
 Design Note DN106

 SWRA162A Page 1 of 13

Power Modes in CC111xFx, CC243x, and CC251xFx
By Torgeir Sundet

Keywords

• Power Modes
• Data Sheet
• Errata Note
• Work around
• Interrupt Service Routine
• External Port Interrupt
• Sleep Timer Interrupt

• CC1110
• CC1111
• CC2430
• CC2431
• CC2510
• CC2511

1 Introduction

This design note combines relevant
information from the
CC111xFx/CC251xFx/CC2430 data
sheets ([1], [2] and [3]), and
CC111xFx/CC251xFx errata notes ([4]
and [5]), in order to compile all key
information regarding
CC111xFx/CC251xFx/CC243x power
mode.

The main objective is to explain the
CC111xFx/CC251xFx/CC243x software
instructions required to safely enter a
power mode and resume active mode.

 Design Note DN106

 SWRA162A Page 2 of 13

Table of Contents

KEYWORDS.. 1
1 INTRODUCTION... 1
2 ABBREVIATIONS... 2
3 BACKGROUND.. 3
4 SWITCHING POWER MODES... 4

4.1 ENTERING POWER MODE (PM)... 4
4.1.1 Entering PM0 - CC111xFx/CC251xFx/CC243x ..4
4.1.2 Entering PM{1 - 3} - CC111xFx/CC251xFx/CC243x..5
4.1.3 Entering PM{1 - 2} using the Sleep Timer - CC111xFx/CC251xFx6
4.1.4 Entering PM{2 - 3} - CC111xFx/CC251xFx..7
4.1.5 Entering PM{2 - 3} - CC243x ..9

4.2 RESUMING ACTIVE MODE... 9
4.2.1 Oscillator Initialization/Monitoring - CC111xFx/CC251xFx ..9
4.2.2 Oscillator Initialization/Monitoring - CC243x...10
4.2.3 Resuming Active mode - CC111xFx/CC251xFx/CC243x...11

5 REFERENCES.. 12
6 GENERAL INFORMATION .. 13

6.1 DOCUMENT HISTORY.. 13

2 Abbreviations

DMA Direct Memory Access
HS XOSC High Speed Xtal Oscillator, refer to relevant data sheets [1], [2] and

[3] for actual frequency.
HS RCOSC High Speed RC Oscillator, refer to relevant data sheets [1], [2] and

[3] for actual frequency.
ISR Interrupt Service Routine.
NOP No Operation
PM Power Mode, e.g. PM0, PM1, PM2, and PM3.
SFR Special Function Register
SoC System on Chip. A collective term used to refer to Texas

Instruments ICs with on-chip MCU and RF transceiver. Used in this
document to reference the CC1110, CC1111, CC2430, CC2431,
CC2510 and CC2511.

RX Receive. Used in this document to reference radio receive.
TX Transmit. Used in this document to reference radio transmit.

 Design Note DN106

 SWRA162A Page 3 of 13

3 Background

In the SoC data sheets ([1], [2], and [3]) it is stated that the SoC has one active mode and
four power modes, called PM0, PM1, PM2, and PM3, where PM3 has the lowest power
consumption. The power modes are shown in Table 1 together with voltage regulator and
oscillator options.

Operating Mode High-speed Oscillator Low-speed Oscillator Digital Voltage
Regulator

CPU

A None A None

B High speed XOSC B Low power RCOSC

Configuration

C HS RCOSC C 32.768 kHz XOSC

Active B and / or C B or C On Running

PM0 B and / or C B or C On Idle

PM1 A B or C On Idle

PM2 A B or C Off Idle

PM3 A A Off Idle

Table 1: Operating Modes

Active mode: The full functional mode. The voltage regulator to the digital core is on and
either the high speed RC oscillator or the high speed crystal oscillator or both are running.
Either the Low power RC oscillator or the 32.768 kHz crystal oscillator is running.

PM0: Same as active mode, but the CPU is idle, meaning that no code is being executed.

PM1: The voltage regulator to the digital part is on. Neither the high speed crystal oscillator
nor the high speed RC oscillator is running. Either the low power RC oscillator or the 32.768
kHz crystal oscillator is running. The system will go to active mode on reset or an external
interrupt or when the Sleep Timer expires.

PM2: The voltage regulator to the digital core is turned off. Neither the high speed crystal
oscillator nor the high speed RC oscillator is running. Either the low power RC oscillator or
the 32.768 kHz crystal oscillator is running. The system will go to active mode on reset or an
external interrupt or when the Sleep Timer expires. The CC2511Fx will lose all USB state
information when PM2 is entered. Thus, PM2 should not be used with USB.

PM3: The voltage regulator to the digital core is turned off. None of the oscillators are
running. The system will go to active mode on reset or an external interrupt. The CC2511Fx
will lose all USB state information when PM3 is entered. Thus, PM3 should not be used with
USB.

 Design Note DN106

 SWRA162A Page 4 of 13

4 Switching Power Modes

This section describes the key elements of entering and exiting each SoC power mode. The
desired power mode is selected by the SLEEP.MODE bits. Setting the IDLE bit in the PCON
SFR after setting the SLEEP.MODE bits, makes the SoC enter the selected power mode.
Please note that when SLEEP.MODE ≠ 0, interrupts and oscillator switching are gated
(blocked).

Also note the minimum requirement on HS XOSC power down guard time in all modes of
operation for CC111xFx/CC251xFx, see Table 11 in the corresponding CC111xFx/CC251xFx
data sheets ([1] and [2]). Spending less time in PM than the required HS XOSC power down
guard time might cause RF packet error/loss, if RX or TX mode is entered when resuming
active mode.

4.1 Entering Power Mode (PM)

As already introduced in section 4, SLEEP.MODE and PCON.IDLE are used to make the SoC
enter PM. Nevertheless, note that in order for the SoC to wake up from PM{0 - 3} it is required
to enable the global SoC interrupt and the relevant peripheral interrupt. For PM0 the SoC will
wake up upon any enabled interrupt, while PM{1 – 3} requires that the Sleep Timer or Port
0/1/2 interrupt is enabled.

4.1.1 Entering PM0 - CC111xFx/CC251xFx/CC243x

In order to safely enter PM0 it is only necessary to set SLEEP.MODE = 00, and
PCON.IDLE = 1. Since PM0 does not power down the oscillator(s) the application does not
have to implement any particular oscillator control associated with PM0 entry/exit. Thus the
resulting code is very simple, as shown in Figure 1.

Figure 1: Code for Entering PM0 - CC111xFx/CC251xFx/CC243x

// C language code:

void main(void)
{
 // Setup + enable the interrupt source(s) which is/are intended to wake-up
 // the SoC from PM0. Any SoC peripheral interrupt will wake up the SoC from
 // PM0

 // Set SLEEP.MODE to PM0.
 SLEEP = (SLEEP & 0xFC) | 0x00;

 // Set PCON.IDLE to enter PM0
 PCON |= 0x01;

 // The SoC is now in PM0 and will only wake up upon any enabled SoC interrupt
}

 Design Note DN106

 SWRA162A Page 5 of 13

4.1.2 Entering PM{1 - 3} - CC111xFx/CC251xFx/CC243x

With reference to the SoC data sheet ([1], [2], and [3]), the code sequence shown in Figure 2
must be applied to ensure safe PM{1 - 3} entry. Note that the CC243x must use the HS
RCOSC as system clock source prior to entering PM{1 - 3}. Also, be aware of the particular
code requirements shown in Figure 3; CC111xFx/CC251xFx PM{1 - 2} entry using the Sleep
Timer, and the DMA setup needed for CC111xFx/CC251xFx PM{2 - 3} entry, shown in Figure
4.

Figure 2: Code for Entering PM{1 - 3} - CC111xFx/CC251xFx/CC243x

// C language code:

void main(void)
{
 // Here the application should implement the relevant code shown in
 // Figure 5/Figure 6.

 // Setup + enable the interrupt source(s) (Sleep Timer, Port) which is/are
 // intended to wake-up the SoC from PM.

 //
 // NOTE:
 // For entering PM{1 – 2} in CC111xFx/CC251xFx, using the Sleep timer,
 // the following code section must be replaced by the code shown in
 // Figure 3 !
 // For entering PM{2 – 3} in CC111xFx/CC251xFx the following code
 // section must be replaced by the code shown in Figure 4 !
 //

 //
 ////////////////////// Code section begin ////////////////////////////
 //

 // Set SLEEP.MODE according to desired PM, e.g. PM1.
 SLEEP = (SLEEP & 0xFC) | 0x01;

 // Apply three NOPs to allow the corresponding interrupt blocking to take
 // effect, before verifying the SLEEP.MODE bits below. Note that all
 // interrupts are blocked when SLEEP.MODE ≠ 0, thus the time between
 // setting SLEEP.MODE ≠ 0, and asserting PCON.IDLE should be as short as
 // possible. If an interrupt occurs before the NOPs have completed, then
 // the enabled ISR shall clear the SLEEP.MODE bits, according to the code
 // in Figure 7.
 asm("NOP");
 asm("NOP");
 asm("NOP");

 // If no interrupt was executed in between the above NOPs, then all
 // interrupts are effectively blocked when reaching this code position.

 // If the SLEEP.MODE bits have been cleared at this point, which means
 // that an ISR has indeed executed in between the above NOPs, then the
 // application should not enter PM{1 – 3} !
 if (SLEEP & 0x03)
 {
 // Set PCON.IDLE to enter the selected PM, e.g. PM1.
 PCON |= 0x01;

 // The SoC is now in PM and will only wake up upon Sleep Timer interrupt
 // or external Port interrupt.

 // First instruction upon exiting PM.
 asm("NOP");
 }

 //
 //////////////////////// Code section end ////////////////////////////
 //

 // Here the application should implement the relevant code shown in
 // Figure 5/Figure 6.
 ...
}

 Design Note DN106

 SWRA162A Page 6 of 13

4.1.3 Entering PM{1 - 2} using the Sleep Timer - CC111xFx/CC251xFx

The “Sleep Timer and Power Modes” chapter in the CC111xFx/CC251xFx data sheets ([1]
and [2]) states that Entering PM{1 - 2} has to be aligned to a positive edge on the 32 kHz
clock source. Any update to the compare value, EVENT0, has to happen prior to this positive
edge. There has to be at least two positive edges on the 32 kHz clock source between
WORCTRL.WOR_RESET being asserted and updating EVENT0 or entering PM{1 - 2}. If EVENT0
is changed to a value lower than the current counter value, WORCTRL.WOR_RESET has to be
asserted first. Code alternative 1 or 2 in Figure 3 should be used in order to update EVENT0
and entering PM{1 - 2} correctly:

Figure 3: Code for PM{1 - 2} Entry using Sleep Timer - CC111xFx/CC251xFx

// C language code:

void main(void)
{
 char temp = WORTIME0;

 // Here the application should implement the relevant code shown in
 // Figure 5/Figure 6.

 // Set + verify SLEEP.MODE (see Figure 2 for detailed explanation).
 SLEEP = (SLEEP & 0xFC) | 0x01; // Choose PM, e.g. PM1.
 asm("NOP");
 asm("NOP");
 asm "NOP");
 if (SLEEP & 0x03)
 {
 //
 //
 // Alternative 1:
 // Alignment of entering PM{1 – 2} to a positive edge on the 32 kHz clock
 // source and updating Event0 to a value higher than current Sleep Timer value.
 while(temp == WORTIME0); // Wait until a positive 32 kHz edge.
 WOREVT1 = desired event0; // Set Event0, high byte.
 WOREVT0 = desired event0; // Set Event0, low byte.
 //
 //

 /////////////////////////// OR ///////////////////////////////

 //
 //
 // Alternative 2:
 // Reset the Sleep Timer and align the entering of PM{1 – 2} to a positive edge
 // on the 32 kHz clock source. Update Event0 to a value lower than current
 // Sleep Timer value.
 WORCTRL |= 0x04; // Reset Sleep Timer.
 temp = WORTIME0;
 while(temp == WORTIME0); // Wait until a positive 32 kHz edge.
 temp = WORTIME0;
 while(temp == WORTIME0); // Wait until a positive 32 kHz edge.
 WOREVT1 = desired event0; // Set Event0, high byte.
 WOREVT0 = desired event0; // Set Event0, low byte.
 //
 //

 // Set PCON.IDLE to enter the selected PM.
 PCON |= 0x01; // Enter PM, e.g. PM1.

 // The SoC is now in PM and will only wake up upon Sleep Timer interrupt.

 // First instruction upon exiting PM. See Figure 2 for reference.
 asm("NOP");
 }

 // Here the application should implement the relevant code shown in
 // Figure 5/Figure 6.
 ...
}

 Design Note DN106

 SWRA162A Page 7 of 13

4.1.4 Entering PM{2 - 3} - CC111xFx/CC251xFx

The Errata Notes for CC111xFx/CC251xFx ([4] and [5]) states that, when waking up from
PM{2 - 3} there is a small chance that the SLEEP.MODE bits are faulty set to a value other
than zero before the PCON.IDLE bit is cleared by the CPU. This causes the
CC111xFx/CC251xFx to re-enter PM{2 - 3} immediately. Since an enabled interrupt is
pending at this point, the CC111xFx/CC251xFx will wake up and re-enter PM{2 - 3}
continuously and appear to hang. Once the CC111xFx/CC251xFx hangs, only a system reset
will get the CC111xFx/CC251xFx back to normal operation.

By ensuring that the SLEEP.MODE bits are written to zero at the instant the
CC111xFx/CC251xFx wakes up from PM{2 - 3}, the CC111xFx/CC251xFx will never re-enter
PM{2 - 3} unintentionally, see “Suggested Workaround” section in the CC111xFx/CC251xFx
Errata Notes ([4] and [5]). This can be done by setting up a DMA transfer of a certain number
of xdata bytes to the SLEEP register that is manually triggered (by writing to the relevant
DMAREQ.DMAREQx bit) right before writing the PCON.IDLE bit: However, the work around
requires that the following conditions are met:

• The CC111xFx/CC251xFx is running at the HS RC oscillator at the highest possible
clock speed setting

• The HS XOSC is powered down

• Flash Cache is disabled

Please note that the requirements stated in the “Power Management Control” and “Sleep
Timer and Power Modes” chapters of the CC111xFx/CC251xFx data sheets ([1] and [2]) still
apply.

 Design Note DN106

 SWRA162A Page 8 of 13

NOTE! The code in Figure 4 assumes the CC111xFx/CC251xFx is already running on the HS
RCOSC with the highest clock speed setting possible.

Figure 4: Code for Entering PM{2 - 3} - CC111xFx/CC251xFx

// C language code:

// Initialization of source buffers and DMA descriptor for the DMA transfer
unsigned char __xdata PM2_BUF[7] = {0x06,0x06,0x06,0x06,0x06,0x06,0x04};
unsigned char __xdata PM3_BUF[7] = {0x07,0x07,0x07,0x07,0x07,0x07,0x04};
unsigned char __xdata dmaDesc[8] = {0x00,0x00,0xDF,0xBE,0x00,0x07,0x20,0x42};

void main(void)
{
 // Store current DMA channel 0 descriptor and abort any ongoing transfers,
 // if the channel is in use.
 unsigned char storedDescHigh = DMA0CFGH;
 unsigned char storedDescLow = DMA0CFGL;
 DMAARM |= 0x81;

 // Update descriptor with correct source.
 // NB! Replace &PM2_BUF with &PM3_BUF if powermode 3 is chosen instead.
 dmaDesc[0] = (unsigned int)& PM2_BUF >> 8;
 dmaDesc[1] = (unsigned int)& PM2_BUF;

 // Associate the descriptor with DMA channel 0 and arm the DMA channel
 DMA0CFGH = (unsigned int)&dmaDesc >> 8;
 DMA0CFGL = (unsigned int)&dmaDesc;
 DMAARM = 0x01;

 //
 // NOTE! At this point, make sure all interrupts that will not be used to
 // wake from PM are disabled as described in the "Power Management Control"
 // chapter of the data sheet.
 // The following code is timing critical and should be done in the
 // order as shown here with no intervening code.

 // Align with positive 32 kHz clock edge as described in the
 // "Sleep Timer and Power Modes" chapter of the data sheet.

 char temp = WORTIME0;
 while(temp == WORTIME0);

 // Make sure XOSC is powered down when entering PM{2 - 3} and that the
 // flash cache is disabled.
 // NB! Replace 0x06 with 0x07 if power mode 3 is chosen instead.
 MEMCTR |= 0x02;
 SLEEP = 0x06;

 // Enter power mode as described in chapter "Power Management Control"
 // in the data sheet. Make sure DMA channel 0 is triggered just before
 // setting PCON.IDLE.
 asm("NOP");
 asm("NOP");
 asm("NOP");

 if(SLEEP & 0x03)
 {
 asm("MOV 0xD7,#0x01"); // DMAREQ = 0x01;
 asm("NOP"); // Needed to perfectly align the DMA transfer.
 asm("ORL 0x87,#0x01"); // PCON |= 0x01;
 asm("NOP");
 }
 // End of timing critical code
 //

 // Enable Flash Cache.
 MEMCTR &= ~0x02;

 // Update DMA channel 0 with original descriptor and arm channel if it was
 // in use before PM was entered.
 DMA0CFGH = storedDescHigh;
 DMA0CFGL = storedDescLow;
 DMAARM = 0x01;
 ...
}

 Design Note DN106

 SWRA162A Page 9 of 13

4.1.5 Entering PM{2 - 3} - CC243x

The CC243x does not have the same issue (described in section 4.1.4) as
CC111xFx/CC251xFx. Thus the procedure for making CC243x enter PM{2 - 3} is the same
as described in section 4.1.2. Still, note that the CC243x must enter PM on the HS RCOSC.

4.2 Resuming Active Mode

When initializing/resuming active mode it is important to apply correct oscillator
initialization/monitoring, such that the SoC operates on the required oscillator during, e.g. RF
operation. This requirement does not apply to PM0, since the oscillator(s) are not powered
down in this mode.

4.2.1 Oscillator Initialization/Monitoring - CC111xFx/CC251xFx

The following oscillator function/requirement only applies for PM{1 – 3}, see the
CC111xFx/CC251xFx data sheets ([1] and [2]) for details:

1. Prior to entering PM1 the CC111xFx/CC251xFx can use either the HS RCOSC or HS
XOSC as system clock source, while for PM{2 - 3} the HS RCOSC must be used as
system clock source.

2. When resuming Active mode the CC111xFx/CC251xFx will initially always use the
HS RCOSC as system clock source.

3. If the HS XOSC was running prior to entering PM, then the CC111xFx/CC251xFx will
automatically power it up again when resuming active mode, no matter if the HS
XOSC was actually used as system clock source. If the HS XOSC was indeed the
system clock source prior to entering PM, then the CC111xFx/CC251xFx will also
automatically switch from HS RCOSC to HS XOSC when the HS XOSC is stable.
However, in order to ensure that the HS XOSC is stable before continuing code
execution the application should still monitor SLEEP.XOSC_STB.

The corresponding code is show in Figure 5.

Figure 5: Code for Oscillator Initialization/Monitoring - CC111xFx/CC251xFx

// C language code:

void main(void)
{
 ...

 // The following relevant code lines should be executed at the very
 // beginning, as well as after the PM{1 - 3} resume position, of the
 // application program:

 // Clear CLKCON.OSC to make the CC111xFx/CC251xFx operate on the HS XOSC.
 // This will only be necessary if the HS XOSC was not running prior
 // to entering PM.
 CLKCON &= 0xBF;

 // Monitor SLEEP.XOSC_STB to ensure the HS XOSC is stable before continuing
 // code execution (e.g. before operating the RF module).
 while(!(SLEEP & 0x40));

 // Set SLEEP.OSC_PD to power down the HS RCOSC.
 SLEEP |= 0x04;

 ...
}

 Design Note DN106

 SWRA162A Page 10 of 13

4.2.2 Oscillator Initialization/Monitoring - CC243x

The following oscillator function/requirement only applies for PM{1 – 3}, see the CC2430 data
sheet ([3]) for details:

1. The CC243x must always use the HS RCOSC as system clock source prior to
entering PM.

2. The CC243x always resumes active mode on HS RCOSC.
3. If the application wants to use the HS XOSC as system clock source in active mode,

then it has to be manually powered up, by setting the CLKCON.OSC bit. Note that the
SLEEP.XOSC_STB is not 100% reliable, so it is necessary to add 64 µs between
monitoring SLEEP.XOSC_STB and clearing the CLKCON.OSC bit (selecting HS
XOSC).

The corresponding code is show in Figure 6.

Figure 6: Code for Oscillator Initialization/Monitoring - CC243x

// C language code:

void main(void)
{
 ...

 // The following relevant code lines should be executed at the very
 // beginning, and after the PM{1 - 3} resume position, of the application
 // program. However, note that they are only necessary if the application
 // needs to run the HS XOSC in Active mode:

 // Set SLEEP.OSC_PD to power up the HS XOSC (HS RCOSC is already running).
 SLEEP &= 0xFB;

 // Monitor SLEEP.XOSC_STB to ensure HS XOSC is stable before continuing
 // code execution.
 while(!(SLEEP & 0x40));

 // According to the CC243x data sheet ([3]), apply relevant number of NOPs
 // here, which represents 64 µs safety time before actually switching to
 // the HS XOSC.
 asm("NOP");

 // Clear CLKCON.OSC to make the CC243x operate on the HS XOSC.
 CLKCON &= 0xBF;

 // Monitor CLKCON.OSC to ensure CC243x has actually switched to the HS XOSC.
 while(CLKCON & 0x40);

 // Set SLEEP.OSC_PD to power down the HS RCOSC.
 SLEEP |= 0x04;

 ...
}

 Design Note DN106

 SWRA162A Page 11 of 13

4.2.3 Resuming Active mode - CC111xFx/CC251xFx/CC243x

In order to ensure that the SoC resumes code execution consistently after exiting a power
mode (waking up), an ISR, as shown in Figure 7, must be implemented for each enabled
wake-up source. For PM{1 – 3} this means external port interrupt and/or Sleep Timer
interrupt. Note that for PM3, the only wake-up source is external port interrupt. Except from
PM0 it is critical that the ISR clears the SLEEP.MODE bits (00).

Figure 7: Code for Resuming Active Mode - CC111xFx/CC251xFx/CC243x

// C language code:

// Sleep Timer Interrupt Service Routine (ISR)

_PRAGMA(vector=VECT(5, 0x2B)) __near_func __interrupt void ST_ISR(void);
_PRAGMA(vector=VECT(5, 0x2B)) __near_func __interrupt void ST_ISR(void)
{
 // Clear IRCON.STIF (Sleep Timer CPU interrupt flag)
 IRCON &= 0x7F;

 // Clear WORIRQ.EVENT0_FLAG (Sleep Timer peripheral interrupt flag)
 // This is required for the CC111xFx/CC251xFx only!
 WORIRQ &= 0xFE;

 ...

 // Clear the SLEEP.MODE bits, because an interrupt can also occur before
 // the SoC has actually entered PM. If this interrupt occurs in between the
 // three NOPs (that is; before the corresponding interrupt blocking has
 // actually taken effect) in Figure 2, then this clearing of the SLEEP.MODE
 // bits will ensure that the application does not enter PM{1 – 3}.
 SLEEP &= 0xFC; // Not required when resuming from PM0
}

// External Port Interrupt Service Routine (ISR) for e.g. Port1
_PRAGMA(vector=VECT(15, 0x7B)) __near_func __interrupt void P1_ISR(void);
_PRAGMA(vector=VECT(15, 0x7B)) __near_func __interrupt void P1_ISR(void)
{
 // Clear P1IFG.bit1 (Port1.Pin1 peripheral interrupt flag)
 P1IFG = 0xFD;

 // Clear IRCON2.P1IF (Port1 CPU interrupt flag)
 IRCON2 &= 0xF7;

 ...

 // Clear the SLEEP.MODE bits, because an interrupt can also occur before
 // the SoC has actually entered PM. If this interrupt occurs in between the
 // three NOPs (that is; before the corresponding interrupt blocking has
 // actually taken effect) in Figure 2, then this clearing of the SLEEP.MODE
 // bits will ensure that the application does not enter PM{1 – 3}.
 SLEEP &= 0xFC; // Not required when resuming from PM0
}

 Design Note DN106

 SWRA162A Page 12 of 13

5 References

[1] CC1110Fx/CC1111Fx Data Sheet (SWRS033)

[2] CC2510Fx/CC2511Fx Data Sheet (SWRS055)

[3] CC2430 Data Sheet (SWRS036)

[4] CC1110Fx/CC1111Fx Errata Note (SWRZ022)

[5] CC2510Fx/CC2511Fx Errata Note (SWRZ014)

http://www.ti.com/lit/SWRS033
http://www.ti.com/lit/SWRS055
http://www.ti.com/lit/SWRS036
http://www.ti.com/lit/SWRZ022
http://www.ti.com/lit/swrz014

 Design Note DN106

 SWRA162A Page 13 of 13

6 General Information

6.1 Document History
Revision Date Description/Changes
SWRA162A 2008.03.19 Introduced separate section for Power Mode 0 entry, and updated

the existing sections accordingly.
Updated color on code comments.

SWRA162 2007.11.23 Initial release.

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Clocks and Timers www.ti.com/clocks Digital Control www.ti.com/digitalcontrol
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
RFID www.ti-rfid.com Telephony www.ti.com/telephony
RF/IF and ZigBee® Solutions www.ti.com/lprf Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://www.ti.com/clocks
http://www.ti.com/digitalcontrol
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless

	Introduction
	Abbreviations
	Background
	Switching Power Modes
	Entering Power Mode (PM)
	Entering PM0 - CC111xFx/CC251xFx/CC243x
	Entering PM{1 - 3} - CC111xFx/CC251xFx/CC243x
	Entering PM{1 - 2} using the Sleep Timer - CC111xFx/CC251xFx
	Entering PM{2 - 3} - CC111xFx/CC251xFx
	Entering PM{2 - 3} - CC243x

	Resuming Active Mode
	Oscillator Initialization/Monitoring - CC111xFx/CC251xFx
	Oscillator Initialization/Monitoring - CC243x
	Resuming Active mode - CC111xFx/CC251xFx/CC243x

	References
	General Information
	Document History

