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Preface

Writing this book was a long-term project that has taken several yeadisatathe
early stages Anatole Katok’s participation was crucial. He provided us wéth th
text of his unpublished notes with Leonardo Mendoza that served assiefor
the first draft of Chapters 1-5 and parts of Chapters 6—7 of the ®klso fully
participated in designing the content of the book in its present form.

In this book we present a self-contained and sufficiently complete dé&earip
of the modern nonuniform hyperbolicity theory, that is, the theory of dyinal
systems whose Lyapunov exponents are not zero. The reader widlfithe core
results of the theory as well as a good account of its recent developments

The nonuniform hyperbolicity theory is rich in wonderful ideas and ssiph
cated techniques, which are widely used in many areas of dynamical syasems
well as other areas of mathematics and beyond. The nonuniform hyigéytthe-
ory is very popular and finds a lot of applications outside mathematics — ingshys
biology, engineering, and so on.

Despite (or should we say because of) a tremendous amount of teseattve
subject, there have been relatively few attempts to summarize and unify tiis res
of the theory in a single manuscript or a survey (see the books [1101799 the
surveys [18, 137, 175], and the lectures [19, 28]). This book is trtearover this
gap. It can be used as a reference book for the theory or as arsogpuoaterial
for an advanced course on dynamical systems. During the long cdunsglong
on this book, we first produced its baby version [20] where we desgibbe core
results of the theory and some principal examples, and then we wrote they sur
[21] where we presented the contemporary status of the theory.

Since the beginning of the 1970s, the nonuniform hyperbolicity theory has
emerged as an independent discipline lying in the heart of the modern tbiory
dynamical systems. It studies both conservative (volume preservimgjliasi-
pative systems, deterministic as well as random dynamical systems, disudete a
continuous-time systems, in addition to cocycles and group actions. Thesmalsu
this theory have found their way in geometry (e.g., in the study of geodesis flo

Vi



Preface Vii

and Teichniller flows), in rigidity theory, in the study of some partial differential
eqguations (e.g., the Sdidinger equation and some reaction-diffusion equations),
and in the theory of “chaotic” billiards.

Writing a book of such a scope can be deemed as a daunting task and &+ ther
fore had to select topics so that personal taste, clearly biased towaaodvaun-
terests, entered in our choices. As a result, some interesting topics ekerhan-
tioned or not covered at all. In particular, we do not consider randgmamical
systems referring the reader to the books [9, 112, 129] and the sfiri/8)nor
dynamical systems with singularities (see the book [110]), in particularingav
aside the rich theory of chaotic billiards. We restrict ourselves to the d¢avecot-
ible dynamical systems and thus the theory of nonuniformly expanding maps is n
discussed here (see the survey [132]) nor do we include one-dimeahsiwaotic
maps (e.g., the logistic family, see [94]). We touch upon some recent results o
Hénon-like attractors related to the study of Sinai—Ruelle-Bowen measunes bu
do not go deep into the theory of these attractors (see the survey.[188]nen-
tion some results on hyperbolic group actions and refer the reader tddi7 4]
more complete account.

All the principal results of the nonuniform hyperbolicity theory are pnésé in
the book with complete proofs, although some other results are included withou
proofs for the sake of completeness.

Most chapters of the book end with notes where the reader can find ssme r
marks of historical and bibliographical nature, comments on some relataltsres
and references for further reading. In no way these notes are rteprésent a
significant account of the history of the subject or a sufficiently completefis
references.
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Introduction

The goal of this book is to present smooth ergodic theory from a contemypor
point of view. Among other things this theory provides a rigorous mathemati-
cal foundation for the phenomenon knowndeterministic chaos a term coined

by Yorke — the appearance of highly irregular, unpredictable,“chaatimfions in

pure deterministic dynamical systems. The main idea beyond this phenomenon is
that one can deduce a sufficiently complete description of topologicalrgndie
properties of the system from relatively weak requirements on its locaiviiah
known ashonuniform hyperbolicity conditionshe reason this theory is also called
nonuniform hyperbolicity theory.

It originated in the seminal works of Lyapunov [134] and Perron [l@4kta-
bility of solutions of ordinary differential equations. To determine whethgivan
solution is stable one proceeds as follows. First, the equation is linearizegl alo
the solution and then the stability of the zero solution of the correspondireunon
tonomous linear differential equation is examined. There are several dsd(thoe
to Hadamard [79], Perron [165], Fenichel [70], and Irwin [92]) aiha¢ exhibiting
stability of solutions via certain information on the linear system. The approach b
Lyapunov uses a special real-valued function on the space of solofitims linear
system known as thieyapunov exponentt measures in the logarithmic scale the
rate of convergence of solutions so that the zero solution is asymptoticgity ex
nentially stable along any subspace where the Lyapunov exponentisveeg

The Lyapunov exponent is arguable the best way to characterize stathikty
requirement that the Lyapunov exponent is negative is the weakeghanstill
guarantees that solutions of the linear system eventually decay expdgentia
zero. The price to pay is that stability of the zero solution in this weak serese do
not necessarily imply stability of the original solution of the nonlinear equation.
The latter can be ensured under an additional and quite subtle requiremognt
as thelL.yapunov—Perron regularity

Verifying this requirement for a given solution may be a very difficult if it
tually impossible task, making verification more a principle than practical matter.
This could deem the whole approach useless if not for an important gartaase

1



2 Introduction

when the differential equation is given by a vector field on a smooth confpiact
mannian manifold. In this case, the celebrated Multiplicative Ergodic Theorem,
also known as Oseledets theorem, claims that a “typical” solution of the equation
is Lyapunov—Perron regular, thus making the difficult task of checkiegdgu-
larity requirement unnecessary. Here “typical’ means that the statemielstfo
almost every trajectory with respect to a finite Borel measure invariargruhe

flow generated by the vector field.

A principal application of Oseledets theorem in the context of smooth dynhmica
systems is that the Lyapunov exponent alone can be used to charastebifity
of trajectories. Building upon this idea, in the beginning of 1970s Pesin intext!
the class of systems whose Lyapunov exponent is honzero along aveostm@-
jectory with respect to som&mooth invariant measuig.e., a measure, which is
equivalent to the Riemannian volume) and then he developed the stability theory
(constructing local and global stable and unstable manifolds; see Sedipmas
well as described their ergodic properties (including ergodig&tyand Bernoulli
properties; see Chapter 9). The collection of these results is knowrsassRbe-
ory (see [18]). A crucial manifestation of this theory is themula for the entropy
connecting the measure-theoretic entropy of the system with its Lyapumpa¢ ex
nent (see Chapter 10). It should be pointed out that these resuliseréupt the
system is of class of smoothnegst® for somea > 0 and that they may indeed
fail if the system is only of clas§?! (see Section 7.8).

Unlike classical uniformly hyperbolic systems (i.e., Anosov or more general
axiomA systems) where contractions and expansionsiaiferm everywheren a
compact invariant set, Pesin’s theory deals with systems satisfying thastidiéy
weaker requirement that contractions and expansions asgumptotically almost
everywherawvith respect to a smooth invariant measure. Because this requirement
is weak, there are no topological obstructions for the existence of ytdnss on
any phase space. Indeed, any smooth compact Riemannian manifold (obaime
> 2 in the discrete-time case and of dimensp in the continuous-time case)
admits a volume preserving system whose Lyapunov exponent is ncalpeost
everywhere (see Sections 11.4 and 11.5). It is therefore remarkalsuth a
weak requirement ensures highly nontrivial ergodic and topologicaesties of
the system.

A small perturbation of a diffeomorphism with nonzero Lyapunov exptsgén
the C" topology,r > 1) may not bear the same properties — the price to pay for
the great generality of the nonuniformly hyperbolic theory. Howevepees be-
lieve that nonuniformly hyperboliconservativesystems (i.e., systems preserving a
smooth measure, in particular, volume preservingxygpeal in some sense. This
is reflected in the following conjectures: (We consider the case of systatins w
discrete time.)

1.Let f be aC', r > 1, volume preserving diffeomorphism of a smooth compact
Riemannian manifoldM. Assume that the Lyapunov exponent fois nonzero
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along almost every trajectory df Then there exists a neighborhdddf f in the
space ofZ" volume preserving diffeomorphisms Bf and a residual subsét c U
such that for everg € A the Lyapunov exponent @fis nonzero along every orbit
in a subset of positive volume.

2.Let f be aC', r > 1, volume preserving diffeomorphism of a smooth compact
Riemannian manifol®1. Then arbitrarily close td in the space of" volume pre-
serving diffeomorphisms d¥l, there exists a diffeomorphisgmwhose Lyapunov
exponent is nonzero along every orbit in a subset of positive volume.

We stress that the assumptior 1 is crucial as the conjectures failri= 1 due
to a recent result of Bochi and Viana [28]. So far there has been litigress in
solving these conjectures (see Section 11.7). On the positive side,l castids
on genericity of hyperbolic cocycles over dynamical systems have le=emtty
obtained by Viana [221].

A persistent obstruction to nonuniform hyperbolicity is presence of elligic b
havior (see [232, 233]). For example, for area preserving saiddfeomorphisms,
as predicted by KAM theory, elliptic islands survive under small perturbataf
the system. Numerical studies of such maps suggest that in this case elliptic is-
lands coexist with what appears to be a “chaotic sea” — an ergodic campoh
positive area with nonzero Lyapunov exponents (see [135, 136Jact, one of-
ten considers a one-parameter family of area preserving surfacerddfghisms,
which starts from a completely integrable (nonchaotic) system and evolees e
tually into a completely hyperbolic (chaotic) one demonstrating, for intermediate
values of the parameter, the appearance of elliptic islands gradually gvaingo
a “chaotic sea”. For billiard dynamical systems, coexistence of elliptic apdray
bolic behavior has been shown for the so-called “mushroom billiard&’ [&H]).

In the category of smooth maps, establishing coexistence is arguably dhe of
most difficult problems in the theory of dynamical systems. A simple but some-
what “artificial” example of coexistence was constructed in [183] (se®[4l30]

and Section 6.6; for a more elaborate construction see [90]). Much noone c
plicated examples where coexistence is expected are (1) the famougatanaga
(also known as the Chirikov—Taylor map; see [51] and [188, Section &t (2)
automorphisms of redd 3 surfaces (see [151]).

The requirement that the Lyapunov exponent is nonzero along almerst tea-
jectory with respect to an invariant Borel probability measure — such aureas
said to behyperbolic— is equivalent to the fact that the system is nonuniformly
hyperbolic. Thus nonuniform hyperbolicity can be viewed as presehbgper-
bolic invariant measures leading to challenging problems of studying ergadic
topological properties of general (not necessarily smooth) hypenmaasures as
well as of constructing somaatural hyperbolic measures.

A general hyperbolic measure does not have “good” ergodic ptieperSim-
ply note thatanyinvariant measure on a horseshoe is hyperbolic.) It is therefore
quite remarkable that hyperbolic measures have abundance of topblugipar-
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ties whose study was initiated in the work of Katok [101] (see Chaptersd4@n
For example, the set of hyperbolic periodic orbits is dense in the suppba mea-
sure. Surprisingly, general hyperbolic measures asymptotically haaledoaduct
structure (similar to the one of Gibbs measures on horseshoes) androocenca
pute their Hausdorff dimension and entropy. The formula for the entrémy o
general hyperbolic measure due to Ledrappier and L.-S. Young is stasuial
generalization of the entropy formula for smooth hyperbolic measuresniiseu
the latter, it involves quite subtle characteristics of the measure other thapahe L
punov exponent.

Smooth measures form an important yet particular case of natural ofimerb
measures. The latter were introduced by Ledrappier as an extensiomuaifio
formly hyperbolic systems of the Sinai—Ruelle-Bowen (SRB) measurega®sr c
sical uniformly hyperbolic attractors (see Chapter 13). ThgpsmeeralizedSRB
measures describe the limit distribution of the time averages of continuous func
tions along forward orbits for a set of initial points of positive Lebesguasus
in a small neighborhood of the attractor. According to a result by Ledeapnd
Strelcyn, these measures can be characterized as being the only reéaswiech
the entropy formula of Pesin holds. Ledrappier showed that the methedsus
studying ergodic properties of smooth hyperbolic measures can be adjoste-
scribe ergodic properties of SRB measures.

Constructing SRB measures for nonuniformly hyperbolic systems is a difficu
problem. Beyond uniform hyperbolicity, there are very few examplesyrath
best known are Einon-like attractors, where existence of SRB measures was rig-
orously shown. L.-S. Young has introduced a class of dynamical sysigiims
nonzero Lyapunov exponents, which admit the so-called Young's tdveerthese
systems, she established existence of SRB measures (see Section 13.3).

The recent theory of Bhon-like diffeomorphisms (see [25, 26, 219, 222, 223])
suggests the following approach to the genericity problem for nonunifohydy
perbolicdissipativesystems: given a one-parameter familyG3fdiffeomorphisms
fa, a€ [a, B] with a trapping regiorR (i.e., Ris an open set for whicliy(R) C R
foranya € [a, B]), there exists a s& C [a, 3] of positive Lebesgue measure such
that for everya € A, the diffeomorphisnt,; possesses an SRB measure supported
on the attractoNa = (Np=o 5 (R).

Evaluating Lyapunov exponents by a computer is a relatively easy puoeed
and in many models in science, the absence of zero exponents can berahow
merically. This is often viewed as a convincing evidence that the systent imde
vestigation exhibits chaotic behavior. In mathematics, several “artificiafhekes
of systems with nonzero exponents have been constructed (and tke caadind
most of them in Chapter 6) and for some interesting “natural” dynamicalregste
(e.g., geodesic flows on nonpositively curved manifolds and Tdidlergeodesic
flows; see Chapter 12) absence of zero exponents have been. stmoaddition,
various powerful methods have been developed (e.g., cone andngagpunc-
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tion techniques; see Chapter 4) that allow one to verify whether a givesmnaigal
system has some positive Lyapunov exponents.

Many results of the nonuniform hyperbolicity theory hold in greater gaitgr
than for actions of single dynamical systems and wherever possible wetethe
theory with this view in mind. For example, the linear hyperbolicity theory (includ-
ing the theory of Lyapunov exponents and its principal result — the Multijlea
Ergodic Theorem) is presented for linear cocycles over dynamicaksggta even
over higher-rank Abelian actions), and the stable manifold theory is dese fwr
sequences of diffeomorphisms. Even in the case of an action of a singghenity
cal system, we consider a more general case of nonunifamial hyperbolicity
where the requirement that the values of the Lyapunov exponerallanenzero
is replaced by a weaker one treameof the values of the Lyapunov exponent
are nonzero. Such generalizations require some more complicated teshaiupl
tools from various areas of mathematics to be used and thus make the exposition
more complicated but they substantially broaden applications and show tite gre
power of the nonuniform hyperbolicity theory.
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