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Abstract
Background: Metabolic Flux Analysis (MFA) based on isotope labeling experiments (ILEs) is a
widely established tool for determining fluxes in metabolic pathways. Isotope labeling networks
(ILNs) contain all essential information required to describe the flow of labeled material in an ILE.
Whereas recent experimental progress paves the way for high-throughput MFA, large network
investigations and exact statistical methods, these developments are still limited by the poor
performance of computational routines used for the evaluation and design of ILEs. In this context,
the global analysis of ILN topology turns out to be a clue for realizing large speedup factors in all
required computational procedures.

Results: With a strong focus on the speedup of algorithms the topology of ILNs is investigated
using graph theoretic concepts and algorithms. A rigorous determination of all cyclic and
isomorphic subnetworks, accompanied by the global analysis of ILN connectivity is performed.
Particularly, it is proven that ILNs always brake up into a large number of small strongly connected
components (SCCs) and, moreover, there are natural isomorphisms between many of these SCCs.
All presented techniques are universal, i.e. they do not require special assumptions on the network
structure, bidirectionality of fluxes, measurement configuration, or label input. The general results
are exemplified with a practically relevant metabolic network which describes the central
metabolism of E. coli comprising 10390 isotopomer pools.

Conclusion: Exploiting the topological features of ILNs leads to a significant speedup of all
universal algorithms for ILE evaluation. It is proven in theory and exemplified with the E. coli
example that a speedup factor of about 1000 compared to standard algorithms is achieved. This
widely opens the door for new high performance algorithms suitable for high throughput
applications and large ILNs. Moreover, for the first time the global topological analysis of ILNs
allows to comprehensively describe and understand the general patterns of label flow in complex
networks. This is an invaluable tool for the structural design of new experiments and the
interpretation of measured data.
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Background
Metabolic Flux Analysis
Metabolic fluxes essentially represent the phenotype of cel-
lular function and regulation. Accordingly, the determina-
tion and analysis of cellular flux distributions is a central
concern of Systems Biology. Restricting to steady state
analysis, available methods contributing to the determi-
nation of fluxes within metabolic networks can be
roughly divided into two mainstreams which are both
based on the stoichiometry.

The first type, Metabolic Network Analysis (MNA),
involves tools suitable for exploring the solution space of
the stoichiometric equations for comprehensive models.
Typically, topological properties of genome-scale net-
works are under investigation in order to derive informa-
tion about the set of all feasible flux patterns that would
emerge under predefined assumptions. Extreme Pathway
Analysis [1,2], Elementary Flux Mode Analysis [3], and
Flux Balance Analysis [4] are among the most prominent
approaches in this field assessing the theoretical capabili-
ties of metabolic networks. The second type is Metabolic
Flux Analysis (MFA), which, in contrast to MNA, is con-
cerned with the quantitative determination of metabolic
fluxes in a concrete cell under in-vivo conditions. Supple-
menting stoichiometry with experimental data produces
precisely one such flux distribution.

Isotope labeling networks (ILNs) are the structural back-
bone of MFA [5-7] and the tracing of isotopic labeling
became the dominating method for the determination of
fluxes in the central metabolic pathways of microorgan-
isms and higher cells in-vivo [8-11]. The knowledge of
these fluxes under a variety of growth conditions or
genetic modifications of an organism constitutes one
important building block in the Omics data family called
the Fluxome [12].

In contrast to MNA, the networks subject to MFA are typ-
ically confined to the central metabolic pathways of an
organism and the surrounding biosynthesis pathways of
particular interest. For example, the E. coli network dis-
cussed in this contribution (cf. Fig. 5) contains all amino
acid production pathways and, thus, is already a rather
large representative network for typical MFA applications.
The difference in size between genome-scale networks
and metabolic networks suitable for MFA studies is cur-
rently due to limited knowledge about atom transitions
outside the biosynthesis on the one hand, and by prob-
lems with the measurement techniques when low concen-
trated metabolites are to be analyzed on the other hand.

The centerpiece of all computational MFA routines is the
determination of the emerging labeling distribution (see
also Appendix A). This simulation step is the essential

operation for all further steps in the course of experimen-
tal evaluation – i.e. parameter fitting, statistical analysis,
or experimental design [13-15]. Several computational
tools are available for MFA which facilitate the evaluation
of isotopic labeling data generated by NMR and MS
instruments [16-18]. Although the algorithms underlying
these tools are different, basically all of them rely on the
structure of the ILN associated with a metabolic network.

Current challenges
The recent years brought up several new experimental
techniques and requirements resulting in increasing per-
formance demands for MFA tools:

• High-throughput MFA procedures with hundreds of 13C
labeling experiments running in parallel are now possible
and will be certainly used frequently in the future, in the
field of Systems Biology [19].

• When MFA is used in screening investigations, detecting
the presence or absence of certain metabolic pathways is
an important issue and requires a fully automated evalua-
tion of different network variants in a sequence of data
evaluation runs (model selection) [20].

• More and more complex metabolic networks are now
being studied including not only the central metabolism
but also the biosynthesis pathways or the compartmenta-
tion in higher cells [21,22]. The availability of elaborate
analytics facilitates the use of novel substrates which pro-
vide isotopic labelings also in non-carbon atoms (such as
H, O, N, etc.) [23]. Thus, the dimension of isotope labe-
ling systems dramatically increases.

• The computation of confidence regions for the esti-
mated fluxes based on nonlinear statistical methods is
usually based on Monte-Carlo simulations for which a
large number of simulation runs have to be performed
[24,25]. In particular, this way, the usually badly deter-
mined exchange fluxes of bidirectional reactions can be
quantified more reliably [26].

• Whereas the classical ILE is based on a measurement
from the isotopically stationary phase of an experiment,
isotopically instationary methods are now possible due to
the rapid development of MS technology [27]. These
experiments require a change from stationary isotopomer
balance equations (IBEs) to dynamic differential equation
systems. This in turn increases the computational com-
plexity of the problem by several orders of magnitude
[28].

Altogether, the computational requirements for these new
techniques emphasize the importance of the development
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of new high performance algorithms for the solution of
the arising simulation problems.

Attempts to overcome the performance bottleneck of MFA 
algorithms

Several strategies for solving labeling equation systems
have been discussed in the literature [29-32]. However,
they all suffer from poor performance, or even do not con-
verge in any case. Most of them have a computational

complexity of (n3) where n is the number of labeled
species in the system, i.e. isotopomers, which typically are
much higher than 1000.

Having this fact in mind, the current computational bot-
tleneck of isotopic MFA can be illustrated by the following
consideration: Assume that the simulation of label distri-
bution for given flux values usually takes a few seconds on
a current PC, e.g. for the large E. coli network discussed in
this contribution. Then, flux estimation is accomplished
by an iterative parameter fitting procedure (cf. Appendix A,
Fig. 10).

Depending on the problem, several hundred simulation
steps have to be performed for a single fit. Clearly, each
parameter fit should be recurred some times to avoid local
optima. For high-throughput MFA the whole procedure
has to be repeated for each of possibly several hundreds of
samples [12]. When finally the network size grows by
some factor > 4 (leading to a factor of about 250 in com-
putational time), the total time for performing a high-
throughput MFA study ends up at a couple of weeks which
is unacceptable.

Several attempts have been made to speed up the central
computational steps for MFA. Most of them rely on an
analysis of the specific network for the biological system
under investigation and thus, cannot be generalized to an
arbitrary network structure. All these methods are based
on special assumptions on the reversibility of fluxes [33],
path tracing in bidirectional computation steps [34], com-
puter algebraic solution of subsystems [35-37], or the der-
ivation of special relations between measured labels and
flux ratios [38]. However, none of these methods is com-
prehensively applicable.

An universally applicable framework for solving the sim-
ulation task which is able to deal with any given network
structure and any type of unidirectional or bidirectional
fluxes is the cumomer method [14]. Using the graph-
based methods described in this contribution a speedup
of factor 103 has been achieved for the presented E. coli
network. Recently, the elementary metabolite unit (EMU)
approach for modeling isotope labeling systems has been
proposed in [39] which is specially suited for systems with

many labeled species (such as C, H, O, N, etc.). Relying on
the back-tracing of measured mass isotopomer spectra to
precursors in the central metabolism a special flux analy-
sis algorithm has been developed that reduces the dimen-
sion of the forward simulation problem compared to the
cumomer concept. Hence, depending on the given meas-
ured data set the computation time can be reduced con-
siderably. Interestingly, both approaches – cumomers,
and EMUs describing the flow of labeled material in a
metabolic network – share the same network structure.
Restricting ourselves on cumomers, nevertheless, all
methods derived in the present contribution should be
profitable for the EMU approach, too.

In this contribution a major effort was taken to translate
the structure and terminology of ILEs to graph theoretical
terminology. Hence, it is assumed that the reader of this
contribution is familiar with elementary graph theory and
its formalism. The reader should be familiar with the
notion of algorithmic complexity. Moreover, this text
should not be considered as a tutorial for isotope-based
MFA. A short introduction into the general procedure of
isotopic MFA can be found in Appendix A. For more details
the reader is referred to more comprehensive texts like [5-
7].

Labeling networks and associated balance equations
An illustrative example
A broad variety of approaches for the description of the
flow of labeled material through a metabolic network
exist in the literature. These approaches generally differ in
the representation of the labeling state. Examples include
carbon atoms [40,41], isotopomers [26,41], cumomers
[14,42], bondomers [43,44], and EMUs [39]. Basically, all
of these representations result in a similar structure of net-
work graphs composed of labeled compounds (the
nodes), and metabolic fluxes (the edges) Figure 1.

An illustrative example shall be used to explain the gen-
eral strategy for improving the performance of MFA algo-
rithms as proposed by this contribution. Fig. 1 shows a
section of a general ILN along with the corresponding set
of labeling balance equations (LBEs) which quantitatively
describe the distribution of labeled material over the net-
work. For the comprehension of the subsequent sections
the following properties of LBEs are of importance:

1. For each node x of an ILN exactly one equation is for-
mulated, which relates node x with its direct neighbors.

2. The balance equation for node x always contains x and
its coefficient is the sum of its label effluxes.
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3. Additionally, the balance equation associated with
node x contains the labeling fractions corresponding to all
upstream neighbors feeding node x with labeled material.

4. In contrast, the downstream nodes fed by x do not con-
tribute to the balance equation of x.

5. The balance equations contain nonlinear terms when
hyper-edges with multiple sources w1... wn and a single tar-
get x occur in the network, i.e. in the case when larger mol-
ecules are assembled of smaller molecules.

6. The ILN and the corresponding system of LBEs contain
the same information, meaning that each one can be con-
structed from the other.

Cyclic interdependencies

These properties establish the correspondence between
networks and equation systems which is well known from
the theory of general equation solving [45,46] where the
structural network representation of an equation system is
known as a computational graph. In particular, it has been
shown that the performance of equation solvers can be
highly optimized by analyzing and exploiting the topol-
ogy of this graph. Roughly, the general solution of n linear
(nonlinear) equations is at most (at least) an effort in the

order (n3) which becomes prohibitive when n grows
beyond a certain limit. If an equation system can be
decomposed into k consecutive subsystems of dimension

n1 + ... + nk = n the effort consequently reduces to

 which entails a tremendous speedup

if n1,..., nk << n.

Fig. 1 illustrates this idea on the small example network.
Obviously, the network nodes x1, x2 and x3 are cyclically
linked which means that the corresponding balance equa-
tions are closely coupled and have to be solved simultane-
ously, e.g. by Gaussian elimination, or – in the nonlinear
case – the application of the Newton algorithm [47]. The
same holds for nodes x4, x5 and x6. Last, the node x7 is
linked to both cycles by a hyper-edge.

Obviously, it is not necessary to solve all seven equations

in a single (73) run because x1, x2 and x3 do not depend

on xj, j = 4,...,7 which are lying downstream in the network.

Consequently, x1, x2, and x3 are to be computed in (33)

steps first, followed by another (33) computation for x4,

x5, and x6. Finally, x7 can be determined from the prede-

cessor node solutions for x2 and x6 by evaluating the quad-

ratic term x7 = (v5·x2·x6)/v6 = x2·x6 in (1) steps. For the

simple example this is already six times faster than the
unpartitioned solution, but for realistic networks the
speedup factor is usually much higher (factor 102 – 105;
depending on network connectivity).

Graph isomorphisms and tracing of labeled compounds
A closer inspection shows that, due to their very special
origin, ILNs are not just ordinary computational graphs.
Because of the combinatorial way an ILN is constructed
from a much smaller atom network the ILN is expected to
contain redundancy to a great extent. In this context cyclic
sub-networks, i.e. the sets of cyclically interdependent
nodes, are of special interest. For the small network
shown in Fig. 1 such node sets are {x1, x2, x3} and {x4, x5,
x6}. As a major result it will turn out that ILNs naturally
break up into a high number of these sets, always yielding
an enormous computational speedup when solving the
associated LBEs.

Moreover, many of the cyclic components are isomorphic.
In the example network in Fig. 1 the two cycles describe
isomorphic components since the nodes matched by x1 ≡
x4, x2 ≡ x5, and x3 ≡ x6 are connected by the same flux val-
ues. Since these isomorphic components essentially
describe identical subsystems of the equations, their iden-
tification gives precise statements about the redundancy
contained in the ILN. By preventing repeated solution of
these isomorphic subsystems additional speedup is possi-
ble.



 ( ) ... ( )n nk1
3 3+ +








Illustrative example networkFigure 1
Illustrative example network. The network's cyclic sub-
systems given by node sets {x1, x2, x3} and {x4, x5, x6} share 
the same fluxes form algebraic subsystems, as well. The sec-
ond cycle depends on the first. Node x7 depends on nodes x2 
and x6 by a quadratic term.
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influx efflux
x1 : v0 · x0 + v3 · x3 = v1 · x1

x2 : v1 · x1 = (v2 + v5) · x2

x3 : v2 · x2 = (v3 + v4) · x3

x4 : v4 · x3 + v3 · x6 = v1 · x4

x5 : v1 · x4 = v2 · x5

x6 : v2 · x5 = (v3 + v5) · x6

x7 : v5 · x2 · x6 = v6 · x7
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Last but not least, the global topological analysis of ILNs
yields a complete understanding of the flow of labeled
material in the network which is extremely helpful infor-
mation for experimental design. Hitherto, this informa-
tion could only be obtained for specific networks by the
manual tracing of labeled compounds through the net-
work.

The focus of this contribution is on topological network
analysis and not on the algorithmic details of equation
formulation and solution which will be treated in a future
publication. Nevertheless, a first prototype of a topology-
based LBE solver has been implemented which demon-
strates that a speedup factor of about 1000 can be
achieved for a realistic E. coli carbon ILN. This speedup
will already solve most of the current performance prob-
lems mentioned in the introduction. Moreover, to keep
the exposition short, the ILNs are described from the view-
point of the cumomer method [14], although the intro-
duced concepts apply to any of the above mentioned
types of network graphs.

Methods
Networks in MFA
The formal structure of ILNs is well documented in litera-
ture [14,39,42,43,48]. However, to give a precise defini-
tion of the terminology and nomenclature used in this
contribution a brief summary of the basic concepts is
given in this section.

Metabolic networks and isotope labeling networks
The subject of isotope-based MFA and the context of this
work is the quantification of the material flow between a
cell's intra-cellular metabolite pools. MFA is based on the
forward simulation of an ILN, which determines how

metabolic reactions distribute an isotope labeling, taken
from the substrate (e.g. a 13C labeling taken from a pool
of glucose molecules), among the cell's metabolic pools
when the reaction rates (flux values) are assumed to be
known.

The metabolite network (cf. Fig. 2a) is the most basic
graph representation used in this context and shows how
metabolic pools are connected by the biochemical reac-
tions. These networks can be formalized by hyper-graphs
since they contain hyper-edges for bimolecular reactions.
The representation in Fig. 2a lacks the information about
how atoms are transported between the pools, which is
crucial for MFA. This missing information about the reac-
tions atom transitions (i.e. their permutation property) is
contained in the atom transition network (cf. Fig. 2b). As
opposed to the metabolic network the atom transition
network can be represented by a standard directed graph.

Unfortunately, labeling data are seldomly directly related
to single atom positions. To explain NMR and MS meas-
urements, a more detailed representation of molecular
labeling states is necessary. For this purpose, a third graph
representation is introduced – the isotopomer network.

Isotopomer networks
Isotopomers are isotopic isomers, i.e. molecular entities
that differ solely in their isotopic composition. Unlike the
atom transition networks, isotopomer networks are a
well-suited basis for the evaluation of ILEs because they
allow the balancing of metabolic pools in all possible
labeling states (cf. Fig. 2c). From a structural viewpoint,
isotopomer networks do not contain more information
than the carbon atom networks because the one is derived
from the other.

Example metabolic networkFigure 2
Example metabolic network. a) reaction network, b) atom transition network, c) isotopomer network. The number of 
compartments and transitions in the isotopomer network increases exponentially with the length of atom backbones.
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The simulation of LBEs in terms of isotopomers suffers
from a combinatorial explosion of the number of nodes,
because a metabolite with s atom positions available for
isotopic labeling is expanded into a set of 2s different iso-
topomers. Even for a small atom transition network this
may result in a large ILN graph; depending on the size of
the molecules included.

Fortunately, the whole ILN can be transformed into a net-
work of Cumomers (cumulative isotopomers), henceforth
called cumomer labeling network (CLN) which enables
the partitioning of the network graph. Since the resulting
partitions contain only unimolecular transitions and spe-
cial degenerated types of bimolecular transitions, the cor-
responding system of cumomer balance equations is
linear in its unknowns [42].

Cumomer networks

A cumomer is a virtual particle which is called cumulative
because it describes a set of isotopomers. While each atom
position in an isotopomer is either in state labeled/●  or
unlabeled/❍  the atom positions in cumulative isotopom-
ers are in one of the two states labeled/●  or don't care/ .
Here, the special state don't care/  represents a wildcard
which is expanded into the set of states {•, ❍ } so that
cumomers containing these wildcards describe sets of iso-
topomers (e.g.

).
Likewise, the cumomer transitions described by metabolic
reactions can be understood as one-to-one mappings
between sets of isotopomers.

In other words, the labeled atom positions in a cumomer
describe a labeled fragment which is shared among its set
of isotopomers. From this perspective the reactions in a
cumomer network describe how labeled fragments of cer-
tain size are transported by the metabolic reactions. These
fragments may be permuted by the metabolic reactions so
that they are not necessarily contiguous (e.g. ).
Paths through the cumomer network graphs can be char-
acterized by the property that a certain subset of atoms is
retained by a chain of metabolic reactions (cf. Fig. 6).

Definition 1 (cumomer weight). If the term weight is used
in connection with cumomers it shall denote the fragment size
which coincides with the number of atom positions that are in
state labeled/● .

The weight of cumomers induces the partitioning of the
cumomer space:

• In weight-0-cumomers all atom positions are occupied
by wildcards ( ) and a cumomer of weight 0 and size s
always describes the full set of 2s isotopomers in all possi-
ble labeling states, i.e. the metabolic network itself.

• Another important special case is the network described
by the transitions between weight-1-cumomers. This net-
work describes the transport of single-atom fragments,
and therefore the atom transition network. Since all bal-
anced atoms in the metabolite pools originate in the net-
work's input pools the transitions in this special network
connect every atom in the system with one or more atoms
of the substrate pools.

• Weight-k-networks constitute the subset of reactions
that transport a labeled fragment of size k. A metabolite
with k atom positions has exactly one representative on
level k and none on the weight levels > k.

Assembling cumomer networks
The change from isotopomer to cumulative isotopomer
pools raises the important question how the cumulation
of isotopomer pools affects the transitions in the network
and therefore the topology of network graphs. As shown
by the following rules the translation of unimolecular
transitions, as well as bimolecular assembly transitions, is
straight forward. For bimolecular split transitions the cen-
tral concept of weight conservation applies which prevents
transitions that would reduce weight, i.e. distribute the
labeling of an educt on more than one product. The rules
for the translation of isotopomer networks into cumomer
networks can be summarized as follows (see [42] for an
alternate formulation):

Definition 2 (basic translation rules). The transformation
of isotopomer transitions into cumomer transitions can be per-
formed by application of the following basic translation rules:

1. Replace all unlabeled atom positions ❍  by wildcard labels .

2. If transitions associated with splitting reactions violate the
weight conservation constraint, i.e. more than one product has
a non-zero weight, replace the transition by an efflux into a vir-
tual sink pool Ω.

3. Remove all weight-0-cumomers together with all incident
edges from the network.

Application of these rules on the example network in Fig.
2 leads to the cumulative isotopomer network in Fig. 3a:
rule no. 1 replaces unlabeled positions by wildcard labe-

lings. Rule no. 2 replaces the splitting reaction  → C• +

D• by an efflux into the special pool Ω. Finally the weight-
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0-cumomers  and the edges leading to and
coming from these pools are removed from the network
by rule no. 3.

Rule no. 3 can be justified by intuition: in a weight-0-
cumomer every position is occupied by a wildcard . In
other words: the whole cumomer is in state don't care.
Since a weight-0-cumomer describes a fragment of size
zero and is the complete set of isotopomers comprising all
possible labeling states they do not contain any informa-
tion at all and can be removed from the network (again,
see [42] for details).

Structure of this contribution
So far, it has been shown how isotopomer networks are
converted into cumomer networks. In contrast to the
ILNs, the CLNs presented in the previous section possess
a weight conservation property which establishes a subdivi-
sion of cumomer networks and a partitioned solution.
The following section will briefly review this long-known
property in order to pave the way for two new graph-the-
oretical features, proven in the subsequent parts.

The first new feature unveiled is decreasing connectivity with
increasing cumomer-weight, which describes an incremental
break-up of cumomer networks for larger fragments. The
second new feature is the inherent isomorphism of sub-

graphs, which can be characterized as an effect introduced
by the combinatorial fashion the isotopomer and
cumomer networks are built. Isomorphism also affects the
cumomer network graph's strongly connected compo-
nents which is further exposed at the end of this section.

Section Example network then shows the practical conse-
quences of the obtained results for a realistically sized E.
coli 13C labeling network, consisting of a cascaded
cumomer network containing about 104 cumomer nodes.
In sec. Global connectivity and reachability an important
application of the connectivity concepts is given by the
global study of connectivity and reachability of network
nodes. The general concept of a reduced network is intro-
duced which explains the formation of a certain labeling
state in a desired subset of metabolic pools. It turns out
that the dimension of the E. coli cumomer network can be
strongly reduced depending on the measurement config-
uration and the present input labeling mixture.

Results and discussion
Topological properties of cumomer networks
This section summarizes the topological consequences of
the transformation rules presented in sec. Cumomer net-
works and introduces new theoretical results. For the com-
prehension of the following sections basic knowledge of
graph theory is assumed and only the basic concepts shall

A��������,B��������,C����,D��

��

Cumomer networksFigure 3
Cumomer networks. a) Cumomer network for the carbon atom transition network in Fig. 1. b) natural cascaded structure 
of cumomer networks given by the weight of cumomers.
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be briefly introduced here (see e.g. [49] for an introduc-
tion).

In order to describe the topological properties of the
cumomer cascade it is helpful to introduce the notion of
a labeled digraph:

Definition 3 (labeled digraph). A labeled directed graph
(labeled digraph) G = (V, E, ΣE) is a structure which consists
of a set V of "nodes" labeled 1, 2,..., n, a set ΣE of "edge labels"
and a mapping E ⊆ V × ΣE  V called "edges".

In contrast to the commonly used definitions for directed
graphs this definition allows to have multiple edges with
different edge labels between a pair of nodes.

The cumomer cascade
The first important consequence of the rules presented in
Def. 2 is that cumomer networks have a natural partitioning
by weight [42]. By the application of rule no. 2 all weight-
reducing transitions induced by splitting reactions are
removed from the network. Since all remaining transi-
tions are either unimolecular, weight conserving bimo-
lecular splitting reactions or bimolecular assembly
reactions, all transitions either conserve or increase the
weight of cumomers.

Grouping cumomers by weight leads to a natural parti-
tioning into cascaded network graphs (1G, 2G,...,sG) with
kG = (kV, kE, ΣE) for 1 ≤ k ≤ s (cf. Fig. 3b). Within these
graphs kG, transitions kE are weight-conserving [42]:

• Unimolecular transitions are always weight-conserv-
ing. For example, in Fig. 3, the unimolecular transitions

induced by reactions σ0 

and σ1  transport the

complete isotope labeling from the educt to the product
cumomer.

• Splitting transitions transport the full weight of the
educt cumomer to a single product cumomer. In the split-

ting reactions σ2 of Fig. 3, this holds for the transitions 

→ C• and  → D•. There is no such transition for 
because distributing the weight on C• and D• is not
allowed.

• In assembly transitions, the full weight of the product
cumomer is originated in only one educt cumomer. For

reaction σ3 in Fig. 3 this holds for transitions C• →  and

D• → . The transition C•, D• →  creates a product of
higher weight and connects the cascade levels.

If, for an assembly transition, there is more than one educt
cumomer with weight > 0, the assembly reaction induces
a hyper-edge which connects multiple educt cumomers
with one product cumomer by crossing levels of the cas-
cade. Within the levels of the cascade, the remaining
assembly transitions are weight-conserving.

From the viewpoint of cumomer balance equations
hyper-edges are treated as ordinary influxes from source
pools and do not require special treatment. Clearly, these
hyper-edges are not covered by Def. 3, since edges are
defined to connect exactly two nodes. Because the weight
level cumomer network graphs kG discussed in the follow-
ing are free of hyper-edges, the associated hyper-graphs
are not needed, and hence not formally introduced here.

Decreasing connectivity with increase of weight
The following lemma states that weight level 1 is always
the most connected graph in the cumomer cascade and
the global connectivity decreases with increasing cascade
level:

Lemma 1 (decreasing connectivity). Let kG = (kV, kE, ΣE)

denote the cumomer cascade's graph on weight level k. Let

denote the average node degree (i.e. the

average number of edges leaving a node), which is a measure
for the graph's connectivity. With increasing weight level k the

average node degree decreases monotonically, i.e. ε(k+1G) ≤
ε(kG) for k = 1, 2,..., s - 1.

The proof can be found in the appendix. Tab. 1 illustrates
the consequences of lemma 1 on three minimal networks,
each consisting of a single reaction. The '#'-notation used
for the cumomers in this example was introduced in [42]
and is employed throughout the whole contribution: the
"1" denotes a labeled/●  atom position and the "x" a
don't-care/  atom position, while the order of labeling
positions •/  characterizes a reaction's specific atom
transport properties. Tab. 1 shows the cumomer nodes
and transitions on the individual weight levels for each of
the minimal networks. For the unimolecular reaction,
connectivity does not change over the weight levels while
for the bimolecular types connectivity decreases monot-
onically.

A reaction's permutation property not only defines which
pairs of cumomer nodes are connected by an edge, it also
defines how many edges can be found on the individual

{©E������→©A������,E������→©A������,E����→©A����}

{©A������→©B������,A������→©B������,A����→©B����}©

B����

B����� B���

A����

A����� A���

ε( ) | | / | |k def k kG E V

��

��
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network levels. To quantify this observation, it is helpful
to introduce the term width of a reaction:

Definition 4 (width of a reaction, width of a reaction
sequence). The term width of a reaction shall denote the

maximum size of a fragment transported between the reactants
on both sides of the reaction:

1. The width of an unimolecular reaction  : A#a1a2... as

B#b1b2... bs simply corresponds to the number s of transported

labeling positions, i.e. .

2. For any bimolecular reaction  : A#a1a2... aq + B#b1b2... br

C#c1c2... cs where q + r = s the width is defined by the number

of labeling positions transported between the pools, i.e.

.

3. The width of a sequence of reactions, , which

transport molecular fragments through pools P0,..., P� are

inductively defined as the maximal size of a transported frag-
ment, i.e. the minimum of widths of the involved reactions
which is given by the size of the smallest atom backbone in the
reaction sequence:

4. width( , A, B) = width( , B, A), i.e. the width of a reac-
tion shall not depend on its reversibility.

Example: in Fig. 4 (top) the width of the unimolecular
reactions A → B and D → E is three since three atom posi-
tions are transported. The width of the bimolecular split-
ting reaction B → F + C is one for B → F and two for B →
C. The width of the reaction sequence A → ... → E is the
minimum of the individual widths, i.e. the reaction
sequence transports a fragment of size two.

Lemma 2 (number of edges induced by reactions). The
number of edges induced by a metabolic reaction on a specific
weight level k of the cumomer cascade depends on its width:

1. An unimolecular reaction  : A#a1a2 ... as → B#b1b2 ... bs

induces

edges on weight level k of the cas-

cade.

2. A bimolecular reaction  : A#a1a2 ... aq + B#b1b2 ... br

C#c1c2 ... cs induces



width s
def
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Table 1: Consequences of lemma 1

weight A#abc → B#acb ε(kG)

1 A#1xx → B#1xx

A#x1x → B#xx1
A#xx1 → B#x1x

2 A#11x → B#1x1

A#1x1 → B#11x
A#x11 → B#x11

3 A#111 → B#111

weight B#abc → C#a + D# cb ε(kG)

1 B#1xx → C#1

B#x1x → D#x1
B#xx1 → D#1x

2 B#11x

B#1x1
B#x11 → D#11

3 B#111 0

weight C#a + D#bc→ E#bac ε(kG)

1 C#1 → E#x1x

D#1x → E#1xx
D#x1 → E#xx1

2 E#11x

E#x11
D#11 → E#1x1

3 E#111 0

Three different networks consisting of a single reaction. Connectivity 
ε(kG) decreases monotonically with increasing weight level k.

1
2

1
2

1
2

1
2

1
4

1
2

1
4
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edges on

weight level k of the cascade.

The simple proof is left to the reader. Again, Tab. 1 can be
used to illustrate lemma 2: the unimolecular reaction

induces  edges and both bimolecular reactions

induce  edges ("→") for k = 1, 2, 3. Thus,

lemma 2 shows that the number of edges induced by a
metabolic reaction on a certain level of the cumomer cas-
cade depends only on the number of atoms transported
between the individual educt-product pairs.

Isomorphic subgraphs within the cascade
Although the cumomers originating in the same meta-
bolic pool can be found on different weight levels of the
cascade, they are connected by edges with the same flux
labels ΣE that connect the underlying metabolic pools.
This similarity of graphs can be formalized by the notion
of graph isomorphism:

Definition 5 (graph isomorphism). A subgraph Gs= (Vs, Es,
ΣE) of a graph G = (V, E, ΣE) is given by a set of nodes Vs ⊂ V
and an associated set of edges Es ⊂ E where (u, σ, v) ∈ Es ⇔
(u, σ, v) ∈ E ∧ u, v ∈ Vs. Two subgraphs G1 = (V1, E1, ΣE) and
G2 = (V2, E2, ΣE) are isomorphic if and only if there exists a
bijective function (permutation) π : V1  V2 which relabels the
nodes of V1 with the properties V2 = π(V1), and (p, σ, q) ∈ E1
⇔ (π(p), σ, π(q)) ∈ E2. The isomorphism between G1 and G2
shall be informally denoted as G2 = π(G1) resp. G1 = π-1(G2).

A directed path of length � from a node p to a node r is a
sequence of edges (e1, e2,..., e�) such that ei = (qi-1, σi, qi),
q0 = p, and q� = r. The following lemma, whose proof can
be found in the appendix, quantifies the appearance of
isomorphic subgraphs defined by a directed path's nodes
q0,..., q�:

Lemma 3 (isomorphic paths). Given a sequence of reactions

that transports a (not necessarily continuous) frag-

ment through the pools P0,..., P�. Assume that all participating

metabolite backbones in this path can be labeled on at least s

atom positions, i.e. width( , P0,..., P�) = s.

width

k

width

k

q

k

r

k

( , , ) ( , , ) A C B C







 +









 =









 +
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k











1 2

k k









 +











 1,..., �

 1,..., �

Illustration of lemma 3Figure 4
Illustration of lemma 3. Lemma 3 illustrated: multiple isomorphic copies of the original path A → E (top) on different 
weight levels. Assembly transitions connecting the weight levels and effluxes into Ω are omitted.
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Then the original reaction sequence induces disjoint iso-

morphic paths on levels k = 1,..., s of the cascade (i.e. 2s - 1 dis-
joint isomorphic paths in total) which are "copies" of the
original reaction sequence and do not share common cumomer
nodes (i.e. disjoint isomorphic paths).

Fig. 4 illustrates lemma 3 on a sequence of reactions trans-
porting a fragment of size two from pool A to pool E:
A#abc → B#abc, B#abc → F#a + C#bc, C#ab + G#c →
D#abc, D#abc → E#abc: Pool C has the shortest atom
backbone within the reaction chain and limits the frag-
ment size to two atoms. As lemma 3 predicts, there are
two isomorphic copies of the reaction chain on level one
of the cascade and a single copy on level two. There are no
isomorphic paths left on weight level three because of the
disappearance of pool C. Summing up, there are 2 + 1 + 0
= 22 - 1 isomorphic paths from pool A to E in the cascade.
For the shorter sub-path from pool A to B, which carries a
fragment of three atoms, there are 3 + 3 + 1 = 23 - 1 iso-
morphic paths in the cascade.

Isomorphic paths naturally extend to isomorphic sub-
graphs. Likewise a reaction sequence that transports a

fragment of size s leads to  isomorphic paths on

weight level k of the cascade, there are  isomorphic

copies of a metabolic network's subgraph iff all reactions
transport a fragment of at least size s. It follows, that a con-
nected subgraph of a metabolic network induces con-
nected isomorphic subgraphs in the cumomer cascade as
long as weight level k does not exceed the size s of the
shortest fragment transported between the metabolic
pools.

Components of cumomer network graphs
As motivated for the illustrative example at the beginning,
the smallest structural units of an ILN are the subgraphs
containing cycles. In order to describe how labeled frag-
ments cycle through the network this informal conception
can be formalized by introducing the notion of strongly
connected components (SCCs):

Definition 6 (strongly connected component). A subgraph

Gs = (Vs, Es, ΣE) of labeled digraph G = (V, E, ΣE) is strongly

connected if there exists a directed path (e1,..., e�) ∈

between any pair of its nodes (p, q) ∈ Vs. Gs is a strongly

connected component of G if it cannot be enlarged by adding

more nodes and associated edges without losing the property of
being strongly connected.

Again, Fig. 1 illustrates the concept: obviously, the nodes
within the two cycles are strongly connected. Starting at a
node of the right cycle there is no way to reach the nodes
of the left cycle. Consequently, there are two groups of
strongly connected nodes. Since adding x0 or x7 to either
groups would break their strongly connectedness the two
cycles already represent the SCCs of the network. By con-
vention, a solitary node shall be treated as a SCC consist-
ing of a single node, hence the example network graph
consists of four SCCs.

The component graph is an important graph associated with
a graph's decomposition into SCCs. Its nodes are the SCCs
of the original graph and it contains a directed edge
between two nodes if there is at least one edge in the orig-
inal graph which connects nodes of the corresponding
SCCs. Hence, the component graph is acyclic and there
exists an order on its nodes (i.e. the original graph's
SCCs), which is called topological sort. The component
graph is topologically sorted iff for all edges from i to j
node i appears before node j [49]. A topological sort for
the example network in Fig. 1 is (x0, {x1, x2, x3}, {x4, x5,
x6}, x7). The following definition introduces the notion of
a connected component (CC). The CCs of a digraph describe
a weaker form of connectivity:

Definition 7 (connected component). A connected compo-
nent is a subgraph Gs = (Vs, Es, ΣE) of a labeled digraph G = (V,
E, ΣE) which were a SCC if its edges Es could be traversed in
any direction.

Obviously, a digraph is said to be connected if it consists
of a single CC. In particular CCs describe a partition of a
digraph's nodes and edges into disjoint subsets, i.e. dis-
connected subgraphs. Any of these CCs is either a SCC or
can be further split into a set of SCCs.

E. coli example network
This section illustrates the practical consequences of the
theoretical results of the previous sections on the basis of
a realistic 13C labeling network which models the central
metabolism and the attached biosynthesis pathways of E.
coli (cf. Fig. 5, Additional file 1).

Two variants of this metabolic network will be discussed
in the following. In the first variant, network "A", the
reversibilities of metabolic reactions are assumed to be
realistic, i.e. the majority of metabolic reactions is consid-
ered to be bidirectional. Tab. 2 summarizes the setup of
network "A". The detailed reaction network can be found
in the supplementary material. In the course of this sec-
tion network variant "B" is introduced. This extreme vari-
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E. coli example networkFigure 5
E. coli example network. The central metabolism of E. coli with attached biosynthesis pathways.
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ant of network "A" shares the same metabolic reactions,
however all reactions are considered to be unidirectional.
Although this assumption is certainly not realistic, the
comparison of both network variants is valuable for
emphasizing the topological effects of reversible reac-
tions.

SCCs and CCs represent recognizable subsystems that can
be found throughout the weight levels of the whole
cumomer cascade. For this reason (S)CCs are an ideal test
case to illustrate the theoretical results of the previous sec-
tion.

Incremental break-up of the network graphs
The number of weight levels of the corresponding
cumomer cascade is given by the size of the largest carbon
atom backbone in the system – the amino acid L-tryp-
tophan (pool Trp). The cascade's subgraphs kG = (kV, kE,
ΣE) are characterized in Tab. 3: column |kV| contains the
number of nodes for the respective level of the cascade
and therefore the number of cumomers of weight k. As
predicted by lemma 1, the graphs' connectivity ε(kG)
decreases monotonously with increasing weight level k.

Likewise the global connectivity ε(kG) decreases with
increasing cascade level k (cf. lemma 1) the SCCs have a
tendency to break up into smaller SCCs: weight level one
consists of a single CC which contains large SCCs. With
increasing weight level the number of CCs increases,

while the average number of nodes per CC decreases. The
higher levels of the cascade are mainly disconnected, e.g.
level 8 has 229 nodes but only 9 smaller SCCs and 202
disconnected nodes. Level 9 is completely disconnected
except a single SCC of size 3. In level 10 finally only
detached nodes remain.

The impact of bidirectional reactions
The presence and size of SCCs is mainly governed by the
reversibility of metabolic reactions: every bidirectional
unimolecular reaction trivially causes two nodes to be
strongly connected and every linear chain of bidirectional
reactions results in a strongly connected subgraph. Only
few SCCs in the cascade's graphs are actually caused by
cyclic reaction chains in metabolic pathways. To quantify
this statement an extreme variant of the E. coli network,
referred to as network "B" in the following, is examined
where all metabolic reactions are assumed to be unidirec-
tional.

The results are shown in Tab. 4. At first, it is important to
note that this modified network has the same CCs, i.e. the
restriction of reversibilities does not disconnect the net-
work graphs. Furthermore, the carbon atom network
(weight level one) is still connected in the sense that every
carbon atom in the system can be reached by a path com-
ing from the substrate atoms. For this reason, the SCCs of
network "B" describe (nontrivial) cyclic reaction chains,
Fig. 6.

Table 2: Configuration of the example network "A"

pools 87 (3 sources, 30 sinks, 54 inner)
reactions 94 (3 input, 30 output, 61 inner reactions)
inner reactions 61 (19 unidirectional, 42 bidirectional)
size of largest carbon backbone 11 (Trp)
reactions considered as unidirectional emp2 emp9 edp2 edp3 ppp1 tcc1 tcc2 tcc3 tcc4

tcc5 tcc6 tcc7 tcc8a tcc8b tcc9 ana1 ana2 gs1 gs2

Table 3: Topological analysis of the cumomer cascade of example network "A" (realistic flux reversibilities)

level k |kV| |kE| CCs (avg. size) ε(kG) distribution of SCC sizes

1 263 615 1 263.00 2.34 12: 1:7x 3:1x 4:2x 70:1x 175:1x
2 633 1089 133 4.76 1.72 231: 1:175x 2:11x 3:7x 4:16x 5:4x 6:6x 7:4x 8:1x 10:1x 12:1x 18:1x 23:1x 50:1x 64:1x 82:1x
3 1003 1391 397 2.53 1.39 531: 1:424x 2:21x 3:15x 4:25x 5:4x 6:24x 7:8x 8:1x 10:5x 18:1x 23:2x 50:1x
4 1201 1414 658 1.83 1.18 747: 1:625x 2:22x 3:23x 4:19x 5:3x 6:44x 7:5x 10:5x 23:1x
5 1158 1150 770 1.50 0.99 802: 1:703x 2:15x 3:24x 4:7x 5:2x 6:48x 7:1x 10:2x
6 896 699 680 1.32 0.78 685: 1:626x 2:6x 3:19x 4:1x 5:1x 6:32x
7 532 290 447 1.19 0.55 447: 1:422x 2:1x 3:12x 6:12x
8 229 72 209 1.10 0.31 209: 1:202x 3:5x 6:2x
9 67 8 65 1.03 0.12 65: 1:64x 3:1x
10 12 0 12 1.00 0.00 12: 1:12x
11 1 0 1 1.00 0.00 1: 1:1x
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The large SCC on level one of dimension 24 covers the full
TCA cycle and describes two independent paths of single
carbon atoms through the cycle's metabolites. These two
paths are connected by the GlyOx#x1 cumomer and the
anaplerotic reactions. A similar cycle is described by the
SCC of size 18 shown in Fig. 6 where pool SucCoA is

bypassed completely by a path through cumomer
GlyOx#1x. This bypass via the GlyOx pool has the ability
to transport a fragment of size two and is found as the SCC
of size 14 on level two of the cascade (cf. Fig. 6). Since
there is no SCC on weight level two which includes
cumomers of pool SucCoA, only a single carbon atom
may be kept on a cyclic path through all the pools of the
TCA cycle.

The graphs on weight levels 10 and 11 contain no edges at
all, which indicates that the cumomers of the correspond-
ing weight are fed from the lower levels of the cascade as
the product of assembly reactions.

Isomorphic SCCs
As stated above, the SCCs of the cumomer network
describe cyclic pathways of certain labeled fragments. On
the other hand SCCs represent distinguished subsystems
of cumomer network graphs they are a convenient test
case to demonstrate the consequences of lemma 3, i.e. a

SCC of network "B" (TCA cycle)Figure 6
SCC of network "B" (TCA cycle). A SCC of network "B" found in the TCA cycle on network level one. The pool SucCoA 
(Succinyl coenzyme A) is bypassed by GlyOx (Glyoxylate) and CO2 (CO2).

Table 4: Topological analysis of the cumomer cascade of example 
network "B" (unidirectional fluxes)

level k |kV| |kE| CCs (avg. size) ε(kG) distribution of SCC sizes

1 263 354 1 263.00 1.35 217: 1:212x 3:3x 18:1x 24:1x
2 633 620 133 4.76 0.98 614: 1:610x 3:3x 14:1x
3 1003 771 397 2.53 0.77 1001: 1:1000x 3:1x
4 1201 753 658 1.83 0.63 1201: 1:1201x
5 1158 591 770 1.50 0.51 1158: 1:1158x
6 896 352 680 1.32 0.39 896: 1:896x
7 532 145 447 1.19 0.27 532: 1:532x
8 229 36 209 1.10 0.16 229: 1:229x
9 67 4 65 1.03 0.06 67: 1:67x

10 12 0 12 1.00 0.00 12: 1:12x
11 1 0 1 1.00 0.00 1: 1:1x
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cumomer network can be expected to contain isomorphic
SCCs if only a strongly connected subgraph transports a
fragment of more than one atoms.

The standard approach to find a graph isomorphism, i.e.
to compute at least one possible node renaming π, is to
perform a clever backtracking through all |V|! possible
node assignments [50]. Although, there is no polynomial-
time algorithm known for the general graph isomorphism
problem this standard algorithm performs well, especially
if graphs are as loosely connected as the cumomer net-
work graphs.

The key to even more efficient isomorphism testing is to
partition the node set into equivalence classes such that
two nodes in different classes cannot possibly be mistaken
for each other [51]. For cumomer network graphs, the
basic equivalence classes are a-priori given by the nodes'
origin in the underlying metabolic pools. These classes
can be further split into subclasses by comparing node
degree and labels of incident edges. Therefore, the detec-
tion of isomorphic SCCs in cumomer network graphs is
efficient in practice.

Because of the greater practical relevance, and the more
interesting SCC distributions the weight level graphs of
network "A" were analyzed for graph isomorphisms. Tab.
5 shows the results of this analysis. The surprising out-
come is that there are only very few unique SCCs: the larg-
est graph, 4G, contains 122 SCCs with ≥ 2 nodes but only
12 distinct SCC equivalence classes. The largest equiva-
lence classes found in graphs 2G through 8G belong to a
single isomorphic SCC of size six that describes transi-
tions between cumomers of the pools Chor, Phe and Tyr
which transports a fragment of eight carbon atoms, shown
in Fig. 7. This example is exceptional, since SCCs tend to

break up with increasing cascade level – in fact, in 1G this
subsystem is embedded in a larger SCC. Therefore, the
SCC distribution cannot be expected to follow lemma 3
precisely.

Fig. 8 shows the component graph of 1G. A component
graph can be constructed from a digraph by contracting
the digraph's SCCs into nodes and removing multiple
edges between these new nodes. The component graph is
a directed acyclic graph (DAG) by construction. The com-
ponent graph in Fig. 8 contains two isomorphic SCCs of
size four which lie on parallel paths and cannot be
reached from each other.

Global connectivity and reachability
In a reasonable ILN, every labeling position in every pool
can be traced back to at least one labeling position of a
substrate pool through a path of metabolic reactions. On
the other hand, this means that every isotopomer (and
therefore also every cumomer) can be synthesized by the
network if only the substrate pools consist of a suitably
labeled mixture of isotopomers.

Therefore, at least if the fully labeled isotopomer substrate
is part of the input substrate mixture, all labeling posi-
tions in the network are affected. On the other hand, not
all labeling positions of the substrate may be needed to
describe the synthesis of a certain isotopomer. Hence,
every node of the ILN can be associated with a set of essen-
tial substrate nodes which fully determines its labeling state.

Furthermore, any node can be associated with a reduced
network defined by a set of essential nodes which can be
found on paths leading from the node's essential substrate
nodes to the node itself, i.e. a set of topological predecessors.
Such a reduced network is typically much smaller than the

Table 5: Equivalence classes in the SCC distributions

level k s'up s'up (iso) SCC equivalence classes; notation: [SCC size]class size

1 3x 3x 4: [3]1, [4]2, [70]1, [175]1
2 263x 264x 20: [2]3, [2]4, [2]4, [3]1, [3]6, [4]6, [4]10, [5]2, [5]2, [6]6, [7]1, [7]3, [8]1, [10]1, [12]1, [18]1, [23]1, [50]1, [64]1, [82]1
3 5877x 6899x 16: [2]3, [2]4, [2]14, [3]15, [4]10, [4]15, [5]1, [5]3, [6]24, [7]2, [7]6, [8]1, [10]5, [18]1, [23]2, [50]1
4 55171x 115504x 12: [2]1, [2]1, [2]20, [3]23, [4]5, [4]14, [5]3, [6]44, [7]1, [7]4, [10]5, [23]1
5 104357x 608955x 8: [2]15, [3]24, [4]1, [4]6, [5]2, [6]48, [7]1, [10]2
6 86791x 674787x 5: [2]6, [3]19, [4]1, [5]1, [6]32
7 45000x 223728x 3: [2]1, [3]12, [6]12
8 15616x 26986x 2: [3]5, [6]2
9 3305x 3305x 1: [3]1

10 144x 144x 0: -
11 1x 1x 0: -

Underlined classes belong to an isomorphic SCC that transports a fragment of eight carbon atoms (cf. Fig. 7). Columns "s'up" and "s'up (iso)" give 

the theoretical speedup factor obtained when running the (n3) linear equation solver on the networks decomposed into SCCs and isomorphic 
SCCs.
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original network and clearly, a network reduction also
yields a dimension reduction of the corresponding IBEs.

Path tracing
In general, when tracing paths of isotopes through the
metabolic network, there are two distinct perspectives:

1. forward-tracing describes how an isotopic labeling of
the substrate distributes among the network's pools, i.e.
the result of a forward tracing analysis is a the set of nodes
affected by a certain labeling of the substrate.

2. back-tracing describes the set of nodes feeding a certain
node with isotopic labeling, and ultimately the set of
input nodes involved in the formation of a metabolite's
certain labeling state.

A forward-tracing of the labeling found in the isotopom-
ers of a certain substrate mixture can be performed in the
cumomer network e.g. by a depth-first-search starting at
the associated substrate cumomers. Special care has to be
taken for assembly reactions, i.e. when the depth-first
search crosses the levels of the cumomer cascade: the
product is reachable from the substrate if and only if all
educts are reachable from the substrate. Tab. 6 summa-
rizes some results for the E. coli network "A".

It turns out that single carbon atom positions influence
nearly all cumomers in the network (and therefore, also
all isotopomers). As expected, the coverage increases with
an increasing number of labeled carbon atoms, and, as
stated above, the fully labeled substrate isotopomer covers
all cumomers in the network. Curiously, the third carbon
atom of the glucose substrate influences only a very small
number of cumomers.

The back-tracing can be performed by computing the tran-
sitive closure of the cumomer cascade. For a selected
cumomer, the result of the back-tracing analysis describes

a reduced cumomer network. Such a reduced network is min-
imal for the cumomer node in question, since it contains
only cumomer nodes that are essential for the computa-
tion of the selected cumomer's labeling state. In essence,
this dimension reduction results in a more efficient solu-
tion of LBEs, since only a minimal se of required LBEs has
to be solved. For example, Tab. 7 gives the sizes of the
reduced networks necessary to describe the isotopomer
labeling distributions of the nineteen amino acid pools
found in the E. coli network "A".

Clearly, when forward- or back-tracing hits a node con-
tained in a SCC, immediately all nodes of the SCC are
reachable from the substrate nodes and contained in a
node's set of essential nodes, respectively. Hence, forward-
and back-tracing benefit from the global topological anal-
ysis of the cumomer network, since it is much faster to
perform this analysis on the component graph than on
the unpartitioned network.

By the topology of the cumomer cascade, a cumomer
node never depends on a cumomer node of higher weight
and therefore the number of a node's topological prede-
cessors naturally increases with increasing weight level of
the node. The following statements exemplarily summa-
rize the dependencies for the selected pools GA3P (D-
glyceraldehyde 3-phosphate, three carbon atoms) and Lys
(L-lysine, six carbon atoms) of the E. coli network dis-
cussed in sec. Example network. This dependency informa-
tion is generated by evaluating the transitive closure of a
graph containing the complete cumomer cascade of net-
work "A", comprised of 10304 cumomer nodes.

• The cumomers of pool GA3P depend on 652 (only
6.3%) other cumomers of the network and only 15 of the
63 cumomers of the three substrate pools Glc1_in,
Glc2_in, and Glc3_in are used in the formation of GA3P.
Because GA3P consists of only three carbon atoms, this is
below the theoretical maximum, since there are 41 sub-

Example SCC with isomorphic copiesFigure 7
Example SCC with isomorphic copies. A SCC found in network "A" that transports a fragment of size eight. Isomorphic 
copies of this SCC can be found on weight levels 2 through 8 (cf. Tab. 3).
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Component graph of level oneFigure 8
Component graph of level one. The component graph (a DAG) of cascade level one in example network "A": two isomor-
phic SCCs of size four (shaded).
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strate cumomers with up to three labeled carbon atoms.
Furthermore, GA3P depends on the full sets of cumomers
of the following metabolites: AcCoA, CO2, DHAP, FTHF,
Gly, GlyOx, m13PGA, m2PGA, m3PGA, PEP, Pyr, Ser.

• The cumomers of pool Lys depend on all cumomers of
pool GA3P and additionally on the full set of cumomers
of the pools Asp, Fum, Mal, OAA, Succ, SucCoA, and Thr.
Although L-lysine has six carbon atoms, it only depends
on the same 15 substrate cumomers as GA3P. Because the
cumomers of L-lysine depend on 736 other cumomers, a
simulation would include only 7.1% of the network's
cumomers.

General flow of material
The component graph, a DAG that shows the relations
between the SCCs of the network, describes the general
flow of material through the network. While in level one
of the cascade every labeling position in the network is
reachable from at least one labeling position of the sub-
strate, this situation changes with increasing fragment size
which causes the cumomer network graph to break up
into many CCs.

The decomposition of the cumomer network graphs into
SCCs also reveals interesting information about how a
certain fragment cycles through a sequence of reactions.
For example, in Fig. 7 a fragment of eight carbon atoms is
transported by a cyclic sequence of four reactions.

Another example is the SCC consisting of 24 nodes found
on level one of the cumomer cascade in the unidirectional
network "B" (cf. Tab. 4). This SCC describes a cyclic path
of a single carbon atom through all reactions of the TCA
cycle. Because of the fact, that this is the only SCC describ-
ing such a closed path, it can be concluded that only a sin-
gle carbon atom has the potential to stay on the TCA cycle
for one or more rounds. For larger fragments, the TCA
cycle is broken up like in the example shown in Fig. 6.

Table 6: Impact and propagation of a certain isotopomer substrate in example network "A"

substrate isotopomer affected cumomers percentage

Glc[1,2,3]_in#100000 10118 98.2%
Glc[1,2,3]_in#010000 10118 98.2%
Glc[1,2,3]_in#001000 10118 98.2%
Glc[1,2,3]_in#000100 138 1.3%
Glc[1,2,3]_in#000010 10118 98.2%
Glc[1,2,3]_in#000001 10118 98.2%
Glc[1,2,3]_in#110000 10124 98.2%
Glc[1,2,3]_in#001100 10124 98.3%
Glc[1,2,3]_in#000011 10214 98.3%
Glc[1,2,3]_in#111000 10136 98.4%
Glc[1,2,3]_in#000111 10136 98.4%
Glc[1,2,3]_in#110011 10160 98.6%
Glc[1,2,3]_in#111100 10160 98.6%
Glc[1,2,3]_in#001111 10160 98.6%
Glc[1,2,3]_in#011111 10208 98.6%
Glc[1,2,3]_in#111111 10304 100.0%

Table 7: Reduced networks

pool atoms essential cumomer nodes percentage

Leu 6 297 2.9 %
Gly 2 488 4.7 %
Val 5 649 6.3 %
Arg 6 649 6.3 %
Glu 5 650 6.3 %
Ser 3 652 6.3 %
Ala 3 659 6.4 %
Cys 3 659 6.4 %
Gln 5 681 6.6 %
Pro 5 681 6.6 %
Lys 6 736 7.1 %
Ile 6 739 7.2 %

Met 5 741 7.2 %
Asp 4 742 7.2 %
Thr 4 742 7.2 %
His 6 983 9.5 %
Trp 11 1106 10.7 %
Phe 9 1802 17.5 %
Tyr 9 2313 22.4 %

In case only a small subset of cumomers needs to be simulated, e.g. all 
cumomers of a single amino acid pool, a reduced network can be 
extracted from the full cumomer network. The reduced network 
provides a significant dimensional reduction and is minimal in the 
sense that it consists of the smallest subset of cumomers necessary to 
describe the desired set of cumomers subject to simulation. As an 
example the sizes of the reduced networks for all nineteen amino acid 
pools in the E. coli network are shown. Note that if the network size 
reduces to p percent, then also the running time of the simulation 

algorithm reduces to (p3) percent.
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Conclusion
Speeding up metabolic flux analysis
Metabolic Flux Analysis (MFA) by using isotopic tracers
currently is the most reliable tool for the experimental
determination of metabolic fluxes in a living cell. In con-
trast to more specialized MFA approaches, universal
methods for the evaluation of isotope labeling experi-
ments (ILEs) do not rely on special assumptions on net-
work topology, flux reversibility or measurement
configuration. One major drawback of universal methods
is that they inevitably involve the solution of the full set
of nonlinear isotope labeling balance equations (IBEs)
describing the flow of labeled material in the network.
Moreover, this operation needs to be repeated in a nonlin-
ear parameter fitting procedure for flux estimation.

Consequently, computational complexity can be seen as a
major drawback of the inverse simulation method which
prohibits its application to larger networks, high through-
put experiments or the usage of advanced statistical meth-
ods. The present contribution addresses this problem by
revealing so far unknown properties of the underlying iso-
tope labeling networks (ILNs) and introducing a novel
algorithm for the solution of IBEs by exploiting these
properties.

Compared to the classical IBE solution method by
cumomer fractions, which can be considered as the state
of the art, the new algorithm provides a speed-up by a fac-
tor of 1000 for a realistically sized E. coli central metabolic
example network with about 104 cumomer nodes (and
about 6000 equations to be solved). A prototypical C++
implementation performs a single IBE solution run in
only 24 milliseconds. Clearly, by speeding up this central
computational step, all further MFA algorithms based on
simulation are accelerated by about the same factor.

Network decomposition
The functional principle of the novel IBE solution algo-
rithm is closely related to the structure of the ILN which
describes the isotopic label flow by a directed graph. The
computational speed-up is achieved by decomposing the
(linear) ILN's weight levels into smaller components.
Although this technique for dealing with linear equation
systems is well-known from other fields of scientific com-
puting, it strongly depends on the structure of the under-
lying equations whether this approach is successful. In
general, the application domain must have certain physi-
cal or geometrical properties that naturally lead to weakly
connected or even disconnected network structures.

In fact, the first weight level of ILEs (i.e. the atom transi-
tion network) is known to be quite strongly connected,
i.e. a network decomposition will only yield a minor
speed-up here. This might be the reason why, in this con-

text, network decomposition methods have not been con-
sidered before. The new discovery of the present
investigation is, that the higher weight level networks tend
to break up into a large number of very small compo-
nents, the strongly connected components (SCCs). Since
the networks on upper weight levels are usually of much
higher dimension compared to the atom transition net-
work (level one) this explains the dramatic speed-up of
equation solution.

The theoretical foundation of ILE network decomposition
is given by lemma 1 which, for the first time, rigorously
proves the incremental dissolution of weight level net-
works as an inherent property of ILNs. In particular, the
network connectivity decreases monotonously with
increasing weight level. This special feature of ILNs is
demonstrated for the E. coli network where 3716 of 3742
network components have a size smaller than 10.

Tracing of isotopic labeling
Knowing the fate of labeled molecules in a CLE is an
important information for experimental design. Since the
1980ies many researchers have manually traced labeled
molecular fragments through ILNs. However, this strategy
will never yield a complete structural understanding of
label flow. By applying graph theoretic concepts and algo-
rithms such a global understanding of ILNs has been
achieved for the first time. In particular, the SCCs reveal
all kinds of cyclic flows which is of special interest because
these cycles introduce interdependencies between IBEs.

There are two diametral perspectives when tracing iso-
topic labeling through the network: on the one hand, the
forward-tracing describes the fate of labeled compounds by
identification of the set of affected nodes. This is an espe-
cially interesting application for biochemists who are
interested in how the metabolic reactions distribute a spe-
cific isotopic labeling through the network. On the other
hand, the back-tracing elucidates the origin of certain frag-
ments, explains their formation and transport through the
network. Once a single node of a SCC is involved, all
other nodes of the same SCC can be reached, too.

Both, forward- and back-tracing become particularly sim-
ple. Knowing the SCCs the global label flow can be
described by an acyclic graph connecting cyclic subnet-
works. If one node of a SCCs is involved then all other
nodes of the same SCC are reachable by labeled material,
too.

As an example for path tracing, the isotopomer distribu-
tions of the amino acid pools found in the discussed E.
coli network were shown to be influenced by only of 5–
20% of the nodes found in the original network. When
the simulation is allowed to restrict to the metabolic pools
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that are actually measured, this additionally leads to a
considerable dimension reduction. By the application of a
similar back-tracing scheme a comparable network reduc-
tion for mass isotopomer networks was obtained in [39].

Computational efficiency

Generally, the running time for the solution of a nonlin-
ear equation system, without exploiting any additional

structural features, is in the order of �· (n3) where n is
the system's dimension and � the number of iteration
steps of a NEWTON-type method. In the case of IBEs the
system naturally decomposes into s + 1 weight levels, i.e.

n = n0 + n1 + ... + ns. (1)

Moreover, each level only needs the solution of a linear
equation system. This cascaded structure of the IBE equa-
tion system was already exploited in [14] and gave rise to
a direct numerical solution of complexity

This algorithm can be considered as the present state of
the art for IBE solution and is widely applied in the MFA
community [39,43,52] and it already yields a significant
speed-up of IBE solution. However, the largest nk is typi-
cally in the same order of magnitude as n, thus dominat-
ing the computational effort. For example, in the E. coli
network max{ni} = n4 = 1201 ≈ 0.2·n.

The global topological analysis now revealed that, partic-
ularly, the higher weight level networks with larger values
of nk decompose into many smaller subnetworks, i.e.

Consequently, the overall computational effort for solv-
ing the IBEs reduces to

Clearly, the precise values of the nk,j depend on the specific
network under investigation and can be influenced by dif-
ferent modeling assumptions on reaction reversibilities
(c.f. tab. 4). Nevertheless, an approximate upper bound
for computing time can be provided, when the size of the
largest network component (i.e. max{nk,j}) is known.
Because for sufficiently large ν it holds

all network components smaller than max{nk,j} can be
rearranged into groups of total size ≈ max{nk,j}. This is
possible because (by lemma 1) there will be naturally a
majority of very small SCCs. After grouping the SCCs it
follows

In practice, this upper bound is very pessimistic as shown
with the E. coli network. Here, it turned out that max{nk,

j} = n1, 5 = 175 ≈ 0.03·n, but 99.3% of the SCCs had a size
smaller than 10. This explains the achieved speed-up fac-
tor compared to the standard method.

Isomorphic subnetworks
Another important result of the present investigation
proven in lemma 3 is the natural occurrence of many iso-
morphic subnetworks in an ILN. As the lemma suggests,
the network is composed of many isomorphic subnet-
works which actually lead to classes of identical subsys-
tems sharing the same equation systems, though having
different inhomogeneous terms. In fact, the presence of
hundreds of isomorphic components could be verified for
the E. coli network. Here, 2069 of the 2734 components
of size > 1 have isomorphic images. This further reduces
computational complexity because matrices only need to
be factorized once.

Moreover, isomorphism also explains a fact that was
known before from an instationary analysis of isotope
labeling systems. It turned out empirically by numerical
computations that many eigenvalues of these systems
occur repeatedly. This multiplicity of eigenvalues is sim-
ply caused by classes of isomorphic SCCs. Knowledge on
eigenvalues is very important for determining the time
constants of an ILE [53].

Towards genome-wide networks

A great challenge of isotopic MFA is the extension to larger
networks up to genome-scale applications. Generally, it is
no problem to apply the algorithms for topological anal-
ysis to much larger networks with n Ŭ 100, 000 nodes
because network decomposition is computationally

cheap (i.e. (|kV| + |kE|) ≈ (n)). Moreover, this net-
work analysis procedure needs to be carried out only
once. In contrast, the bottleneck is the subsequent solu-
tion of the IBEs.

At first glance, the third powers in eq. (4) indicate that
genome-scale networks are still out of reach. However, the
following consideration reveals that one can be much
more optimistic: By eq. (6) the total computing time is
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dominated by the largest SCC in the network. Moreover,
lemma 1 guarantees that this SCC will always lie in net-
work level one (i.e. the carbon atom transition network).
If the size of the largest SCC subnetwork is limited the
growth of computational effort will only be moderate,
even for genome-wide networks.

It follows, that in order to judge the applicability of the
new method to a large network only the atom transition
network has to be inspected. Clearly, an example network
is required to verify these considerations. Fortunately,
during the reviewing process of this paper, a first genome-
wide metabolic network for E. coli was published in [54]
which contains not only 184 metabolites and 350 reac-
tion steps but also the corresponding carbon atom transi-
tion information for 238 reactions thereof. Although the
proposed network cannot be considered to be fully veri-
fied at the moment it was prepared for processing with the
new IBE solution algorithm. During this process some
inconsistencies had to be removed, some corrections were
necessary and a few reaction steps have been added. This
results in a network containing a total of 169 metabolites
and 256 reaction steps. For the sake of brevity the details
cannot given here. The metabolic network can be
obtained from the authors on request.

This genome-wide network contains 900 carbon atoms
(level 1). Because the largest metabolite in the network
has 16 carbon atoms the complete network has 136237
cumomer nodes in total. The largest cumomer level (level
7) has 22960 nodes. Fig. 9 shows the SCC statistics of the
genome-wide network. The largest SCC on level 1 has
dimension 464 which is about three times the largest SCC
dimension in the E. coli model discussed above. Compre-
hensive SCCs of the dimensions 340, 140 and 114 where
found on different levels; however, 99.98% of the SCCs
are of size lower than 10. The number of isomorphic SCCs
is growing tremendously. For example there is a large class
of 1023 isomorphic SCCs of size four and even six iso-
morphic SCCs of size 52. The percentage of non-trivial
SCCs (i.e. SCCs with size > 1) without isomorphic copies
is only 0.04%.

The solution of the linear equation system of level 7 (hav-

ing in total a size of 22960) using a general (n3)
method takes in the order of 100 minutes which clearly
shows the limitations of the current standard method for
repeated IBE solution. In contrast, one single IBE solution
step of the genome-wide network, including the decom-
position of the 136143 balance equations into CCs and
SCCs, can be performed within a computing time of
about one second, which suits well for MFA application.
Since the largest SCC in the genome-wide network is
about three times larger than the one in the smaller E. coli

network an increase of computing time of about factor 33

≈ 30 can be expected – indeed an increase about factor 33
is observed. These computing times demonstrate that, by
exploiting the topology of ILNs, universal methods for
isotopic MFA can now be applied to genome-wide net-
works.

General experimental limitations
Because there is currently no way to establish an universal
MFA algorithm (in the sense given above) without solving
IBE systems any such algorithm will profit from the
achieved speedup. This puts the frontier of possible appli-
cations further into unknown territory: larger networks,
advanced statistical methods and high-throughput evalu-
ations are now within the range of isotope-based MFA
methods.

Clearly, the application of the new IBE solution algorithm
does not affect the principal applicability of the isotopic
flux analysis method because the set of equations that are
to be solved remains the same. In particular, the problems
of statistical or structural non-identifiability due to insuf-
ficient measurement information and of incorrect repre-
sentation of the biological network persist [55,56].
However, it should be noticed that universal algorithms
have less problems here than more specific approaches to
MFA which, unlike universal approaches, can never
exploit all IBE constraints and the full measurement infor-
mation.



Histogram of SCC sizes for a genome-wide networkFigure 9
Histogram of SCC sizes for a genome-wide network. 
Logarithmically scaled histogram visualizing frequencies of dif-
ferent SCC sizes of a genome-wide model [54].
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Further potential for speeding-up MFA
Recently, an alternate approach to formulate IBEs was
introduced in [39]. Hereby, the dimension of ILNs can be
dramatically reduced using the concept of elementary
metabolite units (EMUs). Noting that this EMU frame-
work relies on exactly the same network structure as
treated in the present contribution, any network decom-
position will also be beneficial for EMU models. In fact,
our method to reduce the computational effort for isotope
labeling systems by decomposition into smaller units is
orthogonal to the EMU approach. This actually means that
both approaches – cumomer network decomposition and
EMU modeling – can be combined and will certainly yield
another speedup which is certainly even higher compared
to that of the single methods. Summarizing, network
decomposition and EMU modeling are not rivalling
approaches but rather synergetic methods. A future contri-
bution covering more numerical details will answer the
question how beneficial the combination of both con-
cepts is.
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Appendix A: Short introduction to isotope-
based MFA
Metabolic Flux Analysis
Metabolic fluxes, or synonymously in-vivo reaction rates,
represent the operative determinants of cellular function
and regulation. Metabolic Flux Analysis (MFA) aims at the
precise quantification of all metabolic fluxes in the central
metabolic pathways of a microorganism and has become
a key technology for Systems Biology. It is an invaluable
tool for genetic engineering since the resulting flux map is
essential for evaluating the effects of varying growth con-
ditions or genetric manipulations.

Intracellular fluxes are per se not directly measurable and
have to be estimated from measured quantities through

model-based interpretation with the aid of computational
routines. Balancing intracellular metabolite pools in a
given reaction network and observing extracellular fluxes
(uptake and production rates) constitutes the stoichiomet-
ric MFA approach. In order to determine all unknown
fluxes several critical assumptions have to be met which
inherently limit the capabilities of this simplest form of
flux analysis. Clearly, bidirectional fluxes, metabolic
cycles or unknown co-factor utilization are out of reach
for stoichiometric MFA [5].

Performing isotope labeling experiments (ILE) makes the
labeling state of cellular compounds a measurable and
highly informative quantity. Its exploitation can effec-
tively remove the bottleneck of flux determination imma-
nent to stoichiometric MFA. In an ILE, 13C-labeled
substrate (usually glucose) is fed to the cell in a continu-
ous culture using a chemostat in order to maintain meta-
bolic stationarity. Driven by the highly specific enzymatic
reactions, the 13C isotopes distribute among the cell's
metabolites until the isotope labeling becomes equili-
brate throughout the network. In the classical, stationary
13C MFA the metabolic intermediates are sampled. The
metabolites' emerging specific isotope isomer (iso-
topomer) patterns can be measured using mass spectrom-
etry (MS, [57]) or nuclear magnetic resonance (NMR,
[17]) methods.

Computational procedure
In order to reconstruct the unknown fluxes from the
measured data a complex mathematical modeling and
computational simulation procedure has to be applied.
Accepting as basic assumptions that the metabolites are
homogeneously distributed and no mass isotope effects
occur, the general computational sequence shall be illus-
trated here with the example network shown in Fig. 2
which is already discussed in the main text. Despite of its
simplicity, this toy example is sufficient to outline the
main aspects here. For an introduction into the general
modeling framework of classical, stationary 13C ILEs
reader is referred to [12,14]. In the classical, stationary
13C MFA the metabolic intermediates are sampled, (cf.
Fig. 10).

Step 1: Stoichiometric equations
As a preliminary, the model of the metabolic network
under investigation has to be set up. Following the law of
mass conservation, stoichiometric equations of the sta-
tionary reaction system can be formulated [58,59] with-
out including any labeling information. One balance
equation has to be specified for each intermediate metab-
olite pool in the system, i.e. the sum of all fluxes arriving
in a pool equals the sum of the fluxes that leave it (cf. Fig.
2a, where now vi denotes the flux value of the edge σi,
i = 0,...,4):
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Step 2: Flux constraints
Eqns. (7) constitute four equations for five fluxes. Due to
the redundancy of the equations for pools C and D this
leaves two degrees of freedom for the system solution, i.e.
if two of the fluxes are known all other fluxes can imme-
diately be calculated. Commonly, the uptake flux v0 is
assumed to be measurable. If then, for instance, v2 is fixed,
the cycle is determined. The fluxes v0, v2 are called free
fluxes, while all other fluxes are called dependent. Notice,
that the choice of free fluxes is usually neither unique (e.g.
instead of v2, both v1 or v3 are feasible choices) nor is any
set feasible (e.g. v0 and v4). By appointing the free fluxes
which are subject to the parameter fitting procedure (cf.
Step 5) a parameterization of the stoichiometric model is
achieved. Thus, in order to determine the free fluxes at
least some additional information is required that can be
supplied by CLEs.

Step 3: Simulation of a CLE
The required structural information for tracing isotopic
labeling through the atom backbone of the metabolic
pathways is described by the atom network (cf. Fig. 2b).
For realistic networks this information nowadays can be
taken from biochemistry textbooks. Based on this repre-
sentation the isotopomer labeling network (ILN) is

derived (cf. Fig. 2c) which explains the formation of every
isotopomer in the reaction system.

As starting point for the computation of synthetic labeling
distribution arising from a specifically labeled input sub-
strate, mass balance equations are derived for every iso-
topomer fraction in the ILN. For instance, three of the
twelve isotopomer balance equations(IBEs) for the net-
work in Fig. 2c are:

The first equation reveals a fundamental problem of IBEs:
assembly reactions introduce nonlinear terms into the
equations (v3•(C❍ )•(D•) in this case). Besides the large

number of IBEs, say n, their nonlinearity is the major rea-
son why the running time of basically all numerical meth-

ods used for their solution is at least (n3).

Applying the translation rules given in Def. 2 the IBEs (8)
are transformed into a set of cumomer balance equations
(CBEs) having cumomer fractions as unknowns. Interest-
ingly it turns out that CBEs can be partitioned by weight
(the number of labeled (•) positions, cf. Def. 1).

Here, the CBEs which correspond to cumomers with an 
label in all positions (weight 0) are redundant because the
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Principle of isotope-based MFAFigure 10
Principle of isotope-based MFA. Labeled input substrate, extracellular fluxes and intracellular labeling patterns are used to 
determine the intracellular fluxes in-vivo.
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value of the associated cumomer fractions is always 1.
Hence, they reduce to the stoichiometric equations (7).
For the network shown in Fig. 2c this results in the modi-
fied network shown in Fig. 3 and then following eight
CBEs:

As a main difference to IBEs, there are no splitting reac-
tions in a cumomer network, in the sense that a cumomer
distributes its labeled positions to more than one product.

The equation for  shows that the transformation into
cumomers did not remove all nonlinear terms. If, how-
ever, the subnetworks defined by the cumomers' weight
are solved consecutively in the order of ascending weight
the nonlinear terms can be easily evaluated because they
appear as constants in the subsequent equations. This cas-
caded structure of the CBEs makes them accessible for
accurate and efficient direct solution methods (i.e. linear
equation solvers) when both the free fluxes and the input
specification of E are given. The calculation step towards
the stationary cumomer/isotopomer state is referred to as
forward simulation problem. The obtained solutions,
cumomer fractions, can be easily converted back into iso-
topomer fractions by a linear transformation.

Step 4: Modeling of Measurements
To actually evaluate the ILE one operative step is still miss-
ing: the relation between the isotopomer/cumomer frac-
tions of a metabolite pool and their quantitative labeling
measurements. Accordingly, the example is now extended
by a measurement scenario to illustrate the modeling
process. To this end, the metabolite B is exemplary
assumed to be observable by the use of MS technique.
Analogous equations can be derived for other measure-
ment methods like 1H- or 13C-NMR [26]. In case of MS,
molecules with 0, 1 or 2 labeled carbon atoms are distin-
guishable. Thus, ideally three mass isotopomer fractions
can be observed. After correcting the mass shift due to nat-
urally occurring stable isotopes [52] the associated meas-
urement equations read:

Here, the samples yb, i, i = 1, 2, 3 are affected by measure-
ment errors εi which are typically assumed to be inde-
pendent and normally distributed with Zero mean and
standard deviations σi. These quantities are estimated by
repetition of experiments or expert knowledge about the
overall sampling and analytic procedure. Notice that one
of the three values yb, i, i = 1, 2, 3 is redundant with the
other two because their sum must always be one.

It turns out that the measurement information (10) alone
is not capable of determining all the isotopomer fractions
of B. At the utmost, sophisticated combination of several
data sets from different analytic methodologies can pro-
vide that. Clearly, the ratio between the number of availa-
ble MS measurements and from such data identifiable
isotopomers becomes worse when the number of carbon
atoms increases.

Step 5: Flux estimation
Relying on the Steps 1–4 a mathematical model for flux
estimation is composed which describes the relation
between free fluxes and measured data. Typically, the flux
distribution is identified by fitting the fluxes to the
observed data, whereby the difference between simulated
and measured isotope labeling patterns is minimized in
an iterative procedure [13], Figure 11.

The general optimization problem is given by minimizing
the sum S of residuals subject to the free fluxes:

In order to mimic the varying precision of the data, each
residual is weighted with the inverse variance of the asso-
ciated measurement error. For the running example the
weighted sum of squares reads:

where  is the observed uptake rate with variance

 and the arguments are left out for convenience.

Application of state of the art optimization routines (of
global character or based on local optimization connected

influx effl�ux
A��� : v0 E��� + v3 C� = v1 A���
A��� : v0 E��� + v3 D� = v1 A���
B��� : v1 A��� = (v2 + v4) B���
B��� : v1 A��� = (v2 + v4) B���
C� : v2 B��� = v3 C�

D� : v2 B��� = v3 D� ↑ weight1
A�� : v0 E�� + v3 (C�) (D�) = v1 A�� ↓ weight2
B�� : v1 A�� = (v2 + v4) B��

⋅
⋅
⋅
⋅
⋅
⋅

⋅
⋅

⋅

⋅

⋅
⋅
⋅
⋅

⋅ ⋅
⋅

⋅
⋅

⋅

(9)

A���

yγbγ,γ0 = B���� + εγbγ,γ0
yγbγ,γ1 = B����+ B���� + εγbγ,γ1
yγbγ,γ2 = B���� + εγbγ,γ2

(10)

( , ) arg min ( , )
,

v v S v v
v v

0 2 0 2
0 2

= (11)

Sγ=
(yγbγ,γ0 B����)2

2
bγ,γ0

+
(yγbγ,γ1 (B����+ B����))2

2
bγ,γ1

+
(yγbγ,γ2 B����)2

2
bγ,γ2

+
vγ0 vγm eas

0
2
vγ0

σγσγ σγ σγ

− − − −

(12)
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σ v0
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with an appropriate multistart strategy) in an iterative pro-

cedure then provides the desired flux estimates , .

The question whether the measured information is suffi-
cient to determine the unknown free fluxes is referred to
as identifiability analysis and requires sophisticated statis-
tical methods. E.g., data consistency checking can be done
by performing a χ2 test. It is not aimed to assess these
advanced topics here. For details the reader is referred to
[15]

Appendix B: Proofs
Proof of lemma 1
Lemma 1 states that the connectivity of kG, i.e. ε(kG) =
|kE|/|kV|, decreases monotonically with increasing weight
level k, i.e. ε(k+1G) ≤ ε(kG). The lemma can be justified by
a counting argument:

Proof

The fixed number of cumomer nodes of a metabolite on
weight level k is given by the number of combinations, i.e.

, where s is the number of available labeling positions

in the metabolite. Obviously, only metabolites with at
least k labeling positions contribute cumomers to weight
level k.

• For unimolecular reactions of type A → B, pools A and
B necessarily have the same number of labeling positions.
The number of edges linking the cumomers of both pools

equals the number of cumomers of pool A or B, since pool
B is obtained from A by a permutation of labeling posi-
tions. Hence, the number of edges is proportional to the
number of nodes by a constant a throughout the levels k
of the cascade, i.e. |kE| = α·|kV|, and consequently ε(k+1G)
= ε(kG).

• For any bimolecular reaction A + B  C where molecules
A and B have sa and sb labeling positions, and pool C has

sa + sb labeling positions, there exist weight conserving

cumomer transitions A  C, B  C. Since the inequality

 holds (which follows from

VANDERMONDE's Convolution; see e.g. [60]), the number
of cumomers of pool Con level k of the cascade is always
greater than or equal the number of cumomers of pools A
and B. Hence, with increasing level k, there exist cumom-
ers of pool C which have no reaction partners in pools A
and B and the number of cumomers grows faster than the

number of transitions, i.e. ε(k+1G) ≤ ε(kG). �

Proof of lemma 3

Lemma 3 states that a sequence of reactions transporting
a maximal fragment consisting of s labeling positions

induces  disjoint isomorphic paths on weight level k

of the cascade:

v̂0 v̂2

s

k











s

k

s

k

s s

k
a b a b







 +









 ≤

+









s

k











Workflow1of an isotope-based MFAFigure 11
Workflow of an isotope-based MFA. After the evaluation of a real ILE measurement data is available for the mathematical 
modeling. Initially starting with a guess on the flux values, a simulation of the ILE aims to reproduce the measurement data. A 
parameter fitting procedure is used to obtain an estimation of the real flux values by gradual variation.
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Proof

Because width ( , P0,..., P�) = s the reaction

sequence transports a fragment of size s. It follows, that

there are  isomorphic paths on weight level k of the

cascade and  isomorphic paths on

weight levels 1,..., s.

Furthermore, there are no isomorphic paths beyond
weight level s: if the largest participating atom backbone
has more than s atoms then at least one of the atom back-
bones of size s is the result of a splitting reaction. The split
off atoms must not be labeled otherwise the weight-con-
servation constraint would be violated (rule 2 of Def. 2).
For the same reason, assembly reactions may only append
unlabeled atoms, because any labeled atom would
increase the weight.

All isomorphic paths on weight level k are guaranteed to
be disjoint, i.e. they do not share common cumomer

nodes, since reactions  are always one-one map-

pings (permutations) of labeling positions. �

Additional material
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Additional file 1
Reactions and carbon atom transitions of the E. coli example network. 
The list contains the subset of metabolic reactions considered for the E. 
coli example network shown in Fig. 5. The letters following the "#" sym-
bol denote the metabolite's carbon atoms and the specific transfer of car-
bon atoms performed by an enzyme [42]. Only the reactions shown in 
Tab. 2 are assumed to be unidirectional.
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