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AbstractIn this paper we propose a new channel allocation
scheme for improving the quality of service in cellular mobile
networks. The proposed algorithm prioritizes handoff call
requests over new call requests. The goal is to reduce the
handoff failures while still making efficient use of the network
resources. A performance measure is formed as a weighted
linear function of new call and handoff call blocking
probabilities. This problem is formulated as a semi-Markov
decision process with an average cost criterion. A simulation-
based learning algorithm is then developed to approximate the
optimal control policy online using the generated samples from
direct interactions with the network. It is based on an
approximate model that is estimated simultaneously while
learning a control policy. The estimated model is used to direct
the search for an optimum policy. Extensive simulations are
provided to assess the effectiveness of the algorithm under a
variety of traffic conditions. Comparisonswith some well-known
allocation policies are also presented. Simulation results show
that for the traffic conditions considered in this paper, the
proposed scheme has a compar able performance to the optimal
guar d channel approach.

I INTRODUCTION

Next generatia cdlular networls ae epectal to uppot
widebard mutimedia gplications ard wide use mohility
anytime ard everywhereOre d the facel chdlenges is D
provide qudity of service (Qo$ guarangées far the generate
heterogenea trdfic (voice video, data, ejcusing the
limited wireless bandwidth To increas the syste capaciy
and redwce the powe consumgion, the verag are is
divided into sub-ares a cdls ard the available bandwitit
units (chaanelg are assigne to ead cdl accordirg to sone
channd assignmen strategis [1]-[3] in orde to sdisfy the
channd reuse constraih criterion The numbe of channek
assignd to eat cdl base staion may be fixed quasi-fixed
or dynamically changirg to accanmodae the changein the
traffi c within the cdl. Within eachcdl, thele are two types o
traffic: calls originatel in the cdl and initially requesing nev
connedions (nev cdls) amd cdls migrating from the
neighboring cdls into the cdl (handdfs). Basel on the
channd allocatin ciiteria, a cdl (new or handdf) may be
denial access b the netwok resouces Fran a users
persgdive, teminating an ongoirg cdl is moe undesirala
than blocking an initial call attempt The impad of the
handdf call dropping becoms moe serios in the future
persond communicatios networks sice there § a trerd
toward reducing tle cdl sizes tb microcdls ard even
picacdls ard therefoe frequert handdfs ae moe likely.

Conseguertly, severh scheme hae bea proposd in the
literature © reduce the handb failure probablity [1], [4]-
[12]. Ore wdl-known methal is the guaid chaind approat
[4]. The basic ide is 1o a prioii resene certan numbe of
channek in eachcdl exclusively to handé handif requess
while the remainig channed ae use to sere both types d
traffic an a firg cone firg sere basis In this approalks the
systen track the nev cdl blocking (and hene the chand
utilizetion) in orde to reduce the handff failures Fa tha
reason the determintion d an ogima admission threshal
is citical to maintan a balace betwer the systen
utili zation ard the hand# call dropping pobalbility . In [5], it
has keen provad tha sud a threshal exiss far which a
linear weightal fundion o new cdl and handdf blocking
probalilities is minimized Othe techniques dlow queueiy
with the guad channd approat o the originate cdls [6]
and/o the handf requess [1], [4], [7] until a chand
become avdlable. If no chaand become free beforea
maxmum allowabk delay the cdl is drgpped A trade-df
between the blockirg probablities ard the increase dely
arises But for microcellular systens thee ma/ be severh
handdfs during a cdl sessimm durdion ard queueing for
handdf requests becomsa less faorable

The exat sdution for the gotimum threshdd is detemined
in [8] using en analyical model am an incrementhseart
basel on the propeties d handoff aml nev cdl blocking
probablities. Othe approachg basd on the Marlov decision
theory [13] find the ogimal thresholl using synchronau
dynamic progranming (DP) tedniques [10]. All thes
approache presure a prioti knowledge d a peréd systen
model Further, tle computdional complexiy precludes them
to scak wdl for large state-space systenBy dlowing the
guad thresholda chang dynanically to adap to the tréfic
condtions, furthe potertial improvemens can be dtained
[11], [12]. Ther is al® a class d algorithms thd predict tle
mohility paterrns ard resere the reuired bandwidh in
advarce in the desination cdls [9], [11].

To raduce the corputaiond burden o the convetiond
DP tedniques asynchronasivalieiteration for red and non-
red time sysens hae teen suggestd [14]. Also, an adapive
realtime dynanic progranming schene (ARTDB [14] has
been proposd for discreteime Marlov decision problens
(MDP) in the discountd framework Anothe schene cdled
H-learning [15 has keen devisd for the average cos
counterpart Recertly a model-fee reinforcemenlearnirg
(RL), a stochatsc goproXimation o dynamic progranming,
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has een goplied to the chaand assignmen problem [2]-[3].
Howeve in theg schemesthere is o differentiation
between nev cdls ard handdfs. In [16], a class ¢ model-
free reinforcemen learnirg schems is @plied for the
handdf prioritized cdl admissian contrd problem ard
promising restuts ae attained

In this pape we proposea nev channd allocatiin scherne
thet gives highe priority to handdfs. The propose algoithm
lowers the hand& dropping probablity while maintainirgy
the chand utilization ard autonomousl adjuss the
allocation pdicy to the tréfi c scenarioFurthermoreit does
na presune a prioti knowledge d the systen model o the
traffic parameters However, thg approxmate a modé
online usirg the observe sampé daa cdlectal from dired
interaction with the netwok a the sametime the/ leam a
contrd policy. The esimated modé is usel to dired the
seart for an ogtimal contrd policy. Intensie sSmulatiorns ae
corductedl to evaluag the performance fothe proposé
algoiithm against otheresouce dlocation pdicies, sud &
the complete shar@gand tke ogimal guard chand policies.

The remainde of this pape is organizel as fdlows. The
nex sedion describs the tréfic modé and the performane
measuresin Sedion Il we formulate the chrand allocatin
problem & a1 average-cassemi-Marlov decision pracess
(AC-SMDP). Sedion IV presens the proposd model-basg
reinforcemen learnirg scheme Smulations ard numerica
resuls ae provided in Sedion V. Analytical and empirica
comparisos with comple¢ sharigy and ofimal guad
channeé policies ae al® given Findly, in Sedion VI we
presemour conclusions.

Il. TRAFFIC MODEL AND PERFORMANCE CRITERIA

Conside a gener cdlular netwok with alimited numbe
of bandwidh units a channek which may be time slots
frequeny cariers o spreadig code basd on the acces
technoloy used There are tw kinds of traffic arivals in
ead cdl basel an the cdl origination locdion: nev ard
handdf calls. Basel on the avalability of the systen
resouces ard the dlocation ciiteria, a chaind allocatin
schene decids & ead arival instarce whetheto accep or
rejed the cdl. Unde a fixed hhannd assignmehschene ard
the assumpion o spdially uniform tréffic condtions the
cdlular netwok can be stidied by focusirg on a singé cdl.
Figure 1 shove the tréffic modé for a paticular cdl with a
fixed number bchannels C, as an M/M/C Erlang-less model
We assune thd blocked cdls ae cleared The bandwid
requirement can be epressal in ternms d bandwidh unts
(BU's) or chainels We make the aomonly usel
assumpions thd the arivals d new cdls ard handdf calls
are accordig to mutudly independen Poiss; praesse
with mean g&ival rates A, and A, resgdively. The cdl
sessia durdion, T, ard the inter-handf time (cél dwelling
time), T, ar mutudly independen ard exponetially
distributed with mears 1{1s ard 144, resgedively. Therefore
the chand holding time, the minimum o the cdl durdion
and time urtil handdf, is al® exponenial with mean

Upu=1/(ug+4,). The rdio p, /M, indicates the reldive

mation o the nohle staion to the cdl size ard can ke
referred as nohility index

The netwok stat n(t) can be defingl as the numbe of busy
chennek & timet, ard the naturhevolution o the stochatsc
process {n(t), t=0} represend a cortinuous-tine Markov
chan with a finite stag spaceS = {0, 1, 2, ...,C}. The
transtion rae diagran for a generhallocation pdicy is
shown in Fig 2. The dm of any allocation contrd stratey is
to detemine the #ocation probablities 3,; andp,; for all
states Far complee sharig B, =B, =1fori=0,1, 2, ..,
C-1 and zers otherwiseLet P; be the steaglstat pobalility
tha the systen occupies staei. Herce the nev cdl blocking
and the hand#f call dropping pobablities ae the samethat
is, B, = B; = Pc. On the othe hand for the guaid chaand
approat the nev cdl and the hand& admissian pdicies ae
different; B, =1 fori =0, 1, 2, ...,C-1 and zeo otherwise

while B; =1fori =0, 1, 2, ...,G-1 and zep otherwig
where G is a guad threshold value The blockirg

C
proballities ae given by B, = z R,ad B,=F:.
i=G
The god is © find a chand allocatin policy tha
minimizes a weightel linear fundion o new cdl and hand&
cdl blocking probabilitie s & defineal by

P=w,

B +w
"NoAA, AL A,

By, 1)

where w, ard w, represehthe reldive weighs d ead type
with w, > w;, to refled the fad that rejeding a handéf reques
is moe undesirable tharepding a nev cdl request.

In the nex section this problem is formulatel as an
avera@ cos$ semi-Marlov decision pracess.

Il. THE CHANNEL ALLOCATION PROB.EM AS AN AC-SMDP

The chand allocation problem can be formulatel s an
infinite-horizan finite-stat seni-Markov decision pracess
(SMDP) unde the average co<riterion In the fdlowing a
reduced state-spee modeis usel to find an dlocation pdicy
by contrdling the adnissicn of new cdls only sinceit is
always ofimal to accet a handtf reques as long as thee is
a free chanel The piimary componerg d an AC-SMDP ae
defined as fdlow. The decision epochs carespor to the nev
cdl arrival instarces The sojourn time from ore decisio
epoch b the nex decision epod isa continuoustime randon
variabk with the sane probalility distribuion as the nev cdl
inter-arival times The system state is definel as the numbe
of busy channek immediatey prior to a nev cdl arrival.
Although the systen stat mg chan@ betwea two decisin
epocts due o handdf call arrivals a cdls leavirg the cdl,
only the state & the decisio epocls ae significan to the
contrdler. The systen state space is a finite s¢ S= {0, 1, 2,
..., C}. The action set avdlable in each sta&isa finite sé A
= {0 =reject 1 = adnit} for sJ{0, 1, 2, ...,.C-1} and A,= {0
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= reject for sSC{C}. A deteministic stdionary policy is a
mappirg from state o adions 1S - A. Stating from
initial states, =i ard implemeting pdicy 11 the systen
stae & n" decisim epoch s, evolves asa seni-Markov
chan {s;: n= 0, s, 0 § with a state transition probability
P(swi=jls,=i,a=m)= B}, tha s, the poballity that the
systen stae & the nex decision epoch $j given tha the
current stat isi and adion % is gplied. At eah decisim
epot the contrdler incurs a randon stag@ co$ which
depend o the rejectd cdls o tha stage The immediate
stage cost .1, ard the sojoun time, Ty+1, are nd known urtil
the nex decisicn epoch The seuerce d incurred coss is a
stochatic procass aml depend an the adoptd pdicy. Fa
this ergodt Markov decision pracess the averag cos is
independencaf the initial stake ard is definel as

g"dim E kiq} /E{itk}, OnOn. 2
=1 k=1

n- o

Here M is a sé& of all feasible pdicies. The contrdler
objedive is o detemine a pdicy 77 with a carespondig
minimum long-term averagée., ™ =argming™ .
man
The Bdiman ogimality equdions [13] for this averag
cod ergodt Markov decisin pracess hae the rectrence
form

* . E * *E
h, =mined -g 12+ Y P2h, qOxOS, 3
X aDA&EX g1y y%s xy'ly ( )

wher h, is a1 optima stae dependen value fundion
h":S - 0. The carespondig ogimal policy is

M, = argmin%:i‘ -g'12+ > Pah, %DXD S. (4)
aA H Vi

If a peréd model ca be analyically derived then the
soluion o the seé of equaions (3 and the carespondiig
pdicy (4) can be obtainel throudn dynamic progranming
tedhniques In the nex sedion, we preseha nev paradign
thet integrats the modé estimation ard the poligy learnirg
for approxmating the ogimal solution of (3) online.

IV. THE PROPOSE MODEL-BASED RL SOLUTION

The model-bags# learning archecture as illustrated in
Fig. 3, h& three man subsystemdhe contrdled systemthe
contrd policy learner ard the modk estimator The
contrdled systen coud be a red world o a smulated
system The contrd policy learne has two componentsa
value fundion learne ard a pdicy finder.

A. Model Estimation

The contrd system learsa modéfor the sysem dynanics
from the observe sampé values It estimats the stag

transtion proballities, the sojoun time urtil the nex
decisimn ard the expectal immediat cos functiors usirg the

sampk averagesLet Ng (k) be the numbe of times the
systen stae change from x to y unde adion a before thek™
decision epoch NZ(k) be the numbe of times d executing
adion a in stae x before thek™ epoch Then, tle contrdied
stae tranition probalilities & the k™ decisim epoch a
edimateal as fdlows
DDNi‘y(k)
Py (K) = ON2 (k)
EFXZ;‘, k- 1) otherwise

if X=X, Y=% Ua=a.

(5)

and the averagémmediat cos is esimated as

G ~Ckk-1)

T k-1
I:(: -
0" N3 ()

H2 k-1

Similarly, the average sojoartime is given by

if x=x._,0a=a,_
Ci(k): k-1 kl' (6)

otherwise

g T, -13(k-1) .
Ak-D+K X2 T jf x=x . OJa=a,_
Ti(k):El[X( ) Nf(k) k-1 kl'(7)
%i‘ k-1 otherwise

Unde the assumpion tha evely state-atton par is vidted
infinitely often the esimated modé convergs asymptt-
cally (a.s) to the true model.

B. Learning the Optimal Value Functions

In this subsdion, we develp a gradientike schere
imAQ (Incrementh Model-basd Average-cds Q-learning
to incrementhy updae the ation value fundions insted o
the state value furnion in (3). This dlows a reldively quick
adion sekdion. In contrasto [17], the proposé scheme is
for the coriinuous-time MDP ard use the esimated modé
insteal o the temporh difference b dired the searb
operdion. Fdlowing [17], the opimal Q-functiors ae
defined for the AC-SMDP &

Q2=ci-g i+ > Poh’(y) OxOS andal A, (8)
S

where QF represerttthe value 6applying adion ain staex

and following the ogimal policy thereafter The reldionshp
between the Q-values ard h-values ae given by

h, = arELrJQf OxOS. (9)

Hence equaion (8) becomes

QR =ci-g'tx+ Y Ry min Ry [IxOSandal A, (L0)
o bOA,

To dlow the detemination o Q-values orine, the
contrdler repleces the epected values in (10) with the
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edimatel values in (5)-(7) basé on the certainy equivalerce
principle [L14]. A more dficient approat is o use a gradient-
like scheme thancremenally updats the Q-values using

Qx (k) =Qg(k =1) +a{cy (k) —py Ty (k) +

y%spx"; (k)gi\ry[Q;’(k -1)] - Q(k -1)}’ 1)

where p, is a1 esimate d the long-tem averag cos ard a
0 (0, 1] isa learnim rake a a step-sie parameterThe sdting
for o can be fixed o gradudly decayirg over time. The
avera@ cos is esimated using tle accumulat coss ard
sojoumn times as fdlows

k k
Pk :;Ctlt—l/gttlt—l:

where |;, an indicato fundion, equak ore if a greed/ adion
is gplied a the t" decisin epoch ad zeo otherwise To
alow faste convergene, the contrdler can use the esmated
modé and appy the updat rule (L1) to more tha ore state-
adion par dependig on the avédlable time before the nex
decisian epoch

Othea approache ae 4gill possibe for integraing the
model-free aml the model-bask learning approaches-a
instarce the model-free scherseae more #icient a the
eafier stage ard can be useé untl gaining enoudp
information ard the eror in the goproxmate modébecomes
low; then the pdicy learne can switch to the model-bask
approach But determinirg the swtch point is nd a trivid
task

C. ThePolicy Finder

When a nev cdl arrives the contrdler observs the stag
of the netwok and detemines whethe to adnit or rejed
basel on the esimatal state-ation value fundions Various
approachs can be useé to sekd an adion usirg the learnd
adion valwe fundions One smple gproach cdled greed/
sekdion mechanism is © alway sekd the one thais
apparernly the beg curent action i.e. tte one thahas the
smdlest Q-value To resole the conlfct between the systen
identification (exploration) and contrd (exploitation), more
complicatel sekdion mechanisrs ae needd [18]. Onre
commonly usal approab cdled e-greed/ in which the greegt
adion is seectal with high poballity, 1-¢, and with smal
probablity, & uniformly seked amorg adions where € may
be fixed o gradudly diminishing over time. Othe
approachs dired the adion sekdion basd on ther Q-
values e.g, the Bdtzmann’s distribuion whee the
exploraion rake is contrdled throudh the temperate
parameter.

12

V. SIMULATI ON AND NUMERICAL RESULTS

In this £dion, we cordud intensive conputea smulation
runs o empiricdly evaluaé ard compae the performancefo
the learnig algoithm (imAQ) with the complete sharm

(CS amrd the opgima guad reserviion (GQ) pdicies for
different traffi c scenariosA single cdl with C =20 chainek
is consideredWe blt a discre¢ even simulats to generag
the trdfic streams fa new cdl and handdf call requess
accordirg to mutudly independenPoissm pracesses In the
first experiment the mea arival rates ae s¢ to A\, = 5
cdls/min, ard A,= 3 cdls/min resgdively. Eat cdl requess
one chanel The chand holding time is exponetially
distributed with mean 14 = 2 min. The weightirg factos ae
sdtow,= 1, ard w,=10. The andytical sdution reveds that
the ogimal threshadl G, = 18 and tle correspondigblockirg
probalilities B, = 0.010128 and, = 0.150796 We run the
simulata for 10 rurs ard the average valgeae depictd in
Figs 4.a-4.c. Fig. 4 showg the average cosncurred by eat
pdicy while Figs 4b ard 4c¢ shav the carespondilg nev
and handd call blocking probablities far eah pdicy. Fa
the learnig algoithm, the value funtions ae initialized to
zers ard the step-size parametex is seé to 001 The
simulation resilts shov tha the learniy approab was
capabké d self-adjusing and prioitizing the handé call.
Also, the performance fomAQ is auperia to the compleg
sharirg pdicy and is vel cloe o the ogimal guad pdicy.
To ted the performane d the leaning goproah compare to
othe pdicies far different traffic condtions (e.g when the
handdf rate is varied) we run the smulata for dl the
pdicies far the same gdngs asin the first expeliment but fo
different handdf rates The resilting values ae average
ove 10 runs The averag value & the e of the smulation
time far the averag co$ incured new cdl blocking
probablity and handdf call blocking probalility are pldted
versis the hand rate in Figs 4.d-4.f, where CSA and
CS S refer to the analyica and dmulation resits far
complee sharilg pdicy respedively. Smilarly, GC_A and
GC S indicate tlk analyical and simulatia resits far guad
channd policy respedively. Again as depictd in Fig 4.d, tre
complete sharig pdicy hes the highest iourred averag cos
while the ogimal guaid chaand policy incured the smélest
avera@ cost The imAQ leaning goproad hasa compartive
performanced the ogimal guard threshold picy .

VI. CONCLUSIONS

In this pape we have ddressal the chaand allocatian in
cdlular mohile networls with prioitized handdfs. The
problem has keen formulatel as an averag co$ continuous-
time Markos decisim problem Then, a model-basg
reinforcemen learnirg approab has been developd for
finding a self-adjusng dlocation stratey tha is
approxmately optimal. Smulation resilts shav tha the
proposd scheme outperforrs the complete sharm policy
and ha a comparald performaoce © the ogimal guad
channd approach Although in this pape we assume only
handdf prioritization for a singk tréfi ¢ class the proposé
algoiithm can eadly be extendd to dedwith mutiple tréfic
classes with heterogeneaucharacterttcs.
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