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Distribution of electric field strength in optical
planar waveguides with nanoparticles

A. V. Panov∗

Abstract: A symmetrical optical planar waveguide containing a layer with nanoparticles (the active
layer) is examined by virtue of numerical simulation. We calculate the dependence of the electric
strength field amplitude on the volume concentration of the nanoparticles within the active layer. It
is shown that even TE-modes are most suitable for observation of nonlinear optical effects.
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In recent years much interest has been centered around
a study of the nonlinear optical phenomena, which are ob-
served in the media, containing nanoparticles [1, 2]. Such
the medium with nanoparticles can be embedded, for ex-
ample, into planar waveguides where the nonlinear optical
interaction can occur [1]. It is of great interest to know the
light intensity in the medium with nanoparticles since non-
linear optical effects depend on the strength the of electric
field.

Let us examine the depicted in Fig. 1 symmetrical three-
layered planar waveguide, which is contained from two
sides in the substrate (regions 0 and 4 in the figure). We
will assume that basic waveguide layers are regions 1 and
3 with thicknessd1, region 2 with thicknessd2 (d2 ≪ d1)
consists of the medium with the nanoparticles, in which
nonlinear optical interaction occurs. We will consider that
the particle sizes are much lower than the wavelength of
light.

The distributions of vectors of electric an magnetic
strengthE, H in the waveguide are found by the means of
the solution of Maxwell’s equations. Assuming that light
propagation in the waveguide does occur in the direction
of z-axis, we will seek the solutions in the form

E, H ∝ exp[i(ωt − βz)], (1)
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Fig. 1. A sketch of the planar waveguide.
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whereβ is longitudinal propagation number, which de-
pends on the number of mode,ω is cyclic frequency,t is
the time.

It is common knowledge that the solutions of Maxwell’s
equations for the planar waveguides are decomposed into
two types:H-waves (TE-modes,Hz, Hx, Ey , 0) andE-
waves (TH-modes,Ez, Ex, Hy , 0) [3].

At first let us studyE-waves (TH-modes). Only one of
three components of the vectorsE andH is independent,
for exampleHy. In this case Maxwell’s equations are re-
duced to the equation

∂2Hy

∂x2
+ (n(x)2k2 − β2)Hy = 0, (2)

wheren(x) is the refractive index of medium,k is the wave
number in the vacuum.Ez, Ex are expressed asHy as fol-
lows:

Ex, j =
β

knj
Hy, j, Ez, j = −

i
knj

∂Hy, j

∂x
, (3)

where j is the region number (see Fig. 1). In the casen2 >

n1 (the effective layer is waveguiding) we can write the
solutions of the equation (2) in the form:

Hy,0 = A0 exp(−α0x), (4)

Hy,1 = A1 cos(k1,xx) + B1 sin(k1,xx), (5)

Hy,2 = A2 cos(k2,xx) + B2 sin(k2,xx), (6)

Hy,3 = A3 cos(k1,xx) + B3 sin(k1,xx), (7)

Hy,4 = A4 exp(α0x), (8)

k1,x =

√

n2
1k2 − β2, k2,x =

√

n2
2k

2 − β2,

α0 =

√

β2 − n2
0k2.

Integration constantsA j , B j are sought with the boundary
conditions, which can be written forEz andHy in the form:

A0 exp (−α0(d1 + d2/2)) = A1 cos(k1,x(d1 + d2/2))

+ B1 sin(k1,x(d1 + d2/2)), (9)

A1 cos(k1,xd2/2)+ B1 sin(k1,xd2/2) =

A2 cos(k2,xd2/2)+ B2 sin(k2,xd2/2), (10)
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A2 cos(k2,xd2/2)− B2 sin(k2,xd2/2) =

A3 cos(k1,xd2/2)− B3 sin(k1,xd2/2), (11)

A3 cos(k1,x(d1 + d2/2))− B3 sin(k1,x(d1 + d2/2)) =

A4 exp (−α0(d1 + d2/2)), (12)

A0α0 exp{−α0 (d1 + d2/2)}
/

n2
0 =

k1,x

n2
1

{

A1 sin
(

k1,x (d1 + d2/2)
)

−

B1 cos
(

k1,x (d1 + d2/2)
)}

, (13)

k1,x

n2
1

{

A1 sin
k1,xd2

2
− B1 cos

k1,xd2

2

}

=

k2,x

n2
2

{

A2 sin
k2,xd2

2
− B2 cos

k2,xd2

2

}

, (14)

k2,x

n2
2

{

A2 sin
k2,xd2

2
+ B2 cos

k2,xd2

2

}

=

k1,x

n2
1

{

A3 sin
k1,xd2

2
+ B3 cos

k1,xd2

2

}

, (15)

k1,x

n2
1

{

A3 sin
(

k1,x (d1 + d2/2)
)

+

B3 cos
(

k1,x (d1 + d2/2)
)}

=

α0

n2
0

A4 exp{−α0 (d1 + d2/2)} . (16)

The set of algebraic equations (9)–(16) makes it possi-
ble to expressA1. . .A4, B j through the constantA0, which
is preset by the intensity of the light introduced into the
waveguide, hereinafter for simplicity we will assumeA0 =

1. Let us write the set of equations 9–16 with respect to
A j , B j in the matrix form and after making the determinant
of the left side of the matrix equation equal to zero we will
obtain transcendental equation forβ:















k3
1,x

n4
1

−
2k2

1,xk2,x

n2
1n

2
2

+

k1,xk2
2,x

n4
2















α0

n2
0n2

1

cos(2d1k1,x − d2k2,x) −















k3
1,x

n4
1

+

2k2
1,xk2,x

n2
1n2

2

+

k1,xk2
2,x

n4
2















α0

n2
0n

2
1

cos(2d1k1,x + d2k2,x) +





























k2
2,x

n4
2

−
k2

1,x

n4
1















α2
0

n4
0

−
k4

1,x

n8
1

+

k2
1,xk

2
2,x

n4
1n4

2















sin(k2,xd2) +

1
2















k4
1,x

n8
1

+

2k3
1,xk2,x

n6
1n2

2

+

k2
1,xk

2
2,x

n4
1n

4
2

−















k2
1,x

n4
1

+
2k1,xk2,x

n2
1n2

2

+

k2
2,x

n4
2















α2
0

n4
0















sin(2k1,xd1 + k2,xd2) +

1
2





























k2
1,x

n4
1

−
k1,xk2,x

n2
1n2

2

+

k2
2,x

n4
2















α2
0

n4
0

−
k4

1,x

n8
1

+

2k3
1,xk2,x

n6
1n2

2

−
k2

1,xk
2
2,x

n4
1n4

2















sin(2k1,xd1 − k2,xd2), (17)

which is solved numerically.
Numerical simulations were carried out for the waveg-

uides with the refractive indicesn0 = 1.51,n1 = 1.52 and
with the thicknessesd2 = 2 µm andd2 = 0.01µm. The ef-
fective refractive index of active medium with the nanopar-
ticles can be calculated with the aid of the formula, ob-
tained by Bruggeman in the model of the effective medium
[4]:

p(εp − εe)

εp + 2εe
+

(1− p)(εm− εe)
εm+ 2εe

= 0, (18)

whereεp = n2
p is the dielectric constant of nanoparticles,

εm = n2
m is the dielectric constant of the medium, which

contains nanoparticles,εe = n2
2 is the effective dielectric

constant of the central layer of the waveguide,p is vol-
ume concentration of nanoparticles in the central layer. For
modeling the waveguiding active layer we setnp = 2.5

which corresponds to TiO2.

Figures 2, 3 show the results of the calculations of de-
pendencies of thex component of the electric field strength
amplitude onx for TH-modes (Ex curves). Let us note,
the strength of the transverse component of the electric
field on the graphs is expressed in the dimensionless units,
connected with the excitation of the specific mode in the
waveguide (arbitrariness of the selection of constantA0).
Fig. 2 depicts the distribution ofEx in the homogeneous
waveguide (n2 = n1 = 1.52), figure 3 illustrates the distri-
bution of Ex in the waveguides with the active layer. We
can see from the figure, an increase innp leads to the larger
concentration of the electric field strength of the zero TH-
modes in the active layer. For the odd mode in the center
of waveguide, as one would expect for the symmetrical
waveguides,Ex vanishes atx = 0.

In the case, when the active layer of the waveguide has
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Fig. 2. The magnitude ofEx of TH-modes andEy of
TE-modes versusx coordinate for the homogeneous
waveguide (n2 = n1 = 1.52).
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Fig. 3. The magnitude ofEx of TH-modes andEy of
TE-modes versusx coordinate for the waveguide with
p = 0.2, nm = 1.6, np = 2.5.

the less optical density (n2 < n1) the part of the equations
for finding the value of electric field will be written by
other means. Formula (6) must be replaced by

Hy,2 = A2 exp(k2,xx) + B2 exp(k2,xx), (19)

accordingly the equations for the boundary conditions
(10), (11), (14), (15) by

A1 cos(k1,xd2/2)+ B1 sin(k1,xd2/2) =

A2 exp(k2,xd2/2)+ B2 exp(−k2,xd2/2), (20)

A2 exp(−k2,xd2/2)+ B2 exp(k2,xd2/2) =

A3 cos(k1,xd2/2)− B3 sin(k1,xd2/2), (21)
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In this case also we should change the expression fork2,x:

k2,x =

√

β2 − n2
2k2. (24)

Accordingly the characteristic equation for finding the lon-
gitudinal propagation numberβ changes. The results of

calculated distribution in the waveguide are depicted in
Fig. 4. Let us note that in this caseEx of even modes is
“extruded” from the central layer, since the electromag-
netic wave is damped in it. In particular higher modes have
an explicit minimum atx = 0.

The solutions in the case ofH-waves (TE-modes) are
analogous given above, the results of calculations are il-
lustrated in figures 2, 3, 5 (Ey curves). The results quali-
tatively repeat the profiles of the transverse component of
vectorE of the TH-modes.

The dependencies of the reduced strengths of the elec-
tric field vector of even modes on the volume concentration
of nanoparticles in the active layer are displayed in Fig. 6.
HereEx andEy are divided by corresponding strength am-
plitudes of the certain mode for the homogeneous waveg-
uide. We can see from the figure that an increase in the
concentration of particlesp in the active layer leads to a
change of the strength of electric field in the central layer
of the waveguide, besides the case of basic TE-modeE0y,
when Ey practically does not vary. The strength of TE-
modeE2y increases withp almost linearly, thus this mode
is most promising from the point of view of the observation
of nonlinear optical interactions. For TH-modes we ob-
serve the competition of two effects: change of the strength
of electric field in the active layer with an increase in the
concentration of particles and dependence of nonlinear in-
teraction onp. It should be noted thatE0x is the nonmono-
tone function ofp, while E2x decreases almost linearly.

From our calculation it can be concluded that the selec-
tion of the working mode is essential for the observation
of the nonlinear optical effects in waveguides. TE-modes
of the symmetrical waveguide are most suitable for the ob-
servation of the optical interactions.
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Fig. 4. The magnitude ofEx of TH-modes versusx
coordinate for the waveguide withn2 = 1.2.
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nanoparticle concentration in the active layerp (nm = 1.6, np = 2.5).
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