
30 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

Anatomy of a Compiler

FEATURE
ARTICLE

s
Wouldn’t it be great if
there was an afford-
able C compiler that
was specifically de-
signed to the needs
of 8-bit micros? Not
to worry, Sandeep ex-
plains the inner work-
ings of just such a
compiler, which hap-
pens to be quite af-
fordable—it’s free!

mall device C
compiler (SDCC)

is an open-source
optimizing C compiler

developed primarily for 8-bit MCUs.
Although there are several free C com-
pilers available to address the general-
purpose processors (GCC, LCC), there
are no free C compilers available ex-
cept SDCC that address specific needs
of 8-bit MCUs. In this article, I’ll ex-
plore SDCC and some of the special
considerations when designing a com-
piler for 8-bit MCUs.

I’ll discuss the Intel 8051 because
it’s a widely used MCU. The concepts
have been implemented in SDCC and
the source code is available under
GPL in the hope that other people
will find it useful and contribute (ei-
ther by providing feedback or making
enhancements). Several commercial
compilers implement the concepts
demonstrated here.

ADDRESS SPACES
Unlike their 32-bit brethren, most

of the 8-bits use Harvard architecture,
which means the code and data reside
in different address spaces and are
usually accessed using different in-
structions. For example, the 8051
family of controllers has three address
spaces (four if you consider the upper
128 bytes of internal RAM as a differ-

ent address space). C language allows
for storage classes, however they are
restricted to const, volatile, static,
auto, and register. Although these are
adequate for Von Neuman architec-
ture, they’re not sufficient for archi-
tectures with many address spaces.

The problem is more complex
when you consider pointers. Where
does the pointer reside? Which ad-
dress space is it pointing to? Also
consider library routines, which take
pointers as parameters. Do you need
to write library routines for all the
combinations of address spaces?

SDCC handles this problem by
adding keywords for new storage
classes. Using the 8051 as an ex-
ample, SDCC has storage class speci-
fiers for each MCU address space.
Listing 1 shows examples of declaring
variables in different address spaces.

Frequently, a variable must be
allocated at a specific/absolute ad-
dress (i.e., a memory-mapped I/O
device). Again, standard C doesn’t
provide for this, you would have to
provide a special assembler routine (or
inline assembly code). SDCC, how-
ever, provides a special keyword “at”
to specify an absolute address for a
variable. The memory-mapped I/O
device can then be accessed in an
expression using standard C syntax.

POINTERS
The same concept of storage class

extension can be used to solve the
pointer problem. Listing 2 shows
different ways to specify pointers.
This leaves the problem of library
routines, not knowing which storage
class the pointer points to at compile
time. The SDCC solution is generic 3-
byte pointers; the third (highest order)
byte contains information about the
pointed at object’s storage class.

Sandeep Dutta

A Retargetable ANSI-C Compiler

a (..) c (..)b (..)

d (..) e (..)

main ()

Figure 1—The parameter locals of functions a, b,
and c can be overlaid.

 CIRCUIT CELLAR® Issue 121 August 2000 31www.circuitcellar.com

At runtime, the compiler calls a
routine that determines the storage
class from the third byte and uses the
appropriate instruction to fetch or
store data. This technique increases
code and data size, but is a compro-
mise to allow coding general-purpose
library routines, like strcmp.

STACK
The most difficult obstacle in pro-

gramming small devices (such as the
8051) in high-level language like C is
the limited stack space available for

Listing 1—Here’s the pointer declarations with extended storage classes.

Listing 2—This sample code illustrates iCode generation and optimizations.

xdata int * p;
int gint;

/* This function does nothing useful. It is
used for the purpose of explaining iCode */

short function (data int *x)
{
short i=10; /* dead initialization eliminated */
short sum=10; /* dead initialization eliminated */
short mul;
int j ;
while (*x) *x++ = *p++;
sum =0 ;
mul =0;

/* compiler detects i,j to be induction vari-
ables */

for (i = 0, j = 10 ; i < 10 ; i++, j�) {
 sum += i;
 mul += i * 3; /* this multiplication remains */
 gint += j * 3; /* this multiplication changed to addition */
}
return sum+mul;
}

/* the following array will be declared in program memory
 MOVC instruction will be used to access this array */
 code short array_in_code[3] = {0x01,0x02,0x03};

/* The integer will be allocated in internal ram space
MOV instruction will be used access this data item */
data unsigned char in_internal_ram ;

/* this will allocated in the external RAM and MOVX will
 be used to access this data item */
xdata char array_in_external_ram[9];

/* This variable will be allocated at address 0x8000 of
the external RAM */
xdata at 0x8000 ADC_PORTA;

/* pointer in data space points to object in xdata */
xdata char * p;

/* pointer in xdata space points to object in code space */
code char * xdata p;

/* pointer in code space points to object in data space */
data char * code p;

local variables and parameter passing.
Using registers for parameter passing
lessens the problem, but you still
must allocate local variables. SDCC
solves this problem by treating pa-
rameters and local variables as static
(at the expense of re-entrancy). It goes
a step further by overlaying parameters
and local variables of leaf functions
(i.e., functions that call no other func-
tions) to the same memory region.

What if you need the re-entrancy?
You could either compile the entire
source file with the stack-auto com-

piler option (all functions in the
source file will be treated as re-en-
trant), or you can choose only specific
functions to be reentrant by using the
reentrant keyword in the function
declaration. SDCC allocates param-
eters and local variables of a reentrant
function on the stack.

The current version of the compiler
only overlays local variables and pa-
rameters of a leaf function, but this
isn’t enough in some cases. Develop-
ment is underway to do function call
tree analysis, which would allow the
compiler to overlay parameters and
local variables of functions that don’t
belong to the same call sub-tree.

Consider the call tree illustrated in
Figure 1. In this case, local variables
and parameters (auto variables) of
functions d() and e() can be overlaid
(and are by the compiler). In addition,
auto variables of functions a(), b(),
and c() can be overlaid with each
other, because they don’t call each
other and are not present in the call
trees of any of their children. This
kind of overlaying needs to be done by
the linker because the compiler has
only a partial view of the call tree.

INTERNAL DETAILS
The current version of SDCC can

generate code for Intel 8051 and Z80
MCUs. It’s easy to retarget for other 8-
bit MCUs. Let’s take a look at some of
the internals of the compiler.

Parsing involves reading the input
source file and creating an Annotated
Syntax Tree (AST). This phase also
involves propagating types (annotating
each node of the parse tree with type
information) and semantic analysis.
There are some MCU-specific parsing
rules. For example, the extended stor-
age classes are MCU specific: while
there may be an xdata storage class for
8051, there’s no such storage class for
the Z80 or Atmel AVR. SDCC allows
MCU-specific storage class extensions
to be treated as a storage class specifier
when parsing 8051 C code, but to be
treated as a C identifier when parsing
Z80 or Atmel AVR C code.

In the intermediate code generation
phase, the AST is broken into three
operand forms (iCode). These forms are
represented as doubly linked lists. iCode

32 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

is the term given to the intermediate
form generated by the compiler. Listing
3 shows examples of iCode generated for
simple C source functions.

The bulk of target-independent
optimizations is performed during
optimization. Optimizations include
constant propagation, common sub-
expression elimination, loop-invariant
code movement, strength reduction of
loop induction variables, and dead-
code elimination.

During the intermediate code gen-
eration phase, the compiler assumes
the target machine has an infinite
number of registers and generates
many temporary variables. The live
range computation determines the
lifetime of each of these compiler-
generated temporaries. iCode example
sections in Listing 3 show the live
range annotations for each operand.
Note that each iCode is assigned a
number in the order of its execution,
which compute the live ranges. The
from is the iCode number that first
defines the operand and to signifies
the iCode that uses this operand last.

Sample.c (5:1:0:0) _entry($9) :
Sample.c(5:2:1:0) proc _function [lr0:0]{function short}
Sample.c(11:3:2:0) iTemp0 [lr3:5]{_near * int}[r2] = recv
Sample.c(11:4:53:0) preHeaderLbl0($11) :
Sample.c(11:5:55:0) iTemp6 [lr5:16]{_near * int}[r0] := iTemp0

[lr3:5]{_near * int}[r2]
Sample.c(11:6:5:1) _whilecontinue_0($1) :
Sample.c(11:7:7:1) iTemp4 [lr7:8]{int}[r2 r3] = @[iTemp6

[lr5:16]{_near * int}[r0]]
Sample.c(11:8:8:1) if iTemp4 [lr7:8]{int}[r2 r3] == 0 goto

_whilebreak_0($3)
Sample.c(11:9:14:1) iTemp7 [lr9:13]{_far * int}[DPTR] := _p

[lr0:0]{_far * int}
Sample.c(11:10:15:1) _p [lr0:0]{_far * int} = _p [lr0:0]{_far *

int} + 0x2 {short}
Sample.c(11:13:18:1) iTemp10 [lr13:14]{int}[r2 r3] = @[iTemp7

[lr9:13]{_far * int}[DPTR]]
Sample.c(11:14:19:1) *(iTemp6 [lr5:16]{_near * int}[r0]) :=

iTemp10 [lr13:14]{int}[r2 r3]
Sample.c(11:15:12:1) iTemp6 [lr5:16]{_near * int}[r0] = iTemp6

[lr5:16]{_near * int}[r0] +
 0x2 {short}

Sample.c(11:16:20:1) goto _whilecontinue_0($1)
Sample.c(11:17:21:0)_whilebreak_0($3) :
Sample.c(12:18:22:0) iTemp2 [lr18:40]{short}[r2] := 0x0 {short}
Sample.c(13:19:23:0) iTemp11 [lr19:40]{short}[r3] := 0x0 {short}
Sample.c(15:20:54:0)preHeaderLbl1($13) :
Sample.c(15:21:56:0) iTemp21 [lr21:38]{short}[r4] := 0x0 {short}
Sample.c(15:22:57:0) iTemp23 [lr22:38]{int}[r5 r6] := 0xa {int}
Sample.c(15:23:58:0) iTemp17 [lr23:38]{int}[r7 r0] := 0x1e {int}
Sample.c(15:24:26:1)_forcond_0($4) :

Listing 3—This is the iCode generated for the sample code in Listing 2.

(continued)

The register allocation determines
the type and number of registers
needed by each operand. In most
MCUs, only a few registers can be
used for indirect addressing. The com-
piler tries to allocate the appropriate
register to pointer variables.

Listing 3 shows the operands anno-
tated with the registers assigned to
them. The compiler tries to keep
operands in registers. The compiler
uses several schemes to achieve this.
When the compiler runs out of regis-
ters, it checks if there are any live
operands that are not used or defined
in the current basic block being pro-
cessed. If found, it will push that
operand and use the registers in this
block. Then, the operand will be
popped at the end of the basic block.

There are other MCU-specific
considerations in this phase. Some
MCUs have an accumulator so short-
lived operands may be assigned to the
accumulator instead of a general-
purpose register.

A complete table that defines the
iCode operations supported by the
compiler is available on the Circuit

 CIRCUIT CELLAR® Issue 121 August 2000 33www.circuitcellar.com

Sample.c(15:25:27:1) iTemp13 [lr25:26]{char}[CC] = iTemp21
[lr21:38]{short}[r4] < 0xa {short}

Sample.c(15:26:28:1) if iTemp13 [lr25:26]{char}[CC] == 0 goto
_forbreak_0($7)

Sample.c(16:27:31:1) iTemp2 [lr18:40]{short}[r2] = iTemp2
[lr18:40]{short}[r2] +

 ITemp21
[lr21:38]{short}[r4]

Sample.c(17:29:33:1) iTemp15 [lr29:30]{short}[r1] = iTemp21
[lr21:38]{short}[r4] * 0x3 {short}

Sample.c(17:30:34:1) iTemp11 [lr19:40]{short}[r3] = iTemp11
[lr19:40]{short}[r3] +

 iTemp15
[lr29:30]{short}[r1]

Sample.c(18:32:36:1:1) iTemp17 [lr23:38]{int}[r7 r0]= iTemp17
[lr23:38]{int}[r7 r0]- 0x3 {short}

Sample.c(18:33:37:1) _gint [lr0:0]{int} = _gint [lr0:0]{int} +
iTemp17 [lr23:38]{int}[r7 r0]

Sample.c(15:36:42:1) iTemp21 [lr21:38]{short}[r4] = iTemp21
[lr21:38]{short}[r4] + 0x1 {short}

Sample.c(15:37:45:1) iTemp23 [lr22:38]{int}[r5 r6]= iTemp23
[lr22:38]{int}[r5 r6]- 0x1 {short}

Sample.c(19:38:47:1) goto _forcond_0($4)
Sample.c(19:39:48:0)_forbreak_0($7) :
Sample.c(20:40:49:0) iTemp24 [lr40:41]{short}[DPTR] = iTemp2

[lr18:40]{short}[r2] +
ITemp11

[lr19:40]{short}[r3]
sample.c(20:41:50:0) ret iTemp24 [lr40:41]{short}
sample.c(20:42:51:0)_return($8) :
sample.c(20:43:52:0) eproc _function [lr0:0]{ ia0 re0

rm0}{function short}

Listing 3—continued
Cellar web site. Code generation in-
volves translating these operations
into corresponding assembly code for
the processor. This seems simple, but
that’s the essence of code generation.
Some operations are generated in an
MCU-specific manner. For example,
the Z80 port doesn’t use registers to
pass parameters, so the Send and Recv
operations won’t be generated, and it
doesn’t support jumptables.

ICODE EXAMPLE
This section shows some details of

iCode. The example C code isn’t use-
ful, but it illustrates the intermediate
code generated by the compiler.
Sample.c generates the iCode se-
quence in Listing 3.

In addition to the operands, each
iCode contains information about the
file name and line it corresponds to in
the source file. The first field in the
listing should be interpreted as follows:

File name (line number: iCode Execu-
tion sequence number: ICode hash
table key: loop depth of the iCode).

 CIRCUIT CELLAR® Issue 121 August 2000 35www.circuitcellar.com

The readable form of the iCode
operation is found next. Each operand
of this triplet form can be of three
basic types—compiler generated tem-
porary, user-defined variable, or a
constant value. Note that local vari-
ables and parameters are replaced by
compiler-generated temporaries. Live
ranges are computed only for tempo-
raries. Registers are allocated for tem-
poraries only. Operands are formatted
in the following manner:

Operand name [lr live-from: live-to] {
type information} [registers allocated]

As mentioned, live ranges are com-
puted in terms of the execution se-
quence of the iCodes. For example,
the iTemp0 is a live from (i.e., first
defined with execution sequence
number 3) and is used last with num-
ber 5. For induction variables such as
iTemp21, the live range computation
extends the life from loopstart to end.

The register allocator used the live
range information to allocate regis-
ters, the same registers may be used

for different temporaries if their live
ranges don’t overlap. In addition, the
allocator takes into consideration the
type and usage of a temporary.

Some short-lived temporaries are
allocated to special registers that have
meaning to the code generator. The
code generation makes use of this
information to optimize a compare-
and-jump iCode.

Several loop optimizations are
performed by the compiler. It detects
induction variables iTemp21(i) and
iTemp23(j). And, the compiler does
selective strength reduction (i.e., the
multiplication of an induction vari-
able in line 18 [gint = j × 3] is changed
to addition, temporary iTemp17 is
allocated and assigned an initial
value, constant 3 is added for each
loop iteration). The compiler does not
change the multiplication in line 17,
however, because the processor sup-
ports an 8 × 8 bit multiplication.

Note the dead code elimination
optimization eliminated the dead
assignments in line 7 and 8 to I and
sum respectively.

READY, SET, COMPILE
You can download the compiler at

sdcc.sourceforge.net. SDCC is an
active project and, as with all GPL
software, many people contributed.
Recently, it was retargeted for
Nintendo Gameboy.

The compiler is distributed as GPL
software with the hope that you’ll find
it useful. The SDCC team believes in
continuous improvement of the soft-
ware so if you have any suggestions,
feel free to send me an e-mail. I

SOFTWARE
A complete table of the iCode
operations that are supported by
the compiler as well as an addi-
tional sample code listing are avail-
able on the Circuit Cellar web site.

Sandeep Dutta is a compiler engineer
working for WindRiver Systems Inc.
She works on the DIAB optimizing C,
C++, and Java compiler for 32-bit
processors. You can reach her at
sandeep.dutta@windriver.com.

