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Abstract−−−−In this paper we propose a new channel allocation 
scheme for improving the quality of service in cellular mobile 
networks. The proposed algorithm prioritizes handoff call 
requests over new call requests. The goal is to reduce the 
handoff failures while still making efficient use of the network 
resources. A performance measure is formed as a weighted 
linear function of new call and handoff call blocking 
probabilities. This problem is formulated as a semi-Markov 
decision process with an average cost criterion. A simulation-
based learning algorithm is then developed to approximate the 
optimal control policy online using the generated samples from 
direct interactions with the network. It is based on an 
approximate model that is estimated simultaneously while 
learning a control policy. The estimated model is used to direct 
the search for an optimum policy. Extensive simulations are 
provided to assess the effectiveness of the algorithm under a 
variety of traffic conditions. Comparisons with some well-known 
allocation policies are also presented. Simulation results show 
that for the traffic conditions considered in this paper, the 
proposed scheme has a comparable performance to the optimal 
guard channel approach. 

  

I. INTRODUCTION 
 

Next generation cellular networks are expected to support 
wideband multimedia applications and wide user mobilit y 
anytime and everywhere. One of the faced challenges is to 
provide qualit y of service (QoS) guarantees for the generated 
heterogeneous traffi c (voice, video, data, etc) using the 
limited wireless bandwidth. To increase the system capacity 
and reduce the power consumption, the coverage area is 
divided into sub-areas or cell s and the available bandwidth 
units (channels) are assigned to each cell according to some 
channel assignment strategies [1]-[3] in order to satisfy the 
channel reuse constraint criterion. The number of channels 
assigned to each cell base station may be fixed, quasi-fixed, 
or dynamically changing to accommodate the changes in the 
traffi c within the cell . Within each cell , there are two types of 
traffic: calls originated in the cell and initially requesting new 
connections (new calls) and call s migrating from the 
neighboring cell s into the cell (handoffs). Based on the 
channel allocation criteria, a call (new or handoff) may be 
denied access to the network resources. From a user’s 
perspective, terminating an ongoing call i s more undesirable 
than blocking an initial call attempt. The impact of the 
handoff call dropping becomes more serious in the future 
personal communications networks since there is a trend 
toward reducing the cell sizes to microcells and even 
picocells and therefore frequent handoffs are more likely. 

Consequently, several schemes have been proposed in the 
literature to reduce the handoff failure probabilit y [1], [4]-
[12]. One well-known method is the guard channel approach 
[4]. The basic idea is to a priori reserve certain number of 
channels in each cell exclusively to handle handoff requests 
while the remaining channels are used to serve both types of 
traffic on a first come first serve basis. In this approach the 
system trade the new call blocking (and hence the channel 
utili zation) in order to reduce the handoff failures. For that 
reason, the determination of an optimal admission threshold 
is critical to maintain a balance between the system 
utili zation and the handoff call dropping probability . In [5], it 
has been proved that such a threshold exists for which a 
linear weighted function of new call and handoff blocking 
probabilities is minimized. Other techniques allow queueing 
with the guard channel approach of the originated call s [6] 
and/or the handoff requests [1], [4], [7] until a channel 
becomes available. If no channel becomes free before a 
maximum allowable delay, the call i s dropped. A trade-off 
between the blocking probabilities and the increased delay 
arises. But for microcellular systems there may be several 
handoffs during a call session duration and queueing, for 
handoff requests, becomes less favorable.  

The exact solution for the optimum threshold is determined 
in [8] using an analytical model and an incremental search 
based on the properties of handoff and new call blocking 
probabilities. Other approaches based on the Markov decision 
theory [13] find the optimal threshold using synchronous 
dynamic programming (DP) techniques [10]. All these 
approaches presume a priori knowledge of a perfect system 
model. Further, the computational complexity precludes them 
to scale well for large state-space systems. By allowing the 
guard threshold to change dynamically to adapt to the traffi c 
conditions, further potential improvements can be attained 
[11], [12]. There is also a class of algorithms that predict the 
mobilit y patterns and reserve the required bandwidth in 
advance in the destination cell s [9], [11].  

To reduce the computational burden of the conventional 
DP techniques, asynchronous value iteration for real and non-
real time systems have been suggested [14]. Also, an adaptive 
real-time dynamic programming scheme (ARTDP) [14] has 
been proposed for discrete-time Markov decision problems 
(MDP) in the discounted framework. Another scheme called 
H-learning [15] has been devised for the average cost 
counterpart. Recently a model-free reinforcement learning 
(RL), a stochastic approximation of dynamic programming, 
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has been applied to the channel assignment problem [2]-[3]. 
However in these schemes, there is no differentiation 
between new call s and handoffs. In [16], a class of model-
free reinforcement learning schemes is applied for the 
handoff prioritized call admission control problem and 
promising results are attained.   

In this paper we propose a new channel allocation scheme 
that gives higher priority to handoffs. The proposed algorithm 
lowers the handoff dropping probabilit y while maintaining 
the channel utili zation and autonomously adjusts the 
allocation policy to the traffi c scenario. Furthermore, it does 
not presume a priori knowledge of the system model or the 
traffi c parameters. However, they approximate a model 
online using the observed sample data collected from direct 
interaction with the network at the same time they learn a 
control policy. The estimated model is used to direct the 
search for an optimal control policy. Intensive simulations are 
conducted to evaluate the performance of the proposed 
algorithm against other resource allocation policies, such as 
the complete sharing and the optimal guard channel policies. 

The remainder of this paper is organized as follows. The 
next section describes the traffi c model and the performance 
measures. In Section III we formulate the channel allocation 
problem as an average-cost semi-Markov decision process 
(AC-SMDP). Section IV presents the proposed model-based 
reinforcement learning scheme. Simulations and numerical 
results are provided in Section V. Analytical and empirical 
comparisons with complete sharing and optimal guard 
channel policies are also given. Finally, in Section VI we 
present our conclusions. 

 

II.  TRAFFIC MODEL AND PERFORMANCE CRITERIA 
 

Consider a generic cellular network with a limited number 
of bandwidth units or channels which may be time slots, 
frequency carriers, or spreading codes based on the access 
technology used. There are two kinds of traffic arrivals in 
each cell based on the call origination location: new and 
handoff calls. Based on the availabilit y of the system 
resources and the allocation criteria, a channel allocation 
scheme decides at each arrival instance whether to accept or 
reject the call . Under a fixed channel assignment scheme and 
the assumption of spatially uniform traffi c conditions, the 
cellular network can be studied by focusing on a single cell . 
Figure 1 shows the traffi c model for a particular cell wit h a 
fixed number of channels, C, as an M/M/C Erlang-loss model. 
We assume that blocked call s are cleared. The bandwidth 
requirement can be expressed in terms of bandwidth units 
(BU’s) or channels. We make the commonly used 
assumptions that the arrivals of new call s and handoff call s 
are according to mutually independent Poisson processes 
with mean arrival rates  λn and λh respectively. The call 
session duration, Ts, and the inter-handoff time (cell dwelling 
time), Th, are mutually independent and exponentially 
distributed with means 1/µs and 1/µh respectively.  Therefore, 
the channel holding time, the minimum of the call duration 
and time until handoff, is also exponential with mean 

)/(1/1 hs µ+µ=µ . The ratio sh µµ indicates the relative 
motion of the mobile station to the cell size and can be 
referred as mobilit y index.  
The network state n(t) can be defined as the number of busy 
channels at time t, and the natural evolution of the stochastic 
process {n(t), t≥0} represents a continuous-time Markov 
chain with a finite state space S = {0, 1, 2, …, C}. The 
transition rate diagram for a general allocation policy is 
shown in Fig. 2. The aim of any allocation control strategy is 
to determine the allocation probabilities hini ββ   and  for all 

states. For complete sharing 1=β=β hini  for i = 0, 1, 2, …, 
C-1 and zeros otherwise. Let Pi be the steady state probabilit y 
that the system occupies state i. Hence, the new call blocking 
and the handoff call dropping probabilities are the same, that 
is, Bn =  Bh = PC. On the other hand, for the guard channel 
approach the new call and the handoff admission policies are 
different; 1=βhi  for i = 0, 1, 2, …, C-1 and zero otherwise, 

while 1=βni  for i = 0, 1, 2, …, G-1 and zero otherwise 
where G is a guard threshold value. The blocking 

probabilities are given by ∑
=

=
C

Gi
in PB , and  Ch PB = .  

The goal is to find a channel allocation policy that 
minimizes a weighted linear function of new call and handoff 
call blocking probabilities as defined by 

 

h
hn

h
hn

hn

n
n BwBwP

λ+λ
λ+

λ+λ
λ= ,          (1) 

 

where wn and wh represent the relative weights of each type 
with wh > wn to reflect the fact that rejecting a handoff request 
is more undesirable than rejecting a new call request. 

In the next section, this problem is formulated as an 
average cost semi-Markov decision process. 

 

III.  THE CHANNEL ALLOCATION PROBLEM AS AN AC-SMDP 
 

The channel allocation problem can be formulated as an 
infinite-horizon finite-state semi-Markov decision process 
(SMDP) under the average cost criterion. In the following a 
reduced state-space model is used to find an allocation policy 
by controlling the admission of new call s only since it is 
always optimal to accept a handoff request as long as there is 
a free channel. The primary components of an AC-SMDP are 
defined as follow. The decision epochs correspond to the new 
call arrival instances. The sojourn time from one decision 
epoch to the next decision epoch is a continuous time random 
variable with the same probabilit y distribution as the new call 
inter-arrival times. The system state is defined as the number 
of busy channels immediately prior to a new call arrival. 
Although the system state may change between two decision 
epochs due to handoff call arrivals or call s leaving the cell , 
only the states at the decision epochs are significant to the 
controller. The system state space is a finite set S = {0, 1, 2, 
…, C}. The action set available in each state is a finite set As 

= {0 = reject, 1 = admit}  for s∈{0, 1, 2, ..., C-1} and As = {0 
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= reject} for s∈{ C} . A deterministic stationary policy is a 
mapping from states to actions AS →π : . Starting from 
initial state is =0  and implementing policy π, the system 
state at nth decision epoch, sn, evolves as a semi-Markov 
chain {sn: n ≥ 0, sn ∈ S} with a state transition probability 

P(sn+1 = j| sn = i, a = πi) = a
ijP , that is, the probability that the 

system state at the next decision epoch is j given that the 
current state is i and action πi is applied. At each decision 
epoch the controller incurs a random stage cost which 
depends on the rejected call s on that stage. The immediate 
stage cost, ck+1, and the sojourn time, τk+1, are not known until 
the next decision epoch. The sequence of incurred costs is a 
stochastic process and depends on the adopted policy. For 
this ergodic Markov decision process, the average cost is 
independent of the initial state and is defined as 
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Here Π is a set of all feasible policies. The controller 
objective is to determine a policy π* with a corresponding 

minimum long-term average, i.e., .minarg* π

Π∈π
=π g  

The Bellman optimality equations [13] for this average 
cost ergodic Markov decision process have the recurrence 
form  
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where hx
* is an optimal state dependent value function 

.:* ℜ→Sh  The corresponding optimal policy is  
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If a perfect model can be analytically derived; then, the 
solution of the set of equations (3) and the corresponding 
policy (4) can be obtained through dynamic programming 
techniques. In the next section, we present a new paradigm 
that integrates the model estimation and the policy learning 
for approximating the optimal solution of (3) online. 

 

IV.  THE PROPOSED MODEL-BASED RL SOLUTION 
 

The model-based learning architecture, as illustrated in 
Fig. 3, has three main subsystems: the controlled system, the 
control policy learner, and the model estimator. The 
controlled system could be a real world or a simulated 
system. The control policy learner has two components: a 
value function learner and a policy finder.  

 

A. Model Estimation 
 

The control system learns a model for the system dynamics 
from the observed sample values. It estimates the state 

transition probabilities, the sojourn time until the next 
decision and the expected immediate cost functions using the 

sample averages. Let )(kN a
xy  be the number of times the 

system state changes from x to y under action a before the kth 

decision epoch; )(kN a
x  be the number of times of executing 

action a in state x before the kth epoch. Then, the controlled 
state transition probabilities at the kth decision epoch are 
estimated as follows 
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and the average immediate cost is estimated as 
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Similarly, the average sojourn time is given by 
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Under the assumption that every state-action pair is visited 
infinitely often, the estimated model converges asymptoti-
cally (a.s.) to the true model. 

 

B. Learning the Optimal Value Functions 
 

In this subsection, we develop a gradient-like scheme 
imAQ (Incremental Model-based Average-cost Q-learning) 
to incrementall y update the action value functions instead of 
the state value function in (3). This allows a relatively quick 
action selection. In contrast to [17], the proposed scheme is 
for the continuous-time MDP and uses the estimated model 
instead of the temporal difference to direct the search 
operation. Following [17], the optimal Q-functions are 
defined for the AC-SMDP as  
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where a
xQ  represents the value of applying action a in state x 

and following the optimal policy thereafter. The relationship 
between the Q-values and h-values are given by 
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Hence, equation (8) becomes 
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To allow the determination of Q-values online, the 
controller replaces the expected values in (10) with the 
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estimated values in (5)-(7) based on the certainty equivalence 
principle [14]. A more efficient approach is to use a gradient-
like scheme that incrementally updates the Q-values using 
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where ρk is  an estimate of the long-term average cost and α 
∈ (0, 1] is a learning rate or a step-size parameter. The setting 
for α can be fixed or gradually decaying over time. The 
average cost is estimated using the accumulated costs and 
sojourn times as follows 
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where It, an indicator function, equals one if a greedy action 
is applied at the tth decision epoch and zero otherwise. To 
allow faster convergence, the controller can use the estimated 
model and apply the update rule (11) to more than one state-
action pair depending on the available time before the next 
decision epoch.  

Other approaches are still possible for integrating the 
model-free and the model-based learning approaches. For 
instance, the model-free schemes are more efficient at the 
earlier stages and can be used until gaining enough 
information and the error in the approximate model becomes 
low; then the policy learner can switch to the model-based 
approach. But determining the switch point is not a trivial 
task.  
 

C. The Policy Finder 
 

When a new call arrives, the controller observes the state 
of the network and determines whether to admit or reject 
based on the estimated state-action value functions. Various 
approaches can be used to select an action using the learned 
action value functions. One simple approach, called greedy 
selection mechanism, is to always select the one that is 
apparently the best current action, i.e. the one that has the 
smallest Q-value. To resolve the conflict between the system 
identification (exploration) and control (exploitation), more 
complicated selection mechanisms are needed [18]. One 
commonly used approach called ε-greedy in which the greedy 
action is selected with high probability , 1-ε, and with small  
probability , ε, uniformly select among actions; where ε may 
be fixed or gradually diminishing over time. Other 
approaches direct the action selection based on their Q-
values, e.g., the Boltzmann’s distribution where the 
exploration rate is controlled through the temperature 
parameter.  
 

V. SIMULATI ON AND NUMERICAL RESULTS 
 

In this section, we conduct intensive computer simulation 
runs to empiricall y evaluate and compare the performance of 
the learning algorithm (imAQ) with the complete sharing 

(CS) and the optimal guard reservation (GC) policies for 
different traffi c scenarios. A single cell wit h C = 20 channels 
is considered. We built a discrete event simulator to generate 
the traffi c streams for new call and handoff call requests 
according to mutually independent Poisson processes. In the 
first experiment, the mean arrival rates are set to λn = 5 
calls/min, and λh = 3 calls/min respectively. Each call requests 
one channel. The channel holding time is exponentially 
distributed with mean 1/µ = 2 min. The weighting factors are 
set to wn = 1, and wh = 10.  The analytical solution reveals that 
the optimal threshold Go = 18 and the corresponding blocking 
probabilities Bh = 0.010128 and Bn = 0.150796. We run the 
simulator for 10 runs and the average values are depicted in 
Figs. 4.a-4.c. Fig. 4.a shows the average cost incurred by each 
policy while Figs. 4.b and 4.c show the corresponding new 
and handoff call blocking probabilities for each policy. For 
the learning algorithm, the value functions are initialized to 
zeros and the step-size parameter α is set to 0.01. The 
simulation results show that the learning approach was 
capable of self-adjusting and prioritizing the handoff call . 
Also, the performance of imAQ is superior to the complete 
sharing policy and is very close to the optimal guard policy. 
To test the performance of the learning approach compared to 
other policies for different traffi c conditions (e.g. when the 
handoff rate is varied), we run the simulator for all the 
policies for the same settings as in the first experiment but for 
different handoff rates. The resulting values are averaged 
over 10 runs. The average values at the end of the simulation 
time for the average cost incurred, new call blocking 
probabilit y and handoff call blocking probabilit y are plotted 
versus the handoff rate in Figs. 4.d-4.f; where CS_A and 
CS_S refer to the analytical and simulation results for 
complete sharing policy respectively. Similarly, GC_A and 
GC_S indicate the analytical and simulation results for guard 
channel policy respectively. Again as depicted in Fig. 4.d, the 
complete sharing policy has the highest incurred average cost 
while the optimal guard channel policy incurred the smallest 
average cost. The imAQ learning approach has a comparative 
performance to the optimal guard threshold policy.  

 

VI.  CONCLUSIONS 
 

In this paper we have addressed the channel allocation in 
cellular mobile networks with prioritized handoffs. The 
problem has been formulated as an average cost continuous-
time Markov decision problem. Then, a model-based 
reinforcement learning approach has been developed for 
finding a self-adjusting allocation strategy that is 
approximately optimal. Simulation results show that the 
proposed scheme outperforms the complete sharing policy 
and has a comparable performance to the optimal guard 
channel approach. Although in this paper we assumed only 
handoff prioriti zation for a single traffi c class, the proposed 
algorithm can easil y be extended to deal with multiple traffi c 
classes with heterogeneous characteristics.   
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 Fig.  1. Cellular system and traffi c model. 

 
 
 
 

Fig.  2.  Transition rate diagram for a generic allocation policy, λi = λn βni 

+ λh βhi for i ∈ {0, 1, 2, …, C-1} and µ=µs+µh. 
 

 
 
 
 
 
 
 
 
 

 Fig.  3. Model-based system components. 
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 Fig.  4. The performance of imAQ compared with GCP and CSP. 
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