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First examples
Real-life situations

In a crowd speaking in Hebrew in HUJI, all the buzz sounds like
noise...

... Yet, if someone speaks in French in this crowd next to me, I will
only listen to that... at least before starting Hebrew lessons...

In this example, the buzz would be (stationary) noise and the French
(as always) should be local (transitory) information.

What does it mean ? One of the main assumptions we used all the time
until now, stationary, does not cover all the ground

Thomas Trigano Statistical Signal Processing
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Transition phenomena and signal processing
Some examples of applications

Speech and audio processing: how to“karaoke”? How to isolate
nonstationary harmonics ?

Sismology: High-frequency modulated impulsions ?

Image processing: How to isolate a pattern in an image ?

Signal: how to denoise a signal corrupted by a stationary noise ?
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What we will look at on this course
and also what we will not talk about

Recalling a few properties of the Fourier transform and show why
this extremely powerful tool isn’t the panacea.

Introduce some time-frequency tools: local Fourier transform and
wavelets.

Study some applications for denoising and deconvolution.

All the compression aspects related to wavelets will only be
introduced here.

We will see some examples on images, but mainly image processing
using wavelets will be skipped.

Let us now detail the examples we will study more in detail.
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Signal and Image denoising
The problem

Consider a deterministic function f being monodimensional (signal) or
bidimensional (image), and assume that we observe a noisy version of f :

y(t) = f (t) + ε(t) ,

where ε is a noise function. The problem of finding f given y and some
information about the noise is called signal (image) denoising
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Density Deconvolution
The problem

Instead of considering a deterministic function f , we may replace it by
the realisation of a random variable X ; the problem is now, given a series
of observations:

Yk = Xk + εk , k = 1 . . . n

find information on the distribution of X . This is called a density
deconvolution problem.
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Signal compression and coding
Example: AAC encoding

Representation of a signal on a given basis allows to make
compression (that is, selection of the“most representative”basis
coefficients and suppression of the“least representative”).

Example: AAC (Advanced Audio Coding) uses a decomposition of
the signal on a local cosine basis (we’ll see later what it means...).

Good choices of the basis and of component selection allows to
reduce the size of a given file. This problematic is called signal
compression.

The same methodology can be appplied to images (JPEG and
JPEG-2000 encoding, MPEG-2 on DVDs, etc...)
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Definition of the Fourier Transform
“Mr. Fourier, there is no future in your theory. . . ”

Fourier transform

For a function f ∈ L1(R), the Fourier transform is defined by

f̂ (ω)
∆
=

∫
R

f (t) e−iωt dt .

If f̂ ∈ L1(R), we also have that:

f (t)
∆
=

1

2π

∫
R

f̂ (ω) eiωt dω .

For the physicist, the Fourier transform quantifies the number of
oscillations of f at the frequency ω. A density argument (L1 ∩ L2 = L2)
allows to extend this definition to the functions of L2(R).
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Properties of the Fourier Transform
Regularity

Regularity of the Fourier Transform

A function f is bounded and has continuous and bounded derivatives up
to order p if ∫

R
|f̂ (ω)|(1 + |ω|p) dω <∞.

For example, if f̂ has compact support then f is C∞.
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Uncertainty Principle
Intuition

Question: Is is possible to write a function“localized in time AND in
frequency ?”
First answer: No ! If I make a given function“more localized” in time like
this:

fs(t) =
1√
s
f

(
t

s

)
,

then I keep the energy in time (‖f ‖ = ‖fs‖), and we lose localisation in
frequency (f̂s(ω) =

√
sf̂ (sω)).

Thomas Trigano Statistical Signal Processing
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Uncertainty Principle
Quantum mechanics answer

In Quantum Mechanics, a particle is described in dimension 1 by a wave
function f ∈ L2(R). The mean position of a particle is given by

u =
1

‖f ‖2

∫
R

t|f (t)|2 dt

and its mean quantity of movement is given by

ξ =
1

2π‖f ‖2

∫
R
ω|f̂ (ω)|2 dω.

The variance around these mean values is given by

σ2
u =

1

‖f ‖2

∫
R
(t − u)2|f (t)|2 dt

σ2
ξ =

1

‖f ‖2

∫
R
(ω − ξ)2|f̂ (ω)|2 dω
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Uncertainty Principle
Heisenberg Inequality

Heisenberg’s Inequality

For f ∈ L2(R), we have

σ2
uσ

2
ξ ≥

1

4
,

with equality if and only if there exists (u, ξ, a, b) ∈ R2 × C2 such that

f (t) = a exp
(
iξt − b(t − u)2

)
.
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Compact Support constraints
Don’t place your hopes too high

Support constraints

If f 6= 0 has compact support, then f̂ cannot be equal to 0 on an
interval. Conversely, if f̂ 6= 0 has compact support, then f cannot be
equal to 0 on an interval.
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Use of the Fourier tranform for deconvolution
A first answer

Recall that the problem of deconvolution is given by
Yk = Xk + εk , k = 1 . . . n. Assume that we know the noise
distribution.

From the pdf point of view, we get that: fY = fX ? fε, then a first
answer to deconvolution would be given by the inverse Fourier
transform of

f̂X =
f̂Y

f̂ε

Thomas Trigano Statistical Signal Processing
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Use of the Fourier tranform for deconvolution
A first answer

However, this approach is not stable numerically (e.g., if the noise is
assumed to be gaussian, the Fourier transform of the pdf of the
noise decays quickly to 0).

A possible correction is to“threshold” the Fourier transform

f̂X =
f̂Y

f̂ε ∧ c
.

Still, the method remains“ad hoc”. In fact, this problem is
encountered in deconvolution whatever the method employed.
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Issues for Fourier basis and Fourier transform
Advantages...

Fourier transform is a powerful and simple tool.

It is quite well fitted for stationary signals.

It suffers however from“structural limitations” (Heisenberg’s
inequality, compact support properties).
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Issues for Fourier basis and Fourier transform
... and drawbacks

Fourier Transform only gives which frequency components exist in
the signal.

The time and frequency information can not be seen at the same
time.

⇒ Fourier transform is not an adapted tool to deal with non-stationary
signals. For this, time-frequency representation of the signal is
needed.
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Time-frequency atoms
Decomposition

A linear time-frequency transform decomposes the signal in a family
of functions“well localized in time and energy”.

Such functions are called“time-frequency atoms”. Consider a general
family of time-frequency atoms {φγ}γ , where γ may be
multidimensional, and assume that φγ ∈ L2(R) and ‖φγ‖ = 1.

In that case,

Tf (γ) =

∫
R

f (t)φ∗γ(t) dt = 〈f , φγ〉

carries local information on time. Moreover, due to Plancherel
Theorem:

Tf (γ) =

∫
R

f̂ (ω)φ̂∗γ(ω) dω

thus giving frequency information.

Thomas Trigano Statistical Signal Processing
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Time-frequency atoms
Representation as Heisenberg boxes

On the time-frequency plane, an atom is not a point of the plan, but a
rectangle according to uncertainty principle.

σω

|φγ(t)|

|φ̂γ(ω)|

σt
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Time-frequency atoms
Representation as Heisenberg boxes

Due to Heisenberg inequality, only rectangles with surface ≥ 1/2 can be
time-frequency atoms.
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Time-frequency atoms
Representation as Heisenberg boxes

There is a lower bound, but no upper bound, consequently the
time-frequency plane can be split using different methods.

σω

|φγ(t)|

|φ̂γ(ω)|

σt
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A first answer: short-term Fourier transform
Definition

Short-Time Fourier transform

Let be g an even real-valued function, such that ‖g‖ = 1. A
time-frequency atom gu,ξ is obtained by translation and modulation:

gu,ξ(t) = eiξtg(t − u) .

The Short-term Fourier transform is obtained as:

Sf (u, ξ) = 〈f , gu,ξ〉 =

∫
R

f (t)g(t − u)e−iξt .

We define the spectrogram as the PSD associated to the Short-ter
Fourier transform:

PS f (u, ξ) = ‖Sf (u, ξ)‖2.

Thomas Trigano Statistical Signal Processing
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Example: the chirp
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A first answer: short-term Fourier transform
Related Heisenberg’s boxes

We get

σ2
t =

∫
R
(t − u)2|gu,ξ(t)|2 dt =

∫
R

t2|g(t)|2 dt

and

σ2
ξ =

∫
R
(ω − ξ)2|ĝ(ω − ξ) exp(−iu(ω − ξ))|2 dω =

∫
R
ω2|g(ω)|2 dω

Consequently, the atom gu,ξ has an Heisenberg box with surface σtσξ,
centered at (u, ξ)

Thomas Trigano Statistical Signal Processing
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A first answer: short-term Fourier transform
First conclusion

Short-term Fourier transform allows to study the time-frequency
plane more easily.

The whole plane is covered by this boxes, thus allowing to retrieve
the signal by inverse transformation.

However, the size of Heisenborg boxes remain the same, which can
hide some transitory states

Moreover, the short-term Fourier transform assumes local
stationarity.
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A first answer: short-term Fourier transform
Theorem of reconstruction

“Reconstruction”of a signal, given its short-term Fourier transform

If f ∈ L2(R):

f (t) =
1

2π

∫∫
R2

〈f , gu,ξ〉gu,ξ(t) dξ du

Why the brackets ?This formula appears as a decomposition on an
orthogonal basis, but it is not, since {gu,ξ}(u,ξ)∈R2 is redundant. This
redundancy implies that a given function of L2(R2) is not necessarily the
short-term Fourier transform of a signal.
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The short-term Fourier transform
The problems to overcome at this stage

The fixed resolution is a problem to deal with brutal transitions of a
signal.

The redundancy bothers us to reconstruct the signal from its time
frequency representation.
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The short-term Fourier transform
Heisenberg 1 - Signal processing 0
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Second answer: multiresolution analysis
A way to circumvent the resolution problem

Multiresolution Analysis:

Analyze the signal at different frequencies with different resolutions

Good time resolution and poor frequency resolution at high
frequencies

Good frequency resolution and poor time resolution at low
frequencies

⇒ More suitable for short duration of higher frequency; and longer
duration of lower frequency components
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Second answer: multiresolution analysis
Intuitive view for wavelet: a cunning way to split the time-frequency plane
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The Continuous Wavelet Transform (CWT)
Definition and first example

Wavelet transform

A wavelet is an even function Ψ of L2(R) such that∫
R

Ψ = 0 . and ‖Ψ‖ = 1.

From this, we define a time-frequency atom as follows:

Ψu,s
∆
=

1√
s
Ψ(

t − u

s
)

and we define the Continuous Wavelet Transform of a function of L2 as:

Wf (u, s) = 〈f ,Ψu,s〉 =

∫
R

f (t)
1√
s
Ψ∗(

t − u

s
) dt
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The Continuous Wavelet Transform (CWT)
Definition and first example

Example: The“mexican hat”wavelet is the second derivative of the
Gaussian probability density function.

mexh(x) = c exp(−x2/2)(1− x2), c =
2√

3 ∗ pi1/4

−6 −4 −2 0 2 4 6
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Other possible splits
Block wavelets

$t$

ω

For block wavelets, the frequency domain is split in“boxes”with arbitrary
lengths, and are translated in time.
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Other possible splits
Local cosine decomposition

ω

t

Local cosine decomposition is the opposite: decompose first the time
domain and then translate.
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Formalisation of multiresolution analysis
Definition of multiresolution

The following formalism is introduced by Mallat and Meyer:

Multiresolution

A sequence {Vj}j∈Z of closed subspaces of L2(R) is a multiresolution if
the following properties are verified:

1 ∀j , k f (t) ∈ Vj ⇔ f (t − 2jk) ∈ Vj

2 Vj+1 ∈ Vj

3 f (t) ∈ Vj ⇔ f (t/2) ∈ Vj

4 limj→+∞Vj =
⋂

j∈Z Vj = {0}

5 limj→−∞Vj = Adh
(⋃

j∈Z Vj

)
= L2(R)

6 There exists a Riesz basis {θ(t − n)}n∈Z for V0

Thomas Trigano Statistical Signal Processing
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6 There exists a Riesz basis {θ(t − n)}n∈Z for V0
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Definition of multiresolution

Example 1: Piecewise constant approximation

Vj = {g ∈ L2(R); g constant on [n2j ; (n + 1)2j [}

Example 1: Spline approximation

Vj = {g ∈ L2(R); g polynomial of degree m on [n2j ; (n + 1)2j [, g Cm−1}
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Formalisation of multiresolution analysis
Construction of a wavelet orthogonal basis

Let Wj be the orthogonal complement of Vj :

Vj−1 = Vj ⊕Wj

Vj is the approximation space, Wj is then the“detail” space. The
following theorem, due to Mallat and Meyer, gives a construction of an
orthonormal basis of Vj Wj by dilatation and translation of a wavelet ψ.
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Construction of a wavelet orthogonal basis

Mallat, Meyer construction of an orthonormal basis for Vj

Let φ the scale function whose Fourier transform is defined by

φ̂(ω) =
θ̂(ω)√∑

k∈Z

∣∣∣θ̂(ω + 2kπ)
∣∣∣2 ;

Then for all resolution level j , the family{
φj,n

∆
=

1√
2j
φ

(
t − 2jn

2j

)}
n∈Z

is an orthonormal basis of Vj . φj,n is called the approximation wavelet.
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Formalisation of multiresolution analysis
Construction of a wavelet orthogonal basis

Mallat, Meyer construction of an orthonormal basis for Wj

Let φ an integrable scale function and denote by
h(n) = 〈φ(t/2)/

√
2, φ(t − n)〉. Let ψ the function defined by its Fourier

transform:

ψ̂(ω) =
1√
2
e−iω/2ĥ∗(ω/2 + π)× φ̂(ω/2)

Then for all resolution level j , the family{
ψj,n

∆
=

1√
2j
ψ

(
t − 2jn

2j

)}
n∈Z

is an orthonormal basis of Wj . φj,n is called the detail wavelet. Moreover,
{ψj,n}n,j∈Z2 is an orthonormal basis of L2(R).
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Some criteria to build a basis
Main objectives

Most applications use the fact that the signal can be expressed by a
limited number of wavelet coefficients (parcimony)

Consequently, we must build ψ in order to guarantee that 〈f , ψj,n〉
would be close to 0 for a large class of j , n.

If at sharp scale, most of the wavelet coefficients are“small”, f will
have only a small number of non-negligible wavelet coefficients.
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Some criteria to build a basis
Moment conditions

Intuitive idea: if f is locally regular, it can be approximed by a high
order polynomial (say, of order p).

Consequently, a wavelet coefficient equal to zero at high resolution is
equivalent to an orthogonality condition:

A good criterion for the function ψ is thus a moment condition:∫
tkψ(t) dt = 0, 0 ≤ k < p
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Some criteria to build a basis
Support condition

Intuitive idea: minimizing the support of ψ should maximize the
number of zeros.

A good criterion for the functions φ and ψ is to take them with
compact support.

Indeed, we can show that if φ has [N1,N2] for support, then the
approximation wavelet built using Mallat-Meyer theorem has also
compact support [(N1 − N2 + 1)/2, (N2 − N1 + 1)/2].
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Some criteria to build a basis
Moment-support trade-off

Number of moments and support size are correlated: if ψ a has p
moments equal to 0, then the size of its support is at least 2p − 1.

The wavelet has to be chosen with respect to the application,
whether the number of singularities and the type of regularity
between them.
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Example: The Meyer wavelet family
The Meyer wavelet
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Estimator by basis projection
Linear approximation error

Let {gm}n∈N be an orthonormal basis of an Hilbert space H. Any f ∈ H
is decomposed as

f =
+∞∑
m=0

〈f , gm〉gm .

A projection estimator is obtained by taking only the first components:

fM =
M−1∑
m=0

〈f , gm〉gm .

The approximation error tends to 0, but we don’t know at each rate:

ε(M)
∆
= ‖f − fM‖2 =

+∞∑
m=M

|〈f , gm〉|2 −→M→∞ 0 .
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Estimator by basis projection
Introduction of Sobolev spaces

The following theorem gives information on the decreasing rate of ε(M).

Rate of convergence of the linear approximation error

For all s > 1/2, there exists A > 0 and B > 0 such that if

+∞∑
m=0

|m|2s |〈f , gm〉|2 < +∞,

then

A
+∞∑
m=0

m2s |〈f , gm〉|2 ≤
+∞∑
m=0

M2s−1ε(M) ≤ B
+∞∑
m=0

m2s |〈f , gm〉|2,

and then ε(M) = o(M−2s).
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Estimator by basis projection
Introduction of Sobolev spaces

The previous theorem gives a rate of convergence provided that

f ∈ WB,s
∆
=

{
f ∈ H;

+∞∑
m=0

|m|2s |〈f , gm〉|2 < +∞

}
.

This kind of space defines the regularity of f is the considered basis is a
Fourier or a wavelet basis in the sense of“general differentiability”. We
define the Sobolev space with index s:

Ws(R)
∆
=

{
f ∈ L2(R);

∫
R
|ω|2s |f̂ (ω)|2 dω <∞

}
and

Ws([0; 1])
∆
=

{
f ∈ L2([0; 1]);∃g ∈ Ws(R), g|[0;1] = f

}
Then, the error for a Fourier basis approximation decreases quickly if f is
in a Sobolev space of big index s.
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Estimator by basis projection
Problems related to Sobolev spaces

If f has singularities, then it cannot belong to Ws([0; 1]) for all
s > 1/2.

The linear approximation error is localized around the discontinuities
(Gibbs oscillations).

The M first components are not necessarily the best to represent a
function f (not the most representative)

For linear approximation, a first answer to this issue is the
Karhunen-Loeve decomposition (principal components).
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Nonlinear approximation
Main idea

A projection estimate takes the first vectors to estimate a function.

A threshold estimate (nonlinear approximation) takes some vectors
belonging to a general subbasis IM :

fM =
∑
m∈IM

〈f , gm〉gm

The indices in IM should be chosen such that |〈f , gm〉| are big
(principal structures of f ), in that case the nonlinear estimate is
obtained by a thresholding operation.

The approximation error is then

ε(M) = ‖f − fM‖2 =
∑
m/∈IM

|〈f , gm〉|2

Thomas Trigano Statistical Signal Processing
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Nonlinear approximation
Decreasing rate of the approximation error

We rearrange the basis coefficients in a decreasing order. Denote by
f r
B(k) = 〈f , gmk 〉 the k-th term of this new sequence. The first theorem
relates the

approximation error when M increases to the decreasing rate of the
sequence f r

B(k)

Let s > 1/2. If there exists C > 0 such that |f r
B(k)| ≤ Ck−s , then

+∞∑
k=M+1

|f r
B(k)|2 ≤ C 2

2s − 1
M1−2s .
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Nonlinear approximation
Decreasing rate of the approximation error

We rearrange the basis coefficients in a decreasing order. Denote by
f r
B(k) = 〈f , gmk 〉 the k-th term of this new sequence. The second
theorem relates

the decreasing rate of the error to the lp-norm of f .

Let p < 2. If ‖f ‖B,p <∞, then

|f r
B(k)| ≤ ‖f ‖B,pk

−1/p and
+∞∑

k=M+1

|f r
B(k)|2 = o(M1−2/p)
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Nonlinear approximation
Combining nonlinear approximation and wavelet decomposition

A nonlinear approximation on a wavelet basis defines an adaptative
grid, so that the scale is refined around the singularities.

It is possible to show that if the wavelet coefficients decrease fast
enough, the approximation error is small.

This is related to the study of Besov spaces

Bs
β,γ([0; 1])

∆
=

{
f ∈ L2([0.1]); ‖f ‖s,β,γ <∞

}

‖f ‖s,β,γ
∆
=

 J+1∑
j=−∞

2−j(s+0.5+1/β)

2−j−1∑
n=0

|〈f , ψj,n〉|β
1/β


γ

1/γ

(β > 2: “uniformly regular functions”, β = γ = 2: Sobolev space,
β < 2: functions with irregularities)
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Some notes on denoising and deconvolution problems
Remarks on the deconvolution problem

An additive noise usually decreases rates of convergence of threshold
estimates

If the noise density is “smooth” (that is, its Fourier transform decays
polynomially to 0), then the deconvolution can be done at standard
rates.

On the other hand, if the noise density is supersmooth (eg,
gaussian), the convergence rates decrease.

If furthermore, we know nothing on the variance of the noise, then
the rates of convergence drastically decrease (relate to Wiener filter).
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Thank You !
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