li, Radha Poovendran, and C. Berenstein.
Optimization of key storage for secure multicast. In
35th Annual Conference on Information Sciences and
Systems (CISS), Johns Hopkins University, March
2001.

[17] F. J. MacWilliams and N.J.A. Sloane. The Theory of
Error-Correcting Codes. North Holland, Amsterdam,
1977.

[18] Udi Manber. A simple scheme to make passwords
based on one-way functions much harder to crack.
Computers and Security, 15(2):171–176, 1996.

[19] David A. McGrew and Alan T. Sherman. Key estab-
lishment in large dynamic groups using one-way func-
tion trees, May 1998. http://www.cs.umbc.
edu/˜sherman/Papers/itse.ps.

[20] R. Merkle. Secure communication over insecure chan-
nels. Communications of the ACM, 21(4):294–299,
1978.

[21] Suvo Mittra. Iolus: A framework for scalable secure
multicasting. In ACM SIGCOMM, September 1997.

[22] Refik Molva and Alain Pannetrat. Scalable multicast
security in dynamic groups. In Proc. 6th ACM Con-
ference on Computer and Communications Security,
pages 101–112, Nov 1999.

[23] L. E. Moser, P. M. Melliar-Smith, D. A. Agar-
wal, R. K. Budhia, and C. A. Lingley-Papadopoulos.
Totem: A fault-tolerant multicast group communica-
tion system. Communications of the ACM, 39(4):54–
63, April 1996.

[24] NIST. Advanced Encryption Standard (AES) de-
velopment effort. http://csrc.nist.gov/
encryption/aes/, October 2000.

[25] OpenSSL. The OpenSSL project. http://www.
openssl.org, 2000.

[26] V. Paxson. End-to-end Internet packet dynamics.
IEEE/ACM Transactions on Networking, 7(3):277–
292, June 1999.

[27] In V. S. Pless and W. Huffman, editors, Handbook of
Coding Theory, volume 1, page 740. Elsevier, Ams-
terdam, Netherlands, 1998.

[28] M. O. Rabin. The information dispersal algorithm and
its applications. In Sequences: Combinatorics, Com-
pression, Security and Transmission, pages 406–419.
Springer-Verlag, 1990.

[29] Irving S. Reed and Gustave Solomon. Polynomial
codes over certain finite fields. Journal of the Society
for Industrial and Applied Mathematics, 8:300–304,
1960.

[30] Sanjeev Setia, Samir Koussih, and Sushil Jajodia.
Kronos: A scalable group re-keying approach for se-
cure multicast. In Proceedings of the IEEE Sympo-
sium on Research in Security and Privacy, Oakland,
CA, May 2000.

14

[31] M. Steiner, G. Tsudik, and M. Waidner. Cliques: A
new approach to group key agreement. IEEE Transac-
tions on Parallel and Distributed Systems, To appear
in 2000.

[32] Wade Trappe, Jie Song, Radha Poovendran, and
K. J. Ray Liu. Key distribution for secure multime-
dia multicast via data embedding. In IEEE ICASSP
2001, Salt Lake City, Utah, May 2001.

[33] Robbert van Renesse, Kenneth P. Birman, and Silvano
Maffeis. Horus: A flexible group communication sys-
tem. Communications of the ACM, 39(4):76–83, April
1996.

[34] D. Wallner, E. Harder, and R. Agee. Key management
for multicast: Issues and architectures. Request for
Comments (Informational) 2627, Internet Engineering
Task Force, June 1999.

[35] Debby M. Wallner, Eric J. Harder, and Ryan C. Agee.
Key Management for Multicast: Issues and Architec-
tures. Technical report, IETF draft, July 1997.

[36] C. Wong, M. Gouda, and S. Lam. Secure group com-
munications using key graphs. Technical Report TR-
97-23, University of Texas at Austin, Department of
Computer Sciences, August 1997.

[37] C. Wong, M. Gouda, and S. Lam. Secure group
communications using key graphs. In Proceedings
of the ACM SIGCOMM ’98 Conference on Applica-
tions, Technologies, Architectures, and Protocols for
Computer Communication, pages 68–79, 1998. Ap-
peared in ACM SIGCOMM Computer Communication
Review, Vol. 28, No. 4 (Oct. 1998).

[38] Chung Kei Wong and Simon S. Lam. Keystone: A
group key management service. In International Con-
ference on Telecommunications, ICT 2000, 2000.

[39] Avishai Wool. Key management for encrypted broad-
cast. In 5th ACM Conference on Computer and Com-
munications Security, pages 7–16, San Francisco, Cal-
ifornia, November 1998.

[40] X. Rex Xu, Andrew C. Myers, Hui Zhang, and Raj
Yavatkar. Resilient multicast support for continuous-
media applications. In NOSSDAV, 1997.

[41] M. Yajnik, S. Moon, J. Kurose, and D. Towsley. Mea-
surement and modelling of the temporal dependence
in packet loss. In IEEE INFOCOM ’99, March 1999.

[42] Bennet Yee and Doug Tygar. Secure coprocessors
in electronic commerce applications. In Proceedings
of The First USENIX Workshop on Electronic Com-
merce, New York, New York, July 1995.

[43] Bennet S. Yee. Using Secure Coprocessors. PhD the-
sis, Carnegie Mellon University, 1994.

A Unicast Key Recovery Protocol

In case the group member did not receive the key update
message and is in the unlucky part of the key tree, it cannot
recover the group key from the hint message. In this case, it
needs to request the keys from the key server. This request
protocol is straightforward to design. The most important
requirement is that the protocol is efficient and scales well.
In contrast to previous work by Wong and Lam, we find
that TCP is not the appropriate protocol for this key re-
quest protocol [38]. The reason is that TCP requires one
round-trip message just to set up the connection (in most
implementations, no data is sent in the initial SYN packet).
This slows down the request unnecessarily. An advantage
of TCP might be that the receiver could keep the connec-
tion open for future key requests. This approach, however,
does not scale to large number of receivers because each
TCP connection requires a considerable amount of state at
the server. Therefore, we propose to use a light-weight key
update protocol based on UDP, where the receiver achieves
reliability through timeout and request retransmissions.

B Security Analysis

We perform our security analysis in a computational
complexity framework. Our attacker model distinguishes
between passive and active adversaries. Passive adversaries
only eavesdrop on the group communication (in particular
they are never group members), whereas active adversaries
may be group members. For both cases, we analyze the
computation complexity for the adversary to derive a group
key while it is not a group member. To clarify the subse-
quent description, we refer to the passive adversary as Eve
and to the active attacker as Mallory.

B.1 Security Analysis with Passive Adversary

We first look at the difficulty of the passive adversary
(Eve) to compute the group key. We assume that Eve eaves-
drops all traffic without loss (receives all data packets of a
session), but Eve is never a group member and hence does
not know any keys in the key tree. Clearly, an exhaustive
search attack to find the group key takes � / B � 0 operations,
where � is the bit length of the group key. Eve cannot do
better than brute force search � /CB � 0 possibilities by using
key update messages or hint messages, because she does not
know any of the keys used to decrypt the key update or any
of the keys used for the pseudo-random function to compute
the hints. Hence the following observation clearly holds:

15

Proposition 1. With overwhelming probability, Eve needs
to perform � / B � 0 operations to determine the group key by
exhaustive search.

B.2 Security Analysis with Active Adversary

We now turn our attention to Mallory and we assume that
he was a group member during some previous time period.
We analyze his computation complexity to derive a group
key while he is not in the group.

We first look at backward secrecy. When Mallory joins
the group and receives all keys on his key path, can he derive
previous group keys? Mallory might have recorded earlier
key update messages, hints and data packets encrypted with
previous group keys, but he cannot derive the group key
better than brute-force � /CB � 0 possibilities because he does
not have any of the decryption keys or the keys used for the
pseudo-random function to compute the hints. Hence we
obtain the following observation:

Proposition 2. With overwhelming probability, Mallory
needs to perform � /CB � 0 operations to brute-force any group
key preceeding the time he joins the group.

We now analyze forward secrecy, where Mallory tries
to derive the group keys after he leaves the group. We as-
sume that Mallory just left and hence knows all the keys on
his key path because this scenario gives Mallory the great-
est advantage. When Mallory leaves the group, the server
updates the group key and the key tree as section 6.1.1 de-
scribes. We show that in this scenario the following obser-
vation is true:

Proposition 3. After Mallory leaves the group, with over-
whelming probability he needs to perform � / B � � � �
 0 oper-
ations to derive the new group key.

Argument Sketch. The new group key is updated by the key
server according to the description in section 6.2. Mallory
has three ways to derive the new group key: from the key
update messages, from the published hints, or brute-force
all possibilities in the computation of generating the new
group key.

The group key is distributed by encryption with the keys
in the key tree that Mallory does not have, as described in
LKH. Hence Mallory cannot do better than trying � /CB � 0
possibilities. Similarly, Mallory cannot gain advantage
from the published hints either because he does not have
the keys used in the pseudo-random function computation.

Note that the new group key � � is derived as
� � ; �<�<� �6�������

� / � �-0 , with
� ; ���<� �6����� � ����� � / � � 0 � �<�<� �������
 ����� � / � � 0 , where � � � and
� � � are the left and right child keys of � � respectively. One
of them is already updated depending on which side of the

tree Mallory was in. Hence, Mallory does not know either
� � � nor � � � . But Mallory knows � � , so he only needs to
brute-force all possibilities of � which are � � �!� 	 bits long.

Hence the best Mallory can do is to brute force
� /CB ��� � �
 0 operations to compute the new group key.

Note that even though Mallory now only needs to try
� /CB ��� � �
 0 possibilities, where � � ��� 	 might be much
smaller than � , he cannot simply pre-compute a table with

� /CB ��� � �
 0 entries and use it to derive new group keys later.
The reason is that the new group key is computed using a
pseudo-random function with the previous group key as in-
put which keeps changing. So if Mallory wants to derive
the new group key when he is not in the group any more, he
needs to recompute the table with � /CB � � � �
 0 entries with
the latest group key as the input. This is the same amount
of work as computing � / B � � � �
 0 possibilities. Hence Mal-
lory does not gain advantage by doing precomputation and
saving the result for later.

16

