
P1: IOI

PE002-05drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:25

5. The Correctness of Algorithms 109

input is legal

output satisfies
desired relationship

start

stop

Algorithm

assertion

assertion

assertion

assertion

assertion

assertion

assertion

Figure 5.5

Annotating an
algorithm with
invariants.

Now, suppose we can establish that all the assertions we have attached are indeed
invariants, meaning that they are true whenever reached. Then, in particular, the final
assertion is also an invariant. But this means that the algorithm is partially correct.
Hence all we have to do is establish the invariance of our assertions. This is done by
establishing certain local properties of our assertions, sometimes called verification
conditions, to the effect that proceeding locally from checkpoint to checkpoint
does not bring about any violations of the invariance properties. This approach to
proving correctness is sometimes called the invariant assertion method, or Floyd’s
method, after one of its inventors.

How do we go about choosing checkpoints and intermediate assertions, and how
do we establish the verification conditions? The example given in the next section
should shed some light on these questions.

Turning from partial correctness to termination, our main interest is in showing
that something good eventually happens (not that bad things do not); namely, that
the algorithm indeed reaches its endpoint and terminates successfully. To prove such
a statement we use checkpoints as before, but we now find some quantity depending
on the algorithm’s variables and data structures, and show that it converges. By
this we mean that the quantity keeps decreasing as execution proceeds from one
checkpoint to another, but that it cannot decrease forever—we need to show that
there is some bound below which it can never go. Hence there is no way for the
algorithm to run forever, since the convergent, as it is sometimes called, would then
have to decrease forever, contradicting this bound.

In a sorting algorithm, for example, the number of elements not yet in their final
positions in the sorted list might be shown to decrease as execution proceeds, but
never to be less than 0. When that number reaches 0, the algorithm presumably
terminates.




