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Preface

Writing this book was a long-term project that has taken several years, and at the
early stages Anatole Katok’s participation was crucial. He provided us with the
text of his unpublished notes with Leonardo Mendoza that served as the basis for
the first draft of Chapters 1–5 and parts of Chapters 6–7 of the book.He also fully
participated in designing the content of the book in its present form.

In this book we present a self-contained and sufficiently complete description
of the modern nonuniform hyperbolicity theory, that is, the theory of dynamical
systems whose Lyapunov exponents are not zero. The reader will findall the core
results of the theory as well as a good account of its recent developments.

The nonuniform hyperbolicity theory is rich in wonderful ideas and sophisti-
cated techniques, which are widely used in many areas of dynamical systemsas
well as other areas of mathematics and beyond. The nonuniform hyperbolicity the-
ory is very popular and finds a lot of applications outside mathematics – in physics,
biology, engineering, and so on.

Despite (or should we say because of) a tremendous amount of research on the
subject, there have been relatively few attempts to summarize and unify the results
of the theory in a single manuscript or a survey (see the books [110, 139, 179], the
surveys [18, 137, 175], and the lectures [19, 28]). This book is meant to cover this
gap. It can be used as a reference book for the theory or as a supporting material
for an advanced course on dynamical systems. During the long course of working
on this book, we first produced its baby version [20] where we described the core
results of the theory and some principal examples, and then we wrote the survey
[21] where we presented the contemporary status of the theory.

Since the beginning of the 1970s, the nonuniform hyperbolicity theory has
emerged as an independent discipline lying in the heart of the modern theoryof
dynamical systems. It studies both conservative (volume preserving) and dissi-
pative systems, deterministic as well as random dynamical systems, discrete and
continuous-time systems, in addition to cocycles and group actions. The results of
this theory have found their way in geometry (e.g., in the study of geodesic flows
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Preface vii

and Teichm̈uller flows), in rigidity theory, in the study of some partial differential
equations (e.g., the Schrödinger equation and some reaction-diffusion equations),
and in the theory of “chaotic” billiards.

Writing a book of such a scope can be deemed as a daunting task and we there-
fore had to select topics so that personal taste, clearly biased toward our own in-
terests, entered in our choices. As a result, some interesting topics are barely men-
tioned or not covered at all. In particular, we do not consider random dynamical
systems referring the reader to the books [9, 112, 129] and the survey[113] nor
dynamical systems with singularities (see the book [110]), in particular, leaving
aside the rich theory of chaotic billiards. We restrict ourselves to the case of invert-
ible dynamical systems and thus the theory of nonuniformly expanding maps is not
discussed here (see the survey [132]) nor do we include one-dimensional chaotic
maps (e.g., the logistic family, see [94]). We touch upon some recent results on
Hénon-like attractors related to the study of Sinai–Ruelle–Bowen measures but we
do not go deep into the theory of these attractors (see the survey [133]). We men-
tion some results on hyperbolic group actions and refer the reader to [71]for a
more complete account.

All the principal results of the nonuniform hyperbolicity theory are presented in
the book with complete proofs, although some other results are included without
proofs for the sake of completeness.

Most chapters of the book end with notes where the reader can find some re-
marks of historical and bibliographical nature, comments on some related results,
and references for further reading. In no way these notes are meantto present a
significant account of the history of the subject or a sufficiently complete list of
references.
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Introduction

The goal of this book is to present smooth ergodic theory from a contemporary
point of view. Among other things this theory provides a rigorous mathemati-
cal foundation for the phenomenon known asdeterministic chaos– a term coined
by Yorke – the appearance of highly irregular, unpredictable,“chaotic”motions in
pure deterministic dynamical systems. The main idea beyond this phenomenon is
that one can deduce a sufficiently complete description of topological and ergodic
properties of the system from relatively weak requirements on its local behavior,
known asnonuniform hyperbolicity conditions: the reason this theory is also called
nonuniform hyperbolicity theory.

It originated in the seminal works of Lyapunov [134] and Perron [164]on sta-
bility of solutions of ordinary differential equations. To determine whether agiven
solution is stable one proceeds as follows. First, the equation is linearized along
the solution and then the stability of the zero solution of the corresponding nonau-
tonomous linear differential equation is examined. There are several methods (due
to Hadamard [79], Perron [165], Fenichel [70], and Irwin [92]) aimed at exhibiting
stability of solutions via certain information on the linear system. The approach by
Lyapunov uses a special real-valued function on the space of solutionsof the linear
system known as theLyapunov exponent. It measures in the logarithmic scale the
rate of convergence of solutions so that the zero solution is asymptotically expo-
nentially stable along any subspace where the Lyapunov exponent is negative.

The Lyapunov exponent is arguable the best way to characterize stability: the
requirement that the Lyapunov exponent is negative is the weakest onethat still
guarantees that solutions of the linear system eventually decay exponentially to
zero. The price to pay is that stability of the zero solution in this weak sense does
not necessarily imply stability of the original solution of the nonlinear equation.
The latter can be ensured under an additional and quite subtle requirementknown
as theLyapunov–Perron regularity.

Verifying this requirement for a given solution may be a very difficult if notvir-
tually impossible task, making verification more a principle than practical matter.
This could deem the whole approach useless if not for an important particular case
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2 Introduction

when the differential equation is given by a vector field on a smooth compactRie-
mannian manifold. In this case, the celebrated Multiplicative Ergodic Theorem,
also known as Oseledets theorem, claims that a “typical” solution of the equation
is Lyapunov–Perron regular, thus making the difficult task of checking the regu-
larity requirement unnecessary. Here “typical” means that the statement holds for
almost every trajectory with respect to a finite Borel measure invariant under the
flow generated by the vector field.

A principal application of Oseledets theorem in the context of smooth dynamical
systems is that the Lyapunov exponent alone can be used to characterizestability
of trajectories. Building upon this idea, in the beginning of 1970s Pesin introduced
the class of systems whose Lyapunov exponent is nonzero along almost every tra-
jectory with respect to somesmooth invariant measure(i.e., a measure, which is
equivalent to the Riemannian volume) and then he developed the stability theory
(constructing local and global stable and unstable manifolds; see Section 7.5), as
well as described their ergodic properties (including ergodicity,K- and Bernoulli
properties; see Chapter 9). The collection of these results is known as Pesin’s the-
ory (see [18]). A crucial manifestation of this theory is theformula for the entropy
connecting the measure-theoretic entropy of the system with its Lyapunov expo-
nent (see Chapter 10). It should be pointed out that these results require that the
system is of class of smoothnessC1+α for someα > 0 and that they may indeed
fail if the system is only of classC1 (see Section 7.8).

Unlike classical uniformly hyperbolic systems (i.e., Anosov or more general
axiomA systems) where contractions and expansions areuniform everywhereon a
compact invariant set, Pesin’s theory deals with systems satisfying the substantially
weaker requirement that contractions and expansions occurasymptotically almost
everywherewith respect to a smooth invariant measure. Because this requirement
is weak, there are no topological obstructions for the existence of such systems on
any phase space. Indeed, any smooth compact Riemannian manifold (of dimension
≥ 2 in the discrete-time case and of dimension≥ 3 in the continuous-time case)
admits a volume preserving system whose Lyapunov exponent is nonzeroalmost
everywhere (see Sections 11.4 and 11.5). It is therefore remarkable that such a
weak requirement ensures highly nontrivial ergodic and topological properties of
the system.

A small perturbation of a diffeomorphism with nonzero Lyapunov exponents (in
theCr topology, r > 1) may not bear the same properties – the price to pay for
the great generality of the nonuniformly hyperbolic theory. However, experts be-
lieve that nonuniformly hyperbolicconservativesystems (i.e., systems preserving a
smooth measure, in particular, volume preserving) aretypical in some sense. This
is reflected in the following conjectures: (We consider the case of systems with
discrete time.)

1. Let f be aCr , r > 1, volume preserving diffeomorphism of a smooth compact
Riemannian manifoldM. Assume that the Lyapunov exponent off is nonzero
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along almost every trajectory off . Then there exists a neighborhoodU of f in the
space ofCr volume preserving diffeomorphisms ofM and a residual subsetA ⊂ U

such that for everyg∈ A the Lyapunov exponent ofg is nonzero along every orbit
in a subset of positive volume.

2. Let f be aCr , r > 1, volume preserving diffeomorphism of a smooth compact
Riemannian manifoldM. Then arbitrarily close tof in the space ofCr volume pre-
serving diffeomorphisms ofM, there exists a diffeomorphismg whose Lyapunov
exponent is nonzero along every orbit in a subset of positive volume.

We stress that the assumptionr > 1 is crucial as the conjectures fail ifr = 1 due
to a recent result of Bochi and Viana [28]. So far there has been little progress in
solving these conjectures (see Section 11.7). On the positive side, crucial results
on genericity of hyperbolic cocycles over dynamical systems have been recently
obtained by Viana [221].

A persistent obstruction to nonuniform hyperbolicity is presence of elliptic be-
havior (see [232, 233]). For example, for area preserving surface diffeomorphisms,
as predicted by KAM theory, elliptic islands survive under small perturbations of
the system. Numerical studies of such maps suggest that in this case elliptic is-
lands coexist with what appears to be a “chaotic sea” – an ergodic component of
positive area with nonzero Lyapunov exponents (see [135, 136]). In fact, one of-
ten considers a one-parameter family of area preserving surface diffeomorphisms,
which starts from a completely integrable (nonchaotic) system and evolves even-
tually into a completely hyperbolic (chaotic) one demonstrating, for intermediate
values of the parameter, the appearance of elliptic islands gradually givingway to
a “chaotic sea”. For billiard dynamical systems, coexistence of elliptic and hyper-
bolic behavior has been shown for the so-called “mushroom billiards” (see [41]).
In the category of smooth maps, establishing coexistence is arguably one ofthe
most difficult problems in the theory of dynamical systems. A simple but some-
what “artificial” example of coexistence was constructed in [183] (see also [130]
and Section 6.6; for a more elaborate construction see [90]). Much more com-
plicated examples where coexistence is expected are (1) the famous standard map
(also known as the Chirikov–Taylor map; see [51] and [188, Section 8.5]) and (2)
automorphisms of realK3 surfaces (see [151]).

The requirement that the Lyapunov exponent is nonzero along almost every tra-
jectory with respect to an invariant Borel probability measure – such a measure is
said to behyperbolic– is equivalent to the fact that the system is nonuniformly
hyperbolic. Thus nonuniform hyperbolicity can be viewed as presenceof hyper-
bolic invariant measures leading to challenging problems of studying ergodicand
topological properties of general (not necessarily smooth) hyperbolicmeasures as
well as of constructing somenaturalhyperbolic measures.

A general hyperbolic measure does not have “good” ergodic properties. (Sim-
ply note thatany invariant measure on a horseshoe is hyperbolic.) It is therefore
quite remarkable that hyperbolic measures have abundance of topological proper-
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ties whose study was initiated in the work of Katok [101] (see Chapters 14 and 15).
For example, the set of hyperbolic periodic orbits is dense in the support of the mea-
sure. Surprisingly, general hyperbolic measures asymptotically have local product
structure (similar to the one of Gibbs measures on horseshoes) and one can com-
pute their Hausdorff dimension and entropy. The formula for the entropy of a
general hyperbolic measure due to Ledrappier and L.-S. Young is a substantial
generalization of the entropy formula for smooth hyperbolic measures but unlike
the latter, it involves quite subtle characteristics of the measure other than the Lya-
punov exponent.

Smooth measures form an important yet particular case of natural hyperbolic
measures. The latter were introduced by Ledrappier as an extension to nonuni-
formly hyperbolic systems of the Sinai–Ruelle–Bowen (SRB) measures for clas-
sical uniformly hyperbolic attractors (see Chapter 13). ThesegeneralizedSRB
measures describe the limit distribution of the time averages of continuous func-
tions along forward orbits for a set of initial points of positive Lebesgue measure
in a small neighborhood of the attractor. According to a result by Ledrappier and
Strelcyn, these measures can be characterized as being the only measures for which
the entropy formula of Pesin holds. Ledrappier showed that the methods used in
studying ergodic properties of smooth hyperbolic measures can be adjusted to de-
scribe ergodic properties of SRB measures.

Constructing SRB measures for nonuniformly hyperbolic systems is a difficult
problem. Beyond uniform hyperbolicity, there are very few examples, ofwhich
best known are H́enon-like attractors, where existence of SRB measures was rig-
orously shown. L.-S. Young has introduced a class of dynamical systemswith
nonzero Lyapunov exponents, which admit the so-called Young’s tower. For these
systems, she established existence of SRB measures (see Section 13.3).

The recent theory of H́enon-like diffeomorphisms (see [25, 26, 219, 222, 223])
suggests the following approach to the genericity problem for nonuniformlyhy-
perbolicdissipativesystems: given a one-parameter family ofC2 diffeomorphisms
fa, a∈ [α ,β ] with a trapping regionR (i.e., R is an open set for whichfa(R) ⊂ R
for anya∈ [α ,β ]), there exists a setA⊂ [α ,β ] of positive Lebesgue measure such
that for everya∈ A, the diffeomorphismfa possesses an SRB measure supported
on the attractorΛa =

⋂
n>0 f n

a (R).
Evaluating Lyapunov exponents by a computer is a relatively easy procedure

and in many models in science, the absence of zero exponents can be shown nu-
merically. This is often viewed as a convincing evidence that the system under in-
vestigation exhibits chaotic behavior. In mathematics, several “artificial” examples
of systems with nonzero exponents have been constructed (and the reader can find
most of them in Chapter 6) and for some interesting “natural” dynamical systems
(e.g., geodesic flows on nonpositively curved manifolds and Teichmüller geodesic
flows; see Chapter 12) absence of zero exponents have been shown. In addition,
various powerful methods have been developed (e.g., cone and Lyapunov func-
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tion techniques; see Chapter 4) that allow one to verify whether a given dynamical
system has some positive Lyapunov exponents.

Many results of the nonuniform hyperbolicity theory hold in greater generality
than for actions of single dynamical systems and wherever possible we describe the
theory with this view in mind. For example, the linear hyperbolicity theory (includ-
ing the theory of Lyapunov exponents and its principal result – the Multiplicative
Ergodic Theorem) is presented for linear cocycles over dynamical systems (or even
over higher-rank Abelian actions), and the stable manifold theory is developed for
sequences of diffeomorphisms. Even in the case of an action of a single dynami-
cal system, we consider a more general case of nonuniformpartial hyperbolicity
where the requirement that the values of the Lyapunov exponent areall nonzero
is replaced by a weaker one thatsomeof the values of the Lyapunov exponent
are nonzero. Such generalizations require some more complicated techniques and
tools from various areas of mathematics to be used and thus make the exposition
more complicated but they substantially broaden applications and show the great
power of the nonuniform hyperbolicity theory.
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Birkhäuser, 1986.
[113] Yu. Kifer and P.-D. Liu,Random dynamics, in Handbook of Dynamical Systems 1B, edited by B. Hassel-

blatt and A. Katok, Elsevier, 2006, pp. 379–499.
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