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Markov Chain Sampling Methods forDirichlet Process Mixture ModelsRadford M. NealDepartment of Statistics and Department of Computer ScienceUniversity of Toronto, Toronto, Ontario, Canadahttp://www.cs.utoronto.ca/�radford/radford@stat.utoronto.ca1 September 1998Abstract. Markov chain methods for sampling from the posterior distribution of aDirichlet process mixture model are reviewed, and two new classes of methods are pre-sented. One new approach is to make Metropolis-Hastings updates of the indicatorsspecifying which mixture component is associated with each observation, perhaps sup-plemented with a partial form of Gibbs sampling. The other new approach extendsGibbs sampling for these indicators by using a set of auxiliary parameters. These meth-ods are simple to implement and are more e�cient than previous ways of handling generalDirichlet process mixture models with non-conjugate priors.1 IntroductionModeling a distribution as a mixture of simpler distributions is useful both as a non-parametric density estimation method and as a way of identifying latent classes thatcan explain the dependencies observed between variables. Mixtures with a countablyin�nite number of components can reasonably be handled in a Bayesian framework, byemploying a prior distribution for mixing proportions, such as a Dirichlet process, thatleads to a few of these components dominating. Use of countably in�nite mixtures by-passes the need to determine the \correct" number of components in a �nite mixturemodel, a task which is fraught with technical di�culties. In many contexts, a countablyin�nite mixture is also a more realistic model than a mixture with a small number ofcomponents.Use of Dirichlet process mixture models has become computationally feasible with thedevelopment of Markov chain methods for sampling from the posterior distribution ofthe parameters of the component distributions and/or of the associations of mixturecomponents with observations. Methods based on Gibbs sampling can easily be imple-mented for models based on conjugate prior distributions, but when non-conjugate priorsare used, as is appropriate in many contexts, straightforward Gibbs sampling requiresthat an often di�cult numerical integration be performed. West, M�uller, and Escobar1



(1994) use a Monte Carlo approximation to this integral, but the error from using suchan approximation is likely to be large in many contexts.MacEachern and M�uller (1998) have devised an exact approach to handling non-conjugate priors that utilizes a mapping from a set of auxiliary parameters to the set ofparameters currently in use. Their \no gaps" and \complete" algorithms based on thisapproach are widely applicable, but somewhat ine�cient. Walker and Damien (1998)apply a rather di�erent auxiliary variable method to some Dirichlet process mixturemodels, but their method appears to be unsuitable for general use, as it again requiresthe computation of a di�cult integral.In this paper, I review this past work, and present two new approaches to Markov chainsampling. A very simple method for handling non-conjugate priors is to use Metropolis-Hastings updates with the conditional prior as the proposal distribution. A variation ofthis method may sometimes sample more e�ciently, particularly when combined witha partial form of Gibbs sampling. Another class of methods uses Gibbs sampling in aspace with auxiliary parameters. The simplest method of this type is very similar to the\no gaps" algorithm of MacEachern and M�uller, but is more e�cient. This approach alsoyields an algorithm that resembles use of a Monte Carlo approximation to the necessaryintegrals, but which does not su�er from any approximation error.I conclude with a demonstration of the methods on a simple problem.2 Dirichlet process mixture modelsDirichlet process mixture models1 go back to Antoniak (1974) and Ferguson (1983).The have recently been developed as practical methods by Escobar and West (1995),MacEachern and M�uller (1998), and others.The basic model applies to data y1; :::; yn which we regard as exchangeable, or equiv-alently, as being independently drawn from some unknown distribution. The yi may bemultivariate, with components that may be real-valued or categorical. We model thedistribution from which the yi are drawn as a mixture of distributions of the form F (�),with the mixing distribution over � being G. We let the prior for this mixing distribu-tion be a Dirichlet process (Ferguson 1973), with concentration parameter � and basedistribution G0 (ie, with base measure �G0). This gives the following model:yi j �i � F (�i)�i j G � GG � D(G0; �) (1)Often, F andG0 will depend on additional hyperparameters not mentioned above, which,along with �, may be given priors at a higher level. The computational methods discussedin this paper extend easily to these more complex models, as brie
y discussed in Section 7.1Sometimes also called \mixture of Dirichlet process models", apparently because of Antoniak's (1974)characterization of their posterior distributions. Since models are not usually named for the propertiesof their posterior distributions, this terminology is avoided here.2



Since realizations of the Dirichlet process are discrete with probability one, these mod-els can be viewed as countably in�nite mixtures, as pointed out by Ferguson (1983). Thisis also apparent when we integrate over G in model (1), to obtain a representation ofthe prior distribution of the �i in terms of successive conditional distributions of thefollowing form (Blackwell and MacQueen 1973):�i j �1; : : : ; �i�1 � 1i�1+� i�1Xj=1 �(�j) + �i�1+� G0 (2)Here, �(�) is the distribution concentrated at the single point �.Equivalent models can also be obtained by taking the limit as K goes to in�nity of�nite mixture models with K components having the following form:yi j c; � � F (�ci)ci j p � Discrete (p1; : : : ; pK)�c � G0p1; : : : ; pK � Dirichlet (�=K; : : : ; �=K) (3)Here, ci indicates which \latent class" is associated with observation yi, with the num-bering of the ci being of no signi�cance. For each class, c, the parameters �c determinethe distribution of observations from that class. The mixing proportions for the classes,pc, are given a symmetric Dirichlet prior, with concentration parameter written as �=K,so that it approaches zero as K goes to in�nity.By integrating over the mixing proportions, pc, we can write the prior for the ci as theproduct of conditional probabilities of the following form:P (ci = c j c1; : : : ; ci�1) = ni;c + �=Ki� 1 + � (4)where ni;c is the number of cj for j < i that are equal to c.If we now let K go to in�nity, we �nd that the conditional probabilities de�ning theprior for the ci reach the following limits:2P (ci = c j c1; : : : ; ci�1) ! ni;ci� 1 + �P (ci 6= cj for all j<i j c1; : : : ; ci�1) ! �i� 1 + � (5)Since the ci are signi�cant only in so far as they are or are not equal to other cj , theabove probabilities are all that are needed to de�ne the model. If we now let �i = �ciwe can see that the limit of model (3) as K !1 is equivalent to the Dirichlet processmixture model (1), due to the correspondence between the conditional probabilities forthe �i in equation (2) and those implied by (5).I have previously used this limiting process to de�ne a model which (unknown to meat the time) is equivalent to a Dirichlet process mixture (Neal 1992). This view is useful2Some readers may be disturbed by the failure of countable additivity for these limiting probabilities,but the limiting distribution of the observable quantities and the limiting forms of the algorithms basedon this model are both well de�ned as K goes to in�nity.3



in deriving algorithms for sampling from the posterior distribution for Dirichlet processmixture models. Conversely, an algorithm for Dirichlet process mixture models willusually have a counterpart for �nite mixture models. This is the case for the algorithmsdiscussed in this paper, though I do not give details of the algorithms for �nite mixtures.Yet another way of formulating a model equivalent to a Dirichlet process mixture isin terms of the prior probability that two observations come from the same mixturecomponent (equal to 1=(1+�) in the models above). This approach has been used byAnderson (1990, Chapter 3) in formulating a model for use as a psychological theory ofhuman category learning.3 Gibbs sampling when conjugate priors are usedExact computation of posterior expectations for a Dirichlet process mixture model isinfeasible when there are more than a few observations. However, such expectations canbe estimated using Monte Carlo methods. For example, the predictive distribution for anew observation, yn+1, can be estimated by (1=T ) PTt=1 F (�(t)n+1), where the points �(t)n+1are drawn from the distribution (n+�)�1Pni=1 �(�(t)i ) + �(n+�)�1G0 (see equation (2)),where �(t)1 ; : : : ; �(t)n is the t'th point in a sample from the posterior distribution of the �i.We can sample from the posterior distribution of �1; : : : ; �n by simulating a Markovchain that has this as its equilibrium distribution. The simplest such methods are basedon Gibbs sampling, which when conjugate priors are used can be done in three ways.The most direct approach to sampling for model (1) is to repeatedly draw values foreach �i from its conditional distribution given both the data and the �j for j 6= i (writtenas ��i). This conditional distribution is obtained by combining the likelihood, writtenF (yi; �i), and the prior conditional on ��i, which is�i j ��i � 1n�1+� Xj 6=i �(�j) + �n�1+� G0 (6)This can be derived from equation (2) by imagining that i is the last observation, as wemay, since the observations are exchangeable. When combined with the likelihood, thisyields the following conditional distribution for use in Gibbs sampling:�i j ��i; yi � Xj 6=i qi;j �(�j) + riHi (7)Here, Hi is the posterior distribution for � based on the prior G0 and the single obser-vation yi, with likelihood F (yi; �). The values of the qi;j and of ri are de�ned asqi;j = b F (yi; �j) (8)ri = b � Z F (yi; �) dG0(�) (9)where b is such that Pj 6=i qi;j + ri = 1. For this Gibbs sampling method to be feasible,computing the integral de�ning ri and sampling from Hi must be feasible operations.This will generally be so when G0 is the conjugate prior for the likelihood given by F .4



We may summarize this method as follows:Algorithm 1: Let the state of the Markov chain consist of �1; : : : ; �n. Re-peatedly sample as follows:� For i = 1; : : : ; n: Draw a new value from �i j ��i; yi as de�ned byequation (7).This algorithm is used by Escobar (1994) and by Escobar and West (1995). It producesan ergodic Markov chain, but convergence to the posterior distribution may be ratherslow, and sampling thereafter may be ine�cient. The problem is that there are oftengroups of observations that with high probability are associated with the same �. Sincethe algorithm cannot change the � for more than one observation simultaneously, changesto the � values for observations in such a group can occur only rarely, as they requirepassage through a low-probability intermediate state in which observations in the groupdo not all have the same � value.This problem is avoided if Gibbs sampling is instead applied to the model formulatedas in (3), with the mixing proportions, pc, integrated out. When K is �nite, each Gibbssampling scan consists of picking a new value for each ci from its conditional distributiongiven yi, the �c, and the cj for j 6= i (written as c�i), and then picking a new value foreach �c from its conditional distribution given the yi for which ci = c. The requiredconditional probabilities for ci can easily be computed:P (ci = c j c�i; yi; �) = b F (yi; �c) n�i;c + �=Kn� 1 + � (10)where n�i;c is the number of cj for j 6= i that are equal to c, and b is the appropriatenormalizing constant. The last factor is derived from equation (4) by imagining thati is the last observation. (Note that the denominator n�1+� could be absorbed intob, but here and later it is retained for clarity.) The conditional distribution for �c willalso be easy to sample from when the priors used are conjugate, and even when Gibbssampling for �c is di�cult, one may simply substitute some other update that leaves therequired distribution invariant. Note that when a new value is chosen for �c, the valuesof �i = �ci will change simultaneously for all observations associated with component c.When K goes to in�nity, we cannot, of course, explicitly represent the in�nite numberof �c. We instead represent, and do Gibbs sampling for, only those �c that are currentlyassociated with some observation. Gibbs sampling for the ci is based on the followingconditional probabilities (with � here being the set of �c currently associated with atleast one observation):If c = cj for some j 6= i: P (ci = c j c�i; yi; �) = b n�i;cn�1+� F (yi; �c)P (ci 6= cj for all j 6= i j c�i; yi; �) = b �n�1+� Z F (yi; �) dG0(�) (11)Here, b is the appropriate normalizing constant that makes the above probabilities sumto one. The numerical values of the ci are arbitrary, as long at they faithfully representwhether or not ci = cj ; they may be chosen for programming convenience, or to facilitatethe display of mixture components in some desired order. When Gibbs sampling for ci5



chooses a value not equal to any other cj , a value for �ci is chosen from Hi, the posteriordistribution of � based on the prior G0 and the single observation yi.We can summarize this second Gibbs sampling method as follows:Algorithm 2: Let the state of the Markov chain consist of c1; : : : ; cn and� = (�c : c 2 fc1; : : : ; cng). Repeatedly sample as follows:� For i = 1; : : : ; n: If the present value of ci is associated with no otherobservation (ie, n�i;ci = 0), remove �ci from the state. Draw a newvalue for ci from ci j c�i; yi; � as de�ned by equation (11). If the new ciis not associated with any other observation, draw a value for �ci fromHi and add it to the state.� For all c 2 fc1; : : : ; cng: Draw a new value from �c j yi s.t. ci = c.This is essentially the method used by Bush and MacEachern (1996) and byWest, M�uller,and Escobar (1994). As was the case for the �rst Gibbs sampling method, this approachis feasible if we can compute RF (yi; �) dG0(�) and sample from Hi, as will generally bethe case when G0 is the conjugate prior.Finally, in a conjugate context, we can often integrate analytically over the �c, elim-inating them from the algorithm. The state of the Markov chain then consists only ofthe ci, which we update by Gibbs sampling using the following conditional probabilities:If c = cj for some j 6= i: P (ci = c j c�i; yi) = b n�i;cn�1+� Z F (yi; �) dH�i;c(�)P (ci 6= cj for all j 6= i j c�i; yi) = b �n�1+� Z F (yi; �) dG0(�) (12)Here, H�i;c is the posterior distribution of � based on the prior G0 and all observationsyj for which j 6= i and cj = c.This third Gibbs sampling method can be summarized as follows:Algorithm 3: Let the state of the Markov chain consist of c1; : : : ; cn. Re-peatedly sample as follows:� For i = 1; : : : ; n: Draw a new value from ci j c�i; yi as de�ned byequation (12).This algorithm is presented by MacEachern (1994) for mixtures of normals and by myself(Neal 1992) for models of categorical data.4 Existing methods for handling non-conjugate priorsAlgorithms 1 to 3 above cannot easily be applied to models where G0 is not the conjugateprior for F , as the integrals in equations (9), (11), and (12) will usually not be analyticallytractable. Sampling from Hi may also be hard when the prior is not conjugate.West, M�uller, and Escobar (1994) suggest using either numerical quadrature or a MonteCarlo approximation to evaluate the required integral. If R F (yi; �) dG0(�) is approxi-mated by an average over m values for � drawn from G0, one could also approximate6



a draw from Hi, if required, by drawing from among these m points with probabilitiesproportional to their likelihoods, given by F (yi; �). Though their paper is not explicit,it appears that West, M�uller, and Escobar's non-conjugate example uses this approachwith m = 1 (see MacEachern and M�uller 1998).Unfortunately, this approach is potentially quite inaccurate. Often, Hi, the posteriorbased on yi alone, will be considerably more concentrated than the prior, G0, particularlywhen yi is multidimensional. If a small to moderate number of points are drawn fromG0, it may be that none are typical of Hi. Consequently, the probability of chosing cito be a new component can be much lower than it would be if the exact probabilities ofequation (11) were used. The consequence of this is not just slower convergence, sinceon the rare occasions when ci is in fact set to a new component, with an appropriate� typical of Hi, this new component is likely to be discarded in the very next Gibbssampling iteration, leading to the wrong stationary distribution. This problem showsthat the usual Gibbs sampling procedure of forgetting the current value of a variablebefore sampling from its conditional distribution will have to be modi�ed in any validscheme that uses values for � drawn from G0.MacEachern and M�uller (1998) present a framework that does allow auxiliary valuesfor � drawn from G0 to be used to de�ne a valid Markov chain sampler. I will explaintheir idea as an extension of Algorithm 2 of Section 3. There, the numerical values ofthe ci were regarded as signi�cant only in so far as they indicate which observations areassociated with the same component. MacEachern and M�uller consider more speci�cschemes for assigning distributions to the ci, which serve to map from a collection ofvalues for �c to values for the �i. Many such schemes will produce the same distributionfor the �i, but lead to di�erent sampling algorithms.The \no gaps" algorithm of MacEachern and M�uller arises when the ci for i = 1; : : : ; nare required to cover the set of integers from 1 to k, with k being the number of distinct ci,but are not otherwise constrained. By considering Gibbs sampling in this representation,they derive the following algorithm:Algorithm 4: Let the state of the Markov chain consist of c1; : : : ; cn and� = (�c : c 2 fc1; : : : ; cng). Repeatedly sample as follows:� For i = 1; : : : ; n: Let k� be the number of distinct cj for j 6= i, and letthese cj have values in f1; : : : ; k�g. If ci 6= cj for all j 6= i, then withprobability k�= (k�+ 1) do nothing, leaving ci unchanged. Otherwise,label ci as k�+ 1 if ci 6= cj for all j 6= i, or draw a value for �k�+1from G0 if ci = cj for some j 6= i. Then draw a new value for ci fromf1; : : : ; k�+ 1g using the following probabilities:P (ci = c j c�i; yi; �1; : : : ; �k�+1) = 8<: b n�i;c F (yi; �c) if 1 � c � k�b [�=(k�+ 1)]F (yi; �c) if c = k�+ 1where b is the appropriate normalizing constant. Change the state tocontain only those �c that are now associated with an observation.� For all c 2 fc1; : : : ; cng: Draw a new value from �c j yi s.t. ci = c, orperform some other update to �c that leaves this distribution invariant.7



This algorithm can be applied to any model for which we can sample from G0 andcompute F (yi; �), regardless of whetherG0 is the conjugate prior for F . However, there isa puzzling ine�ciency in the algorithm's mechanism for setting ci to a value di�erent fromall other cj | ie, for assigning an observation to a newly-created mixture component.The probability of such a change is reduced from what one might expect by a factor ofk�+1, with a corresponding reduction in the probability of the opposite change. As willbe seen in Section 6, a similar algorithm without this ine�ciency is possible.MacEachern and M�uller have also developed an algorithm based on a \complete"scheme for mapping from the �c to the �i. It requires maintaining n values for �, whichmay be ine�cient when k � n. The approach that will be presented in Section 6 allowsmore control over the number of auxiliary parameter values used.Another approach to handling non-conjugate priors has recently been devised byWalker and Damien (1998). Their method avoids the integrals needed for Gibbs sam-pling, but requires instead that the probability under G0 of the set of all � for whichF (yi; �) > u be computable, and that one be able to sample from G0 restricted to thisset. Although these operations are feasible for some models, they will in general be quitedi�cult, especially when � is multidimensional.Finally, Green and Richardson (1998) have developed a Markov chain sampling methodbased on splitting and merging components that is applicable to non-conjugate models.Their method is considerably more complex than the others discussed in this paper,since it attempts to solve the more di�cult problem of obtaining good performance insituations where the other methods tend to become trapped in local modes that aren'teasily escaped with incremental changes. Discussion of this issue is beyond the scope ofthis paper.5 Metropolis-Hastings updates and partial Gibbs samplingPerhaps the simplest way of handling non-conjugate priors is by using the Metropolis-Hastings algorithm (Hastings 1970) to update the ci, using the conditional prior as theproposal distribution.Recall that the Metropolis-Hastings algorithm for sampling from a distribution withdensity �(x) using proposals with density g(x�jx) updates the state x as follows:Draw a candidate state, x�, according to the density g(x�jx). Compute theacceptance probabilitya(x�; x) = min �1; g(xjx�)g(x�jx) �(x�)�(x) � (13)With probability a(x�; x), set the new state, x0, to x�. Otherwise, let x0 bethe same as x.This update from x to x0 leaves � invariant. When x is multidimensional, proposaldistributions that change only one component of x are often used. Updates based onseveral such proposals, along with updates of other types, can be combined in order toconstruct an ergodic Markov chain that will converge to �.8



This approach can be applied to model (3) for �nite K, with the pc integrated out,using Metropolis-Hastings updates for each ci in turn, along with Gibbs sampling or otherupdates for the �c. When updating just ci, we can ignore those factors in the posteriordistribution that do not involve ci. What remains is the product of the likelihood forobservation i, F (yi; �ci), and the conditional prior for ci given the other cj , which isP (ci = c j c�i) = n�i;c + �=Kn� 1 + � (14)where, as before, n�i;c is the number of cj for j 6= i that are equal to c. This can beobtained from equation (4) by imagining that i is the last observation. If we now chooseto use this conditional prior for ci as the proposal distribution, we �nd that this factorcancels when computing the acceptance probability of equation (13), leavinga(c�i ; ci) = min"1; F (yi; �c�i )F (yi; �ci) # (15)This approach continues to work as we let K ! 1 in order to produce an algorithmfor a Dirichlet process mixture model. The conditional prior for ci becomesIf c = cj for some j 6= i: P (ci = c j c�i) = n�i;cn� 1 + �P (ci 6= cj for all j 6= i j c�i) = �n� 1 + � (16)If we use this as the proposal distribution for an update to ci, we will need to draw anassociated value for � from G0 if the candidate, c�i , is not in fc1; : : : ; cng. Note that ifthe current ci is not equal to any other cj , the probability of choosing c�i to be the sameas ci is zero | ie, when c�i is chosen to be di�erent from the other cj it will always be anew component, not the current ci, even when that also di�ers from the other cj . (Themethod would be valid even if a new component were not created in this situation, butthis is the behaviour obtained by taking the K !1 limit of the algorithm for �nite K.)We might wish to perform more than one such Metropolis-Hastings update for eachof the ci. With this elaboration, the algorithm can be summarized as follows:Algorithm 5: Let the state of the Markov chain consist of c1; : : : ; cn and� = (�c : c 2 fc1; : : : ; cng). Repeatedly sample as follows:� For i = 1; : : : ; n, repeat the following update of ci R times: Draw acandidate, c�i , from the conditional prior for ci given by equation (16).If a c�i not in fc1; : : : ; cng is proposed, chose a value for �c�i from G0.Compute the acceptance probability, a(c�i ; ci), as in equation (15), andset the new value of ci to c�i with this probability. Otherwise let the newvalue of ci be the same as the old value.� For all c 2 fc1; : : : ; cng: Draw a new value from �c j yi s.t. ci = c, orperform some other update to �c that leaves this distribution invariant.If R is greater than one, it is possible to save computation time by reusing values of Fthat were previously computed. An evaluation of F can also be omitted when c�i turns9



out to be the same as ci. The number of evaluations of F required to update one ciis thus no more than R+1. For comparison, the number of evaluations of F neededfor Gibbs sampling and the \no gaps" algorithm is approximately equal to one plus thenumber of distinct cj for j 6= i.If the updates for the �c in the last step of Algorithm 5 are omitted, the result isequivalent to the following:Algorithm 6: Let the state of the Markov chain consist of �1; : : : ; �n. Re-peatedly sample as follows:� For i = 1; : : : ; n, repeat the following update of �i R times: Draw acandidate, ��i , from the following distribution:1n�1+� Xj 6=i �(�j) + �n�1+� G0Compute the acceptance probabilitya(��i ; �i) = min[1; F (yi; ��i ) =F (yi; �i)]Set the new value of �i to ��i with this probability; otherwise let the newvalue of �i be the same as the old value.This might have been justi�ed directly as a Metropolis-Hastings algorithm, but the factthat the proposal distribution for ��i is not continuous introduces conceptual, or at leastnotational, di�culties. Note that this algorithm su�ers from the same problem of notbeing able to change several �i simultaneously as was discussed for Algorithm 1.The behaviour of the Metropolis-Hastings methods (Algorithms 5 and 6) di�ers sub-stantially from that of the corresponding Gibbs sampling methods (Algorithms 2 and 1)and the \no gaps" method (Algorithm 4). These other methods consider all mixture com-ponents when deciding on a new value for ci, whereas the Metropolis-Hastings methodis more likely to consider changing ci to a component associated with many observationsthan to a component associated with few observations. Also, the probability that theMetropolis-Hastings method will consider changing ci to a newly created component isproportional to �. (Of course, the probability of actually making such a change dependson � for all methods; here the issue is whether such a change is even considered.)It is di�cult to say which behaviour is better. Algorithm 5 does appear to performadequately in practice, but since small values of � (around one) are often used, one mightwonder whether an algorithm that could consider the creation of a new component moreoften might be more e�cient.We can produce such an algorithm by modifying the proposal distribution for updatesto the ci. In particular, whenever ci = cj for some j 6= i, we can propose changing ci to anewly created component, with associated � drawn fromG0. In order to allow the reversechange, the proposal distribution for \singleton" ci that are not equal to any cj with j 6= iwill be con�ned to those components that are associated with other observations, withprobabilities proportional to n�i;c. Note that when the current ci is not a singleton, theprobability of proposing a new component is a factor of (n�1+�) =� greater than the10



conditional prior, while when ci is a singleton, the probability of proposing any existingcomponent is a factor of (n�1+�) = (n�1) greater than its conditional prior. Theprobability of accepting a proposal must be adjusted by the ratio of these factors.On their own, these updates are su�cient to produce a Markov chain that is ergodic,but such a chain would often sample ine�ciently, since it can change an observation fromone existing component to another only by passing though a possibly unlikely state inwhich that observation is a singleton. Such changes can be made more likely by com-bining these Metropolis-Hastings updates with partial Gibbs sampling updates, whichare applied only to those observations that are not singletons, and which are allowedto change ci for such an observation only to a component associated with some otherobservation. In other words, these updates perform Gibbs sampling for the posterior dis-tribution conditional on the set of components that are associated with observations notchanging. No di�cult integrations are required for this partial Gibbs sampling operation.Combining the modi�ed Metropolis-Hasting updates, the partial Gibbs sampling up-dates, and the usual updates to �c for c 2 fc1; : : : ; cng produces the following algorithm:Algorithm 7: Let the state of the Markov chain consist of c1; : : : ; cn and� = (�c : c 2 fc1; : : : ; cng). Repeatedly sample as follows:� For i = 1; : : : ; n, update ci as follows: If ci is a not a singleton (ie, ci = cjfor some j 6= i), let c�i be a newly-created component, with �c�i drawnfrom G0. Set the new ci to this c�i with probabilitya(c�i ; ci) = min"1; �n�1 F (yi; �c�i )F (yi; �ci) #Otherwise, when ci is a singleton, draw c�i from c�i, choosing c�i = cwith probability n�i;c = (n�1). Set the new ci to this c�i with probabilitya(c�i ; ci) = min"1; n�1� F (yi; �c�i )F (yi; �ci) #If the new ci is not set to c�i , it is the same as the old ci.� For i = 1; : : : ; n: If ci is a singleton (ie, ci 6= cj for all j 6= i), donothing. Otherwise, choose a new value for ci from fc1; : : : ; cng usingthe following probabilities:P (ci = c j c�i; yi; �; ci 2 fc1; : : : ; cng) = b n�i;cn�1 F (yi; �c)where b is the appropriate normalizing constant.� For all c 2 fc1; : : : ; cng: Draw a new value from �c j yi s.t. ci = c, orperform some other update to �c that leaves this distribution invariant.6 Gibbs sampling with auxiliary parametersIn this section, I show how models with non-conjugate priors can be handled by applyingGibbs sampling to a state that has been extended by the addition of auxiliary parameters.This approach is similar to that of MacEachern and M�uller (1998), but di�ers in thatthe auxiliary parameters are regarded as existing only temporarily; this allows more
exibility in constructing algorithms. 11
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Figure 1: Representing the conditional prior distribution for a new observation usingauxiliary parameters. The component for the new observation is chosen from among thefour components associated with other observations plus three possible new components,with parameters, �5; �6; �7, drawn independently from G0. The probabilities used forthis choice are shown at the top. The dashed arrows illustrate the possibilities of choosingan existing component, or a new component that uses one of the auxiliary parameters.The basic idea of auxiliary variable methods is that we can sample from a distribu-tion �x for x by sampling from some distribution �xy for (x; y), with respect to whichthe marginal distribution of x is �x. We can extend this idea to accommodate auxil-iary variables that are created and discarded during the Markov chain simulation. Thepermanent state of the Markov chain will be x, but a variable y will be introducedtemporarily during an update of the following form:1) Draw a value for y from its conditional distribution given x, as de�ned by �xy.2) Perform some update of (x; y) that leaves �xy invariant.3) Discard y, leaving only the value of x.It is easy to see that this update for x will leave �x invariant as long as �x is themarginal distribution of x under �xy. We can combine several such updates, which mayinvolve di�erent auxiliary variables, along with other updates that leave �x invariant, toconstruct a Markov chain that will converge to �x.We can use this technique to update the ci for a Dirichlet process mixture modelwithout having to integrate with respect G0. The permanent state of the Markov chainwill consist of the ci and the �c, as in Algorithm 2, but when ci is updated, we willintroduce temporary auxiliary variables that represent possible values for the parametersof components that are not associated with any other observations. We then update ci byGibbs sampling with respect to the distribution that includes these auxiliary parameters.Since the observations yi are exchangeable, and the component labels ci are arbitrary,we can assume that we are updating ci for the last observation, and that the cj for otherobservations have values in the set f1; : : : ; k�g, where k� is the number of distinct cj forj 6= i. We can now visualize the conditional prior distribution for ci given the other cj interms of m auxiliary components and their associated parameters. The probability of cibeing equal to a c in f1; : : : ; k�g will be n�i;c=(n�1+�), where n�i;c is the number oftimes c occurs among the cj for j 6= i. The probability of ci having some other value willbe �=(n�1+�), which we will split equally among the m auxiliary components we haveintroduced. Figure 1 illustrates this setup for m = 3.12



This representation of the prior gives rise to a corresponding representation of theposterior, which also includes these auxiliary parameters. The �rst step in using thisrepresentation to update ci is to sample from the conditional distribution of these aux-iliary parameters given the current value of ci and the rest of the state. If ci = cj forsome j 6= i, the auxiliary parameters have no connection with the rest of the state, orthe observations, and are simply drawn independently from G0. If ci 6= cj for all j 6= i(ie, ci is a singleton), then it must be associated with one of the m auxiliary parameters.Technically, we should select which auxiliary parameter it is associated with randomly,but since it turns out to make no di�erence, we can just let ci be the �rst of these auxil-iary components. The corresponding value for � must of course be equal to the existing�ci . The � values for the other auxiliary components (if any, there are none if m = 1)are again drawn independently from G0.We now perform a Gibbs sampling update for ci in this representation of the poste-rior distribution. Since ci must be either one of the components associated with otherobservations or one of the auxiliary components that were introduced, we can easily doGibbs sampling by evaluating the relative probabilities of these possibilities. Once a newvalue for ci has been chosen, we discard all � values that are not now associated with anobservation.This algorithm can be summarized as follows:Algorithm 8: Let the state of the Markov chain consist of c1; : : : ; cn and� = (�c : c 2 fc1; : : : ; cng). Repeatedly sample as follows:� For i = 1; : : : ; n: Let k� be the number of distinct cj for j 6= i, and leth = k�+m. Label these cj with values in f1; : : : ; k�g. If ci = cj forsome j 6= i, draw values independently from G0 for those �c for whichk�< c � h. If ci 6= cj for all j 6= i, let ci have the label k�+1, and drawvalues independently from G0 for those �c for which k�+ 1 < c � h.Draw a new value for ci from f1; : : : ; hg using the following probabilities:P (ci = c j c�i; yi; �1; : : : ; �h) = 8>><>>: b n�i;cn�1+� F (yi; �c) for 1 � c � k�b �=mn�1+� F (yi; �c) for k�< c � hwhere n�i;c is the number of cj for j 6= i that are equal to c, and b isthe appropriate normalizing constant. Change the state to contain onlythose �c that are now associated with one or more observations.� For all c 2 fc1; : : : ; cng: Draw a new value from �c j yi s.t. ci = c, orperform some other update to �c that leaves this distribution invariant.Note that the relabellings of the cj above are conceptual; they may or may not requireany actual computation, depending on the data structures used.When m = 1, Algorithm 8 closely resembles Algorithm 4, the \no gaps" algorithmof MacEachern and M�uller (1998). The di�erence is that the probability of changingci from a component shared with other observations to a new singleton component isapproximately k�+1 times greater with Algorithm 8, and the same is true for the reverse13



change. When � is small, this seems to be a clear bene�t, since the probabilities for otherchanges are a�ected only slightly.In the other extreme, as m ! 1, Algorithm 8 approaches the behaviour of Algo-rithm 2, since the m (or m�1) values for �c drawn from G0 e�ectively produce a MonteCarlo approximation to the integral computed in Algorithm 2. However, the equilib-rium distribution of the Markov chain de�ned by Algorithm 8 is exactly correct for anyvalue of m, unlike the situation when a Monte Carlo approximation is used to implementAlgorithm 2.7 Updates for hyperparametersFor many problems, it is necessary to extend the model to incorporate uncertainty re-garding the value of � or regarding the values of other hyperparameters that determineF and G0. These hyperparameters can be included in the Markov chain simulation, asis brie
y discussed here.The conditional distribution of � given the other parameters depends only on k, thenumber of distinct ci. It can be updated by some Metropolis-Hastings method, or bymethods discussed by Escobar and West (1995).If F depends on hyperparameters 
, the conditional density for 
 given the current�i will be proportional to its prior density times the likelihood, Qni=1 F (yi; �i; 
). If G0depends on hyperparameters �, the conditional density for � given the current ci and�c will be proportional to its prior density times QcG0(�c; �), where the product isover values of c that occur in fc1; : : : ; cng. Note that each such c occurs only once inthis product, even if it is associated with more than one observation. The di�cultyof performing Gibbs sampling or other updates for 
 and � will depend on the detailedforms of these conditional distributions, but no issues special to Dirichlet process mixturemodels are involved.One subtlety does arise when algorithms employing auxiliary � parameters are used.If � values not associated with any observation are retained in the state, the conditionaldistribution for � given the rest of the state will include factors of G0(�; �) for these� as well as for the � values associated with observations. Since this will tend to slowconvergence, it is desirable to discard all unused � values, regenerating them from G0 asneeded, as is done for the algorithms in this paper.8 A demonstrationI tested the performance of Algorithms 4 through 8 on the following data (y1; : : : ; y9):�1:48; �1:40; �1:16; �1:08; �1:02; +0:14; +0:51; +0:53; +0:78A Dirichlet process mixture model was used with the component distributions havingthe form F (�) = N(�; 0:12), the prior being G0 = N(0; 1), and the Dirichlet processconcentration parameter being � = 1. Although G0 is in fact conjugate to F , thealgorithms for non-conjugate priors were used.14



Time per iteration Autocorrelation Autocorrelationin microseconds time for k time for �1Alg. 4 (\no gaps") 7.6 13.7 8.5Alg. 5 (Metropolis-Hastings, R = 4) 8.6 8.1 10.2Alg. 6 (M-H, R = 4, no � update) 8.3 19.4 64.1Alg. 7 (mod M-H & partial Gibbs) 8.0 6.9 5.3Alg. 8 (auxiliary Gibbs, m = 1) 7.9 5.2 5.6Alg. 8 (auxiliary Gibbs, m = 2) 8.8 3.7 4.7Alg. 8 (m = 30, approximates Alg. 2) 38.0 2.0 2.8Table 1: Performance of the algorithms tested.A state from close to the posterior distribution was found by applying 100 iterationsof Algorithm 5 with R = 5. This state was then used to initialize the Markov chain foreach of the algorithms, which were all run for 20000 subsequent iterations (one iterationbeing one application of the operations in the descriptions given earlier).The performance of each algorithm was judged by the computation time per iterationand by the \autocorrelation time" for two quantities: k, the number of distinct ci,and �1, the parameter associated with y1. The autocorrelation time for a quantity,de�ned as one plus twice the sum of the autocorrelations at lags one and up, is thefactor by which the sample size is e�ectively reduced when estimating the expectationof that quantity, as compared to an estimate based on points drawn independentlyfrom the posterior distribution (see Ripley 1987, Section 6.3). It was estimated usingautocorrelation estimates from the 20000 iterations.The Metropolis-Hastings methods (Algorithms 5 and 6) were run with R, the numberof updates for each ci, set to 4. This makes the computation time per iteration ap-proximately equal to that for the other methods tested. Gibbs sampling with auxiliaryparameters (Algorithm 8) was tested with m = 2 and m = 3. It was also run withm = 30, even though this is clearly too large, because with a large value of m, thisalgorithm approximates the behaviour of Algorithm 2 (apart, of course, from computa-tion time). This lets us see how much the autocorrelation times for the algorithms areincreased over what is possible when the prior is conjugate.The results are shown in Table 1. They con�rm that Algorithm 8 with m = 1 is su-perior to the \no gaps" method. Setting m = 2 decreases autocorrelation times further,more than o�setting the slight increase in computation time per iteration. The sim-ple Metropolis-Hastings method (Algorithm 5) performs about as well as the \no gaps"method. The combination of Metropolis-Hastings and partial Gibbs sampling of Algo-rithm 6 performs about as well as Algorithm 8 with m = 1. As expected, performanceis much worse when updates for the �c are omitted, as in Algorithm 6.The results for Algorithm 8 with m = 30 show that there is a cost to using algorithmsthat do not rely on the prior being conjugate, but this cost is small enough to be tolerablewhen a non-conjugate prior is a more realistic expression of prior beliefs. Of course, therelative performance of the methods may be di�erent from what is seen here when theyare applied to more realistic problems, in which the number of observations is often15



greater, and updates are also done for various hyperparameters. The methods testedhere are implemented in my software for 
exible Bayesian modeling (version of 1998-09-01), available from my web page, which can be used to experiment with some morecomplex models.AcknowledgementsThis research was supported by the Natural Sciences and Engineering Research Councilof Canada.ReferencesAnderson, J. R. (1990) The Adaptive Character of Thought, Hillsdale, NJ: Erlbaum.Antoniak, C. E. (1974) \Mixtures of Dirichlet processes with applications to Bayesiannonparametric problems", Annals of Statistics, vol. 2, pp. 1152-1174.Blackwell, D. and MacQueen, J. B. (1973) \Ferguson distributions via P�olya urnschemes", Annals of Statistics, vol. 1, pp. 353-355.Bush, C. A. and MacEachern, S. N. (1996) \A semiparametric Bayesian model for ran-domised block designs", Biometrika, vol. 83, pp. 275-285.Escobar, M. D. (1994) \Estimating normal means with a Dirichlet process prior", Journalof the American Statistical Association, vol. 89, pp. 268-277.Escobar, M. D. and West, M. (1995) \Bayesian density estimation and inference usingmixtures", Journal of the American Statistical Association, vol. 90, pp.577-588.Ferguson, T. S. (1973) \A Bayesian analysis of some nonparametric problems", Annalsof Statistics, vol. 1, pp. 209-230.Ferguson, T. S. (1983) \Bayesian density estimation by mixtures of normal distribu-tions", in H. Rizvi and J. Rustagi (editors) Recent Advances in Statistics, pp. 287-303,New York: Academic Press.Green, P. J. and Richardson, S. (1998) \Modelling heterogeneity with and without theDirichlet process", draft manuscript.Hastings, W. K. (1970) \Monte Carlo sampling methods using Markov chains and theirapplications", Biometrika, vol. 57, pp. 97-109.MacEachern, S. N. (1994) \Estimating normal means with a conjugate style Dirichletprocess prior", Communications in Statistics: Simulation and Computation, vol. 23,pp. 727-741.MacEachern, S. N. and M�uller, P. (1998) \Estimating mixture of Dirichlet process mod-els", Journal of Computational and Graphical Statistics, vol. 7, pp. 223-238.Neal, R. M. (1992) \Bayesian mixture modeling", in C. R. Smith, G. J. Erickson, andP. O. Neudorfer (editors) Maximum Entropy and Bayesian Methods: Proceedings of16



the 11th International Workshop on Maximum Entropy and Bayesian Methods of Sta-tistical Analysis, Seattle, 1991, p. 197-211, Dordrecht: Kluwer Academic Publishers.Ripley, B. D. (1987) Stochastic Simulation, New York: Wiley.Walker, S. and Damien, P. (1998) \Sampling methods for Bayesian nonparametric infer-ence involving stochastic processes", draft manuscript.West, M., M�uller, P., and Escobar, M. D. (1994) \Hierarchical priors and mixture mod-els, with application in regression and density estimation", in P. R. Freeman andA. F. M. Smith (editors) Aspects of Uncertainty, pp. 363-386, John Wiley.

17


