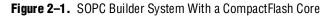
2. CompactFlash Core

QII55005-8.1.0

Core Overview

The CompactFlash core allows you to connect SOPC Builder systems to CompactFlash storage cards in true IDE mode by providing an Avalon[®] Memory-Mapped (Avalon-MM) interface to the registers on the storage cards. The core supports PIO mode 0.

The CompactFlash core also provides an Avalon-MM slave interface which can be used by Avalon-MM master peripherals such as a Nios[®] II processor to communicate with the CompactFlash core and manage its operations.


The CompactFlash core is SOPC Builder-ready and integrates easily into any SOPC Builder-generated systems.

This chapter contains the following sections:

- "Functional Description"
- "Instantiating the Core in SOPC Builder" on page 2–2
- "Device and Tools Support" on page 2–3
- "Software Programming Model" on page 2–3

Functional Description

Figure 2–1 shows a block diagram of the CompactFlash core in a typical system configuration.

As shown in Figure 2–1, the CompactFlash core provides two Avalon-MM slave interfaces: the ide slave port for accessing the registers on the CompactFlash device and the ctl slave port for accessing the core's internal registers. These registers can be used by Avalon-MM master peripherals such as a Nios II processor to control the operations of the CompactFlash core and to transfer data to and from the CompactFlash device.

You can set the CompactFlash core to generate two active-high interrupt requests (IRQs): one signals the insertion and removal of a CompactFlash device and the other passes interrupt signals from the CompactFlash device.

The CompactFlash core maps the Avalon-MM bus signals to the CompactFlash device with proper timing, thus allowing Avalon-MM master peripherals to directly access the registers on the CompactFlash device.

 For more information, refer to the CF+ and CompactFlash specifications available at www.compactflash.org.

Instantiating the Core in SOPC Builder

Use the MegaWizard[®] interface for the CompactFlash core in SOPC Builder to add the core to a system. There are no user-configurable settings for this core.

Required Connections

Table 2–1 lists the required connections between the CompactFlash core and the CompactFlash device.

CompactFlash Interface Signal Name	Pin Type	CompactFlash Pin Number
addr[0]	Output	20
addr[1]	Output	19
addr[2]	Output	18
addr[3]	Output	17
addr[4]	Output	16
addr[5]	Output	15
addr[6]	Output	14
addr[7]	Output	12
addr[8]	Output	11
addr[9]	Output	10
addr[10]	Output	8
atasel_n	Output	9
cs_n[0]	Output	7
cs_n[1]	Output	32
data[0]	Input/Output	21
data[1]	Input/Output	22

Table 2-1. Required Connections (Part 1 of 2)

CompactFlash Interface Signal Name	Pin Type	CompactFlash Pin Number
data[2]	Input/Output	23
data[3]	Input/Output	2
data[4]	Input/Output	3
data[5]	Input/Output	4
data[6]	Input/Output	5
data[7]	Input/Output	6
data[8]	Input/Output	47
data[9]	Input/Output	48
data[10]	Input/Output	49
data[11]	Input/Output	27
data[12]	Input/Output	28
data[13]	Input/Output	29
data[14]	Input/Output	30
data[15]	Input/Output	31
detect	Input	25 or 26
intrq	Input	37
iord_n	Output	34
iordy	Input	42
iowr_n	Output	35
power	Output	CompactFlash power controller, if present
reset_n	Output	41
rfu	Output	44
we_n	Output	46

Table 2–1. Required Connections (Part 2 of 2)

Device and Tools Support

The CompactFlash interface core supports all Altera® FPGA families.

Software Programming Model

This section describes the software programming model for the CompactFlash core.

HAL System Library Support

The Altera-provided HAL API functions include a device driver that you can use to initialize the CompactFlash core. To perform other operations, use the low-level macros provided. For more information on the macros, refer to the files listed in the section "Software Files" on page 2–4.

Software Files

The CompactFlash core provides the following software files. These files define the low-level access to the hardware. Application developers should not modify these files.

- **altera_avalon_cf_regs.h**—The header file that defines the core's register maps.
- altera_avalon_cf.h, altera_avalon_cf.c—The header and source code for the functions and variables required to integrate the driver into the HAL system library.

Register Maps

This section describes the register maps for the Avalon-MM slave interfaces.

Ide Registers

The ide port in the CompactFlash core allows you to access the IDE registers on a CompactFlash device. Table 2–2 shows the register map for the ide port.

	Register Names				
Offset	Read Operation	Write Operation			
0	RD Data	WR Data			
1	Error	Features			
2	Sector Count	Sector Count			
3	Sector No	Sector No			
4	Cylinder Low	Cylinder Low			
5	Cylinder High	Cylinder High			
6	Select Card/Head	Select Card/Head			
7	Status	Command			
14	Alt Status	Device Control			

 Table 2–2.
 Ide Register Map

Ctl Registers

The ctl port in the CompactFlash core provides access to the registers which control the core's operation and interface. Table 2–3 shows the register map for the ctl port.

		Fields				
Offset	Register	31:4	3	2	1	0
0	cfctl	Reserved	IDET	RST	PWR	DET
1	idectl	Reserved IID			IIDE	
2	Reserved	Reserved				
3	Reserved	Reserved				

Cfctl Register

The cfctl register controls the operations of the CompactFlash core. Reading the cfctl register clears the interrupt. Table 2–4 describes the cfctl register bits.

Bit Number	Bit Name	Read/Write	Description
0	DET	RO	Detect. This bit is set to 1 when the core detects a CompactFlash device.
1	PWR	RW	Power. When this bit is set to 1, power is being supplied to the CompactFlash device.
2	RST	RW	Reset. When this bit is set to 1, the CompactFlash device is held in a reset state. Setting this bit to 0 returns the device to its active state.
3	IDET	RW	Detect Interrupt Enable. When this bit is set to 1, the CompactFlash core generates an interrupt each time the value of the det bit changes.

Idectl Register

The idectl register controls the interface to the CompactFlash device. Table 2–5 describes the idectl register bit.

Table 2-5. idectl Register

Bit Number	Bit Name	Read/Write	Description	
0	IIDE	RW	IDE Interrupt Enable. When this bit is set to 1, the CompactFlash core generates an interrupt following an interrupt generated by the CompactFlash device. Setting this bit to 0 disables the IDE interrupt.	

Document Revision History

Table 2–6 shows the revision history for this chapter.

Table 2–6. Document Revision History

Date and Document Version	Changes Made	Summary of Changes
November 2008	Changed to 8-1/2 x 11 page size. No change to content.	_
v8.1.0		
May 2008	Added the mode supported by the CompactFlash core.	_
v8.0.0		
October 2007	Initial release.	_
v7.2.0		