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Interpreter Overview. An interpreter manages the complete architected state of a machine 
implementing the source ISA. 

of the guest memory, including both program code and program data, is 
kept in a region of memory maintained by the interpreter. The interpreter's 
memory also holds a table we call the context block, which contains the various 
components of the source's architected state, such as general-purpose registers, 
the program counter, condition codes, and miscellaneous control registers. 

A simple interpreter operates by stepping through the source program, 
instruction by instruction, reading and modifying the source state according 
to the instruction. Such an interpreter is often referred to as a decode-and- 
dispatch interpreter, because it is structured around a central loop that decodes 
an instruction and then dispatches it to an interpretation routine based on the 
type of instruction. The structure of such an interpreter is shown in Figure 2.3 
for the PowerPC source ISA. 

The main interpreter loop is depicted at the top of Figure 2.3, and rou- 
tines for interpreting the Load Word and Zero and ALUinstructions are shown 
below the main loop. The Load Word and Zero instruction loads a 32-bit 
word into a 64-bit register and zeroes the upper 32-bits of the register; it is 
the basic PowerPC load word instruction. Note that in this example routine 
(and others to follow), for brevity we have omitted any checks for memory 
addressing errors; these would be included in most VMs. Sections 3.3 and 3.4 
describe emulation of the memory-addressing architecture more completely. 
The ALU"instruction" is actually a stand-in for a number of PowerPC instruc- 
tions that have the same primary opcode but are distinguished by different 
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w h i l e  ( ! h a l t  && ! i n t e r r u p t )  { 
i n s t  = code [PC] ; 
opcode = extract( inst,31,6); 
s w i t c h  ( o p c o d e )  { 

case LoadWordAndZero :  LoadWordAndZero(inst) ; 
case ALU: ALU(inst); 
case B ranch :  Branch(inst); 

�9 , ,} 

Figure 2.3 

Instruction function l i s t  

LoadWo rdAndZe ro ( i n s t )  { 
RT = extract(inst,25,5) ; 
RA = extract( inst,20,5); 
d i s p l a c e m e n t  = extract(inst,15,16); 
i f  (RA == O) s o u r c e  = O; 
e l s e  s o u r c e  = r e g s [ R A ] ;  
a d d r e s s  = s o u r c e  + d i s p l a c e m e n t ;  
r e g s [ R T ]  = ( d a t a [ a d d r e s s ] < <  32) >> 32; 
PC = PC + 4; 

A L U ( i n s t ) {  
RT = extract( inst,25,5); 
RA = extract(inst,20,5) ; 
RB = extract( inst,15,5); 
s o u r c e 1  = r e g s [ R A ] ;  
s o u r c e 2  = r e g s [ R B ] ;  
e x t e n d e d _ o p c o d e  = extract(i n s t ,  1 0 , 1 0 )  ; 
s w i t c h  ( e x t e n d e d _ o p c o d e )  { 

case Add: Add(inst); 
case A d d C a r r y i n g :  AddCarrying(inst); 
case A d d E x t e n d e d :  AddExtended(inst); 

�9 ,} 
PC = PC + 4; 

Code for Interpreting the PowerPC Instruction Set Architecture. A decode-and-dispatch loop uses 
a switch statement to call a number of routines that emulate individual instructions. The extract(inst, 
i, j) function extracts a bit field of length j from inst, beginning at bit i. 

extended opcodes. For instructions of this type, two levels of decoding (via 
switch statements) are used. The decode-and-dispatch loop is illustrated here 
in a high-level language, but it is easy to see how the same routines could be 
written in assembly language for higher performance. 

In Figure 2.3, the architected source program counter is held in a variable 
called PC. This variable is used as an index into an array that holds the source 
binary image. The word addressed by this index is the source instruction that 
needs to be interpreted. The opcode field of the instruction, represented by 
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the 6-bit field starting at bit 31,1 is extracted using shift and mask operations 
contained in the ex t r ac t  function. The opcode field is used in a switch state- 
ment to determine a routine for interpreting the specific instruction. Register 
designator fields and immediate data in the instruction are decoded simi- 
larly using the ex t r ac t  function. The register designator fields are used as 
indices into the context block to determine the actual source operand values. 
The interpreter routine then emulates the operation specified by the source 
instruction. Unless the instruction itself modifies the program counter, as 
in a branch, the program counter must be explicitly incremented to point 
to the next sequential instruction before the routine returns back to the 
decode-dispatch loop of the interpreter. 

The example of Figure 2.3 shows that, while the process of interpretation 
is quite straightforward, the performance cost of interpretation can be quite 
high. Even if the interpreter code were written directly in assembly language, 
interpreting a single instruction like the Load Word and Zero instruction could 
involve the execution of tens of instructions in the target ISA. 

While simple to write and understand, a decode-and-dispatch interpreter can 
be quite slow. In this and subsequent sections, we will identify techniques to 
reduce or eliminate some of its inefficiencies. We begin by looking at threaded 
interpretation (Klint 1981). 

The central dispatch loop of a decode-and-dispatch interpreter contains 
a number of branch instructions, both direct and indirect. Depending on 
the hardware implementation, these branches tend to reduce performance, 
particularly if they are difficult to predict (Ertl and Gregg 2001, 2003). Besides 
the test for a halt or an interrupt at the top ofthe loop, there is a register indirect 
branch for the switch statement, a branch to the interpreter routine, a second 
register indirect branch to return from the interpreter routine, and, finally, 
a branch that terminates the loop. By appending a portion of the dispatch 
code to the end of each of the instruction interpretation routines, as shown in 
Figure 2.4, it is possible to remove three of the branches just listed. A remaining 
branch is register indirect and replaces the switch statement branch found in 
the central dispatch loop. That is, in order to interpret the next instruction it is 

1. PowerPC actually numbers the most significant bit (msb) 0; we use the convention that the 
msb is 31. 
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Figure 2.4 

Instruct ion function l i s t  

LoadWordAndZero : 
RT = extract( inst,25,5) ; 
RA = extract( inst,20,5) ; 
d i s p l a c e m e n t  = extract( inst,15,16); 
i f  (RA == O) s o u r c e  = O; 
e l s e  s o u r c e  = r e g s [ R A ] ;  
a d d r e s s  = s o u r c e  + d i s p l a c e m e n t ;  
r e g s [ R T ]  = ( d a t a ( a d d r e s s ) < <  32) >> 32; 
PC = PC + 4; 
I f  ( h a l t  I I  i n t e r r u p t )  g o t o  e x i t ;  
i n s t  = code [PC] ; 
opcode = extract( inst,31,6);  
e x t e n d e d _ o p c o d e  = extract( i  n s t ,  1 0 , 1 0 )  ; 
r o u t i n e  = d i s p a t c h  [ o p c o d e ,  e x t e n d e d _ o p c o d e ]  ; 
g o t o  * r o u t i n e ;  

Add" 
RT = extract( inst,25,5);  
RA = extract( inst,20,5);  
RB = extract( inst,15,5);  
s o u r c e 1  = r e g s [ R A ] ;  
s o u r c e 2  = r e g s [ R B ] ;  
sum = s o u r c e 1  + s o u r c e 2 ;  
r e g s [ R T ]  = sum; 
PC = PC + 4; 
I f  ( h a l t  i l i n t e r r u p t )  g o t o  e x i t ;  
i n s t  = code [PC] ; 
opcode = extract( inst,31,6);  
e x t e n d e d _ o p c o d e  = extract( i  n s t ,  1 0 , 1 0 )  ; 
r o u t i n e  = d i s p a t c h  [ o p c o d e ,  e x t e n d e d _ o p c o d e ]  ; 
g o t o  * r o u t i n e ;  

Two Threaded Interpreter Routines for PowerPC Code. With threaded interpretation, the central 
dispatch loop is no longer needed. 

necessary to load the opcode of the next instruction, look up the address of the 
relevant interpreter routine using the dispatch table, and jump to the routine. 

Figure 2.5 illustrates the differences in data and control flow between 
the decode-and-dispatch method and the threaded interpreter technique just 
described. Figure 2.5a shows native execution on the source ISA, Figure 2.5b 
shows the decode-and-dispatch method, and Figure 2.5c illustrates threaded 
interpretation. The centralized nature of the dispatch loop is evident from 
Figure 2.5b. Control flow continually exits from, and returns to, the central 
dispatch loop. On the other hand, with threaded interpretation (Figure 2.5c) 
the actions of the dispatch loop in fetching and decoding the next instruction 
are replicated in each of the interpreter routines. The interpreter routines are 
not subroutines in the usual sense; they are simply pieces of code that are 
"threaded" together. 
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Figure 2.5 Interpretation Methods. Control flow is indicated via solid arrows and data accesses with dotted 
arrows. The data accesses are used by the interpreter to read individual source instructions. 
(a) Native execution; (b) decode-and-dispatch interpretation; (c) threaded interpretation. 

A key property of threaded interpretation, as just described, is that dispatch 
occurs indirectly through a table. Among the advantages of this indirection is 
that the interpretation routines can be modified and relocated independently. 
Because the jump through the dispatch table is indirect, this method is called 
indirect  threaded interpretation (Dewar 1975). 

2~ Predecoding and Direct Threaded Interpretation 

Although the centralized dispatch loop has been eliminated in the indirect 
threaded interpreter, there remains the overhead created by the centralized 
dispatch table. Looking up an interpreter routine in this table still requires a 
memory access and a register indirect branch. It would be desirable, for even 
better efficiency, to eliminate the access to the centralized table. 

A further observation is that an interpreter routine is invoked every time an 
instruction is encountered. Thus, when the same source instruction is inter- 
preted multiple times, the process of examining the instruction and extracting 
its various fields must be repeated for each dynamic instance of the instruc- 
tion. For example, as shown in Figure 2.3, extracting instruction fields takes 
several interpreter instructions for a Load  W o r d  a n d  Zero instruction. It would 
appear to be more efficient to perform these repeated operations just once, 
save away the extracted information in an intermediate form, and then reuse 
it each time the instruction is emulated. This process, called predecoding,  is 
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discussed in the following subsections. It will be shown that predecoding 
enables a more efficient threaded interpretation technique, direct threaded 
interpretation (Bell 1973; Kogge 1982). 

2.3.1 Basic Predecoding 

Predecoding involves parsing an instruction and putting it in a form that sim- 
plifies interpretation. In particular, predecoding extracts pieces of information 
and places them into easily accessible fields (Magnusson and Samuelsson 1994; 
Larus 1991). For example, in the PowerPC ISA, all the basic ALU instructions, 
such as and, or, add, and subt rac t ,  are specified using a combination of the 
opcode bits and extended opcode bits. They all have the same primary opcode 
(31) and are distinguished by the extended opcode bits that appear at the low- 
order end of the instruction word, far away from the opcode. Predecoding can 
combine this information into a single operation code. Also, register specifiers 
can be extracted from the source binary and placed into byte-aligned fields so 
that they may be accessed directly with byte load instructions. 

Basic predecoding ofthe PowerPC ISA is illustrated in Figure 2.6. Figure 2.6a 
contains a small PowerPC code sequence. This sequence loads a data item from 
memory and adds it to a register, accumulating a sum. The sum is then stored 

lwz r l ,  8 ( r2)  ; load word and zero 
add r3, r3, r l  ; r3 = r3 + r l  
stw r3, O(r4) ; s to re  word 

(a) 

Figure 2.6 

07 
 121 o8 

( load word and zero) 

08 (add) 
3 1 1 1  03 

37 
3141 oo 

( s to re  word) 

(b) 

Predecoded PowerPC Instructions. The extended opcode and opcode of the add instruction are 
merged into a single predecoded opcode. (a) PowerPC source code. (b) PowerPC program in 
predecoded intermediate form. 
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back to memory. Figure 2.6b is the same code, in a predecoded intermediate 
form. This predecoded format uses a single word to encode the operation, 
found by combining the opcode and function codes as discussed earlier. 
Consequently, these codes need not be the same as the source ISA opcodes, 
and in the example given they are not. A second predecode word is used for 
holding the various instruction fields, in a sparse, byte-aligned format. When 
immediate or offset data are given, a 16-bit field is available. Overall, this 
yields an intermediate instruction format that is less densely encoded than the 
original source instructions but more easily accessed by an interpreter. 

The Load Word and Zero interpreter routine operating on the predecoded 
intermediate code of Figure 2.6 is given in Figure 2.7. Here, we predecode into 
an array ofi n s t  r u c t i  on structs, which is adequate for the example instructions 
but would be more elaborate for the full PowerPC ISA. In this example, the 
interpreter routines for the predecoded intermediate form are slightly simpler 
than the corresponding routines given earlier in Figure 2.3, and the benefits 
of predecoding for the PowerPC ISA appear to be relatively small. However, 
for CISC ISAs, with their many varied formats, the benefits can be greater. In 
addition, predecoding enables an additional performance optimization, direct 
threading, to be described in the next subsection. 

Figure 2.7 

s t r u c t  i n s t r u c t i o n  { 
uns igned long  op; 
uns igned char  des t ;  
uns igned char  s r c l ;  
uns igned i n t  s r c2 ;  
} code [CODE_SIZE] 

Load Word and Zero �9 
RT = code [TPC]. des t  ; 
RA = code [TPC]. s r c l ;  
di  spl  acement = code [TPC], src2 ; 
i f  (RA == 0) source = 0; 
e l s e  source = regs[RA]  ; 
address = source + d i s p l a c e m e n t ;  
regs [RT]  = ( d a t a [ a d d r e s s ] < <  32) >> 32; 
SPC = SPC + 4; 
TPC = TPC + 1; 
I f  ( h a l t  II i n t e r r u p t )  go to  e x i t ;  
opcode = code [TPC]. op; 
r o u t i n e  = d i s p a t c h  [opcode]  ; 
go to  * r o u t i n e ;  

Threaded Interpreter Code for PowerPC Load Word And Zero Instruction After Predecoding. 
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Because the intermediate code exists separately from the original source 
binary, a separate target program counter (TPC) is added for sequencing 
through the intermediate code. However, the source ISA program counter 
(SPC) is also maintained. The SPC keeps the correct architected source state, 
and the TPC is used for actually fetching the predecoded instructions. In gen- 
eral, with CISC variable-length instructions, the TPC and SPC values at any 
given time may bear no clear relationship, so it is necessary to maintain them 
both. With fixed-length RISC instructions, however, the relationship can be 
relatively easy to calculate, provided the intermediate form is also of fixed 
length. 

2.3.2 Direct Threaded Interpretation 

Although it has advantages for portability, the indirection caused by the dis- 
patch table also has a performance cost: A memory lookup is required whenever 
the table is accessed. To get rid of the level of indirection caused by the dispatch 
table lookup, the instruction codes contained in the intermediate code can be 
replaced with the actual addresses of the interpreter routines (Bell 1973). This 
is illustrated in Figure 2.8. 

Interpreter code for direct threading is given in Figure 2.9. This code is 
very similar to the indirect threaded code, except the dispatch table lookup is 
removed. The address of the interpreter routine is loaded from a field in the 
intermediate code, and a register indirect jump goes directly to the routine. 
Although fast, this causes the intermediate form to become dependent on the 
exact locations of the interpreter routines and consequently limits portability. 
If the interpreter code is ported to a different target machine, it must be regen- 
erated for the target machine that executes it. However, there are programming 
techniques and compiler features that can mitigate this problem to some extent. 
For example, the gcc compiler has a unary operator (&&) that takes the address 

Figure 2.8 

I 001048d0 
1 ] 2  I 08 

00104800 
3 1 1 1  03 

I 00104910 I 
3 _l_ 4 I _ 0 o _  _l 

(load word and zero) 

(add) 

(store word) 

Intermediate Form for Direct Threaded Interpretation. The opcode in the intermediate form is 
replaced with the address of the interpreter routine. 
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Figure 2.9 

Load Word and Zero :  
RT = code [TPC].  d e s t  ; 
RA = code [TPC].  s r c l ;  
d i s p l a c e m e n t  = code[TPC] . s r c 2 ;  
i f  (RA == 0) sou rce  = 0; 
e l s e  sou rce  = regs [RA]  ; 
add ress  = sou rce  + d i s p l a c e m e n t ;  
r egs [RT ]  = ( d a t a [ a d d r e s s ] < <  32) >> 32; 
SPC = SPC + 4; 
TPC = TPC + 1; 
I f  ( h a l t  I I i n t e r r u p t )  go to  e x i t ;  
r o u t i  ne = code [TPC].  op; 
go to  * r o u t i n e ;  

Example of Direct Threaded Interpreter Code. 

of a label. This operator can then be used to generate portable direct threaded 
code by finding the addresses of the labels that begin each of the interpreter 
routines and placing them in the predecoded instructions. The interpreter 
can also be made relocatable by replacing the absolute routine addresses with 
relative addresses (with respect to some routine base address). 

Thus far, when describing basic interpretation techniques, it has been useful 
to center the discussion on fairly simple instruction sets. A RISC ISA, the 
PowerPC, was used in our examples. Similarly, virtual instruction sets, such 
as Pascal P-code and Java bytecodes ~ to be discussed in Chapter 5 ~ are 
designed specifically for emulation and can be interpreted using the techniques 
described above in a straightforward manner. In practice, however, one of the 
most commonly emulated instructions sets is not a RISC or a simple virtual 
ISA; rather it is a CISC ~ the Intel IA-32. In this section we consider the 
additional aspects (and complexities) of interpretation that are brought about 
by a CISC ISA, using the IA-32 as the example. 

One of the hallmarks of a modern RISC ISA such as the PowerPC is the 
regular instruction formats. That is, all instructions have the same length, typ- 
ically 32 bits, and the instruction formats are fairly regular, for example, the 
register specifiers usually appear in the same bit positions across instruction 
formats. It is this regularity that makes many of the steps of interpretation 
straightforward. For example, the interpreter can extract the opcode and then 
immediately dispatch to the indicated instruction interpreter routine. Simi- 
larly, each of the instruction interpretation routines can extract operands and 
complete the emulation process simply. 
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Many CISC instruction sets, on the other hand, have a wide variety of for- 
mats, variable instruction lengths, and even variable field lengths. In some ISAs 
the variability in instruction formats was intended to increase code density and 
"orthogonality" ofthe instruction set. The VAX ISA is a good example (Brunner 
1991); in the VAX, every operand can be specified with any ofthe many address- 
ing modes. In other ISAs, the variability reflects the evolution of the instruction 
set over time, where a number of extensions and new features have been added, 
while maintaining compatibility with older versions. The IA-32 is a good exam- 
ple ofthis evolutionary process. The IA-32 started as an instruction set for 16-bit 
microcontroller chips with physical addressing and dense instruction encod- 
ings and eventually evolved into a high-performance, 32-bit general-purpose 
processor supporting virtual memory. This evolutionary process continues, 
and it has recently been further extended to 64 bits. 

2.4.1 Interpretation of the IA-32 ISA 

Figure 2.10 illustrates the general form of an IA-32 instruction. It begins with 
from zero to four prefix bytes. These indicate if there is repetition for string 
instructions and/or if there are overrides for addressing segments, address 
sizes, and operand sizes. Then after the prefix byte(s) (if any), there is an 
opcode byte, which may be followed by a second opcode byte, depending 
on the value of the first. Next comes an optional addressing-form specifier 
ModR/M. The specifier is optional, in the sense that it is present only for 
certain opcodes and generally indicates an addressing mode and register. The 
SIB byte is present for only certain ModR/M encodings, and it indicates a 
base register, an index register, and a scale factor for indexing. The optional, 
variable-length displacement field is present for certain memory-addressing 
modes. The last field is a variable-length immediate operand, if required by the 
opcode. 

Because of all the variations and the presence or absence of some fields, 
depending on the values in others, a straightforward approach to interpreting a 
CISC ISA, and the IA-32 ISA in particular, is to divide instruction interpretation 
into two major phases, as illustrated in Figure 2.11. The first phase scans 
and decodes the various instruction fields. As it does so, it fills in fields of a 

Prefixes Opcode Opcode ,, ,, 

0 to 4 optional 

ModR/M SIB I Displacement I Immediate 

optional optional 0,1,2,4 bytes 0,1,2,4 bytes 
Figure 2.10 General Format for IA-32 Instructions. 
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Program Flow for a Basic CISC ISA Interpreter. 

general instruction template. This template, in essence, contains a superset 
of the possible instruction options. Then there is a dispatch step that jumps 
to routines specialized for each instruction type. These routines emulate the 
specified instruction, reading values from the relevant instruction template 
fields as needed. 

Figure 2.12 is a three-page figure that contains pseudo C code for such an 
interpreter, styled after the approach used in the Bochs free software IA-32 
interpreter (Lawton). Not all procedures used in the example are given, but 
where their code is not present, they are given mnemonic names that sum- 
marize their function. Interpretation is focused on an instruction template, 
the structure IA-32ins t r ,  which is defined at the top of Figure 2.12a. The 
major CPU interpreter loop is at the bottom of Figure 2.12b. This loop begins 
interpreting an instruction by filling in the instruction template. Included in 
the instruction template is a pointer to an instruction interpreter routine. After 
the template is built, the CPU loop uses the pointer to jump to the indicated 
routine. Some instructions can be repeated (based on a prefix byte), and this is 
determined by the "need_to_repeat"  test. 

The IA-32i ns t r  structure consists ofthe opcode (up to two bytes), a mask 
that collects the prefixes (up to a total of 12 possible prefixes), a value that 
contains the instruction length and a pointer to the instruction interpretation 
routine. Then there are a number of substructures used for collecting operand 
information. As is the case with the structure as a whole, these are defined to 
contain a superset of the operand information for all the instructions. The total 
size of the structure is on the order of 6 words. 


