
Burst Tries: A Fast Efficient Data Burst Tries: A Fast, Efficient Data
Structure for String Keys

Steen Heinz Justin Zobel Hugh E. Williams

School of Computer Science and Information Technology,

RMIT University

Presented by Margot Schips
22 April 2010

1

OutlineOutline
Introduction to Burst Tries

What’s a Trie?

Applications

fReview of Data Structures

Burst Trie, how does it work?
O tiOperation
Heuristics
Data Structures

Experiments and Results

Conclusions

2

Introduction to Burst TriesIntroduction to Burst Tries
This paper proposes a new data structure, the Burst Trie, that
has significant advantages over existing options for managing
larges sets of distinct strings in memory.

Advantages of Burst Tries Advantages of Burst Tries
They use about the same memory as a binary search tree
They are as fast as a triey
A Burst trie maintains the strings in sorted or near-sorted order
(though not as fast as a hash table).

3

So what’s a ‘Trie’?So what’s a ‘Trie’?
A trie is a compact data structure for representing a set of
strings, such as all the words in a text.

P i th tt d tt t hi

Why use a ‘Trie’?
Preprocessing the pattern speeds up pattern matching
queries.

A trie supports pattern matching queries in time A trie supports pattern matching queries in time
proportional to the pattern size.

4

Standard Tries

The standard trie for a set of strings S is an ordered tree such that:
E h d b h i l b l d i h hEach node but the root is labeled with a character
The children of a node are alphabetically ordered
The paths from the external nodes to the root yield the strings of S

Example: standard trie for the set of stringsExample: standard trie for the set of strings
S = { bear, bell, bid, bull, buy, sell, stock, stop }

Tries5

Analysis of Standard Tries

A standard trie uses O(n) space and supports searches, insertions p pp
and deletions in time O(dm), where:
n total size of the strings in S
m size of the string parameter of the operationg p p
d size of the alphabet

e

b s

u e ti

a

r

l

l

l

l

y l

l

o

c p

d

Tries 6
k

p

Word Matching with a Trie

We insert the
words of the text

s e e b e a r ? s e l l s t o c k !a
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23words of the text

into a trie
Each leaf stores
the occurrences

s e e b u l l ? b u y s t o c k !

b i d s t o c k !

a

b i d s t o c k !

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68the occurrences
of the associated
word in the text

h e t h e b e l l ? s t o p !
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
a r

87 88

e

b s

u e ti

h

e

a l l e

0, 24

o

c

l

r

6
l

78

d

47, 58
l

30

y

36
l

12

p

84

r

69

a

Tries 7

6 78 30 12 k

17, 40,
51, 62

8469

Compressed Tries

A compressed trie has internal
d f d l

b s
nodes of degree at least two
It is obtained from standard trie
by compressing chains of
“redundant” nodes

e

ar ll

u

ll y

ell to

ck p

id

redundant nodes ar ll ll y ck p

e

b s

u e ti

a

r

l

l

l

l

y l

l

o

c p

d

Tries 8
k

p

ApplicationsApplications
Many applications depend on efficient management of large
sets of distinct strings in memory.

News archives
Law collectionsLaw collections
Business reports

These collections contain many millions of distinct words, y ,
the number growing more or less linearly with collection size

During index construction for text databases a record is held
for each distinct word in the text, containing the word itself
and information such as counters.

9

Indexing: efficiencyIndexing: efficiency
Indexing storage needs

Vocabulary
Term occurrence count
Individual term locationsIndividual term locations

This Vocabulary Accumulation needs to be stored in a data
structure.

Goal: to maintain a set of records for which a string (term) is
the key.

Memory provides faster access than disk, so a compact data
structure is preferred.

10

Review of Data StructuresReview of Data Structures
Hash Table

Efficient and relatively fast (improved by bitwise hash function,
chaining and move-to-front in chains), but unsorted strings are
slower to update. p .

Tries and Ternary Search Trees
Fast, but space intensive

Binary Search Trees including splay trees, randomised search
trees and red-black tress

Less space-intensive, but slow

11

Burst Trie how does it work?Burst Trie, how does it work?
A Burst Trie uses containers to store keys/values before
creating branches.

Wh h f ll h "b " d d When the containers are full, they "burst" and are turned
into branches.

The benefit is that a more efficient data structure for small
sets of keys/values can be used in the container, making it y , g
faster than a conventional tree.

12

Burst Trie how does it work?
This structure is a collection of small data structures, which

Burst Trie, how does it work?

we call containers, that are accessed via a conventional trie.

Searching involves using the first few characters of a query
string to identify a particular container then using the string to identify a particular container, then using the
remainder of the query string to find a record in the
container.

A container can be any data structure that is reasonably
efficient for small sets of strings, such as a list or a binary

hsearch tree.

13

Burst Trie how does it work?Burst Trie, how does it work?
Initially, a burst tree consists of a single container.

When a container is deemed to be inefficient, it is burst, that
 l d b d d f h ld h h is, replaced by a trie node and a set of child containers which

between them partition the original container's strings.

Two major design decisions to be explored for burst tries:
what data structure to use for a container
how to determine when a container should be burst

14

Existing Data Structures Existing Data Structures, (BST)

Binary Search Tree (BST)
All f d d d b dAllocation of strings to nodes determined by insertion order
Advantages

Assuming a stable distribution in the text collection, with skew g ,
distribution it is expected that common words will occur close to the
beginning of the text collection and are therefore close to the root of
the BST.
Access to common terms is fast, since first levels of tree are kept in
cache.

Disadvantagesg
If BST is sorted or distribution changes (ex. Docs in multiple
languages), behavior degrades. Long, non-branching paths, or
‘sticks’, create time-consuming searches. g

15

Existing Data Structures (BST)Existing Data Structures (BST)
AVL and Red-black trees

Advantages
Balanced trees are reorganized on insertion or deletion; eliminates
long sticks found in unbalanced treesg
O(log n) upper limit to length of search path

Disadvantages
Rebalancing doesn’t favor frequent access to common words at the
top of the tree. Common words are just as likely to be placed in a
leaf.

Experiments show faster search with red-black tress in data with
low skew, BST is better for typical vocabulary accumulation

16

Existing Data Structures (BST)Existing Data Structures (BST)
Splay Trees (BST variant)

P l AdPotential Advantages
On each search, node accessed is moved to root by splaying, a series
of node rotations
Intuitively, it seems that commonly-accessed node would remain near
root and would adapt quickly to change. Search time is O(log n)

Disadvantagesg
Splay Trees require more memory as efficient implementation
requires each node to have a pointer to its parent.
In reality, common words actually don’t stay near the top, they get y, y y p, y g
shifted down as newly-accessed words rise.
Reorganization is expensive, better to reorganize at measured
intervals. Experiments used interval of 4.p

17

Existing Data Structures (BST)Existing Data Structures (BST)
Randomised Search Tree (RST)

Treap: uses inorder traversal in sort order for strings

Tree reorganized using rotations to restore treap property
after each search

RST i i il f S l T t t t d RSTs give a similar performance as Splay Trees, so not tested
in this study

18

Existing Data StructuresExisting Data Structures
Hash Tables

Chaining is most efficient hash table for vocabulary
accumulation. A large array is used to index a set of linked
lists of nodes To search an array the index is computed by lists of nodes. To search an array, the index is computed by
hashing the query string, then the string is sought in the
linked list for that index.

19

Existing Data Structures (Hash)Existing Data Structures (Hash)
For peak performance using hash tables

Distinct strings must be sorted once vocabulary has been accumulated
because order of slots does not correspond to string sort order.
Hashing needs to be fast. Instead of standard modulus hashing, a bit-g g
wise algorithm is employed
Hash Table must be sufficiently large such that the number of slots
needs to be a significant fraction of the number of distinct strings. needs to be a significant fraction of the number of distinct strings.
OR can use smaller tables if, on each search, the accessed node is
moved to the front of the list. This has same efficiency as large tables
and most importantly for this application with move to front chains and, most importantly for this application, with move-to-front chains
efficiency declines much more slowly with increasing vocabulary size.

20

Existing Data Structures (Hash)Existing Data Structures (Hash)
With move-to-front chains and vocabulary accumulation, over
99% f h i h fi d i h l I i f hi 99% of searches terminate at the first node in the slot. It is for this
reason the small number of total string inspections required that,
as can be seen in our experiments, hashing is the fastest of all the g
methods tested in this study.

21

Existing Data Structures Existing Data Structures (Tries)

Trie
A trie is an alternative to a BST for storing strings in sort order.
A node in a standard trie is an array of pointers, one for each
letter in the alphabet with an additional pointer for the empty letter in the alphabet, with an additional pointer for the empty
string.
A leaf is a record concerning a particular string.
Search in a trie is fast, requiring only a single pointer traversal
for each letter in the query string. That is, the search cost is
bounded by the length of the query string.bounded by the length of the query string.

22

Existing Data Structures (TST)Existing Data Structures (TST)
Ternary Search Trees (TSTs)

TST’s are a variant forms of tries with reduced space requirements
and compact tries.

Each node represents a single character c and has three pointers The Each node represents a single character c, and has three pointers. The
left (respectively, right) pointer is for strings that start with a
character that alphabetically precedes (respectively, follows) c.
Thus a set of TST nodes connected by left and right pointers are a Thus a set of TST nodes connected by left and right pointers are a
representation of a trie node. These can be rebalanced on access.
The central pointer is for strings starting with c, thus corresponding

h ` f d l h bto the `c' pointer of a trie node. TSTs are slower than tries, but more
compact.

23

Hash vs TreeHash vs. Tree
In earlier work comparing the tree data structures discussed above, it
was observed that compared to hashing, trees had three sources of p g,
inefficiency.

First, the average search lengths were surprisingly high, typically exceeding
ten pointer traversals and string comparisons (even on moderate-sized data
sets with highly skew distributions) In contrast a search under hashing sets with highly skew distributions). In contrast, a search under hashing
rarely requires more than a string traversal to compute a hash value and a
single successful comparison.
Second, for structures based on BSTs, the string comparisons involved

d d t h t i ti d th il i F redundant character inspections, and were thus unnecessarily expensive. For
example, given the query string ‘middle’ and given that, during search,
‘michael’ and ‘midfield’ have been encountered, it is clear that all subsequent
strings inspected must begin with the prefix ‘mi’.
Third, in tries the set of strings in a subtrie tends to have a highly skew
distribution: typically the vast majority of accesses to a subtrie are to find
one particular string. Thus use of a highly time-efficient, space-intensive
structure for the remaining strings is not a good use of resources.

24

Why Burst Tries?Why Burst Tries?
So far trees are slow, redundant, and inefficient for high skew
data such as text data

C i th i d i ?Can we improve upon their design?

Yes!

25

Burst Tries goalsBurst Tries, goals
The primary design goal for the burst trie is to reduce the
average number of string comparisons required during a
search to less than two.

This requires an adaptive structure that stores more frequent This requires an adaptive structure that stores more frequent
terms such that they can be retrieved more rapidly than less
frequent terms. q

As a secondary goal, any gains in performance should not be
offset by impractical memory requirements, as observed in
tries.

26

Burst Trie contBurst Trie, cont
A burst trie is an in-memory data structure, designed for sets
of records that each have a unique string that identifies the
record and acts as a key.

A string s with length n consists of a series of symbols or A string s with length n consists of a series of symbols or
characters ci for i = 0,…, n, chosen from an alphabet A of
size |A|. We assume that |A| is small, typically no greater yp y g
than 256.

27

Burst Trie ComponentsBurst Trie Components
A burst trie consists of three distinct components, a set of
Records, a set of Containers, and an Access Trie:

Records. A record contains a string; information as required by
the application using the burst trie (i e for information such the application using the burst trie (i.e., for information such
as word locations) and pointers as required to maintain the
container holding the record. Each string is unique.g g q

28

Burst Trie ComponentsBurst Trie Components
Containers. A container is a small set of records, maintained as a
simple data structure such as a list or a BST.

For a container at depth k in a burst trie (depth is discussed
below) all strings have length at least k and the first kbelow), all strings have length at least k, and the first k
characters of all strings are identical. It is not necessary to
store these first k characters. Thus a particular container at p
depth 3 containing “author" and “automated" could also
contain “autopsy" but not “auger".

h l h h d f h dEach container also has a header, for storing the statistics used
by heuristics for bursting.

29

Burst Trie ComponentsBurst Trie Components
Access trie. An access trie is a trie whose leaves are containers.
Each node consists of an array p, of length |A|, of pointers
each of which may point to either a trie node or a container,
and a single empty-string pointer to a record The |Aj| array and a single empty string pointer to a record. The |Aj| array
locations are indexed by the characters c € A. The remaining
pointer is indexed by the empty string. The depth of the root
is defined to be 1. Leaves are at varying depths.

30

Burst Trie ComponentsBurst Trie Components

Figure 1 shows an example of a burst trie storing ten records whose keys are ‘came’, ‘car’,
‘cat’, ‘cave’, ‘cy’, ‘cyan’, ‘we’, ‘went’, ’were’, and ‘west’ respectively.

31

Burst Trie OperationsBurst Trie Operations

There are three main operations applied to the tree:
Searchingg
Insertion
Bursting

32

Burst Trie Operations SearchingBurst Trie Operations, Searching
The access trie is traversed according to the leading characters
i th t i I iti ll th t bj t i th t f in the query string. Initially the current object is the root of
the access trie and the current depth i is 1.
While the current object is a trie node t of depth i ≤ n,j p

(a) Update the current object to be the node or container
pointed to by the ci

th element of t's array p, and
(b) Increment i(b) Increment i.

If the current object is a trie node t of depth i = n + 1, the
current object is the object pointed to by the empty-string
pointer, which for simplicity can be regarded as a container of
either zero or one records. Otherwise, if the current object is
null the string is not in the burst trie, and search terminates.g ,

33

Burst Trie Operations SearchingBurst Trie Operations, Searching
If i ≤ n, use the remaining characters ci , …,cn to search the
container, returning the record if found or otherwise returning
null.

Note that in many languages the most common words are Note that in many languages the most common words are
typically short. Thus these terms are typically stored at an
empty-string pointer, and are found after simply following a p y g p p y g
small number of access trie pointers with no search in a
container at all.

34

Burst Trie Operations InsertionBurst Trie Operations, Insertion
Consider input of a new string c1,…,cn of length n

Stage 1 of the search algorithm above is used to identify the
container in which the record should be inserted. This container,
which can be empty is at depth k For the special case of which can be empty, is at depth k. For the special case of
arriving at a trie node at depth k = n + 1, the container is
under the empty-string pointer.p y g p

If k ≤ n, the standard insertion algorithm for the container
data structure is used to add the record to the container, using

l h ff h h honly the suffix characters ck+1,…,cn. Otherwise, the record is
added under the empty-string pointer.

35

Burst Trie Operations InsertionBurst Trie Operations, Insertion

Figure 2 shows the example burst trie after the insertion of the record with key ‘western’.

36

Burst Trie Operations BurstingBurst Trie Operations, Bursting
Bursting is the process of replacing a container at depth k by a
trie node and a set of new containers at depth k+1, which
between them contain all the records in the original container.

37

Burst Trie HeuristicsBurst Trie Heuristics
A successful bursting strategy should ensure that common
strings are found quickly via the access trie, without excessive
searching within containers.

Appropriate management of containers (such as move to front Appropriate management of containers (such as move-to-front
in lists) should also be helpful in reducing search costs.

Containers that are rarely accessed should not be burst, since y ,
containers should be more space-efficient than trie nodes.

A goal of bursting is to transform containers that have high
average search costs, without bursting unnecessarily.

38

Burst Trie HeuristicsBurst Trie Heuristics
A design goal for the tested heuristics was that they could be
cheaply evaluated.

They do not require a thorough inspection of a container to
decide whether to burst decide whether to burst.
Instead, the heuristics use counters for each container.

The Three Heuristics tested
Ratio
Limit
Trend

39

Burst Trie Heuristics RatioBurst Trie Heuristics, Ratio
The Ratio heuristic utilizes 2 counters to keep track of 2 values

th b f ti i h b h dthe number of times a container has been searched
The number of searches that have ended successfully at the root node
of that container (direct hits)

We calculate the ratio R between the number of accesses and the
number of direct hits for each container. This ratio is used to
determine whether to burst.
Potential Advantage

R is only tested once the total number of accesses exceeds some
threshold, thereby containers that are rarely accessed are burst, y y

Potential Disadvantage
additional memory required to maintain two counters per container,
and the number of tests required at each accessand the number of tests required at each access.

40

Burst Trie Heuristics RatioBurst Trie Heuristics, Ratio
Ratio Example

If less than, say, R = 80% of all accesses into a container are direct
hits and there have been at least, say, 100 accesses to the
container in total, it should be burst. , .

41

Burst Trie Heuristics LimitBurst Trie Heuristics, Limit
The Limit heuristic bursts a container whenever it contains more than a
fixed number L of records fixed number L of records.

Potential Advantages
By eliminating large containers, we limit total search costs.
C d t R i l i l t i i d d thi d l b Compared to Ratio, only a single counter is required, and this need only be
tested on insertion.
Provides reasonable performance even if the distribution of strings is
completely uniform.completely uniform.

Potential disadvantages.
The burst trie with Limit is likely to be slow if there is a container with less
than K terms but all are very common, so that there are many accesses to the than K terms but all are very common, so that there are many accesses to the
container but not many direct hits. However, this can only arise if these terms
and no others share a common prefix, not a probable occurrence.
Containers with only rare strings are burst.

42

Burst Trie Heuristics TrendBurst Trie Heuristics, Trend
The Trend heuristic allocates each newly-created container a set
amount of capital C amount of capital C.
The current capital is modified on each access. On a direct hit, the
capital is incremented by a bonus B. If a record is accessed that is
already in the container, but is not a direct hit, the capital is already in the container, but is not a direct hit, the capital is
decremented by a penalty M. When the capital is exhausted, the
container is burst.
Thus if the accesses are sufficiently skew, the bonuses will offset y ,
the penalties, and the container will not burst.
The use of a start capital ensures that even containers with a
uniform distribution will not burst until after a certain number of
accesses.
Testing revealed this good choice of Trend parameters: start capital
C of 5000, bonus B of 4, and penalty M of 32. p y

43

Container Data StructuresContainer Data Structures
Data Structures should allow reasonable efficient insertion
and search for records over small data sets. This study
considers:

Linked ListsLinked Lists
Binary Search Trees
Splay Treesy

44

Container Data StructuresContainer Data Structures
Data Structures should allow reasonable efficient insertion
and search for records over small data sets. This study
considers:

Linked ListsLinked Lists
Binary Search Trees
Splay Treesy

(Hash tables were not considered as they are not efficient for small numbers of
items.)

45

C t i D t St t Li k d Li tContainer Data Structures, Linked List

Advantages
Low overhead = space efficient

Di dDisadvantages
Access costs are high in unordered list

Solution: Move-to-Front list (most recently accessed node moved to (y
front position. Provides adaptation to local changes in vocabulary.

46

Container Data Structures BSTContainer Data Structures, BST

Advantages
Shorter average search paths than list

Disadvantages
P iti b d d f i ti t fPosition based on order of insertion, not frequency

Solution: when a BST is burst, sort the records by decreasing frequency,
then distribute to the new containers.

47

C t i D t St t S l TContainer Data Structures, Splay Trees

Advantage
Since frequently-accessed records should be kept near the root,
the structure provides adaptation to changing vocabulary and in the structure provides adaptation to changing vocabulary and, in
common with move-to-front lists, may lead to less bursting.

Disadvantage
For efficient splaying, a record in a splay tree requires three
pointers, two to its children and one to its parent. Thus they use
the most space of any of the container structures we consider.

48

E i tExperiments

49

Test Data TextTest Data, Text
•The data sets drawn from the large Web track in the TREC (Text Research
Conference) project. The five groups contain collections of web pages extracted
from the Internet Archive for use in TREC retrieval experiments.

•These collections show the skew distribution that is typical of text.

•A word, in these experiments, is an alphanumeric string containing no more than
two integers and not starting with an integer.

•All words are converted to lower case. XML and HTML markup, special
characters, and punctuation are skipped.

50

Test Data Non textTest Data, Non-text
Non-text collections used for comparison

Genomic Data: a collection of nucleotide strings, each typically
thousands of nucleotides in length, with an alphabet of 4 characters .
It is parsed into shorter strings by extracting n-grams of length 9.
(Such 9-grams are commonly used by genomic search utilities to
locate regions where a longer inexact match may be found.)
Music Data: consisting of pieces in MIDI format stored in a textual g p
representation, using an alphabet of 27 characters. Extract n-grams of
length 7 from the music data, an approach used in indexing MIDI
files.

These n-grams are extracted by sliding a window over the data and
taking every consecutive block of n characters.

51

Test Data Non textTest Data, Non-text
Table 2 shows the statistics of the non-text collections. They
do not show the skew distribution that is typical of text.

This low-skew data sets are expected to perform poorly using Burst Tries

52

MethodologyMethodology
Goals

Explore the different burst heuristics and choices of
container structure to identify which yield good
performance performance,

Compare burst tries to the other principal data structures for
vocabulary accumulation in terms of running time and y g
memory usage.

The data structure stores for each term its total occurrence
frequency and the number of documents in which it occurs.

53

Reference Data StructuresReference Data Structures
Measurements of time and space requirements of five
reference data structures: compact tries (which we simply p p y
refer to as tries), TSTs, BSTs, splay trees, and hash tables.

For splay trees, two variants of splaying are tested: where the
 l d d h l d tree is splayed at every access, and where it is splayed

intermittently (at every fourth access)

For hash tables a hash with 220 slots and a bit wise hash For hash tables, a hash with 2 slots and a bit-wise hash
function was used.

54

Reference Data StructuresReference Data Structures

55

Results Results, TREC1 RATIO

56

Results Results, WEB M RATIO

57

Results Results, RATIO

As container structures, lists, BSTs and splay trees all yield a
similar curve.

However, the ratios that achieve particular points on the
curve vary For example a BST with ratio 45 is about as curve vary. For example, a BST with ratio 45 is about as
efficient as a list with ratio 65. This is because a list of n nodes
uses less space than a BST of n nodes, but is less efficient; lists p
require a higher ratio for the same efficiency.

Similar results were obtained from the other 3 data sets

58

Results Results, TREC1 LIMIT

59

Results Results, WEB M LIMIT

60

Results Results, LIMIT

For all but extremely small containers, Limit greatly outperforms
Ratio for all container structures Ratio for all container structures.
Also, BST containers are faster for given memory than either list
or splay tree containers.
The best results with Limit show that burst tries can be much more The best results with Limit show that burst tries can be much more
ecient than any other tree or trie structure. For example, the
slowest run with BSTs as containers with limit L = 100 uses only 15
Mb and requires 66 seconds. This is less memory than any existing tree q y y g
structure tested, even standard BSTs, and is faster than tries and
almost three times faster than BSTs or splay trees. Only hashing is
faster, by about 27%.
Results for BST containers with the Limit heuristic and all text data
sets show that the gains achieved by burst tries, in comparison to
the reference data structures, are consistent for all these data sets.

61

Results Results, LIMIT, cont

Results for the non-text data sets show that with the genomic data
the burst trie did not do well: it is slower than the TST and half the the burst trie did not do well: it is slower than the TST and half the
speed of hashing. Nonetheless, it is still much faster than the other
tree structures, and is the most compact of all data structures
tested. With the music data the burst trie showed the best
observed performance observed, faster than any other data
structure tested including hash tables with good space utilization.

62

Results Results TREND TREC 1

63

Results Results TREND

Results on TREC 1 are typical of all text data sets where M is
varied and the other parameters are held constant.

It was expected that the Trend heuristic would be the best of
all as it was likely to lead to containers being burst more all, as it was likely to lead to containers being burst more
rapidly if they held common terms, and more slowly
otherwise, but the results do not approach those of Limit. pp

Despite wide investigation, further testing did not identify
combinations of parameters with significantly better

f h h h h hperformance than that shown in these graphs.

64

ConclusionsConclusions
Burst Tries are highly efficient for managing large sets of strings in
memory.

Use of Containers allow dramatic space reductions with no impact
on efficiency.y

Experiments show that Burst Tries are
Faster than compact tries, using 1/6 of the space
More compact than binary trees or splay trees and are over
two times faster
Close to hash tables in efficiency yet keep the data in sort orderClose to hash tables in efficiency, yet keep the data in sort order.

The Burst Trie is dramatically more efficient than any previously
known structure for the task of managing sorted strings.

65

ResourcesResources
1. Burst Tries: A Fast, Efficient Data Structure for String Keys

H i Z b l Willi S h l f C t S i d Heinz, Zobel, Williams; School of Computer Science and
Information Technology, RMIT University (Australia)
http://www.cdf.toronto.edu/~csc148h/fall/assignment3
/bursttries.pdf

2. Data Structures and Algorithms in Java (4th edition), John
Wiley & Sons Inc 2004 Michael T Goodrich and Wiley & Sons, Inc., 2004. Michael T. Goodrich and
Roberto Tamassia
http://ww3.algorithmdesign.net/handouts/Tries.pdf

3. D. Harman. Overview of the second text retrieval
conference (TREC-2). InformationProcessing & Management,
31(3):271{289, 1995.() {

66

