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Abstract

This thesis describes a scheme to combine the benefits of lazy evaluation with

partial evaluation. By performing specializations only when needed (lazily), the

specialize-residualize decision is changed from being semantic to operational. It is

demonstrated that a completely lazy evaluator is capable of eliminating towers of

interpreters. The scheme is generalised, devising a new implementation of optimal

evaluation, and it is demonstrated that optimal evaluators do not eliminate towers

of interpreters.

It is argued that the concept of scope has too often been overlooked in the

lambda-calculus. A new system of depths is introduced in order handle the issue

of scope. The new approach leads to a much richer understanding of the issue of

sharing in the lambda-calculus. Although optimal evaluators are well known, it

is argued that less well understood degrees of sharing, in between the sharing of

conventional functional languages and optimal evaluators, are of more practical use.

A new classification of possible function body reduction strategies is shown to be

analogous and orthogonal to argument reduction strategies.
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Chapter 1

Introduction

This chapter explains the motivation for the research, and the new approach taken.

A summary of the contributions of this thesis is given and the remaining chapters

are outlined. In order to give the reader a feel for the motivation and appeal of the

research, this chapter deliberately glosses over some of the detail. This detail is left

for later chapters.

1.1 Motivation

This research is motivated by the desire to make programming in more abstract and

interpretive styles more practical and less costly, and to to do so in as unobtrusive

a way as possible.

Two programming paradigms that are suited to abstract styles of programming

are lazy evaluation [39] and partial evaluation [46]. By not evaluating arguments to

functions before they are known to be needed lazy evaluation frees the programmer

from deciding when evaluations should be performed, making it possible to abstract

over the order of evaluation. This enables programs to compute with infinite data

structures, such as the set of all possible chess games, or things which are not fully

known yet, such as data received over a network connection, in just the same way

that programs compute with things which are fully known. Lazy evaluation can

help disentangle the separate concerns of control and data. For example a function

used to build an infinite tree representation of chess games, is kept separate from

the function(s) that will traverse (some finite part of) this tree. Lazy evaluation

makes it very natural and trivial to write in styles that would require added support

for concurrency in a strict language.



16 CHAPTER 1. INTRODUCTION

Partial evaluation enables programmers to write a generic program and have

it transformed into a specialized one. Thus less code needs to be written and a

programmer can more accurately commit themselves to just those design decisions

they wish to. They don’t have to write reams of tedious specialized code that may

all need to be changed if one earlier design decision is changed.

1.2 Partial evaluation and sharing

Partial evaluation can be thought of as a form of sharing. Given a function f taking

two arguments, that is going to be applied repeatedly with the same first argument,

s, but with different second arguments, d1, d2...dn, then by partially evaluating f

with respect to s, a specialized version of f, fs, is obtained. The function fs can

then be applied to each of d1, d2...dn, and the work which is independent of the second

argument is shared, and not repeated. This sharing is achieved by pre-computation

during the specializing phase.

Sharing work that is dependent only on the earlier arguments to a function, so

that the work is not repeated if the partially applied function is then fully applied

multiple times, is a characteristic of a fully lazy language [37]. This similarity was

first noted by Holst [35]. However the work that is shared by full laziness is only

that which is syntactically independent of later arguments, not computationally

independent, this hinders the extent to which full laziness shares work. To increase

the amount of work that could be shared Holst devised the syntactic transformation

improved full laziness. This transforms the program so that more work can be shared

by making more expressions syntactically independent of variables they are not

computationally dependent on. However this transformation is inherently limited

to first order programs, and in general no transformation can achieve the sharing

effect that a higher-order partial evaluator can.

Further work was carried out by Holst and Gomard [36]. They identified the

degree of sharing that would be required to achieve the same specializing effect as

a higher-order partial evaluator, and called this degree of sharing complete laziness.

They gave a number of transformations that could make a program completely lazy,

but such transformations can only work in special cases.

Since this early work, no further work has been reported on combining partial

evaluation with lazy evaluation.
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type Var = String

type Label = String

data Exp = ENum Integer

| EOp (Integer->Integer->Integer) Exp Exp

| EVar Var

data Stmt = SAssign Var Exp

| SIf Exp [Stmt] [Stmt]

| SGoto Label

type Block = (Label,[Stmt])

type Program = [Block]

Figure 1.1: Abstract parse tree definition for a flowchart language.

lookup a ((key,val):table) = if a==key then val else lookup a table

update av@(a,v) (kv@(key,val):table) =

if a==key then av:table else kv:update av table

evalExp (ENum n) env = n

evalExp (EOp f a b) env = f (evalExp env a) (evalExp env b)

evalExp (EVar v) env = lookup v env

evalProg prog env = evalStmt (lookup "main" prog) env where

evalStmt [] env = env

evalStmt (stmt:stmts) env = case stmt of

SAssign var exp -> evalStmt stmts (update (var,evalExp exp env) env)

SGoto label -> evalStmt (lookup label prog) env

SIf cond yes no -> if evalExp cond env /= 0

then evalStmt yes env

else evalStmt no env

Figure 1.2: An interpreter for a flowchart language.

1.3 Partial evaluation of a lazy language

To understand the appeal of combining partial evaluation with lazy evaluation, it

helps to understand a little more about how a partial evaluator works.

Consider an interpreter for an imperative flowchart language, the abstract syntax

tree for which is defined by the data type in Figure 1.1. A partial evaluator could

specialize this interpreter with respect to a given flowchart program, such that the

resulting residual program would take an initial environment and return the final

environment. The partial evaluator works much like an interpreter except the values

of some variables will be unknown. When the partial evaluator meets an expression

it first tries to reduce any subexpressions, and then if it cannot reduce the current

expression, it rebuilds the expression with the results from trying to reduce its

subexpressions. The final expression constitutes the residual program, which will be

run later when values for the unknown variables are known.

When partially evaluating the flowchart interpreter with respect to a flowchart
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evalProg prog env = (lookup "main" prog’) env where

prog’ = map (\(label,stmts)->(label,evalStmt stmts)) prog

evalStmt [] env = env

evalStmt (stmt:stmts) env = case stmt of

SAssign var exp -> evalStmt stmts (update (var,evalExp exp env) env)

SGoto label -> (lookup label prog’) env

SIf cond yes no -> if evalExp cond env /= 0

then evalStmt yes env

else evalStmt no env

Figure 1.3: A knot-tying interpreter for a flowchart language.

program, the partial evaluator will know the first argument to evalStmt, the cur-

rent list of statements to interpret, but not the second argument, the environment.

The partial evaluator will produce a specialized version of evalStmt for each time

evalStmt is applied to a different known argument, that is, there will be a spe-

cialized version of evalStmt for each statement in the flowchart program. When

the partial evaluator meets an unreducible if expression it evaluates both branches

of the if expression. This would result in non-termination except that the partial

evaluator remembers (memoizes) which values it has specialized evalStmt to, and if

it finds itself trying to specialize evalStmt to the same value again, then it just uses

the result of the previous specialization. This memoization is essential to ensure

termination of the partial evaluator if there are going to be cycles in the residual

code.

Some specialization systems, intended for use in dynamic code generation, omit

the memoing. This enables them to specialize faster, but the generated code will

never contain cycles (§2.14.1).

The exciting thing about specializing a non-strict language, is the knot-tying

that is possible. This makes it possible to generate specialized code with cycles in

without requiring the memoing.

This can be demonstrated by rewriting the flowchart interpreter in a knot-tying

way as shown in Figure 1.3. Here evalStmt is applied a bounded number of times

to all the statements that it will ever be applied to, once and for all at the start, so

creating prog’. In the process of creating prog’, prog’ is actually used. This style

of programming is only possible in a non-strict language.
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1.4 Lazy specialization

Complete laziness cannot be achieved by transforming a program to be executed in

a conventional language. But it can be achieved by implementing a completely lazy

evaluator. This requires non-standard reductions under lambdas. This effectively

partially evaluates a program concurrently with the full evaluation of the program.

The program is specialized lazily. This has the interesting implication that decid-

ing whether to specialize or residualize changes from being a semantic issue to an

operational issue.

Specializing code dynamically makes it easier for programmers to integrate the

benefits of partial evaluation into their programs. For example it may be worth

specializing a string matcher in a text editor to a given string.

1.5 Towers of interpreters

Throughout this research a primary objective was to implement an evaluator that

could pass the tower of interpreters test (§6.1). A tower of two interpreters is an

interpreter interpreting an interpreter interpreting some program. An evaluator

passing this test should be able to run the program at the top of this tower at

the same speed regardless of the number of interpreters in the tower, excepting

a bounded amount of time for the one-off specializing overhead. The purpose of

constructing programs like this is that new languages more suited to the domain

they are to be used in can be implemented easily in an interpretive style in another

language. This language in turn may be either the specializing language or some

layered interpreter on top of it. The language developed for all these experiments

is deliberately minimal, with the intention that any features making the language

easier to use should be implemented in an interpretive layer.

1.6 Chapter outline

Chapter 2: Background A review of the relevant background material is given.

Chapter 3: Degrees of Sharing Explanations are given of the notation used, the

way scoped functions work, and how variables can be represented by inte-

gers. An explanation is given of how by losing sharing, conventional reduction
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strategies duplicate work. Different ways of maintaining sharing are presented,

culminating in optimal evaluation. The partial ordering that exists between

different degrees of sharing is explained.

Chapter 4: Reduction Rules A definition is given of cyclic scoped reverse de

Bruijn notation. This notation is new, and is and used to define the reduction

rules used in the implementations of complete laziness and optimal evaluation.

Examples are given of the reduction rules in action.

Chapter 5: Implementation The implementations are presented and some of the

design decisions are discussed.

Chapter 6: Results First a demonstration of complete laziness eliminating a tow-

ers of lazy interpreters is given. Next two heterogeneous towers are used to

demonstrate that new language features can be introduced in the tower, and

to explore which language features are required. An example is given showing

how complete laziness can specialize away the interpretive layer of an imper-

ative language, and how the specializing effect is inherited by the imperative

language. The tower of interpreters experiment is conducted with two optimal

evaluators, neither pass. A number of examples previously presented with the

BOHM optimal evaluator are repeated using interpreters with various degrees

of sharing. This shows that many of them are tamed by a lesser degree of

sharing than optimal evaluation.

Chapter 7: Conclusions Finally the conclusion discusses the significance of the

contributions of the thesis and how these relate to the objectives. Current

limitations and possible avenues for future research are discussed.

1.7 Contributions

Chapter 2: Background

• The identification of a difference between static full laziness and dynamic full

laziness is original

Chapter 3: Degrees of Sharing

• The use of depth to delimit the scope of a function is original.
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• The identification of a partial ordering between some degrees of sharing is

original.

• The classification of reduction strategies in terms of: substitute-by-name,

substitute-by-value and substitute-by-need is original. Their analogy to, and

orthogonality with, call-by-name, call-by-value and call-by-need is original.

• The use of memo-tables to achieve call-by-need and substitute-by-need is orig-

inal.

• Explaining optimal evaluation in terms of the simultaneous specialization of a

function to multiple arguments is original.

• The generalization of a completely lazy evaluator to an optimal evaluator is

original.

Chapter 4: Reduction Rules

• The notation used to represent graphs with memo-tables in a term-like fashion

is original.

• The reduction rules for complete laziness and optimal evaluation are original.

Chapter 5: Implementation

• The implementation of full laziness by graph transformation is original.

• The implementation of complete laziness is the first ever.

• The implementation of optimal evaluation with memo-tables is original.

Chapter 6: Results

• The first ever evaluator to pass the tower of interpreters test is demonstrated.

• Examples demonstrate that interpreters used in a tower of interpreters may

introduce additional features and the interpretive overhead is still eliminated.

• Existing implementations of optimal evaluators are shown to not pass the

tower of interpreters test.

• The specializing effect of complete laziness is shown to be inheritable by an

imperative language as well as functional languages.



22 CHAPTER 1. INTRODUCTION

• Numerous test programs are executed with lazy, fully lazy, completely lazy

and optimal evaluators, and the results analysed.



Chapter 2

Background

This chapter reviews the background material related to the work conducted in this

thesis.

2.1 Origins of the lambda calculus

The lambda calculus was devised in the 1930s by Alonzo Church [24] as a technique

to model the intuitive concept of the effectively calculable function. It was Church’s

belief that any function that could be computed in a systematic fashion could also

be computed via the lambda-calculus. Numerous other models of computation have

been proposed, including most notably the Turing machine [79]. The set of functions

computable by the lambda-calculus, Turing machines and various other models of

computation has been proved to be the same. The belief that no more general model

of computation can be devised is known as the Church-Turing thesis [51]. While

previous claims about lesser models of computation have been proved false, no more

general model of computation than the lambda-calculus or Turing machine have

been discovered and the Church-Turing thesis is not seriously in question.

As a model of computation, the Turing machine approach has the advantage

that it is immediately clear how such a machine could be made in reality, (excepting

that unboundedly long paper tapes are hard to come by).

A Turing machine is however somewhat tedious to program, where as the lambda-

calculus immediately supports the power of abstraction which makes functional pro-

grams more concise and reusable.

It is not so immediately clear how a lambda-calculus “machine” should be con-

structed. The more abstract nature of the lambda-calculus makes it more amenable
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to alternative implementations.

From a mathematical viewpoint how a lambda-calculus “machine”, is constructed

is irrelevant, so long as such a machine can be constructed. But from a practical point

of view, for programming languages based on the lambda-calculus, understanding of

the lambda-calculus can lead to insights leading to better compilers and interpreters.

Many decades after the invention of the lambda-calculus, discoveries are still

being made which will lead to further lambda-calculus inspired improvements in the

programming of computers.

2.2 Lambda calculus definition

A term in the lambda-calculus is defined as either a variable, abstraction or appli-

cation:

Definition 2.1 (lambda terms)

Term ::= x (variable)

| (λx.M) (abstraction)

| (M N) (application)

where x and y range over the infinite set of variables, and M, N, A, B and C

range over the set of terms.

2

The syntactic overhead of the notation may be reduced by adopting the following

conventions:

Definition 2.2 (shorthand)

((A B) C) = (A B C)

(λx. (λy. A)) = (λx. λy. A)

(λx. (A B)) = (λx. A B)

(A (λx. B)) = (A λx. B)

(λx. (λy1 .. yn . A)) = (λ x y1 .. yn . A)
2

The same variable may appear in multiple places in a term. Each occurrence may

be either a binding occurrence, a bound occurrence or a free occurrence. A variable

occurrence is binding if it occurs as the variable part of an abstraction. A variable

occurrence is bound if it occurs (directly or more deeply) within the term part of

an abstraction which binds that variable. A variable occurrence is free otherwise.
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The free variables of a term are computed by FV:

Definition 2.3 (free variables)

FV(x) = {x}

FV(A B) = FV(A) ∪ FV(B)

FV(λx. A) = FV(A) \ {x}
2

For example FV(λx.x y z) = {y,z}. A term is said to be closed if it has no free

variables, and open otherwise.

A lambda-term can be given a meaning by defining the beta-reduction rule which

operates on lambda-terms.

Definition 2.4 (beta-reduction)

(λx.A) B →β A[x := B]

2

The notation A[x := B] denotes substitution, that is the replacement of all free

occurrences of variable x within the lambda-term A with the lambda-term B. How

this is achieved is an implementation issue. The substitution is not entirely trivial

and there are many alternative ways of achieving it.

Barendregt [18] gives the following definition of substitution:

Definition 2.5 (substitution)

x[x := A] = A

y[x := A] = y, if x 6= y

(M N)[x := A] = (M[x := A]) (N[x := A])

(λx.M)[x := A] = λx.M

(λy.M)[x := A] = λy.(M[x := A]), if y 6∈ FV(A) or x 6∈ FV(M)

(λy.M)[x := A] = λz.(M[y := z][x := A]), if y ∈ FV(A) and x ∈ FV(M),

where z 6∈ FV(M) ∪ FV(A)
2

The apparent complexity of this substitution definition obscures the minimalist

elegance of the lambda-calculus. The complication arises from the use of variable

names to associate variables with an abstraction. An example is given in §2.8

demonstrating how these names can clash. Alternative techniques can be used, for

example, a variable can indicate which abstraction it is associated with by use of
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a pointer simply pointing to the abstraction. The inelegance of this substitution

definition is really a symptom of the fact that mathematicians like to formulate

concepts such as the lambda-calculus on paper using letters of the alphabet, rather

than a symptom of any conceptual untidiness in the lambda-calculus itself.

Note the inner substitution in the term (M[y := z][x := A]), this renames all free

occurrences of variable y to z to prevent name clash. Such renaming is also known

as alpha-conversion.

The beta-reduction rule states that a term of the form ((λx.A) B) can be reduced.

Such a term is known as a reducible expression, or redex for short. When a term

contains multiple redexes, the beta-reduction rule does not state which order they

should be reduced in.

A number of alternative reduction orders have been defined. Those employed

by programming languages based on the lambda-calculus typically do not reduce all

redexes. The following definitions are useful in explaining some of the alternative

reduction orders:

Definition 2.6 (normal form)

A term is in normal form (NF) if it contains no redexes.

2

Definition 2.7 (head normal form)

A term is in head normal form (HNF) if it is a variable, or an abstraction whose

body is in HNF, or an application whose function part cannot be reduced to an

abstraction. Equivalently, a term of the form (λx1...xn .y A1...Am) where n,m ≥ 0,

is in HNF.

2

Definition 2.8 (weak head norm form)

A term is in weak head normal form (WHNF) if it is a variable or an abstraction,

or an application whose function part cannot be reduced to be an abstraction.

Equivalently, a term of the form (x A1...An) where n ≥ 0, or of the form (λx.A) is

in WHNF.

2

Programming languages based on the lambda calculus typically only perform

reduction to WHNF.
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Not all terms can be reduced to normal form. For example the lambda-term

((λx.x x) (λx.x x)), is not already in normal form as a beta-reduction is possible,

however the term can only be reduced to itself so can never be reduced to normal

form.

A reduction strategy which guarantees to reduce a term to normal form if a

normal form exists is the normal order reduction strategy. By always postponing

the reduction of the argument of an application until after that application has been

performed, the possibility that the reduction of the argument will fail to terminate

is avoided. The normal order reduction strategy is also known as call-by-name.

An alternative reduction strategy is the applicative order reduction strategy,

where the arguments of applications are reduced to WHNF before the application

is performed. Applicative order reduction has the advantage that if the argument

of an application is required more than once, then reducing the argument before

copies of it are made results in less work. For example the lambda-term ((λx.x x)

A), where A is expensive to reduce. It would be cheaper to reduce A once before

application instead of twice after. The applicative order reduction strategy is also

known as call-by-value.

A function is termed non-strict if it does not evaluate its argument. A function

is termed strict if it does evaluate its argument.

Ideally only arguments to strict functions should be evaluated before the function

is applied. Such a reduction strategy would achieve the best of both worlds: the

normalizing capabilities of normal order reduction, and the reduction sharing of

applicative order reduction. However determining whether a function is strict or

not is undecidable in general.

2.3 Graph reduction

Although deciding whether a function is strict or non-strict is, in general, undecid-

able, reducing the argument to a function before the function is called is not the

only way to ensure the argument is only reduced once. The decision as to whether

to reduce the argument can be postponed. A reduction mechanism that operates on

graphs instead of lambda-terms, can copy pointers to the argument rather than copy

the argument itself. The reduction of the argument can be postponed until the first

time the argument is found to be needed, if ever, and the result of this reduction
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shared by all occurrences of the variable within the function. If the argument turns

out not to be needed, then it will not be evaluated at all.

The reductions performed by this graph reduction technique are equivalent to

the same reductions being performed, but in a different order, on a lambda-term by

an evaluator with the impossible foresight to know which functions are strict and

which non-strict.

Wadsworth [82] describes such a graph reduction technique and calls its eval-

uation strategy call-by-need. This reduction technique works on acyclic lambda-

graphs. Wadsworth also describes a substitution process which maintains sharing

while copying them. This substitution process avoids copying graph which doesn’t

need to be copied. The substitution process described in Definition 2.5 will propa-

gate substitutions right the way through a term. In contrast Wadsworth’s substitu-

tion process only propagates a substitution as far as is necessary for the substitution

to reach all the variables it binds1. There is no point substituting a term whose set

of free variables does not include the variable the substitution binds.

Although it has been helpful to discuss the scope of substitutions in Wadsworth’s

technique as if they were performed using the substitution rules in Definition 2.5,

Wadsworth actually performs the substitutions in one step, this makes it possible

to preserve the structure of the graph being substituted.

Wadsworth describes a fairly expensive process for dynamically determining be-

fore the body of each function is copied, just how much of the graph need be copied.

He notes:

Clearly, this is one area awaiting innovative suggestions. One possibil-

ity is that there will be a simple decision procedure using connectivity

matrices, or some other graph-theoretic concept ...

There is a particular circumstance where this optimization helps, which is worth

distinguishing. A term of the form ((λx.λy.A) B C) will reduce to ((λz.A’) C) where

A’ = A[y:=z][x:=B], which in turn will reduce to A” where A” = A’[z:=C]. The

important point here is that in the process of performing the substitution [z:=C]

though A’, there is no point in substituting [z:=C] though any occurrences of B

which may exist in A’, as there is no possibility of an occurrence of the variable z

existing free in B.

1To be technically accurate the variables bound by any abstractions substituted must also

substituted.
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Arvind, Kathail and Pingali [6] describe a variant of Wadsworth’s substitution

process which, in the above example, prevents any attempt to substitute [z:=C]

through occurrences of B in A’. However their technique is only applicable if reduc-

tion stops at WHNF. When performing a top-level beta reduction, the argument

is tagged to indicate it is a closed-term. In the above example the term B will be

tagged in this way, so the substitution [z:=C] will know that there cannot be any

free variables in B.

Wadsworth’s reduction mechanism reduces terms to NF, in contrast, all the

other implementations discussed stop at WHNF. However Wadsworth’s evaluator

only starts reducing under lambdas once it has reduced the whole term to WHNF,

since cyclic graphs are prohibited, there is no possibility that a lambda under which

reductions have been performed will ever be applied subsequently.

It is worth noting how the reductions performed by a call-by-need reduction

strategy can be related to those performed by a call-by-value strategy. The reduc-

tions performed by call-by-need with graph sharing are a reordering (and subset of),

the reductions performed by a call-by-value without the benefit of graph sharing.

The point of spelling this out, is that the same cannot be said for some of the sharing

mechanisms described later.

A novel approach that can be considered to be what Wadsworth describes as an

innovative suggestion, is described in §3.2.

2.4 Environment machines

Performing multiple substitutions through a lambda-term is expensive. An alter-

native is to build up an environment of variable bindings and evaluate open terms

with reference to an environment.

This is the approach adopted by the Landin’s SECD machine [55]. The SECD

machine uses an applicative order reduction strategy (call-by-value). The SECD

machine can be adapted to use call-by-need [23, 33], by replacing values with pointers

to either values or terms. In this way only the pointer is duplicated and not a value

or term. The first time an argument is found to be needed, the term is found by

dereferencing the pointer and reducing the term in-place to a value, so that the next

time the pointer, or another copy of the pointer is dereferenced, the value is found

directly. The degree of sharing achieved in this way is called lazy [34].
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The SECD machine achieves the same degree of sharing as Arvind et al’s [6]

technique. It does not achieve the full benefit of Wadsworth’s minimal graph copying

technique. If the body A of a function (λx.A) contains subterms in which x does

not occur, then Wadsworth’s evaluator will reduce these terms no more that once,

regardless of how often the function is applied. Whereas a SECD machine will

reduce the term repeatedly in different environments.

2.5 Combinators

Combinators provide an alternative model of computation, equivalent in power to

the lambda-calculus.

Definition 2.9 (combinator-term)

Term ::= x (variable)

| (κ x1...xn .M) (combinator)

| (M N) (application)

where x,y range over variables, and M,N range over terms. All variable occurrences

must be either binding, or bound by the nearest enclosing combinator.

2

A lambda-term (λx.M) with free variables y1 ... yn can be translated into the

combinator term ((κ y1 ... yn x.M’) y1 ... yn), where M’ is the result of applying

this translation to all terms in M.

This technique can be improved upon by converting a series of nested lambdas

into a single combinator term, rather than converting them separately into several

combinators. Alternative techniques for converting lambda-terms to combinator-

terms are discussed in the next two sections.

Combinators are often written as a series of recursion equations instead of a single

combinator-term. This is a simple translation to perform as combinator-terms by

definition do not contain free variables.

For example, the recursive equations:

Zero f x = x

One f x = f x

Two f x = f (One f x)

Three f x = f (Two f x)

Main = Three Zero
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are equivalent to the combinator-term:

(κ f x.f (κ f x.f (κ f x.f x))) (κ f x.x)

where Main is a combinator of arity zero which corresponds to the root of the term.

Definition 2.10 (combinator reduction)

Combinator reduction can be defined as

(κ x1...xn .M) N1...Nn →κ M[x1 := N1,...,xn := Nn ]

2

This reduction rule implies that combinators can only be applied when saturated,

i.e. there must be sufficient arguments for every variable to be bound. A practical

advantage in using combinators is that unlike lambda-terms, the bodies of combina-

tors are only substituted once. A disadvantage is that the opportunity to perform

reductions between substitutions is lost, so it is not possible to share the benefits of

any reductions which could otherwise be performed on a partially applied function.

Combinators have been exploited by functional languages implementers using

both program independent (or fixed) combinators [81] and custom program specific

combinators [37].

2.6 Fixed combinators

Techniques have long be known to exist to enable lambda-terms to be converted into

combinator-terms utilizing a fixed set of combinators. Turner [80] noticed that the

lazy SECD machine spent most of its time looking up variables in environments and

discovered that combinator reduction performs computations more quickly. Turner

describes a simple translation from lambda-terms to a combinator-term using the

set of combinators S, K, I.

Definition 2.11 (SKI combinators)

S = (κ a b c.(a c)(b c))

K = (κ a b.a)

I = (κ a.a)
2

Definition 2.12 (lambda - SKI translation)
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λx.A → [x]A

[x](A B) → S ([x]A) ([x]B)

[x]x → I

[x]y → K y, if x 6= y
2

Turner also describes combinator optimization rules. One significant optimiza-

tion is:

S (K a) (K b) → K (a b)

Where a and b range over arbitrary combinator terms.

Turner observed that this optimisation led to remarkable “self-optimizing” prop-

erties. The expression (λx.1+2) evaluated using Turner’s fixed combinators, with

the optimization rule above, reduces to the equivalent of (λx.3), The evaluation of

1+2 need only be performed the first time the function is applied. This optimization

achieves the same benefits as Wadsworth’s implementation by avoiding unnecessary

copying. However in this case it has been achieved by a compile-time optimization

and avoids the run-time overhead of Wadsworth’s technique. Wadsworth’s technique

still has the advantage that it admits the possibility of reductions being performed

anywhere in a lambda-term, whereas the combinator-term equivalent is more re-

strictive.

2.7 Super combinators and lambda lifting

Evaluation based on small sets of fixed combinators results in computation pro-

gressing in very small steps. Although techniques to generalise the small set of fixed

combinators to larger or even infinite sets have been developed [52], more success

has been had with using program specific combinators.

Turning lambda-terms into program specific combinators has been called lambda-

lifting by Johnsson [42], as nested lambdas are lifted out resulting in a set of recursive

equations.

Hughes [37] and Johnsson [41] note how if lambda-terms are turned into custom

combinators using the simple approach discussed in §2.5, the sharing benefit achieved

by Wadsworth’s and Turner’s techniques is lost.

In order to regain this benefit, improved techniques to extract combinators from

lambda-terms have been devised. These improved combinators have been named
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super-combinators by Hughes who also coins the term full-laziness to describe the de-

gree of sharing achieved by these super-combinators (and Turner’s and Wadsworth’s

techniques).

Where the simple combinator extraction technique abstracts out free variables

to turn open lambda-terms into combinator-terms, super-combinators are generated

by abstracting out so called maximally free expressions (MFE) from open lambda-

terms.

A free expression of a term is a proper sub-term whose free variables are also free

variables of the term. A maximally free expression of a term is a free expression of

the term which is not also a proper sub-term of another free expression of the term.

For example the MFEs of the term (λx.(x a) (b b)) are a and (b b), but not b.

By abstracting out MFEs instead of just free variables additional sharing is

present in the arguments to the super-combinators.

Super-combinator based implementations achieve the same degree of sharing as

Wadsworth’s implementation, i.e. full-laziness. Where Wadsworth uses expensive

run-time techniques, super-combinators use cheap compile-time techniques. How-

ever the technique Wadsworth uses to maintain full-laziness are more powerful than

those used by super-combinators or Turner’s fixed combinators. The identification of

maximally free expressions only remains valid as long as reductions beneath lambdas

are not performed. The following abstraction contains (essentially2) no free expres-

sions:

(λ a.((λ b.1) a) * 2 + 3)

However once the term ((λ b.1) a) is reduced to 1, the whole term (1*2+3) becomes

a free expression.

As Wadsworth’s reduction order never performs reductions under lambdas that

will subsequently be applied, the extra power of his full laziness technique is never

exploited. However it is worth noting its existence, particularly because no one has

made note of it before. Its additional capabilities will be referred to as dynamic full

laziness. Traditional full laziness will be referred to as static full laziness, when the

difference is being highlighted.

Precisely what degree of sharing dynamic full laziness achieves will depend on

the reduction order used. An example of a reduction order capable of exploiting

the benefits of dynamic full laziness, is one that reduces functions to HNF before

2Technically 1, 2 and 3 are free expressions, but they are not worth abstracting.
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applying them. Such a reduction order is discussed further in §3.7.

Peyton Jones and Lester [70] point out that full-laziness achieved by super-

combinators can actually be performed independently of a combinator implementa-

tion. They present a translation from programs to full lazy programs. This enables

full laziness to be achieved by other implementation techniques such as environment

machines. However this translation isn’t entirely independent of the implementation

technique, the copying of free expressions is only avoided if no reductions are per-

formed under lambdas. Takeichi [75, 49] coins the term lambda hoisting to describe

an equivalent technique for achieving full laziness by program transformation.

In general no static translation can achieve the benefits of dynamic full laziness,

as to do so, the translation would need to determine the strictness of a function such

as (λ b.1) above, which is general is undecidable.

2.8 de Bruijn notation

To understand the issue of variable name clashes consider the following λ-calculus

reduction sequence (the underlines indicate the redex being reduced in each case):

(λa.a a) λf.λx.f (f x) →

(λf.λx.f (f x)) λf.λx.f (f x) →

λx.λf.λx.f (f x)) ((λf.λx.f (f x)) x) 6→

λx.(λf.λx.f (f x)) λx.x (x x)

Even though all the variables are unique before reduction begins, there is still a

danger of the variables becoming mixed up as this reduction sequence illustrates.

If reduction is performed only with closed terms, as is the case for most functional

language implementations, then the situation above doesn’t arise as no reduction

are performed below lambdas.

The substitution rule in Definition 2.5 would catch this case and rename the x

occurrences in the term (λx.f(f x)) to a fresh variable, say y, resulting in (λy.f(f y)),

before substituting [f := x] into the term.

As an alternative to associating abstractions and variables by use of names, de

Bruijn suggested using positive integers as nameless dummies.

For example the lambda-term (λx.x(λyλz.z x y)) is denoted (λ1(λλ 1 3 2)) in

de Bruijn notation. A variable n and its abstraction are associated by counting n

lambdas out from the occurrence of the variable. This notation has the advantage

that where two lambda-terms may be considered equivalent modulo renaming, such
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terms have a unique representation in de Bruijn notation.

However use of de Bruijn’s notation appears to be inherently unsuited to sharing.

Note how the two occurrences of the variable x in the lambda-term are denoted by

1 and 3 in the de Bruijn equivalent. Further examples of such issues are shown in

the next section.

2.9 Explicit substitution

The substitution rule as specified by Church [24] or Barendregt [18] is a meta-

operation. Although ((λ x.x x) A) and (A A) are both lambda-terms, the interme-

diate stages are not. This can hinder proving the correctness of implementations of

programming languages based on the lambda-calculus. Implementations typically

do not perform substitutions at the same time that a beta-reduction is performed

as the beta rule would suggest.

In order to help bridge the gap between theory and practice, Abadi et al [1]

study the λσ-calculus where substitutions are formally part of the notation. They

define reduction rules, which unlike the beta rule in the λ-calculus, are all atomic in

nature. Just as with the λ-calculus the order in which these reduction rules should

be applied is not specified, so the λσ-calculus can be used to reason about a number

of different reduction strategies.

The λσ-calculus uses de Bruijn notation. When substituting an argument into

a new context, free variables in the arguments may need to be renumbered. If the

same argument is substituted into two different contexts then this renumbering will

be different. Consider for example this lambda-term: (λx.(λy.yλz.y) (λw.w) x). Re-

duction in de Bruijn notation can be performed as follows (where the long underline

indicates the redex being reduced):

λ (λ 1λ 2) ((λ 1)1) →

λ((λ 1)1) λ((λ 1)2)

The free variable in the term ((λ 1)1) has been renumbered as it is has been sub-

stituted into a context where it is now one lambda further away from its binding

lambda.

This renumbering is not a problem if no reductions beneath lambdas are per-

formed, as there will be no free variables to renumber. When reductions under-

lambdas are performed, this renumbering may duplicate work.

A novel alternative to this scheme where it is the function body that is renum-
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bered instead of the argument is explained in §3.2. Since the body of the function

is copied during substitution anyway, renumbering the copy of the function body is

preferable as it saves duplicating the argument.

The λσ-calculus does not posses the Preservation of Strong Normalization (PSN)

property. A calculus which extends the λ-calculus is said to posses PSN if terms

which are strongly normalizing in the λ-calculus, are also strongly normalizing in

the extended calculus. A term is strongly normalizing if it only admits reduction

sequences of finite length.

To overcome this short comming in the λσ-calculus, Kamareddine and Ŕıos

devised the λs-calculus with a more refined handling of substitution [47, 48].

2.10 Call-by-need lambda calculus

Proving a functional language implementation is correct with respect to the lambda-

calculus is not sufficient to ensure the implementation is not grossly inefficient.

An implementation which performed call-by-name reduction would be essentially

unusable, although technically correct. Proving the correctness of a call-by-value

evaluator is not difficult, as a call-by-value reduction sequence can be represented

as entirely as a sequence of lambda-terms. However for the call-by-need reduction

order, issues get more complicated. The sharing mechanisms employed by call-by-

need implementations have no direct counterpart in a lambda-term, (or in Abadi et

al’s λσ-terms).

To overcome this limitation various attempts have been made at providing a

calculus which can accurately capture the issue of sharing. Launchbury [57] defines

a natural semantics for lazy evaluation which precisely defines which reductions are

shared by a lazy implementation. The definition is however in terms of a global

heap mapping variable names to closed terms. This approach is of a too low-level

nature to be useful for reasoning about alternative reduction orders or proving the

correctness of syntactic transformations.

Independently Ariola and Felleisen [4] and Maraist, Odersky and Wadler [62]

devised very similar definitions of a call-by-need lambda calculus. These approaches

provide a semantics directly in terms of a linear representation of lambda-terms.

This makes them more amenable to source-level reasoning about the behaviour of

programs and the correctness of syntactic transformations.
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Both these definitions of a call-by-need lambda calculus have the deficiency that

they do not the include the recursive bindings (i.e. letrec) found in most functional

languages. In fact attempts to include such a construct results in confluence being

lost. A reduction system is said to be confluent if it is the case that when two

reduction sequences beginning with the same term diverge (by reducing different

redexes), they are always able to reconverge (by reducing appropriate redexes).

Arvind et al [7] give the following example of a reduction system with recursive

bindings losing confluence:

odd n = if n==0 then False else even (n-1)

even n = if n==0 then True else odd (n-1)

If the application of even within the definition of odd is reduced, then odd becomes

directly recursive and there is no longer mutual recursion. Similarly if the application

of odd within the definition of even is reduced. But once one of these redexes is

reduced there is no way to make the recursive definition stop being recursive, or to

make the non-recursive definition become recursive. So it will never be possible for

these diverging reduction sequences to reconverge.

From an implementors viewpoint, this loss of confluence is not as serious as a

loss of confluence could be. The correct values will still be computed. From a

mathematical viewpoint, loss of confluence makes reasoning about the correctness

of program transformations more difficult.

To overcome these difficulties, Ariola and Blom study infinite normal forms [3]

and give a new definition of confluence, skew confluence [22]. Informally, in the

even/odd example above, if reduction of the applications of even and odd are contin-

ued forever, in the limit, the definitions in the initially diverging reduction sequences

converge.

The techniques they used were original and significant. They used lambda-

graphs rather than lambda-terms, much like Wadsworth did. However their graphs

are cyclic and so naturally support the recursion introduced by a letrec construct.

In comparison, previous equivalences between the recursive bindings in functional

languages and the lambda-calculus, were achieved via the rather clumsy use of a

Y-combinator. Most significantly Ariola and Blom introduce the idea of scope in

a lambda-graph. Where Wadsworth’s technique recomputes the minimum scope

of a function every time the the function is applied, Ariola and Blom’s technique

remembers the scope as part of the graph.
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The issue of scope does not feature at all prominently in mathematical accounts

of the lambda-calculus or functional languages implementation.

The graph reduction performed by typical implementations of functional lan-

guages [38, 17, 68, 71] is only concerned with two types of graph: The graphs which

are syntactically introduced by use of letrecs in the source code, and the top-level

graphs which are dynamically manipulated and which enable closed-terms to be

shared.

Neither of these uses of graph require the concept of scope: the source-level

graphs are substituted in their entirety in one go and so the issue of scope is unim-

portant; the top-level graphs are only concerned with closed-terms, and not the

bodies of functions, so again the issue of scope is unimportant.

From a mathematical stance, scope can be seen as something of an implementa-

tion issue to save the cost of needless (but otherwise harmless) substitution of closed

terms. But for most implementations, the issue of scope has been essentially opti-

mized away as the implementations do not repeatedly substitute terms. Source-level

graphs are substituted in their entirety to become top-level graphs, which will not

themselves be substituted.

The re-introduction of scope helps bridge the gap between mathematical accounts

of the lambda calculus, and practical implementations.

This idea of scope will be seen to play an important role in the new reduction

mechanisms explained in the next chapter.

2.11 Optimal evaluation

Wadsworth noticed the normal order graph reduction performed by his implemen-

tation did not always reduce a term to normal form in the minimal number of

beta-reductions. He raised the question [82]:

Are there other orders of graph reduction which further improve the per-

formance of graph reduction ? Is there even a minimal reduction algo-

rithm, i.e. one for which there is never a shorter reduction to normal

form ?

A problem arises with open-terms with two (or more) free variables. Examples of

such terms are given in §3.8. Alternative reduction sequences, result in the variables

being bound in different orders. These different reduction sequences are not just
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re-orderings or subsets of each other (in contrast to the relationship between call-

by-need and call-by-value). It is not in general possible to know beforehand which

order to perform reductions so as achieve the shortest reduction sequence.

Perhaps it would be possible to somehow postpone deciding which reduction

sequence to use, in an analogous way to postponing the reduction of arguments.

However it seems unlikely that such an approach could be used, as it provides no

answer to the question of which reduction to perform instead. In contrast when

call-by-need postpones a decision, there is always a reduction it can be getting on

with instead.

Lévy [59] studied this problem and found a way to relate the redexes in the

alternate reduction sequences. He noted that a redex, with free variables, in one

reduction sequence may appear as several copies, with some of the variables bound,

in another sequence. Such copies are known as residuals. So in one reduction

sequence this redex is reduced in a single step, but in another reduction sequence

all the residuals of this redex must each be reduced. Lévy definition of an optimal

evaluator requires it to reduce all these residuals in one step, analogously to call-by-

need reducing the copies of redexes made by call-by-name in one step. Lévy’s other

requirement for an optimal evaluator is that it not perform unneeded reductions,

the issues of avoiding the duplication of work and avoiding unneeded work being

orthogonal. Lévy called the simultaneous reduction of copies or residuals of a redex

a parallel-reduction. He called a parallel-reduction which reduces all the residuals

of a redex a complete reduction.

The relationship which exists between redexes in one reduction sequence, and

residuals of redexes in another, is such that, in general, there will not be a reduction

sequence which contains the redexes but not the residuals. This means that the

reductions performed by an optimal evaluator with some sharing mechanism will

not correspond to the reductions found in any one reduction sequence without that

sharing mechanism. (In contrast to call-by-need).

It was not until about a decade after Lévy’s work that Lamping [54] and Kathail

[50] independently came up with sharing mechanisms, similar to each other’s, which

made the implementation of an optimal evaluator possible. The key insight which

their approaches share is the concept of a shared context. A context is a term with

a hole in it, where the hole can be denoted by [ ].
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Consider the following reduction sequence:

(λ x.(x 1) (x 2)) (λ y.(λ z.z) y)

((λ y.(λ z.z) y ) 1) ((λ y.(λ z.z) y) 2)

((λ z.z) 1) ((λ y.(λ z.z) y) 2)

Both of 1 and y occur in the same context, namely ((λ z.z) [ ]), and this context

can be reduced to ([ ]), independently of how the hole is filed. A sharing mechanism

which shares contexts makes it possible for ((λ z.z) 1) and ((λ z.z) y) to be reduced

in the same beta-reduction.

Both Lamping’s and Kathail’s techniques for sharing contexts involve the use of

sharing and unsharing nodes, and a graph representation of lambda-terms. Where

as sub-terms in Wadsworth’s graph representation could be reached and shared by

any number of other terms, sharing nodes impose the restriction that all sharing

must be via sharing nodes.

The sharing and unsharing nodes make it possible for a context to be shared.

The route through the sharing nodes through which a shared graph is reached,

determines the route through unsharing nodes through which the context’s hole is

filled. This use of sharing nodes to capture the common structure in two terms when

this common structure in not a simple shared sub-term is known as superposition.

Sharing and unsharing nodes are used in beta-reduction. Instead of copying

the entire body of a function body when applied, the sharing nodes are used to

superimpose the body of the function with its original variable still in-place, and

the body of the function with the new argument bound.

These sharing and unsharing nodes reduce the graph in between them as they

propagate through the graph, when corresponding sharing and unsharing nodes meet

they cancel out, and the superposition is over. When sharing and unsharing nodes

which do not correspond meet, they propagate through each other, duplicating each

other in the process.

Determining whether sharing and unsharing nodes correspond or not is the most

complicated part of the technique. The complication arises as contexts can interact

in non-trivial ways, they do not form a simple hierarchy, as they can overlap with

each other, Lamping handles this complexity by adding a number of control nodes.

The overhead of processing these control nodes is very high. Although the num-

ber of beta-reductions might be minimal, the cost of each beta-reduction is not

bounded as the cost of handling the control nodes is not bounded.
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Gonthier, Abadi and Lévy [32] significantly simplified Lamping’s reduction rules,

by noticing connections to Girard’s [31] linear logic and geometry of interaction, they

demonstrated that Lamping’s technique could be considered an example of Lafont’s

[53] interaction nets.

None of Lamping, Kathail or Gonthier et al published details of any implemen-

tations they may have had for their designs, nor any experiments conducted using

such implementations.

Asperti and Laneve showed how previous optimal evaluation algorithms could

be generalised into a new class of higher-order rewriting system called Interaction

Systems [12]. They used this new system to show how primitives such as arithmetic

and conditional operations could be handled by an optimal evaluation algorithm.

Asperti [9] went on to devise a system of safe operators to reduce particular ‘safe’

sequences of control operators to simpler configurations. These optimizations, in

many typical cases, change an exponential reduction time to a polynomial or even

linear reduction time.

Asperti describes his implementation of an optimal evaluator, provides results

of experiments conducted [2], and makes the implementation publicly available [8].

Further experiments with this optimal evaluator are conducted in Chapter 6.

2.12 Incremental computation

The term partial evaluation can be traced back to Lombardi [60]. Lombardi also

coined the term incremental computation, and was concerned with programming

on-line interactive computer systems. He wanted to move away from a model of

computation where a computer was given a complete program and data to perform

batch-processing, to a model where holes could exist in both the program and data,

which would be filled in interactively by the user later.

More recently Field [29] was similarly motivated to study techniques to aid in

the incremental use of computers. He was concerned with the repeated application

of a program, (such as a theorem proving system, programming environment or

compiler), to input that differs only slightly from the previous. Ideally the compu-

tations which are unchanged from one application to another should be shared and

not recomputed.

Field devises a system of delayed substitutions in order to increase the sharing
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achieved in the reduction of lambda-terms. However his system is not optimal, he

makes the remark [29]:

[complete parallel-reduction] requires that existing sharing in a graph be

respected during the process of substitution, ... In order to implement

optimal reduction, it thus seems that more powerful reduction systems

(i.e. non-left-linear systems that can “test” for equality of sub-terms)

or graph rewriting systems with capability beyond those of term graph

rewriting are required.

The use of memo-tables described in §3.8, is a novel solution to this problem, it

provides a way to test for the equality of sub-terms.

2.13 Partial evaluation

A partial evaluator is a program that takes as arguments a program and data for

some of the arguments of the program and returns the result of specializing the

program to that data.

If the program to be specialized, F, takes two arguments s and d, then a partial

evaluator, PE, will specialized F to a value of s such that the following holds:

PE(F,s)(d) = F(s,d)

The arguments to a program are classified as either static or dynamic, in the

example above, there is one static argument and one dynamic. The partial evaluator

is able to reduce the parts of F which are dependent only on the static arguments.

However in general the partial evaluator must not reduce all such terms, as this

would result in non-termination. In practice partial evaluators must be conservative

in how much they specialize in order to ensure termination.

The use of a partial evaluator is beneficial if the speed-up achieved by the spe-

cialized program more than compensates the cost of performing the specialization.

This is particularly likely to be the case if the resulting specialized program is used

many times.

Programs that have been shown to benefit from partial evaluation include:

parsers, pattern matchers, computer graphics and neural network training [46]

amongst others.

One of the first areas identified where use of a partial evaluator would be

beneficial is the specialization of interpreters [30]. Futamura noted that given an
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interpreter, int, which takes two arguments prog and data corresponding to the

program to evaluate and the data which should be supplied, the following relation

holds:

PE(int, prog)
︸ ︷︷ ︸

compiled program

(data) = int(prog, data)

If the language the interpreter int is written in is different from the language it

interprets then the above use of a partial evaluator has the effect of translating the

program prog from one language to another, so achieving a compilation effect.

If a partial evaluator were to be used frequently in this way, with the same

interpreter but with different programs, then the partial evaluator itself would be

a prime candidate for specializing. Futamura noted that the following relationship

holds:

PE(PE, int)
︸ ︷︷ ︸

compiler

(prog)

︸ ︷︷ ︸

compiled program

(data) = int(prog, data)

If this technique is used with a program other than an interpreter, then the

result is known as a generating extension, rather than a compiler. For example

the generating extension of a general purpose string-matching program would take

strings and generate a fast specialized string matching program.

This line of thinking was extended on last step further by Beckman et al [21].

They noted that if several interpreters are to be converted into compilers by use of

a partial evaluator, then it may be worth specializing a partial evaluator to itself.

So the following relationship holds:

PE(PE, PE)
︸ ︷︷ ︸

compiler generator

(int)

︸ ︷︷ ︸

compiler

(prog)

︸ ︷︷ ︸

compiled program

(data) = int(prog, data)

The compiler generator is also referred to as cogen. However a cogen could be

used to generate programs other than compilers. If instead of applying a cogen

to an interpreter, it was applied to a general-purpose parser, the result would be

a program that took grammars and produced a specialized parser. In fact some

specialization systems are hand written cogens, and don’t bother with the partial

evaluation stage at all.

These three uses of a partial evaluator to effect compilation have subsequently
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become known as the first, second and third Futamura projections 3 .

At the time at which such ideas were put forward however, no partial evaluator

existed which was both sophisticated enough to be able to specialize itself, and

simple enough to be specialized by itself. Whether it was even possible to write such

a partial evaluator was an open question, until more than a decade after Futamura’s

work [30] Jones et al succeeded in writing such a partial evaluator [44].

2.14 Staged computation

Staged computation is a generalisation of partial evaluation where the concepts of

static and dynamic data are generalised to any number of stages, so allowing the

specialized result of one stage to be specialized further by the next stage.

2.14.1 MetaML

MetaML [74] is a system that combines staged computation with dynamic code

generation. It uses annotations to determine what to specialize. Since what will

be specialized is fully determined at compile-time, the system cannot pass the in-

terpretive towers test (§1.5). Knowing statically what you will specialize however

enables much faster specializing to take place. Generating extensions can be cre-

ated statically which when applied to dynamic data will very quickly generate the

corresponding specialized code.

Partial evaluation ensures termination when specializing programs that will re-

sult in cyclic residual programs, by memoizing the specialization of functions with

respect to the values they are specialized with. Something similar can be achieved

with the knot-tying that is only possible in a non-strict language. MetaML doesn’t

use either of these techniques and so cannot create residual programs with cycles in.

This limits its applicability to removing interpretive layers.

2.14.2 PGG

Unlike MetaML, PGG (program generator generator) [77] is used statically. PGG

generates generators which generates generators which ... and so on, with the last

3The descriptions given here gloss over the important detail of the difference between a program

and the function denoted by that program, just as Beckman et al do [21]. Jones et al give a more

rigorous treatment [46].
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one generating programs. However the decisions regarding what will be specialized

are all made before the first generator is created. This makes the generators much

faster, but not flexible enough to pass the interpretive towers test (§1.5).

2.15 Partial evaluation is fuller laziness

The similarity between the sharing achieved by full laziness and partial evaluation

was first noted by Holst [35]. He devised the transformation Improved Full Laziness,

briefly discussed in §3.6. This was shown to be equivalent to a first order partial

evaluator. Subsequent work by Holst and Gomard [36] to study ways to further

this specializing effect led to the term complete laziness4. They showed a number

of transformations that could maintain the degree of sharing achieved by a com-

pletely lazy evaluator, and explained that it would be impossible for any such static

transformation scheme to maintain that degree of sharing for arbitrary expressions.

Holst and Gomard describe a sequence of normal order reduction strategies, call-

by-name, lazy, fully lazy and completely lazy. They define completely lazy reduction

as that achieved by a higher-order partial evaluator, and claim it achieves a strictly

greater degree of sharing than full laziness, and speculate that complete laziness is

the last step in such a sequence.

They go on to give an algorithm to implement complete laziness.

However their algorithm loses sharing in a serious way. In the process of perform-

ing substitutions though graphs, it does not maintain any sharing already present

in the graph. Although their algorithm is defined to work on terms and not graphs,

graphs will be created the first time a function with more than one occurrence of

its bound variable is applied. This loss of sharing is similar to that resulting from

Field’s approach [29].

Regarding complete laziness achieving a strictly greater degree of sharing than

full laziness, Holst and Gomard do not fully explain how this should be achieved.

They claim their completely lazy algorithm must be evaluated by a fully lazy eval-

uator. However evaluating their interpreter with a fully lazy interpreter would not

make their interpreter maintain full laziness.

As explained later in §3.8, an evaluator that performs reductions under lambdas

4The use of the same word complete in the term complete laziness [36] and in Lévy’s term

complete parallel-reduction [59] (see §2.11) is coincidental.
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only maintains the full laziness property if dynamic full laziness is used. Maintaining

dynamic full laziness is expensive. Since complete laziness without full laziness has

remarkable properties in its own right, complete laziness is best not defined as

achieving a strictly greater degree of sharing than full laziness.

As for complete laziness being the end of a sequence of normal order evaluators

where each maintains more sharing than the previous, optimal evaluation [58] has

been shown to not lose any sharing, and so should be considered the end of such

a sequence of reduction orders. In fact as shown in §3.4 this sequence is really a

partial ordering.

2.16 Small

Augustsson’s [14] language named small is worth mentioning, not because of any

specializing effect but because of the unusual trick it performs using fixed combina-

tors. A progression of combinators can be described:

• fixed combinators, language implementation specific,

• super combinators, program specific,

• dynamic combinators [78], computation specific.

The use of dynamic combinators can be motivated by arguing that super com-

binators are more suited to running less abstract styles of programming. The more

higher order functions are used the less suited super combinators are, so if combina-

tors are specialized according to the actual values they are being used with the are

suited for use in more abstract styles of programming, including (potentially) pass-

ing the tower of interpreters test. However, fixed combinators, by virtue of being

independent of the program being run, can pass a variant of the tower of interpreters

test, what could be called the tower of compilers test.

The complier for small is written in small and it compiles the functional language

into fixed combinators. The unusual part is that instead of building the compiled

result as a data structure to be printed out or interpreted, it builds the new com-

binator tree as applications of the combinators in the underlying system. Thus the

expression that was compiled at run-time will run just as fast as the code that was

initially present in the system. This could be extended to a tower of compilers.
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Recursive bindings are not supported by small. Instead the Y combinator is used,

just as with explicit substitution (2.9), the call-by-need lambda-calculus (2.10) and

Wadsworth’s graph reduction (2.3).

Unlike optimal evaluation (2.11), staged computation (2.14) and partial evaula-

tion (2.13), small does not perform reductions under lambdas and so has no special-

izing effect.

2.17 Summary

The research reviewed in this chapter can be broadly categorized into four areas:

• lambda calculus,

• functional language implementation,

• sharing, and

• specialization.

None of the existing research in these areas provides a solution to the towers

of interpreters problem. The work presented in the next chapter resulted from the

pursuit of this problem. The techniques developed in this pursuit also lead to greater

understanding of each of the four research areas listed above.
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Chapter 3

Degrees of Sharing

In this chapter first an explanation is given of the syntax and semantics of the

language to be used. Then a new representation for graphs to be used in graph

reduction is presented. Conventional call-by-need evaluation is demonstrated using

this new graph representation. Examples are given of how different degrees of sharing

maintain and lose sharing. The partial ordering that exists between these degrees

of sharing is presented.

3.1 Syntax and semantics

The language used is called Ef and has a syntax much like Haskell’s [69]. Ef’s

semantics are non-strict and untyped; it supports integers and standard operations

upon them, it also has booleans, Scheme-like [25] type-less pairs and the empty list.

The program in Figure 3.1 illustrates a number of points regarding Ef’s concrete

syntax. Ef doesn’t perform eager pattern matching [13]. The apparent uses of

patterns in the fibs example are just syntactic sugar to save excessive use of head

and tail. Ef uses Haskell’s syntax for lists and tuples as syntactic sugar for type-

less pairs. The empty list, [], is the same as the empty tuple, (). Other than that

everything else is just as in Haskell.

take 15 fibs

where

fiblist a b = a:fiblist b (a+b)

fibs = fiblist 1 1

take n (l:ls) = if n==0 then [] else l:take (n-1) ls

Figure 3.1: An Ef program to list the first 15 Fibonacci numbers.
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power where

power n x =

if n==0 then 1 else x*power (n-1) x

Figure 3.2: Graph and text representation of power.

3.2 Graph representation

The power function in Figure 3.2 serves as an example to explain the graph repre-

sentation used. The important things to learn from this diagram are that the graphs

used can be cyclic and that each node in the graph has a depth associated with it.

The depth is represented by the darkness of the shading.

This depth shading is used to delimit the scope of a function. Nodes at depth

zero are free from variables and are shown on a white background. Nodes at depth

one are within the scope of a lambda at depth zero, and may be able to reach the

free variables at depth one within the body of the lambda abstraction. These nodes

are shaded in the lightest grey. Likewise for nodes at greater depths, a node at

depth n is within the scope of a lambda at depth n-1 and may be able to reach the

free variables at depth n to depth one within the body of the lambda abstraction.

The depth of an argument node is unaffected by function application. Even

through a node may become shared during the reduction process, the node still

exists within the same scope.

The names of variables become irrelevant, which lambda a variable is bound

by is determined by depths. Replacing variable names with integers is a technique

attributed to de Bruijn [26] (see §2.8). The new technique presented here is similar

but in a sense reversed. This gives the advantage that it can naturally handle cycles

and sharing, but adds the burden that scope of functions must be maintained (the

bounds to the shaded regions). Even though the names are strictly redundant they

will continue to be used to name bindings and variables in diagrams to make the
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diagrams more readable.

The use of depths to delimit the scope of a function is original, and can be seen

as a solutions to Wadsworth’s [82] (see §2.3) appeal for an innovative suggestion.

They can also be seen as a generalization of Arvind et al’s [6] (see §2.3) proposed

solution, with the advantage that this solution works for reduction under lambdas

also. All the reduction mechanisms in this chapter are presented in terms of this

new technique, and for that and other reasons they are also all original.

The graph notation presented side-steps the need to handle let bindings, but

introduces the concept of graph sharing, and equality between node addresses. A

graph can be considered an expression with let bindings by use of a single top-level

let expression and additional let expression placed under each lambda abstraction.

The address of each node can be used for the name of the corresponding let binding.

Some transformations on expression with let bindings, such as full laziness [70],

have corresponding transformations in the graph representation, examples of this

can be seen in §3.5. Other transformations only correspond to the identity trans-

formation in the graph representation, for examples let-floating [67].

In a sense expressions with let bindings can be seen as a lower level representation

than graphs. Ultimately functional language compilers transform programs into a

sequential series of instructions with jumps. Transformations on linear representa-

tions of programs are useful in reaching this goal in a more optimal way. However

such transformations are of a lower level and more implementation specific nature

than the work discussed in this thesis.

3.3 Top-level reduction

There are a number of reduction orders which can be applied. First considered are

conventional weak head normal form (WHNF) reduction of closed terms where no

reductions occur beneath lambda abstractions.

The diagrams in Figures 3.3 and 3.4 illustrate WHNF reduction. Cycles are

supported directly, there is no need for the Y-combinator. The diagrams show each

of the 17 stages of reduction in applying power to 2 and 7, computing 72.

At each reduction stage any new nodes created are shown in bold. Whenever a

function is applied, all the graph shaded is copied, and all occurrences of the bound

variable replaced by a single shared occurrence of the argument. The depth of the
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newly created graph is one less than that being copied, nodes shaded dark grey are

copied lighter and nodes shaded light grey are copied without shading.

This process of graph copying with variable replacement is called substitution.

In reducing a graph to WHNF, reductions never occur beneath lambdas. This

can be seen in the reduction sequence: the power function never changes and even

though lambdas are substituted, creating new functions (see Figures 3.3(b), 3.3(f)

and 3.4(k)), these functions never change once formed.

3.4 Degrees of sharing

The term lazy implies non-strict semantics, and a certain degree of sharing. Non-

strictness ensures that terms are only reduced when needed. Sharing tries to avoid

repeating reductions.

In terms of function arguments a strict reduction scheme will result in arguments

being evaluated exactly once. A simplistic non-strict reduction scheme will result

in arguments being evaluated never, once, twice, or any number of times. A lazy

implementation evaluates arguments at most once.

The degree of sharing achieved can be anything from none with call-by-name

evaluation to optimal with optimal evaluation. Figure 3.5 shows the degrees of

sharing which will be examined, and the partial ordering that exists between them.

This identification of such a partial ordering is original.

The use of the word lazy in the names of some of these degrees of sharing is

misleading as this sharing makes just as much sense in a strict language. The

issues of avoiding repeating computations (maintaining sharing) and not evaluating

unneeded computations are orthogonal. The strict version of the degrees of sharing

have been mostly unnamed (and the existing names cannot be used as many of them

include the term lazy).

Call-by-value is the strict equivalent of call-by-need, it has the same degree of

sharing, but not the same termination properties. Call-by-name has the same termi-

nation properties as call-by-need, but not the same sharing properties. Conceivably

a reduction mechanism could have the termination properties of call-by-value and

the sharing properties of call-by-name, but this would be the worst of both worlds.



3.4. DEGREES OF SHARING 53� 7� 2�n�xif==n 0 1 *x �� -n 1x(a)

� 7�xif== *x �� x-2�n�xif==n 0 1 *x �� -n 1x(b)

if== * �� 7-2�n�xif==n 0 1 *x �� -n 1x(c)

ifFalse * �� 7-2�n�xif==n 0 1 *x �� -n 1x(d)

* �� 7-2�n�xif==n 0 1 *x �� -n 1x(e)

* � 7�xif== *x �� x--2�n�xif==n 0 1 *x �� -n 1x(f)* if== * �� 7--2�n�xif==n 0 1 *x �� -n 1x(g)

* if== * �� 7-1�n�xif==n 0 1 *x �� -n 1x(h)

* ifFalse * �� 7-1�n�xif==n 0 1 *x �� -n 1x(i)

Figure 3.3: WHNF reduction of power 2 7.
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* * �� 7-1�n�xif==n 0 1 *x �� -n 1x(j)

* * � 7�xif== *x �� x--1�n�xif==n 0 1 *x �� -n 1x(k)

* * if== * �� 7--1�n�xif==n 0 1 *x �� -n 1x(l)

* * if== * �� 7-0�n�xif==n 0 1 *x �� -n 1x(m)

* * ifTrue * �� 7-0�n�xif==n 0 1 *x �� -n 1x(n)* * 17(o)
*7 7(p)

49
(q)

Figure 3.4: WHNF reduction of power 2 7 continued.
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(lazy) (fully lazy)

Figure 3.6: Lazy and fully lazy graph representations of power.

3.5 Laziness and full laziness

There are different ways to translate a syntactic representation of a function to its

graphical representation. The way shown in Figure 3.2, is actually the fully lazy way.

Contemporary implementations of functional languages however default to lazy, not

fully lazy [68, 15, 71, 43]. The difference lies in where the scope of a function is

drawn. A fully lazy translation gives every function the minimum scope it can, a

lazy translation uses the scope that is present in the syntactic representation of the

function. It is possible to achieve full laziness in a lazy language by transforming the

syntactic representations of functions so that the scope of every function is minimal

[70].

Full laziness ensures that any graph that is syntactically independent of an en-

closing lambda is shared and not rebuilt when that lambda is applied. Figure 3.6

illustrates the difference between the lazy and fully lazy versions of power, and

Figure 3.7 shows the implications of this.

Figure 3.7 illustrates what power 2 reduces to. For fully lazy reduction this is
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�xif== 0 1 *x �� -2 1x�n�xif==n 0 1 *x �� -n 1x

�xif *x � xFalse 1 �xif *x � xFalse 1 �xif *x � xTrue 1 � -0 1�n�xif==n 0 1 *x �� -n 1x
\x->if 2==0 then 1

else x*power (2-1) x

where

power n x =

if n==0 then 1

else x*power (n-1) x

\x->if False then 1 else x*

(\x->if False then 1 else x*

(\x->if True then 1 else

power (0-1) x) x) x

where

power n x =

if n==0 then 1

else x*power (n-1) x

Figure 3.7: Lazy and fully lazy graph representations of power 2.
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�x*x � x�x*x � x�x1

power where

power n =

if n==0 then \x->1

else \x->x*power (n-1) x

\x->x*(\x->x*(\x->1) x) x

Figure 3.8: Improved fully lazy power and power 2.

what was shown in Figures 3.3 and 3.4, although it was not shown in a single frame.

Figure 3.7 shows the result of holding onto the application node applying power to

2 in Figure 3.3(a). The lazy version achieves almost no sharing at all. The fully

lazy version can be seen to share all the reductions of n==0, and power n. After

the first application of power 2, no more instances of == or power are encountered,

thus greater sharing is achieved.

3.6 Improved full laziness

The fully lazy reduction of power clearly saves repeating work, but it also looks

like more work could be saved. The if expressions will be repeatedly reduced, and

this is undesirable. One way to solve this would be to reduce the if expressions

where they are. However, this means reducing under lambdas which is costly as it

prohibits the use of a fixed-program implementation. Performing reductions within

the scope of a lambda would amount to changing the machine-code of a function at

run-time. But there is another way to solve the problem: it is possible to float the

if expression out of the enclosing lambda expression.

Figure 3.8 shows the effects of a source-to-source transformation known as im-

proved full laziness [35]. Here the if expression has been floated up through the

enclosing lambda expression so that it can be evaluated once and for all before the

value to be squared is known. This results in two lambda expressions being re-

quired, one for the then clause (the terminal case) and one for the else clause (the

recursive case). Once power 2 has been fully applied, no more if expressions will

be encountered.
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It is not possible to eliminate the applications still to be performed if a fixed-

program implementation is used. The transformed power 2 is still made up of

functions that were present in the power expression. No reductions have been per-

formed under lambdas hence there are no new representations of function bodies,

just an efficient composition of fragments of the original program.

Improved full laziness is the most that can be achieved without evaluating under

lambdas. It provides a relatively high degree of sharing. If used with a memo-table

to achieve the coincidental sharing achieved by partial evaluation it is equivalent to

a first-order partial evaluator [46, Chapter 5].

The specializing effect achieved so far has relied upon the order in which argu-

ments have been supplied. The arguments to power are first the power to which to

raise something, and then the thing to be raised to that power. Without performing

reductions under lambdas this argument ordering is critical as it determines the

order in which computations become top-level and reducible.

This argument ordering requirement also carries through to any functions called

by a function to be specialized. This can result in a limited amount of code explosion,

as it may be necessary to have different versions of functions taking their arguments

in different orders. In the power example, if there had been any sharing between the

then and else clauses, this would have to be duplicated, resulting in further code

explosion.

3.7 Head normal form reduction

Now the issue of what more can be achieved if reductions under lambdas are permit-

ted is explored. It may seem odd to reduce expressions under lambdas. Surely no

programmer writes functions which obviously contains expensive reducible expres-

sions. However it is not so much the functions that the programmer writes whose

bodies may benefit from reductions, it is the functions that are created dynamically

by substitution, whose bodies may contain worthwhile reductions.

When only top-level reductions are performed, the bodies of functions are always

copied at one depth less (one grey shade lighter). When reductions under lambdas

are performed, it will be necessary to be able to shift the graph as it is copied by

differing amounts. This occurs when the argument and the lambda expression are at

different depths. For example in the application of a function \x->x:x to a variable
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power 2

\x->if 2==0 then 1 else x*power (2-1) x

\x->if False then 1 else x*power (2-1) x

\x->x*power (2-1) x

\x->x*if (2-1)==0 then 1 else x*power ((2-1)-1) x

\x->x*if 1==0 then 1 else x*power (1-1) x

\x->x*if False then 1 else x*power (1-1) x

\x->x*x*power (1-1) x

\x->x*x*if (1-1)==0 then 1 else x*power ((1-1)-1) x

\x->x*x*if 0==0 then 1 else x*power (0-1) x

\x->x*x*if True then 1 else x*power (0-1) x

\x->x*x*1

Figure 3.9: HNF reduction sequence for power 2.

map (\x->power’ x 2) [1..10]

where

power’ x n =

if n==0 then 1 else x*power’ x (n-1)

Figure 3.10: power’ taking its arguments in a different order.

at depth n, the the copied : should be at depth n. In general all substitutions

shift the graph by the difference between the depth of the application node, and

the depth of the lambda node plus one. Thus since all top-level reductions take

place between application nodes at depth zero and lambda nodes at depth zero, all

top-level substitutions are performed with a shift of minus one. This shift can be

thought of as renaming, the function body is renamed as it is copied, unlike Abadi

et al’s λσ-calculus [1] (see §2.9) where it is the argument which is renamed.

Reducing arbitrary expressions under lambdas may risk non-termination, so

which reductions are perform under lambdas is important. One solution is to reduce

any computations under a lambda that will be performed immediately after apply-

ing that lambda. That is lambda expressions are reduced to head normal form just

before they are applied.

Using the running example power 2, HNF evaluation performs the reduction

steps shown in Figure 3.9. Thus HNF reduction results in an even better func-

tion than was achieved by improved full laziness. Moreover if the power example

is rewritten to take its arguments in the more natural order, the same degree of

sharing is still achieved. For example with the program in Figure 3.10, the function

\x->power’ x 2 will again reduce to \x->x*x*1.

The degree of sharing achieved is enough for entire layers of interpretation to

be eliminated. For example if an interpreter is written for Ef parse trees in Ef

and this interpreter is used to evaluate the parse tree for power rather than run it
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map square_cube [1,2,3] where

square_cube x = (power’ x 2,power’ x 3)

power’ x n =

if n==0 then 1 else x*power’ x (n-1)

Figure 3.11: square cube mapped over [1,2,3].

directly the result is the same: \x->x*x*1. (See §6.1 for further discussion on such

an interpreter).

Consider a lambda expression that contains reducible expressions, if these ex-

pressions will not necessarily be evaluated immediately after application, then it

is unsafe to reduce them before copying the body of the lambda expression. This

results in copying them before reducing them, thus they will be reduced many times

after being copied instead of once before.

A simple example of HNF reduction failing to achieve the desired degree of

sharing is illustrated in Figure 3.11. This program computes a list of pairs of the

squares and cubes from 1 to 3. However since the pairing function is non-strict, the

terms power’ x 2 and power’ x 3 cannot be reduced beneath the lambda as it is

not known that the actual squares and cubes will ever be needed. By the time it

is known, the terms may have been substituted resulting in an arbitrary number of

suspended computations to perform. In this case performing the reductions would

not risk non-termination, but this is not the case in general.

Barendregt, Kennaway, Klop and Sleep studied the reduction of redexes beneath

lambdas [20]. They devised spine strategies to determine statically before the ap-

plication of a lambda abstraction is reduced, some of the redexes under the lambda

which must be reduced in the process of reducing the application to normal form.

Determining statically all of the redexes that must be reduced is undecidable in

general. The spine strategies are a computable approximation.

Reduction to HNF does not require such foresight to know which redexes will be

needed, the next redex to reduce is simply determined dynamically.

3.8 Complete laziness

In order to prevent the loss of sharing resulting from substituting into unevaluated

graph, a better scheme is needed in order to decide which reductions to perform.

Without impossible foresight it is not possible to know in general which reductions

within the body of a function should be reduced before that functions body is
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copied. This is almost the mirror situation of not knowing whether to reduce the

argument to a function before the argument is copied. Wadsworth [82] solved that

by postponing the decision (see §2.3). Much the same solution can be used here,

specifically the decision regarding which redexes within the body of a function to

reduce is postponed until after the application.

This is achieved by delayed substitution. By delaying substituting into a graph

until it is known to be needed, the graph can safely be evaluated before it is substi-

tuted, without risking non-termination.

Special substitution nodes are used in the graph, to delay the substitution. Figure

3.12 shows some substitution nodes in action. In the graph representation, variable

names and not depths are still being shown. The substitutions also know by how

much they should shift the depth of the nodes which they copy, although the shift

associated with each substitution is not shown in the diagrams in this section.

A beta-reduction is now performed by simply replacing the application node

(@) by a substitution node (=). This substitution node is then pushed down when

evaluated. This results in a multiplication of substitution nodes all originating from

the same beta-reduction as the substitution is forced through nodes with an arity

of two or greater. Substitution nodes are called related if they originated from the

same beta-reduction. When the substitutions meet a node at a depth shallower than

the depth of the variable they wish to bind, they know that they have left the scope

of the function whose application created them. At this point they die-out, that

is they replace themselves with an indirection. These substitution nodes remember

the amount by which they should shift the graph they copy. This shift is just the

same as for HNF reduction, just that now the copying is being done node by node.

The depth of a substitution may change as the depth of the nodes it is substituting

change. The nodes it substitutes may become deeper following the substitution of

a nested lambda, and shallower upon leaving the scope of that nested lambda. The

depth of the substitution is always the depth at which it expects to be creating new

nodes. That is the depth it expects the node it is pointing to be at, plus the shift of

the substitution. Since the substitution will not know the actual depth of the node

it is pointing to until it actually comes to substitute it, the depth of the substitution

may be deeper than necessary, this just means the substitution is on the edge of the

scope of a function, that is, it has finished copying all the nodes for that function,

but doesn’t quite realise it yet.
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��map :1 :2 :3 [℄�x:��power' x 2 ��power' x 3
::x=1 x=1 ::x=2 x=2 ::x=3 x=3[℄��power' x 2 ��power' x 2

(a) (b)::x=1 x=1 ::4 x=2 ::x=3 27 [℄*x *x 1 *x *x *x 1
::1 1 ::4 8 ::9 27 [℄

(c) (d)

Figure 3.12: square cube mapped over [1,2,3]. Nodes in italics such as map and

power’, are just abbreviations for their full graph representations.
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Figure 3.13: Substituting into a shared graph.

Figure 3.12 shows the result of forcing the evaluation of the square cube example

to increasing extents. So far so good. Problems are encountered however when

delayed substitution into a shared graph is attempted. There is the possibility that

two related delayed substitutions could each try to substitute into the same piece of

graph. It must be ensured that such a graph is not substituted into more than once

by substitutions originating from the same beta-reduction.

One solution is to create a new memo-table each time a beta-reduction is per-

formed. Each related delayed substitution can then check and update this memo-

table whenever it performs a substitution. Figure 3.13 shows the effect of related

substitutions using a memo-table. In Figure 3.13(d) when a substitution node is

about to substitute into the x*x graph, it checks in the memo-table and discovers

that a related substitution node has already substituted into this graph. Instead of

substituting into the graph again, the substitution node just replaces itself with an

indirection pointing to the result of the previous substitution, which, in this case,

just happens to have already been reduced.

It is important to understand that this is not the conventional use of memo

functions [63]. If a function is applied to the same value twice the computations

will not be shared. Substitutions are only shared when they originated from the

same beta-reduction. Delayed substitutions remember which nodes they have been

substituted into; but nodes do not remember which values have been substituted

into them.
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Figure 3.14: Shared graph changing.

Using memo-tables may appear to be an unnecessarily powerful technique as

memo-tables are being needlessly and wastefully checked and updated for nodes that

are not shared. However knowing which nodes are shared is not as straightforward

as it may first appear. As graph is evaluated before substituting into it, which

nodes are shared changes. Consider the graph in Figure 3.14. When substitution

starts, the : node is shared, but after evaluating the tl node, it is the + node

that is shared. If details of which nodes are shared were to be maintained by using

reference counting, and memo-tables only checked and updated for shared nodes,

sharing would still be lost. A node could be unshared when first substituted and

only become shared subsequently. This happens in Figure 3.14, if the head of the

upper : node is substituted first. The + node will be substituted before it is known

that it will become shared.

One of the stated attractions in using a non-strict language for specializing was

the reduced need for the memoization in conventional partial evaluation. And yet

here a new form of memoization is being used instead. There is hope however that

with further study, the proposed use of memo-tables can be refined to be less of a

sledgehammer-like approach.

This form of memoing results in a degree of sharing known as complete laziness

[36]. Whereas full laziness ensures that any expressions within a lambda expression

that are syntactically independent of the lambda-variable are shared across all bind-

ings of that variable, complete laziness ensures that reducible expressions within a

lambda expression that are computationally independent of the lambda-variable are

shared across all bindings of that variable. For functions taking multiple arguments

this means that all work computationally dependent only on the early arguments is

shared for all applications to later arguments.

Although the sharing achieved by complete laziness is more impressive than that
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achieved by full laziness, complete laziness does not achieve a strictly greater degree

of sharing. An example where full laziness maintains sharing and complete laziness

loses it is:

f 1 where

f x = g 2 + g 3 where

g y = x+x

Complete laziness will ensure x+x is reduced as far as possible before substituting

each of 2 and 3 through it. But in the process of substituting both 2 and 3 through

the term x+x, the term is duplicated. However full laziness changes the scope of g

so that any substitutions arising as a result of applying g will immediately die-out

before they get a chance to copy x+x A degree of sharing that maintained all the

sharing that both full and complete laziness maintains could easily be obtained,

simply by performing the cheap static full laziness transformation before using a

completely lazy reduction technique. However unless expensive dynamic fully lazy

reduction is used this would result in the base language in a tower of interpreters

having features that a simply implemented interpreter on top of it would not have.

And as stated previously additional features are intended to be implemented on top

of a primitive base language. Static full laziness only ensures that syntactically free

expressions are not copied if only top-level reductions are performed.

The delayed substitution technique can be seen as orthogonal to Wadsworth’s

delayed argument evaluation technique. Just as reduction mechanisms can be clas-

sified with respect to their argument evaluation technique into the categories: call-

by-name, call-by-value and call-by-need. A reduction mechanism can be classified

with respect to its function body evaluation technique into one of the categories:

substitute-by-name, substitute-by-value, and substitute-by-need. These terms are

new, but the techniques they describe are not, the use of these names helps demon-

strate the similarity and orthogonality that exists between the issues of argument

evaluation and function body evaluation.

Conventional functional programming languages would be classified as

substitute-by-name, as they freely copy function bodies even though redexes may

exist within them. Substitute-by-value ensures that all redexes within the function

body are reduced before the function is applied. This is the same as reducing func-

tions to normal-form. Substitute-by-value risks non-termination by reducing redexes

that may never be needed, in an analogous way to call-by-value. Substitute-by-value

achieves a greater degree of sharing than substitute-by-name, analogous to call-by-
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value achieving a greater degree of sharing than call-by-name. Substitute-by-need

has the sharing properties of substitute-by-value, and the termination properties of

substitute-by-name, again analogously.

In this classification, a completely lazy evaluator is call-by-need and substitute-

by-need.

A call-by-value/substitute-by-value reduction mechanism raises an interesting

issue. Typically a term is said to be a value if it is in WHNF. If no redexes beneath

lambdas are reduced, then the copying of terms in WHNF will not be responsible for

the duplication of work. However if a term in WHNF is subsequently to be reduced

further, prior copying of that term will duplicate work. If a call-by-value/substitute-

by-value evaluator is to be implementable without the use of graphs, then the value

must refer to a term in normal-form not just WHNF.

The way in which substitute-by-value risks non-termination is far more serious

than the way in which call-by-value does. As will be explained later (see §6.2),

any typical recursive function contains an infinite number of redexes, so cannot be

reduced to normal-form. Call-by-value/substitute-by-value achieves the same degree

of sharing as complete laziness, but would have very poor termination properties.

Field [28] studied reduction mechanisms which employ a form of delayed substitu-

tion so as to make possible the sharing of the reduction of redexes in function bodies.

However Field didn’t use memo-tables or anything equivalent, so although his frame-

work could support call-by-value/substitute-by-need and call-by-name/substitute-

by-need, it could not support call-by-need/substitute-by-need.

In a reduction system, such as Field’s, if sharing is only introduced by function

application, i.e. there is no distinct concept of a let binding, then memo-tables

are only required if both call-by-need and substitute-by-need are required. This

introduction of a more advanced sharing mechanism to maintain the sharing and

termination properties of call-by-need and the sharing and termination properties

of substitute-by-need can be seen as analogous to the Wadsworth’s introduction of

graph sharing in order to maintain the sharing properties of call-by-value and the

termination properties of call-by-name.

Complete laziness passes the tower of interpreters test (§6.1). Complete laziness

could be said to achieve one dimensional sharing. The following example illustrates

where what could be called multi-dimensional sharing is required:

map (\x-> map (\y-> f (x,y)) [0..]) [0..]
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Figure 3.15: A choice of reduction order.

which reduces to

[ [f(0,0), f(0,1), f(0,2), ...],

[f(1,0), f(1,1), f(1,2), ...],

[f(2,0), f(2,1), f(2,2), ...],

:...

:...

]

This computes f applied to every pair of natural numbers. Depending on the

reduction order used, the function f can be specialized with respect either to x

or to y, and then repeatedly applied to the other argument. Which argument is

substituted first will determine for which argument f is specialized. The best choice

will depend on both the nature of f and the way in which the result is used.

A substitution in a completely lazy evaluator always ensures any graph is reduced

before substituting into it. If the graph consists of a substitution then it pushes

this down so that it can find some graph for it to substitute into. The order of

substitutions never changes once formed, they just ripple through the graph.

Figure 3.15, shows how substitutions can be formed in different orders. Complete

laziness will always use the reduction order shown in sub-figures (a),(b) and (c),

but the reduction order (a),(b),(c’),(d’) and (e’) could be used instead. In Figure

3.15(a) a choice of reductions exists. If the beta-reduction which will bind x to 1

is reduced first, as shown in Figure 3.15(b), then there is a choice of either pushing

the x=1 substitution after (Figure 3.15(c)) or before (Figure 3.15(c’)) reducing the

beta-reduction which will bind y to 2.
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:� 1 � 2�x:� 1 � 2�ybody
:: :x=1x=1y=1 x=2 x=2y=2body

:: :x=1x=1bodyy=1 x=2 x=2bodyy=2
(a) (b) (c):: :y=1 y=2x=1 y=1 y=2x=2body

:: :y=1 y=2bodyx=1 y=1 y=2bodyx=2
(b’) (c’)

Figure 3.16: Alternative choice of reduction orders, unavoidably losing sharing.



3.9. OPTIMAL EVALUATION 69

For a program with multiple partial applications to a nested function, choosing

one reduction order instead of another could lead to arbitrary loss of sharing as

Figure 3.16 shows. In sub-figure (c) any computations dependent only on x fail to

be shared. In sub-figure (c’) the mirror situation exists with computations dependent

only on y failing to be shared. If the graph that is computationally dependent only

on x does not syntactically contain y then full laziness may come to the rescue.

But in the general case, using the reductions schemes so far described, sharing is

inevitably lost one way or the other.

An example of a piece of graph that contains reductions that are syntactically

dependent on both of x and y, but not computationally dependent on both is:

power’ x y : power’ y x

Here power’ x y is worth specializing to a value of y and power’ y x is worth

specializing to a value of x, but with the reduction techniques described so far, it is

not possible to benefit from both these specializations.

The two reduction sequences in Figure 3.15 (and likewise for Figure 3.16) are

mutually exclusive. Lazy evaluation and delayed substitutions effectively enable a

reduction mechanism to change its mind about whether a redex is reduced before a

beta-reduction. The issue here is not whether to reduce a redex, the issue is which

of two mutually exclusive redexes should be reduced.

3.9 Optimal evaluation

The key to achieving complete laziness was to ensure that substitutions are only

performed into graph that has been reduced as far as possible. But even this can

still result in sharing being lost. Substitutions may be performed into graph that

is computationally dependent on some other substitution, thus not aiding further

reduction and copying graph needlessly. This is not a problem if a degree of sharing

equivalent to partial evaluation is required.

To achieve optimal evaluation, substitution nodes which would substitute

through graph that is computationally dependent on some other substitution must

not be reduced. A mechanism capable of swapping substitutions is needed, so as to

rearrange the order of substitutions such that only substitutions which will enable

further reduction are performed.
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Whether the techniques developed so far can be generalized to optimal evaluation

is not clear. A previous version of this chapter ended with a not very convincing

reason of why they could not. In a series of failed attempts to find a convincing

reason, a seemingly correct optimal evaluator has been implemented.

The results chapter provides lots of evidence of the correctness of this imple-

mentation in terms of producing the correct results in the optimal number of beta-

reductions, and no programs have been found that suggest the implementation is

not correct.

Positive as the evidence is, it doesn’t help greatly in finding either the originally

sought after explanation of why it should not be possible to generalize complete-

laziness to optimal evaluation; or an explanation of the correctness of this imple-

mentation. Nevertheless the techniques developed will be explained.

Firstly it must be determined which variables a node is computationally depen-

dent on, that is, which variables are blocking further reduction. Every node is either

reducible, fully reduced, or is prevented from further reduction by the presence of

variables. For each blocked node a single variable can be identified as blocking fur-

ther reduction. The nodes that can be blocked are application nodes, substitution

nodes, primitive nodes such as + and variables. A variable node is blocked on it-

self. An application node is blocked on the same variable that the node reached by

the function part of the application is blocked on. A primitive node is blocked on

the same variable as the node corresponding to the first strict argument which is

blocked. So taking for example the term a+b, if reduction of a is blocked, then a+b

is blocked on whatever a is blocked on, otherwise if b is blocked then a+b is blocked

on whatever b is blocked on, otherwise a+b is not blocked and can be reduced. A

substitution node is blocked on the renamed version of the variable the node the

substitution is to substitute is blocked on.

When a substitution meets a node, it first tries to reduce that node, and then

checks if that node is fully reduced. Nodes such as (:), λ and constants, are fully

reduced, and can be substituted without loss of sharing. Other nodes such as (+)

and @ and variables, if they cannot be reduced must be blocked on something.

If the variable the substitution is trying to bind, corresponds to the variable the

node it is trying to substitute is blocked on, then the substitution goes ahead and

substitutes the node. Otherwise the substitution refuses to budge and tags itself as

being blocked.
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←

1=b, -11=a, -1body
(a) (b) (c)

Figure 3.17: Substituting and unsubstituting substitutions.

Once a the variable on which a node is blocked has been determined, the node

is tagged with this variable. The effect of this is that a variable which is blocking

further reduction, propagates this fact up towards the root of the graph. When

the substitution binding this variable (or a renamed version of the variable if the

blocked tags have propagated through a substitution node), is found, a substitution

is performed.

Substitution is performed just the same way as was the case for the completely

lazy evaluator, except now it is possible a substitution node may be substituted

and even unsubstituted as the required substitution swaps with any substitutions

between its original position as the variable blocking further reduction.

Figure 3.17 shows a concrete example of substitutions being swapped. The use

of variable names will now be stopped and numbers used instead. The binding-

numbers on the lambdas and variables (no variables are actually shown, but if they

were) are strictly redundant, and can be inferred from the depth of the graph in

which they occur. The binding-numbers in the substitutions are not redundant and

cannot be inferred from the depth of the graph. The shift of the substitutions is

now also shown, this occurs after a comma.

Substitutions are swapped by either substituting them or unsubstituting them.

In the following text, upper substitution refers to the substitution which points to the

lower substitution. To substitute substitutions, the shift of the upper substitution

is used to rename the binding-variable of the lower substitution. To unsubstitute

substitutions, the shift of the lower substitution is used to unrename the binding-

variable of the upper substitution. The general case is shown in Figure 3.18 without

depth shading.

Aside The substitution of substitution nodes depicted in Figures 3.17 and 3.18 do

not depict the substitution of the argument of a substitution node. Specif-



72 CHAPTER 3. DEGREES OF SHARING

ically with reference to Figure 3.17, the upper substitution is rebuilt below

the lower substitution and is shown ready to substitute the body of the lower

substitution, but the upper substitution is not shown ready to substitute the

argument b. This is not an over-simplification in the figure.

If the argument were substituted, trying to unsubstitute it later would be a

daunting and very complex task, as the substitution may have started propa-

gating through the argument b. At least this was the reason originally given

as to why complete laziness could not be generalized to optimal evaluation.

There is in fact no possibility of the upper substitution propagating through

the argument b, while the substitution nodes are in their swapped arrangement,

as the argument b will only be evaluated once it has been bound to some

variable. But the variable to which it will become bound is beneath what was

the upper substitution. It is inevitable that the substitutions will have to be

swapped back again before the argument b will ever be evaluated. There is

no other way for what was the upper substitution (1 = a) to escape from its

position between what was the lower substitution and the variable 2 that b will

be bound to. It cannot just substitute through the variable 2, renaming it to

1, as substitutions will not substitute nodes which are blocked on a different

variable from the one the substitution binds.

This insight means that there is no need to rebuild the upper substitution

(1 = a) ready to substitute the argument b in the first place.

2

The depths of the substitutions are handled the same way regardless of whether

substitutions are swapped by substituting or unsubstituting. As before, the depth

of a substitution is the expected depth of the node it points to, plus the shift of

the substitution. If depth is the depth of the upper substitution, and depth’ is the

depth of the lower substitution, Then the depth the lower substitution expects the

node it points to be at is depth′ − shift′. When the substitutions are rebuilt in the

swapped order, the new lower substitution will have depth (depth′−shift′)+shift.

The depth of the new upper substitution, is the depth of the new lower substitution

plus shift’, which is depth′ + shift.

No explanation has yet been given of how it is known whether two substitutions

should be swapped by substitution or unsubstitution. Actually not all substitutions
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bind'+shift=b, shift'bind=a, shiftbody
(a) (b)bind=a, shiftbind'=b, shift'body unsubst

→
bind'=b, shift'bind-shift'=a, shiftbody

(c) (d)

Figure 3.18: Substituting and unsubstituting substitutions in general.

can be swapped. First it should be explained that it is only meaningful to swap

substitutions when they could have been formed in the swapped order in the first

place. This occurs when one substitution is formed within the scope of another.

This ensures that the nested substitution will be binding a deeper variable, than

the substitution whose scope it is formed in. This difference in binding depths is

used to determine if an upper substitution can substitute the lower. If the variable

the upper substitution binds is shallower than the variable the lower substitution

binds, then the upper substitution may substitute the lower. If the converse is true

then it may be possible for the lower substitution to be unsubstituted from the up-

per substitution, but not necessarily. Substitution nodes should only be swapped by

unsubstitution, if they have previously been swapped by substitution. However com-

paring the depths of the substitutions binding variables is insufficient to determine

if this is the case.

An example showing an unsubstitution which must be prevented is shown in

Figure 3.19. There is no choice in the order in which the substitutions are formed,

substitution 1 = a must be formed first and substituted through the next lambda

before the substitution 1 = b can be formed. The result looks identical in terms

of nodes depths, bound variables depths and substitutions shifts to Figure 3.17(c),

however this case was not the result of substitution nodes being swapped by substi-

tution previously. In this case if an unsubstitution was performed, all that would

happen is that the substitution 1 = a would try to substitute through b, but since

b is at depth 0, the substitution would immediately die-out. However had b not
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1=b, -11=a, -1body illegal unsubst

6→

1=a, -12=b, -1body
(a) (b) (c)

Figure 3.19: Curried applications and substitution swapping.��1��1��2body b a  ��1���1�2body ba 
(a) (b)

Figure 3.20: Potentially mixed variables.

been at depth 0, had it been within the scope of another lambda expression, then

the variables would get mixed up. Figure 3.20 shows such an example. Each of the

two sub-figures can reduce to the same sequence of substitutions, in the first case

the substitutions binding a and b may be swapped by substitution and unsubstitu-

tion, in the second swapping the substitutions binding a and b would result in the

substitution of 1 = a through b instead of 1 = c through b.

The two cases can be distinguished by having substitution nodes keep a record

of which substitutions have substituted them. To do this, substitution nodes are

distinguished by an identifier which all related substitution nodes have in common.

This identifier could, for example, be an integer numbering the beta-reduction from

which all related substitutions originated.

When it is not possible to swap two substitutions, and yet the graph under-

neath is blocked and requires the upper substitution, the upper substitutions forces

the lower substitution through, performing both substitutions in a single step, up-

dating only the node containing the upper substitution, the lower node remaining

unchanged. This doesn’t lose sharing as this only occurs as a result of a curried

function application where for any given second argument, the first argument is
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determined.

Once the substitution that binds the variable that a graph is blocked on has

been determined, the substitution must make its way to that variable, swapping

with substitutions where it can, and forcing the ones it cannot to go along with

it. Thus a substitution may build up a wave of substitutions before it. When the

sequence of substitutions which comprise this wave meets a substitution, it must

determine whether the entire sequence can make it through that substitution. If it

cannot then this substitution must be added to the wave of substitutions also.

The next chapter gives a formal description of these reduction rules.

3.10 Summary

In this chapter it was shown how different degrees of sharing maintain and lose shar-

ing. The terms substitute-by-name/value/need were introduced and demonstrated

to be orthogonal to and analogous to call-by-name/value/need in a number of in-

teresting ways. A new sharing mechanism based on memo-tables, was introduced

so as to achieve the benefits of both call-by-need and substitute-by-need. Complete

laziness was explained in terms of the two sharing mechanisms: graph sharing, and

memo-tables. A third sharing mechanism: substitution swapping, was introduced

so as to generalize complete-laziness to optimal evaluation.
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Chapter 4

Reduction Rules

This chapter presents a more rigorous treatment of the techniques introduced in the

previous chapter so as to provide a link between the general ideas and the specific

implementations presented in the next chapter.

To define the reduction rules for completely lazy evaluation and optimal eval-

uation a new notation is devised (§4.1). This new notation, called cyclic scoped

reverse de Bruijn notation, is defined and used both to assist in defining reduc-

tion rules (§4.5,§4.7) and to present examples of these reduction rules in action

(§4.6,§4.8). Issues relating to indirections and blackholes (§4.2), memo-tables (§4.3)

and blocked reductions (§4.4) are discussed.

4.1 Cyclic scoped reverse de Bruijn notation

During completely lazy and optimal evaluation, the state of the evaluator can be

described by a triple (S ,H ,M ): the stack S is list of addresses, the heap H maps

addresses onto terms or addresses and describes a graph with indirection nodes; the

memo-table M associates each β-reduction with a memo-table mapping addresses

to addresses. Terms are tagged with depth and blocked tags.

In order to describe the reduction rules concisely, the notation defined in Figure

4.1 is used to specify terms in the heap. The aim is to describe graph reduction

rules in the same way as term reduction rules.

For a graph in the heap to correspond to a λ-calculus expression, the following

conditions must be met:

1. if the same address is used in more than one place, then any term or indirection

associated with the address should be the same in each case,
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N1 ::= 1 | 2 | 3 ...

N ::= 0 | 1 | 2 | 3 ...

Z ::= ... -3 | -2 | -1 | 0 | 1 | 2 | 3 ...

Node ::= addr
depth( Term )blocked (term)

| addr( Node ) (indirection)

| addr( ) (reference)

Addr ::= N

Depth ::= N

Blocked ::= ✓ | ✗ | N1

Term ::= @ Node Node (application)

| λ Node (abstraction)

| (variable)

| : Node Node (pair)

| = Body Bind Arg Shift Fam SubstBy (substitution)

| # Atomic

| ∆n Primitiven Node1 ... Noden

Body ::= Node

Bind ::= N1

Arg ::= Node

Shift ::= −1 | N

Fam ::= N

SubstBy ::= [N, N, ..., N]

Primitive1 ::= head | tail ...

Primitive2 ::= == | + | - | * ...

Primitive3 ::= if

Atomic ::= [] | True | False | Z | String

Figure 4.1: Grammar for cyclic scoped reverse de Bruijn notation
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power where

power n = \x -> if n_eq_0 then 1 else x * pwr_n_1 x

where n_eq_0 = n==0

pwr_n_1 = power (n-1)

1
0(λ

2
1(λ

3
2(∆ if 4

1(∆ == 5
1( ) 6

0(# 0))

7
0(# 1)

8
2(∆ * 9

2( )

10
2 (@ 11

1 (@ 1( )

12
1 (∆ - 13

1 ( ) 14
2 (# 1))

15
2 ( )))))

Figure 4.2: The fully lazy power function written in nested cyclic scoped reverse de

Bruijn notation.

2. nodes in the graph described by the heap may only point to nodes at an equal

or shallower depth, with the exception of λ nodes which may point to nodes

at a depth at most one greater than their own,

3. no substitution nodes should exist and

4. for all sets of nodes where all nodes are at a depth greater than some n, and

where the set cannot be partitioned into unconnected subsets, there is a unique

λ node at depth n which points to a node in the set.

The last requirement is equivalent to Wadsworth’s admissible graph criteria [82,

3] that specifies that each variable should be bound by a unique λ node.

When using the notation to describe a graph with sharing, a reference can be

used to avoid duplication. Indeed this must be done if graphs with cycles in are to

be described. References do not actually exist in the heap, they are a notational

convenience used to express sharing and cycles.

To give an example of the notation in use, the fully lazy power function from
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1
0(λ

2( ))

2
1(λ

3( ))

3
2(∆ if 4( ) 7( ) 8( ))

4
1(∆ == 5( ) 6( ))

5
1( )

6
0(# 0)

7
0(# 1)

8
2(∆ * 9( ) 10( ))

9
2( )

10
2 (@ 11( ) 15( ))

11
1 (@ 1( ) 12( ))

12
1 (∆ - 13( ) 14( ))

13
1 ( )

14
0 (# 1)

15
2 ( )

Figure 4.3: Unnested notation.

1
0(λ

2
1(λ

3
2(∆ if 4( ) 7( ) 8( ))))

4
1(∆ == 5

1( ) 6
0(# 0))

7
0(# 1)

8
2(∆ * 9

2( ) 10( ))

10
2 (@ 11

1 (@ 1( ) 12( )) 15
2 ( ))

12
1 (∆ - 13

1 ( ) 14
0 (# 1))

Figure 4.4: Semi-nested notation.

1(λ1 (λ2 (if 1(== 1 0) 1 8( ))))

8(* 2 (@ 1(@
1( ) (- 1 1)) 2))

Figure 4.5: Condensed semi-nested notation.
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Figure 3.2 is shown in Figure 4.2 using nested cyclic scoped reverse de Bruijn no-

tation. An alternative to nesting terms within terms, is to write each term on a

new line as shown in Figure 4.3. These two examples of the notation both repre-

sent exactly the same graph. The nested notation has the advantage of showing

a term in context and saves the reader from matching up references with terms.

The unnested notation has the advantage that each term can easily be identified

without the reader having to pair up brackets. In practice a combination of the two

notations is preferable, as shown in Figure 4.4. This semi-nested notation will be

used in examples. The indentations have no formal significance, they serve only as

a visual aid.

Blocked tags will be useful for defining the reduction rules later, but for the

time-being they are not shown. Even so the formulation of power appears cluttered.

Other tags may also be omitted when they are insignificant. For instance showing

the address of a node which isn’t shared may be superfluous. The depth and address

of atomic values are of little interest, and for literal values the # is superfluous so

the atomic value 7
0(# 1) may simply be denoted by 1. In practice all atomic values

are at depth zero: atomic values resulting from instantiation are created at depth

zero; atomic results of primitive operations are created at depth zero. Even if atomic

values did exist within the scope of a function, the resulting loss of sharing caused by

copying this atomic value would be of little consequence. The address of a variable

is also of little interest and the variable 5
1( ) can be written 1 instead. Whether two

occurrences of a variable bound by a common λ are shared or not, each occurrence

of the variable will be replaced by an indirection to the same argument when the

scope of the function is copied. It may also be preferable to write 1(λ
body( )) as (λ2

body( )). To make it clearer which variable it binds. For literal primitives the ∆ is

superfluous, so 4
1(∆ == 5( ) 6( )) can be abbreviated 1(==

5( ) 6( )).

Where leaving out depth tags introduces no ambiguity, they may be omitted.

This occurs when there is only one depth a node could be given without breaking the

rules restricting the depths of two nodes where one points to the other. Specifically

the body of an abstraction node d(λ body( )) can be a node with depth between 0

and d + 1 inclusive. The body of a substitution node d(= body( ) bind arg( ) shift

fam substby) can be a node with depth between 0 and d−shift inclusive. Any other

node d( ) may point to a node with depth between 0 and d inclusive.

Using these conventions the power function can be rewritten more simply as
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shown in Figure 4.5. Note which nodes the depth tags are placed on. With refer-

ence to the graphical representation of the power function shown in Figure 4.2, the

nodes with addresses can be seen to be those on the shallower side of the boundary

delimiting the scope of the inner abstraction. Any nodes above this boundary must

have a depth of two as these nodes are able to reach the variables at depth two. Any

(non atomic) nodes below this boundary must have a depth of at least one as these

nodes are either the variable at depth one or are able to reach this variable and they

cannot have a depth any greater than one, as they would not then be reachable by

the nodes shown with a depth of one. The depth of the atomic nodes is of little

consequence, although as explained earlier there is no point giving them a depth

other than zero. If the scope of the inner abstraction were not as tight as it could

be, i.e. if the function where not in its fully lazy form, then it would be necessary to

specify the depth of nodes on both sides of the scope delimiting boundary in order

to precisely pin down where the boundary lies.

4.2 Indirections and black holes

The indirection nodes are useful both when instantiating an expression in a heap,

and during β-reductions or reduction of primitives such as if and head. From a

mathematical point of view, such indirections have the unfortunate effect of making

otherwise identical graphs different. Although normal indirection nodes can be

eliminated from a graph, self-referential nodes cannot. Self-referential indirection

nodes are known as black holes. Black holes can be created either by instantiation

of expressions such as let x=x in x or by the reduction of expressions such as

let f x=a; a=f 1 in a . In either case, evaluation of a black hole is undefined,

typically resulting in non-termination. No special reduction rules are needed to

handle black holes. For further discussion on the mathematical implications of

black holes, see [2, 5].

To prevent chains of indirection nodes building up, the following reduction rule

can be applied:

Definition 4.1 (indirection elimination (→i))

(S ,H [a(b(c( )))],M )→i (S ,H [a(c( ))],M )

2

This reduction rule says that if address a contains an indirection node pointing
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to address b, and address b contains an indirection node pointing to address c, then

address a can be updated to contain an indirection pointing directly to address c,

and no change is made to the stack S or the memo-tables M.

The notation H [...] denotes a heap H , where the nodes ... exist. Where a node

is present on the left-hand side of a reduction rule, but not the right, the node is

assumed to remain unchanged. For example in the rule above address b still contains

an indirection node pointing to address c.

This reduction rule will shorten chains of indirection nodes to a single indirection

node. It is also possible to provide rules to remove indirection nodes that originate

from terms as well as other indirection nodes. When to apply these rules is an

implementation issue.

The reduction rule→i does not imply that addresses a, b and c need be different.

In the presence of black holes the reduction →i could be applied perpetually.

A chain of indirections can be written more concisely as a,b,c( ). If the length of

the chain is not important the chain can be written a,..,n( ), or even a,..( ) or ..,n( )

or ..( ).

4.3 Memo-tables and the heap

A memo-table is a function from addresses to addresses. The function denoted by ∅

is undefined for all arguments. The notation m[a 7→ b] denotes function overriding,

the function m[a 7→ b] is the same as the function m, except m[a 7→ b](a) = b. The

domain of a function m is given by dom(m). Thus if a 6∈ dom(m) the memo-table

m does not have an entry for address a.

The memo-table association M associates each beta reduction’s unique identifier

with a memo-table. If f 6∈ dom(M ) then f is available as a new beta reduction

identifier.

The heap H is a function from addresses to terms and tags. If b 6∈ dom(H ) then

b is a fresh address. Fresh addresses are required during substitution, Substitutions

are performed on copies of the nodes being substituted, the orignal nodes are not

substituted.
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4.4 Blocked reduction and tags

The reduction rules are simplified by tagging the terms with a blocked tag to indicate

if reduction on a term has been attempted. Terms that have not been evaluated are

tagged with a ✗. Terms for which evaluation has been attempted will be tagged with

something other than a ✗. This tagging prevents work being wasted in repeated

attempts to evaluate a blocked term. Without this tagging the spines of curried

function calls may be repeatedly traversed only to discover reduction is blocked by

the presence of a variable where a function is needed.

For completely lazy evaluation a ✓ indicates that evaluation on a node has been

attempted, for example (# 7)✓ and (+ 1( )✓ (# 7)✓)✓.

For optimal evaluation a ✓ is only used if evaluation has been attempted and

no further reduction will be possible after the term is substituted, for example (#

7)✓. Otherwise the term is tagged with a positive number indicating the variable a

substitution must bind in order to enable further reduction, for example (+ 1( )1 (#

7)✓)1.

When a graph is first instantiated, all terms are initially tagged with a ✗. Fresh

terms created by substitution are also initially tagged with a ✗.

4.5 Completely lazy evaluation

This section contains the reduction rules for completely lazy evaluation.

The completely lazy evaluation reduction rules only use the blocked tags ✓and ✗.

The distinction between a term whose further reduction is blocked by the presence

of a variable (e.g. 1
1(@

2
1( )✓ 3

0(# 1)✗)✓), and a term which cannot be reduced any

further because it is already fully reduced (e.g. 1
0(# 1)✓) is not important. If a

reduction rule does not specify a blocked tag, this means it doesn’t matter if the tag

is a ✓ or a ✗. Tags are assumed to remain unchanged unless specified otherwise.

The SubstBy field in a substitution node (=) is used to remember which sub-

stitutions a substitution node has been substituted by. The field has no use in the

completely lazy reduction rules, as substitution nodes are never swapped, so it will

not be shown.

Definition 4.2 (Completely lazy reduction (→c))

These reduction rules define a deterministic reduction strategy. The earliest appli-
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cable reduction rule takes precedence. Reduction begins with a heap containing

a graph, a singleton stack containing the root of the graph, and an empty set of

memo-tables. Reduction terminates when the stack is empty.

(a : S ,H [a,b( )],M ) →c (b : S ,H ,M ) (eval ind)

(a : S ,H [a( )✓],M ) →c (S ,H ,M ) (eval blocked)

(a : S ,H [a(# x )✗],M ) →c (S ,H [a(# x )✓],M ) (eval atom)

(a : S ,H [a( )✗],M ) →c (S ,H [a( )✓],M ) (eval var)

(a : S ,H [a(λ body( ))✗],M ) →c (S ,H [a(λ body( ))✓],M ) (eval abs)

(a : S ,H [a( : hd( ) tl( ))✗],M ) →c (S ,H [a( : hd ( ) tl( ))✓],M ) (eval pair)

(a : S ,H [a(@ ..,func( )✗ arg( ))],M ) →c (func : a : S ,H ,M ) (eval app)

(a : S ,H [ai (@
..,func(λj

body( ))✓ arg( ))],M ) (eval beta)

→c (a : S ,H [a(= body( ) j arg( ) (i − j ) f )✗],M [f 7→ ∅])

where f 6∈ dom(M )

(a : S ,H [a(@ ..,func( )✓ arg( ))],M ) (eval app blocked)

→c (S ,H [a(@ func( )✓ arg( ))✓],M )

(a : S ,H [a(= ..,b
j ( )✗ bind arg( ) shift f )],M ) (subst specialize)

→c (b : a : S ,H ,M ), if j ≥ bind

(a : S ,H [a(= ..,b
j ( ) bind arg( ) shift f )],M ) (subst scope-boundary)

→c (S ,H [a,b( )],M ), if j < bind

(a : S ,H [a(= ..,b( ) bind arg( ) shift f )],M ) (subst memoized)

→c (S ,H [a,z ( )],M ), if M (f )(b) = z

(a : S ,H [a(= ..,b
j ( ) bind arg( ) shift f )],M ) (subst bind)

→c (a : S ,H [a,arg( )],M ), if j = bind

(a : S ,H [a(= ..,b
j ( ) bind arg( ) shift f )],M [f 7→m]) (subst var)

→c (S ,H [aj+shift( )✓],M [f 7→ m[b 7→ a]])

(a : S ,H [a(= ..,b
j (@ c( ) d( )) bind arg( ) shift f )],M [f 7→m]) (subst app)

→c (a : S ,

H [aj+shift(@
e
j+shift(=

c( ) bind arg( ) shift f )✗

f
j+shift(=

d( ) bind arg( ) shift f )✗)✗],

M [f 7→ m[b 7→ a]])

where e, f 6∈ dom(H )
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(a : S ,H [a(= ..,b
j (λ body( )) bind arg( ) shift f )],M [f 7→m]) (subst abs)

→c (S ,

H [aj+shift(λ
c
j+shift+1(=

body( ) bind arg( ) shift f )✗)✓],

M [f 7→ m[b 7→ a]])

where c 6∈ dom(H )

(a : S ,H [a(= ..,b
j ( : c( ) d( )) bind arg( ) shift f )],M [f 7→m]) (subst pair)

→c (S ,

H [aj+shift( : e
j+shift(=

c( ) bind arg( ) shift f )✗

f
j+shift(=

d( ) bind arg( ) shift f )✗)✓],

M [f 7→ m[b 7→ a]])

where e, f 6∈ dom(H )

(a : S ,H [a(= ..,b
j (# x ) bind arg( ) shift f )],M ) (subst atom)

→c (a : S ,H [aj+shift(# x )✗],M )

(a : S , H [a(= ..,b
j (∆n p c1( ) ...cn ( )) bind arg( ) shift f )], M [f 7→ m]) (subst prim)

→c (a : S ,

H [aj+shift(∆n p d1

j+shift(=
c1( ) bind arg( ) shift f )✗

... dn

j+shift(=
cn ( ) bind arg( ) shift f )✗)✗],

M [f 7→ m[b 7→ a]])

where d1, ..., dn 6∈ dom(H )

(a : S ,H [a(+ ..,b(# x )✓ ..,c(# y)✓)✗],M ) (prim + reduced)

→c (S ,H [a0(# (x + y))✓],M ), if x , y ∈ Z

(a : S ,H [a(+ ..,b( )✓ ..,c( )✓)✗],M ) →c (S ,H [a( )✓],M ) (prim + blocked)

(a : S ,H [a(+ ..,b( ) ..,c( ))✗],M ) →c (b : c : a : S ,H ,M ) (prim + in-progress)

(a : S ,H [a(if True c( ) d( ))],M ) (prim if True reduced)

→c (a : S ,H [a,c( )],M )

(a : S ,H [a(if False c( ) d( ))],M ) (prim if False reduced)

→c (a : S ,H [a,d( )],M )

(a : S ,H [a(if ..,b( )✓ c( ) d( ))],M ) (prim if blocked)

→c (S ,H [a( )✓],M )
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(a : S ,H [a(if ..,b( )✗ c( ) d( ))],M ) (prim if in-progress)

→c (b : a : S ,H ,M )

(a : S ,H [a(head ..,b( : hd( ) tl( ))✓)],M ) (prim head reduced)

→c (a : S ,H [a,hd ( )],M )

(a : S ,H [a(head ..,b( )✓)],M ) →c (S ,H [a( )✓],M ) (prim head blocked)

(a : S ,H [a(head ..,b( )✗)],M ) →c (b : a : S ,H ,M ) (prim head in-progress)

2

The reduction rule (eval ind) applies when the node whose address is at the top

of the stack, is an indirection node. In this case the address at the top of the stack

is replaced with the address which the indirection points to.

The rule (eval blocked) applies when the node whose address is at the top of

the stack is a term tagged with a ✓. The ✓ tag indicates the term cannot be re-

duced further. In this case this address is popped from the stack and discarded. For

top-level reduction of a well-typed expression, it is always clear whether a term is

in its fully reduced form: Application and primitive nodes can always be reduced.

Abstraction, atomic and pair nodes are already fully reduced. And variable and sub-

stitution nodes will never be encountered. When reduction is performed within the

scope of an abstraction, identifying whether a node has been reduced or not is not so

simple. The ✓ tag prevents repeated attempts to reduce the unreducible application

and primitive nodes typically found within function bodies. Such unreducible ap-

plication and primitive nodes can also occur at the top-level if the expression being

reduced is not well-typed. For example reducing (+ 1 [])✗ results in (+ 1 [])✓, just

as the reduction of (+ 1 1 )✗ results in (+ 1 1 )✓.

The reduction rules (eval atom), (eval var), (eval abs) and (eval pair), state that

atoms, variables, abstractions and pairs are already in their fully reduced state and

should be tagged with a ✓.

The rule (eval app) ensures the function part of an @ node is evaluated by pushing

the address of the function part onto the stack. When evaluation of the function

part is complete, its address will be popped off the stack and a second attempt to

reduce the @ node will be made.

If the function part of an application node evaluates to an abstraction node,

or an indirection or chain of indirections terminating in an abstraction node, then

the reduction rule (eval beta) performs a beta reduction. A fresh beta reduction
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identifier f is associated with this beta reduction and a fresh memo-table, initially

empty is associated with f . The (eval beta) rule does not evaluate the body of

the abstraction. If the function part of the application node does not reduce to an

abstraction node, then the application node cannot be reduced further and is tagged

with a ✓ as shown in (eval app blocked).

The reduction rule (subst specialize) ensures that the body which a substitution

node points to is evaluated before it is substituted. This reduction rule is responsible

for the specializing effect. If the body has already been reduced and hence tagged

with a ✓, then (subst specialized) does not apply and repeated attempts to evaluate

the body will not be made.

The rule (subst scope) checks to see if a substitution node has reached the end

of its scope. If it has then the substitution dies out and the substitution node is

replaced with an indirection pointing to the body of the substitution.

The rule (subst memo) checks to see if the node to be substituted has already

been substituted by a substitution node originating from the same β-reduction as

the present substitution node. If so then the substitution node is replaced with an

indirection pointing to the result of the previous substitution. There is no possibility

of memo-tables failing due to indirection nodes causing confusion over the identity of

nodes, as the address of indirection nodes are never used to index memo-tables. Only

nodes that have already been tagged with a ✓ will be used to index memo-tables,

and once a node has been tagged with a ✓ it will not subsequently be overwritten

with an indirection or any other node.

The rules (subst bind) and (subst var) handle the substitution of variables. If the

depth of the variable being substituted matches bind in the substitution, then (subst

bind) replaces the substitution node with an indirection pointing to the address

arg in the substitution. If the depth doesn’t match, then (subst var) replaces the

substitution node with a variable with depth equal to the depth of the variable being

substituted plus shift, effectively renaming the variable.

The rules (subst app), (subst abs), (subst pair) and (subst prim), replace the

substitution node with a @, λ, : or ∆ node shifted in depth from the node being

substituted and build new child substitution nodes with fresh addresses ready to

substitute the child nodes of the node being substituted. In each case one new

memo-table entry is made, associating the substituted node with the (now over

written) node that substituted it, in the memo-table associated with beta-reduction
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let f x = let y = head x

z = y+y

in if z < 0 then negate z else z

in f [1]

Figure 4.6: Completely lazy reduction example

that created the substitution. The node being substituted and its children remain

unchanged.

Reduction rules for three primitive functions are shown. It should be clear from

these how the others would be written. The primitive reduction rules contain within

them the strictness of the primitive operations. The reduction rule (prim if) indi-

cates that if is only strict in its first argument, where as (prim +) indicates that +

is strict in both its arguments.

The (prim + reduced) rule applies when the reduction can be performed. If both

arguments have been reduced as far as possible, but the previous rule did not apply

then reduction of the + node is blocked, and the rule (prim + blocked) applies. This

typically happens when a variable is present in one or both arguments, but will also

occur if there is a type-error. If one or both the arguments have not been reduced,

then both their addresses are placed on the stack, and reduction of the + node will

be attempted again when both arguments have been reduced.

The (prim if reduced) rule applies when the predicate had been reduced to

True. In this case the if node is replaced with an indirection pointing to the then

clause of the if node.

4.6 Examples

To demonstrate the completely lazy reduction rules in action the reduction steps

required to reduce the expression in Figure 4.6 will be explained.

The stack initially contains the root of the expression to be reduced. The initial

state of the stack, heap and memo-tables are:

stack: [1]

heap: 1
0(@

2( ) 10
0 (: 11

0 (1)✗ 12
0 ([])✗)✗)✗

2
0(λ

3
1(if

4( ) 9( ) 5( ))✗)✗

4
1(<

5( ) 8
0(0)

✗)✗

5
1(+

6( ) 6( ))✗
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6
1(head

7
1( )✗)✗

9
1(negate

5( ))✗

memo-tables: {}

The first applicable reduction rule is (eval app). This rule pushes address 2 on

to the stack and leaves the heap unchanged. Next (eval abs) is applied, this changes

the ✗ tag on the λ node to a ✓ tag, and pops and discards address 2 from the stack.

Next (eval beta) is applied, this performs a beta reduction of the application at

address 1.

The stack, heap and memo-tables now contain:

stack: [1]

heap: 1
0(=

3( ) 1 10( ) -1 1)✗

3
1(if

4( ) 9( ) 5( ))✗

4
1(<

5( ) 8
0(0)

✗)✗

5
1(+

6( ) 6( ))✗

6
1(head

7
1( )✗)✗

9
1(negate

5( ))✗

10
0 (: 11

0 (1)✗ 12
0 ([])✗)✗

memo-tables: { 1 7→ ∅ }

The next applicable rule is (subst specialize). This rule pushes address 3 onto the

stack, so as to ensure the nodes to be substituted are evaluated before substituting

(and copying) them. Then rule (prim if in-progress) applies, this pushes address

4 onto the stack in an attempt to evaluate the condition of the if primitive. The

rule (prim < in-progress) applies followed by rules (prim + in-progress) and (prim

head in-progress), and then (eval var). The rule (eval var) changes the ✗ tag in the

variable at address 7 to a ✓ tag.

stack: [5,4,3,1]

heap: 1
0(=

3( ) 1 10( ) -1 1)✗

3
1(if

4( ) 9( ) 5( ))✗

4
1(<

5( ) 8
0(0)

✗)✗

5
1(+

6( ) 6( ))✗

6
1(head

7
1( )✓)✗

9
1(negate

5( ))✗

10
0 (: 11

0 (1)✗ 12
0 ([])✗)✗
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memo-tables: { 1 7→ ∅ }

The rule (eval head blocked) then changes the tag on the head primitive at

address 6 to a ✓ tag. Similarly the tags at addresses 3, 4, 5 and 8 are changed to ✓

tags.

The result of the evaluation of the body of the substitution is:

stack: [1]

heap: 1
0(=

3( ) 1 10( ) -1 1)✗

3
1(if

4( ) 9( ) 5( ))✓

4
1(<

5( ) 8
0(0)

✓)✓

5
1(+

6( ) 6( ))✓

6
1(head

7
1( )✓)✓

9
1(negate

5( ))✗

10
0 (: 11

0 (1)✗ 12
0 ([])✗)✗

memo-tables: { 1 7→ ∅ }

Next (subst prim) is performed. This substitutes the if primitive at address

3. The node at address 3 remains unchanged, it will no longer play a part in the

reduction. A copy of the node at address 3 is made at address 78. This node points

via three new substitution nodes to the same nodes that the node at address 3

pointed to. A record of the substitution is made in a memo-table.

stack: [1]

heap: 1,78
0 (if 75( ) 76( ) 77( ))✗

75
0 (= 4( ) 1 10( ) -1 1)✗

76
0 (= 9( ) 1 10( ) -1 1)✗

77
0 (= 5( ) 1 10( ) -1 1)✗

4
1(<

5( ) 8
0(# 0)✓)✓

5
1(+

6( ) 6( ))✓

6
1(head

7
1( )✓)✓

10
0 (: 11

0 (1)✗ 12
0 ([])✗)✗

9
1(negate

5( ))✗

memo-tables: { 1 7→ {3 7→ 78} }

The substitution node at address 1 has been overwritten with an indirection node

pointing to the new node at address 78. Next (eval ind) will follow this indirection

and push address 78 onto the stack. The (eval if in-progress) rule will attempt to
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evaluate the condition of the if primitive. This in turn results in the substitution

node at address 75, substituting the primitive at address 4.

stack: [75,78,1]

heap: 1,78
0 (if 75( ) 76( ) 77( ))✗

75,81
0 (< 79( ) 80( ))✗

79
0 (= 5( ) 1 10( ) -1 1)✗

5
1(+

6( ) 6( ))✓

6
1(head

7
1( )✓)✓

10
0 (: 11

0 (1)✗ 12
0 ([])✗)✗

80
0 (= 8( ) 1 10( ) -1 1)✗

8
0(0)

✓

76
0 (= 9( ) 1 10( ) -1 1)✗

9
1(negate

5( ))✗

77
0 (= 5( ) 1 10( ) -1 1)✗

memo-tables: { 1 7→ {3 7→ 78, 4 7→ 81} }

Substitution of the nodes at addresses 5 and 6 proceed in a similar fashion.

stack: [7,85,82,83,79,80,75,78,1]

heap: 1,78
0 (if 75( ) 76( ) 77( ))✗

75,81
0 (< 79( ) 80( ))✗

79,84
0 (+ 82( ) 83( ))✗

82,86
0 (head 85( ))✗

85
0 (= 7( ) 1 10( ) -1 1)✗

7
1( )✓

10
0 (: 11

0 (1)✗ 12
0 ([])✗)✗

83
0 (= 6( ) 1 10( ) -1 1)✗

6
1(head

7( ))✓

80
0 (= 8( ) 1 10( ) -1 1)✗

8
0(0)

✓

76
0 (= 9( ) 1 10( ) -1 1)✗

9
1(negate

5
1(+

6( ) 6( ))✓)✗

77
0 (= 5( ) 1 10( ) -1 1)✗

memo-tables: { 1 7→ {3 7→ 78, 4 7→ 81, 5 7→ 84, 6 7→ 86} }
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At this point (subst bind) is performed, and the substitution at node 85 is

overwritten with an indirection node pointing to address 10.

stack: [85,82,83,79,80,75,78,1]

heap: 1,78
0 (if 75( ) 76( ) 77( ))✗

75,81
0 (< 79( ) 80( ))✗

79,84
0 (+ 82( ) 83( ))✗

82,86
0 (head 85,10( ))✗

10
0 (: 11

0 (1)✗ 12
0 ([])✗)✗

83
0 (= 6( ) 1 10( ) -1 1)✗

6
1(head

7
1( )✓)✓

80
0 (= 8( ) 1 10( ) -1 1)✗

8
0(0)

✓

76
0 (= 9( ) 1 10( ) -1 1)✗

9
1(negate

5
1(+

6( ) 6( ))✓)✗

77
0 (= 5( ) 1 10( ) -1 1)✗

memo-tables: { 1 7→ {3 7→ 78, 4 7→ 81, 5 7→ 84, 6 7→ 86} }

The reduction rule (eval pair) tags the pair at address 10 with a ✓. The reduction

rule (prim head reduced) reduces the primitive head node at address 86, replacing

it with an indirection pointing to address 11.

stack [11,82,83,79,80,75,78,1]

heap: 1,78
0 (if 75( ) 76( ) 77( ))✗

75,81
0 (< 79,84

0 (+ 82,86,11
0 (1)✗ 83( ))✗ 80( ))✗

83
0 (= 6( ) 1 10( ) -1 1)✗

6
1(head

7
1( )✓)✓

10
0 (: 11( ) 12

0 ([])✗)✓

80
0 (= 8( ) 1 10( ) -1 1)✗

8
0(0)

✓

76
0 (= 9( ) 1 10( ) -1 1)✗

9
1(negate

5
1(+

6( ) 6( ))✓)✗

77
0 (= 5( ) 1 10( ) -1 1)✗

memo-tables: { 1 7→ {3 7→ 78, 4 7→ 81, 5 7→ 84, 6 7→ 86} }

The reduction rule (eval atom) tags the atomic node at address 11 with a ✓. The

first argument of the + primitive at address 84 is now reduced, reduction continues
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with the reduction of the second argument, at address 83. The substitution node at

address 83 wants to substitute the node at address 6. This node has already been

substituted by a related substitution. Instead of repeating the substitution, the

substitution node is simply replaced with a indirection to the result of the previous

substitution.

stack: [82,83,79,80,75,78,1]

heap: 1,78
0 (if 75( ) 76( ) 77( ))✗

75,81
0 (< 79,84

0 (+ 82,86,11
0 (1)✓ 83,86( ))✗ 80( ))✗

80
0 (= 8( ) 1 10( ) -1 1)✗

8
0(0)

✓

10
0 (: 11( ) 12

0 ([])✗)✓

76
0 (= 9( ) 1 10( ) -1 1)✗

9
1(negate

5
1(+

6( ) 6( ))✓)✗

6
1(head

7
1( )✓)✓

77
0 (= 5( ) 1 10( ) -1 1)✗

memo-tables: { 1 7→ {3 7→ 78, 4 7→ 81, 5 7→ 84, 6 7→ 86} }

The + primitive can now be reduced.

stack: [79,80,75,78,1]

heap: 1,78
0 (if 75( ) 76( ) 77( ))✗

75,81
0 (< 79,84

0 (2)✓ 80( ))✗

80
0 (= 8( ) 1 10( ) -1 1)✗

8
0(0)

✓

10
0 (: 11

0 (1)✓ 12
0 ([])✗)✓

76
0 (= 9( ) 1 10( ) -1 1)✗

9
1(negate

5
1(+

6( ) 6( ))✓)✗

6
1(head

7
1( )✓)✓

77
0 (= 5( ) 1 10( ) -1 1)✗

memo-tables: { 1 7→ {3 7→ 78, 4 7→ 81, 5 7→ 84, 6 7→ 86} }

Reduction now continues with the second argument of the < primitive, at address

80. The substitution node at address 80 is attempting to substitute the atomic node

at address 8. The depth of the atomic node is shallower than the binding depth of

the substitution. This causes (subst scope-boundary) to replace the substitution
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with an indirection pointing to address 8.

stack: [79,80,75,78,1]

heap: 1,78
0 (if 75( ) 76( ) 77( ))✗

75,81
0 (< 79,84

0 (2)✓ 80,8
0 (0)✓)✗

76
0 (= 9( ) 1 10( ) -1 1)✗

9
1(negate

5
1(+

6( ) 6( ))✓)✗

6
1(head

7
1( )✓)✓

10
0 (: 11

0 (1)✓ 12
0 ([])✗)✓

77
0 (= 5( ) 1 10( ) -1 1)✗

memo-tables: { 1 7→ {3 7→ 78, 4 7→ 81, 5 7→ 84, 6 7→ 86} }

The < primitive can now be reduced.

stack: [75,78,1]

heap: 1,78
0 (if 75,81

0 (False)✓ 76( ) 77( ))✗

76
0 (= 9( ) 1 10( ) -1 1)✗

9
1(negate

5
1(+

6( ) 6( ))✓)✗

6
1(head

7
1( )✓)✓

10
0 (: 11

0 (1)✓ 12
0 ([])✗)✓

77
0 (= 5( ) 1 10( ) -1 1)✗

memo-tables: { 1 7→ {3 7→ 78, 4 7→ 81, 5 7→ 84, 6 7→ 86} }

And now the if primitive can be reduced, the substitution at address 78 is re-

placed with an indirection pointing to address 77, the else clause of the if primitive.

stack: [77,78,1]

heap: 1,78,77
0 (= 5( ) 1 10( ) -1 1)✗

5
1(+

6( ) 6( ))✓

6
1(head

7
1( )✓)✓

10
0 (: 11

0 (1)✓ 12
0 ([])✗)✓

memo-tables: { 1 7→ {3 7→ 78, 4 7→ 81, 5 7→ 84, 6 7→ 86} }

Finally the substitution node at address 77 is trying to substitute the primitive

at address 5. Since this node has already been substituted by a related substitution,

the substitution is replaced with an indirection pointing to the result of the previous

substitution.

stack: [1]



96 CHAPTER 4. REDUCTION RULES

heap: 1,78,77,84
0 (2)✓

memo-tables: { 1 7→ {3 7→ 78, 4 7→ 81, 5 7→ 84, 6 7→ 86} }

The last element on the stack is popped and discarded. Since the stack is now

empty no further reductions are performed.

4.7 Optimal evaluation

In the reduction rules for complete laziness, the reason why further reduction is

blocked is not important. In the reduction rules for optimal evaluation, the reason

why further reduction is blocked is crucial. As well as using ✓ and ✗ to indicate

whether further reduction is blocked, a positive integer, n indicates that further

reduction is blocked by the need for a substitution binding a variable at depth n.

Zero is not needed as a binding depth as variables cannot exist at the top-level,

all variables exist within the scope of their abstraction. A node such as an atomic

node or pair which cannot be further reduced by substitution, is tagged with a ✓,

just as was the case for complete laziness, (e.g. 1
0(# 1)✓). A node for which further

reduction would be possible after substitution is tagged to indicate which variable

a suitable substitution must bind in order to further reduction, (e.g. 1
1(@

2
1( )1 3

0(#

1)✗)1 ).

Definition 4.3 (Optimal evaluation reduction (→o))

These reduction rules define a deterministic reduction strategy. The earliest appli-

cable reduction rule takes precedence. Reduction begins with a heap containing

a graph, a singleton stack containing the root of the graph, and an empty set of

memo-tables. Reduction terminates when the stack is empty.

(a : S ,H [a,b( )],M ) →o (b : S ,H ,M ) (eval ind)

(a : S ,H [a( )✓],M ) →o (S ,H ,M ) (eval finished)

(a : S ,H [a( )v ],M ) →o (S ,H ,M ), if v ∈ N1 (eval blocked)

(a : S ,H [a(# x )✗],M ) →o (S ,H [a(# x )✓],M ) (eval atomic)

(a : S ,H [an( )✗],M ) →o (S ,H [an( )n ],M ) (eval variable)

(a : S ,H [a(λn
body( ))✗],M ) →o (S ,H [a(λn

body( ))✓],M ) (eval abstraction)

(a : S ,H [a( : hd ( ) tl( ))✗],M ) →o (S ,H [a( : hd( ) tl( ))✓],M ) (eval pair)

(a : S ,H [a(@ ..,func( )✗ arg( ))✗],M ) →o (func : a : S ,H ,M ) (eval app)

(a : S ,H [ai (@
..,b(λj

body( ))✓ arg( ))],M ) →o (eval beta)
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(a : S ,H [ai (=
body( ) j arg( ) (i − j ) f [])],M [f 7→ ∅]), where f 6∈ dom(M )

(a : S ,H [ai (@
..,func( )v arg( ))✗],M ) →o (eval app blocked)

(S ,H [ai (@
func( )v arg( ))v ],M )

(a : S ,H [a(= ..,b
j ( )✗ bind arg( ) shift f sb)],M ) →o (subst specialize)

(b : a : S ,H ,M ), if j ≥ bind

(a : S ,H [a(= ..,b
j ( ) bind arg( ) shift f sb)],M ) →o (subst scope-boundary)

(S ,H [a,b
j ( )],M ), if j < bind

(a : S ,H [a(= ..,b
j ( ) bind arg( ) shift f sb)],M ) →o (subst memoized)

(S ,H [a,z ( )],M ), if M (f )(body) = z

(a : S ,H [a(= ..,b( )✓bind arg( ) shift f sb)],M ) →o (subst node)

(S (a, b) (bind , arg , shift , f , sb) : a : S ,H ,M )

(a : S ,H [a(= ..,b( )v bind arg( ) shift f sb)],M ) →o (subst found)

(C (a, [(bind , arg , shift , f , sb)], b) : S ,H ,M ), if v = bind

(a : S ,H [a(= ..,b( )v bind arg( ) shift f sb)✗],M ) →o (subst blocked)

(S ,H [a(= b( )v bind arg( ) shift f sb)v ],M )

if v < bind

(a : S ,H [a(= ..,b( )v bind arg( ) shift f sb)✗],M ) →o (subst blocked shift)

(S ,H [a(= b( )v bind arg( ) shift f sb)v+shift ],M )

if v > bind

(S (copy , orig) (bind , arg , shift , f , sb) : S ,H [origj ( )],M ) →o (subst bind)

(S ,H [copy ,arg( )],M ), if j = bind

(S (copy , orig) (bind , arg , shift , f , sb) : S ,H [origj ( )v ],M ) →o (subst var)

(S ,H [copyj+shift( )v+shift ],M )

(S (copy , orig) (bind , arg , shift , f , sb) : S , (subst app)

H [origj (@ a( ) b( ))],M [f 7→ m]) →o

(S ,H [copyj+shift(@
c
j (=

a( ) bind arg( ) shift f sb)✗

d
j (= b( ) bind arg( ) shift f sb)✗)✗],M [f 7→ m[orig 7→ copy ]])

where c, d 6∈ dom(H )

(S (copy , orig) (bind , arg , shift , f , sb) : S , (subst abs)

H [origj (λ a( ))],M [f 7→ m]) →o

(S ,H [copyj+shift(λ
b
j+1(=

a( ) bind arg( ) shift f sb)✗)✗],M [f 7→ m[orig 7→ copy ]])

where b 6∈ dom(H )



98 CHAPTER 4. REDUCTION RULES

(S (copy , orig) (bind , arg , shift , f , sb) : S , (subst pair)

H [origj ( : a( ) b( ))],M [f 7→ m]) →o

(S ,H [copyj+shift(:
c
j (=

a( ) bind arg( ) shift f sb)✗

d
j (= b( ) bind arg( ) shift f sb)✗)✗],M [f 7→ m[orig 7→ copy ]])

where c, d 6∈ dom(H )

(S (copy , orig) (bind , arg , shift , f , sb) : S , (subst atom)

H [origj (# x )],M [f 7→ m]) →o

(S ,H [copyj+shift(# x )✗],M [f 7→ m[orig 7→ copy ]])

(S (copy , orig) (bind , arg , shift , f , sb) : S , (subst prim)

H [origj (∆n p a1( )...an ( ))],M [f 7→ m]) →o

(S ,H [copyj+shift(∆n p b1

j (= a1( ) bind arg( ) shift f sb)✗

... bn

j (= an ( ) bind arg( ) shift f sb)✗)✗],M [f 7→ m[orig 7→ copy ]])

where b1, ... bn 6∈ dom(H )

(S (copy , orig) (bind , arg , shift , f , sb) : S , (subst subst)

H [origi (= a( ) bind ′ arg ′

( ) shift ′ f ′ sb ′)],M [f 7→ m]) →o

(S ,H [ copy
i+shift(=

b( ) (bind ′ + shift) arg ′

( ) shift ′ f ′ (f : sb ′))✗

b
i+shift−shift ′(=

a( ) bind arg( ) shift f sb)✗],

M [f 7→ m[orig 7→ copy ]])

where b 6∈ dom(H ), if bind < bind ′

(S (copy , orig) (bind , arg , shift , f , sb) : S , (unsubst subst)

H [origi (= a( ) bind ′ arg ′

( ) shift ′ f ′ sb ′)],M [f 7→ m]) →o

(S ,H [ copy
i+shift(=

b( ) bind ′ arg ′

( ) shift ′ f ′ sb ′)✗

b
i+shift−shift ′(=

a( ) (bind − shift ′) arg( ) shift f (delete f ′ sb))✗],

M [f 7→ m[orig 7→ copy ]])

where b 6∈ dom(H ), if bind ≥ bind ′

(C (copy , substs , orig) : S , (collected enough)

H [orig(= body( ) bind arg( ) shift f sb)],M ) →o

(R (copy , substs , orig) : S ,H ,M ), if F (substs , (bind , shift , f , sb))

(C (copy , substs , orig) : S , (collect more)

H [orig(= body( ) bind arg( ) shift f sb)],M ) →o

(C (copy , (bind , shift , arg , f , sb) : substs , body) : S ,H ,M ), otherwise

(C (copy , substs , orig) : S ,H [orig( )],M ) →o (collected all)

(R (copy , substs , orig) : S ,H ,M )
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(R (copy , [(bind , arg , shift , f , sb)], orig) : S ,H ,M ) →o (rebuild finished)

(S (copy , orig) (bind , arg , shift , f , sb) : S ,H ,M )

(R (copy , (bind , arg , shift , f , sb) : substs , orig) : S ,H ,M ) →o (rebuild more)

(S (new , orig) (bind , arg , shift , f , sb) : R (copy , substs , new) : S ,H ,M )

where new 6∈ dom(H )

F ([], ) = true (test passed)

F ((bind , , shift , f , sb) : substs , (bind ′, shift ′, f ′, sb ′)) = (test subst)

F (substs , (bind ′ + shift , shift ′, f ′, f : sb ′)), if bind < bind ′

F ((bind , , shift , f , sb) : substs , (bind ′, shift ′, f ′, sb ′)) = (test unsubst)

F (substs , (bind ′, shift ′, f ′, sb ′)), if f ∈ sb ′

F ((bind , , shift , f , sb) : substs , (bind ′, shift ′, f ′, sb ′)) = (test failed)

false, otherwise

(a : S ,H [a(+ ..,b(# x )✓ ..,c(# y)✓)✗],M ) (prim + reduced)

→o (S ,H [a0(# (x + y))✓],M ), if x , y ∈ Z

(a : S ,H [a(+ ..,b( )✗ ..,c( ))✗],M ) →o (b : a : S ,H ,M ) (prim + in-progress 1)

(a : S ,H [a(+ ..,b( ) ..,c( )✗)✗],M ) →o (c : a : S ,H ,M ) (prim + in-progress 2)

(a : S ,H [a(+ ..,b( )✓ ..,c( )v)✗],M ) →o (S ,H [a( )v ],M ) (prim + blocked 1)

(a : S ,H [a(+ ..,b( )v ..,c( ))✗],M ) →o (S ,H [a( )✓],M ) (prim + blocked 2)

(a : S ,H [a(if True c( ) d( ))],M ) (prim if True reduced)

→o (a : S ,H [a,c( )],M )

(a : S ,H [a(if False c( ) d( ))],M ) (prim if False reduced)

→o (a : S ,H [a,d ( )],M )

(a : S ,H [a(if ..,b( )v c( ) d( ))],M ) (prim if blocked)

→o (S ,H [a( )v ],M )

(a : S ,H [a(if ..,b( )✗ c( ) d( ))],M ) (prim if in-progress)

→o (b : a : S ,H ,M )

(a : S ,H [a(head ..,b( : hd( ) tl( ))✓)],M ) (prim head reduced)

→o (a : S ,H [a,hd ( )],M )

(a : S ,H [a(head ..,b( )✗)],M ) →o (b : a : S ,H ,M ) (prim head in-progress)

(a : S ,H [a(head ..,b( )v )],M ) →o (S ,H [a( )v ],M ) (prim head blocked)
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2

The optimal (eval ...) reduction rules are almost identical to the completely

lazy (eval ...) rules. However the rule (eval finished) is introduced, so as to draw a

distinction between nodes where variables are blocking further reductions, and nodes

where reduction is finished. The rule (eval var) differs in that variables are now given

a blocked tag equal to their depth, rather than a ✓. Similarly blocked applications

are tagged with the same blocked tag as the function part of an application, and

not necessarily a ✓.

The SubstBy field of the substitution nodes is now used. Substitution nodes are

created by the (eval beta) rule, where the SubstBy field is initially set to the empty

list []. The SubstBy field is used as a bag, elements are added to it using the cons

operator, as shown in (subst subst), a single occurrence of an element is removed

using the delete function, as shown in (unsubst subst), and bag membership is tested

with the set membership operator, ∈, as shown in (test unsubst).

The (eval app blocked) rule applies when evaluation of the function part of

an application has been attempted, but the function part did not reduce to an

abstraction. Reduction of the function part may either be blocked on a variable,

in which case the function part will be tagged with the depth of the variable it is

blocked on. Alternatively the function part of the application may be fully reduced,

in which case it will be tagged with a ✓. For the function part to be tagged with a

✓ but not be an abstraction indicates a type-error. In either case the blocked tag

on the function part is propagated to the application.

The optimal (subst specialize), (subst scope-boundary) and (subst memoized)

rules are just the same as their completely lazy counterparts.

The optimal reduction rules handle substitutions somewhat differently from the

completely lazy reduction rules. As explained in §3.8 performing substitutions

through graph which is blocked by a different variable from the one the substi-

tution binds risks losing sharing. To avoid this loss of sharing, substitution nodes

are no longer capable of substituting all nodes. Substitution nodes are now only

capable of substituting nodes which are blocked on the variable the substitution

binds, or nodes which are fully evaluated and so tagged with a ✓. When the body

of a substitution is blocked on a variable other than the variable the substitution

binds, the reduction rules (subst blocked) and (subst blocked shift) apply. These

rules propagate the blocked tag from the body of the substitution to the substitu-



4.7. OPTIMAL EVALUATION 101

tion itself. The rule (subst blocked shift) renames the blocked tag in the process of

propagating it. This is because the current substitution would rename the blocked

variable if the current substitution substitutes the variable before the required sub-

stitution reaches the variable. The rule (subst blocked) does not rename the blocked

tag, as in this case the current substitution would die out before ever reaching the

blocked variable.

These blocked tags propagate up from the variable blocking reduction towards

the root. When the blocked tags propagate up to the substitution which binds the

variable blocking reduction, substitution can proceed. This binding substitution

will then try to substitute through all the nodes between itself and the blocking

variable until it binds a value for that variable, enabling further reduction. How-

ever, as explained in §3.9, substitutions cannot always substitute other substitution

nodes. Substitutions only need be and should only be swapped (by substitution or

unsubstitution) if they could have been formed (via an alternative reduction order)

in the swapped order in the first place. If a substitution exists in-between a vari-

able and the substitution that binds that variable, and the binding substitution is

unable to swap with the in-between substitution, then the in-between substitution

must be performed along with the binding substitution. To handle these in-between

substitutions the stack commands C, R, S and the function F are introduced.

The stack command C is used to collect a sequence of substitutions comprising

the binding substitution and all the in-between substitutions which the sequence is

unable to swap with.

Whether or not a sequence of substitutions is able to swap with a substitution is

determined by the function F. Two substitutions can be swapped by substitution if

the upper substitution binds a shallower variable than the lower substitution. Two

substitutions can be swapped by unsubstitution if there is a record in the SubstBy

field of the upper substitution of the lower substitution having substituted the upper

substitution. A sequence of substitutions can be swapped with a substitution if the

inner most substitution of the sequence can be swapped with the substitution and

then if in-turn each next inner-most substitution can be swapped with the result of

the previous swap. If the sequence of substitutions is able to swap with a substitution

then the sequence has been built up far enough, and the function F will return true.

The reduction rule (collected enough) then applies and the stack command R is

invoked (explained later).
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If the function F returns false then the reduction rule (collect more) applies

and the latest substitution is added to the sequence of substitutions and the stack

command C is invoked again.

If the body of the inner most substitution in the sequence does not point to a

substitution then the reduction rule (collected all) applies and the stack command

R is invoked.

The stack command R is used to rebuild a sequence of substitutions once the

sequence has been extended far enough that the sequence can swap with body of

the inner most substitution of the sequence. This body will either be a substitution

node, if R was invoked by (collected enough), or a non-substitution node, if R was

invoked by (collected all).

The stack command R repeatedly invokes the stack command S to perform

each individual substitution. It is only the outer-most substitution (the binding

substitution), which is overwritten by the result of these substitutions. The results

of the intermediate substitutions are created at fresh addresses.

The substitution of fully evaluated nodes (tagged with a ✓) is initiated by the

(subst node) rule. This rule pushes the substitution command S onto the stack.

Fully evaluated nodes, such as abstraction and pair, can be substituted by any

substitution without loss of sharing.

The reduction rule (subst found) applies when the blocked tag from a variable

blocking further reduction has propagated outward and reached the substitution that

can bind a value for this variable. This rule places the collect substitutions command

C on the stack, and initiates the collection of substitutions described above.

The optimal rules (subst bind), (subst var), (subst app), (subst abs), (subst

pair), (subst atom) and (subst prim) are much the same as their completely lazy

counter parts. The difference being the use of the substitution command, S, on the

stack.

The rules (subst subst) and (unsubst subst) are used to swap substitutions. The

rule (subst subst) applies when the outer substitution binds a shallower variable than

the inner substitution. The rule (unsubst subst) applies otherwise. The rule (subst

subst) uses the outer substitution to rename (what was) the inner substitution, and

places a record of the substitution in the SubstBy field of the new outer substitution.

The rule (unsubst subst) undoes this by using the inner substitution to unrename

what was the outer substitution, and removes the record of the prior substitution
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from the SubstBy field of what was the outer substitution.

In the case of primitives with more than one strict argument, such as (prim +),

where the blocked tags of the strict arguments may differ, it is the blocked tag of

the earliest strict argument that is not a ✓ that is propagated. If all the strict

arguments of a primitive node are tagged with ✓ and yet the primitive cannot be

reduced, then a type-error has occurred and the primitive node is tagged with a ✓.

4.8 Examples

This section demonstrates the optimal evaluation reduction rules used by Ef. Re-

duction of the term (two two I I) is used as a running example. The memo-tables

only change by growing, once an entry has been made it will not be changed or re-

moved. Instead of repeatedly showing this accumulating data in its entirety, only

new entries will be shown.

Reduction begins in the following state:

stack: [1]

heap: 1
0(@

2
0(@

3
0(@

4( ) 4( ))✗ 10( ))✗ 10( ))✗

4
0(λ

5
1(λ

6
2(@

7
1( )✗ 8

2(@
7( ) 9

2( )✗)✗)✗)✗)✗

10
0 (λ 11

1 ( )✗)✗

memo-tables: {}

The first four reductions to be performed are three (eval app) reductions followed

by a (eval abs) reductions. The (eval app) reductions traverse the spine of the

expression instantiated in the heap pushing 2, 3 and 4 onto the stack. The (eval

abs) reduction tags the abstraction node at address 4 with a ✓ and pops this address

from the stack.

stack: [3,2,1]

heap: 1
0(@

2
0(@

3
0(@

4( ) 4( ))✗ 10( ))✗ 10( ))✗

4
0(λ

5
1(λ

6
2(@

7
1( )✗ 8

2(@
7( ) 9

2( )✗)✗)✗)✗)✓

10
0 (λ 11

1 ( )✗)✗

memo-tables: {}

The reduction (eval beta) now updates the node at address 3 with a substitution

node, and creates an empty memo-table.

stack: [3,2,1]
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heap: 1
0(@

2
0(@

3( ) 10( ))✗ 10( ))✗

3
0(=

5( ) 1 4( ) -1 1 [])✗

5
1(λ

6
2(@

7
1( )✗ 8

2(@
7( ) 9

2( )✗)✗)✗)✗

4
0(λ

5( ))✓

10
0 (λ 11

1 ( )✗)✗

memo-tables: { 1 7→ ∅ }

The reduction (subst specialize) will push the address of the body of the substi-

tution on to the stack. The reduction (eval abs) tags the abstraction node at address

5 with a ✓. Now that the body of the substitution is tagged with a ✓ the reduction

(subst node) can be performed. This pushes the command (S (3,5) (1,4,-1,1,[]))

onto the stack.

stack: [S (3,5) (1,4,-1,1,[]),3,2,1]

heap: 1
0(@

2
0(@

3( ) 10( ))✗ 10( ))✗

3
0(=

5( ) 1 4( ) -1 1 [])✗

5
1(λ

6( ))✓

6
2(@

7
1( )✗ 8

2(@
7( ) 9

2( )✗)✗)✗

4
0(λ

5( ))✓

10
0 (λ 11

1 ( )✗)✗

memo-tables: {}

The command (S (3,5) (1,4,-1,1,[])) triggers the rule (subst abs) which performs

the substitution.

stack: [3,2,1]

heap: 1
0(@

2
0(@

3( ) 10( ))✗ 10( ))✗

3,26
0 (λ 25( ))✗

25
1 (= 6( ) 1 4( ) -1 1 [])✗

6
2(@

7
1( )✗ 8

2(@
7( ) 9

2( )✗)✗)✗

4
0(λ

5
1(λ

6( ))✓)✓

10
0 (λ 11

1 ( )✗)✗

memo-tables: { 1 7→ {5 7→ 3} }

The reduction (eval beta) now tags the abstraction node at address 2 with a ✓,

and the reduction (eval beta) creates another substitution node.

stack: [2,1]



4.8. EXAMPLES 105

heap: 1
0(@

2( ) 10( ))✗

2
0(=

25( ) 1 10( ) -1 2 [])✗

25
1 (= 6( ) 1 4( ) -1 1 [])✗

6
2(@

7
1( )✗ 8

2(@
7( ) 9

2( )✗)✗)✗

4
0(λ

5
1(λ

6( ))✓)✓

10
0 (λ 11

1 ( )✗)✗

memo-tables: { 2 7→ ∅ }

The reduction rule (subst specialize) will traverse the graph through the substi-

tutions at addresses 2 and 25. The reduction rule (eval app) will traverse through

the application node at address 6. The reduction rule (eval var) will update the tag

on the variable at address 7 from a ✗ to a 1, to indicate that this node requires a

substitution binding variables at depth 1.

stack: [6,25,2,1]

heap: 1
0(@

2( ) 10( ))✗

2
0(=

25( ) 1 10( ) -1 2 [])✗

25
1 (= 6( ) 1 4( ) -1 1 [])✗

6
2(@

7
1( )1 8

2(@
7( ) 9

2( )✗)✗)✗

4
0(λ

5
1(λ

6( ))✓)✓

10
0 (λ 11

1 ( )✗)✗

memo-tables: {}

The reduction rule (eval app blocked) now copies the tag from the node blocking

further reduction, to indicate that it also requires a substitution binding variables at

depth 1. The reduction rule (subst found) then applies as the substitution at address

25 binds the variable that the body of the substitution requires. This substitution

node pushes the command (C (25,[(1,4,-1,1,[])],6)) onto the stack.

stack: [C (25,[(1,4,-1,1,[])],6),25,2,1]

heap: 1
0(@

2( ) 10( ))✗

2
0(=

25( ) 1 10( ) -1 2 [])✗

25
1 (= 6( ) 1 4( ) -1 1 [])✗

6
2(@

7
1( )1 8

2(@
7( ) 9

2( )✗)✗)1

4
0(λ

5
1(λ

6( ))✓)✓

10
0 (λ 11

1 ( )✗)✗
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memo-tables: {}

The C command is used to collect up all the substitutions between the substitu-

tion that has been found to be needed, and the first node that it can substitute (or

unsubstitute). In this case the substitution can be performed straight away.

stack: [25,2,1]

heap: 1
0(@

2( ) 10( ))✗

2
0(=

25( ) 1 10( ) -1 2 [])✗

25,29
1 (@ 27( ) 28( ))✗

27
1 (= 7( ) 1 4( ) -1 1 [])✗

7
1( )1

4
0(λ

5
1(λ

6
2(@

7( ) 8
2(@

7( ) 9
2( )✗)✗)1)✓)✓

28
1 (= 8( ) 1 4( ) -1 1 [])✗

10
0 (λ 11

1 ( )✗)✗

memo-tables: { 1 7→ {6 7→ 25} }

The reduction (subst var) can now be applied as the substitution at address 27

has met the variable it wishes to bind. The substitution is overwritten with an

indirection pointing to the argument of the substitution.

stack: [27,25,2,1]

heap: 1
0(@

2( ) 10( ))✗

2
0(=

25( ) 1 10( ) -1 2 [])✗

25,29
1 (@ 27( ) 28( ))✗

27,4
0 (λ 5

1(λ
6
2(@

7
1( )1 8

2(@
7( ) 9

2( )✗)✗)1)✓)✓

28
1 (= 8( ) 1 4( ) -1 1 [])✗

10
0 (λ 11

1 ( )✗)✗

memo-tables: {}

The application at address 25 can now be reduced by reduction rule (eval beta).

stack: [25,2,1]

heap: 1
0(@

2( ) 10( ))✗

2
0(=

25( ) 1 10( ) -1 2 [])✗

25,29
1 (= 5( ) 1 28( ) 0 3 [])✗

5
1(λ

6
2(@

7
1( )1 8

2(@
7( ) 9

2( )✗)✗)1)✓

28
1 (= 8( ) 1 4( ) -1 1 [])✗
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4
0(λ

5( ))✓

10
0 (λ 11

1 ( )✗)✗

memo-tables: { 3 7→ ∅ }

The substitution at address 25 is substituted through the abstraction node at

address 5. The resulting abstraction node is then substituted by the substitution at

address 2.

stack: [2,1]

heap: 1
0(@

2( ) 10( ))✗

2,33
0 (λ 32( ))✗

32
1 (= 30( ) 1 10( ) -1 2 [])✗

30
2 (= 6( ) 1 28( ) 0 3 [])✗

6
2(@

7
1( )1 8

2(@
7( ) 9

2( )✗)✗)1

28
1 (= 8( ) 1 4( ) -1 1 [])✗

4
0(λ

5
1(λ

6( ))✓)✓

10
0 (λ 11

1 ( )✗)✗

memo-tables: { 3 7→ {5 7→ 31}, 2 7→ {31 7→ 33} }

Reduction continues in this fashion. Rather than show every reduction in repet-

itive tedious detail, a selection of the more interesting cases are shown next.

stack: [32,1]

heap: 1
0(=

32( ) 1 10( ) -1 4 [])✗

32
1 (= 30( ) 1 10( ) -1 2 [])✗

30,36
2 (= 40( ) 2 35( ) 0 6 [])1

40,44
2 (@ 42( ) 43( ))1

42,38
1 (= 9( ) 1 4( ) -1 1 [])1

9
2( )2

4
0(λ

5
1(λ

6
2(@

7
1( )1 8

2(@
7( ) 9( ))1)1)✓)✓

43
2 (= 8( ) 1 38( ) 0 5 [])✗

35
2 (= 8( ) 1 28( ) 0 3 [])✗

28,41
1 (λ 40( ))✓

10
0 (λ 11

1 ( )✗)✗

memo-tables: { }

At this point the variable at address 9 is preventing further reduction. A sub-

stitution binding a variable at depth 2 is required. The substitution at address 38
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binds a variable at the wrong depth, so substituting this substitution through the

variable will not aid further reduction. This substitution at address 38 has a shift of

-1, so if it were to substitute the variable at depth 2, the result would be a variable

at depth 1. For this reason this substitution at address 38 is tagged with a 1 to

indicate that a substitution binding a variable at depth 1 is required to aid further

reduction. This tagging propagates upwards to the application node at address 44,

and the substitution node at address 36 (with a shift of 0). Finally, the substitution

at address 32 is found. This substitution is required to enable further reduction.

The reduction rule (subst found) is applied. This places the command (C

(32,[(1,10,-1,2,[])],30)) on the stack. The reduction rule (collected enough) is ap-

plied as the function call F ([(1,10,-1,2,[])],(2,0,6,[])) indicates substitutions can be

swapped. A record of the substitution is kept in the SubstBy field of the substituted

substitution.

stack: [(C (32,[(1,10,-1,2,[])],30)), 32,1]

stack: [(R (32,[(1,10,-1,2,[])],30)), 32,1]

stack: [(S (46,30) (1,10,-1,2,[]), 32,1]

stack: [32,1]

heap: 1
0(=

32( ) 1 10( ) -1 4 [])✗

32,46
1 (= 45( ) 1 35( ) 0 6 [2])✗

45
1 (= 40( ) 1 10( ) -1 2 [])✗

40,44
2 (@ 42( ) 43( ))1

42,38
1 (= 9

2( )2 1 4( ) -1 1 [])1

4
0(λ

5
1(λ

6
2(@

7
1( )1 8

2(@
7( ) 9( ))1)1)✓)✓

43
2 (= 8( ) 1 38( ) 0 5 [])✗

10
0 (λ 11

1 ( )✗)✗

35
2 (= 8( ) 1 28( ) 0 3 [])✗

28,41
1 (λ 40( ))✓

memo-table: { 2 7→ {30 7→ 46} }

The substitution which will bind a value to the variable at address 9 is now one

step closer. It substitutes the application node at address 44. Now only one node

separates the variable blocking further reduction and the substitution able bind a

value to that variable. This last remaining node is another substitution node. This

time the substitutions cannot be swapped. The reduction rule (collected all) applies.

stack: [47,45,32,1]
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heap: 1
0(=

32( ) 1 10( ) -1 4 [])✗

32,46
1 (= 45( ) 1 35( ) 0 6 [2])✗

45,49
1 (@ 47( ) 48( ))✗

47
1 (= 42( ) 1 10( ) -1 2 [])✗

42,38
1 (= 9( ) 1 4( ) -1 1 [])1

9
2( )2

4
0(λ

5
1(λ

6
2(@

7
1( )1 8

2(@
7( ) 9( ))1)1)✓)✓

10
0 (λ 11

1 ( )✗)✗

48
1 (= 43( ) 1 10( ) -1 2 [])✗

43
2 (= 8( ) 1 38( ) 0 5 [])✗

35
2 (= 8( ) 1 28( ) 0 3 [])✗

28,41
1 (λ 40,44

2 (@ 42( ) 43( ))1)✓

The stack goes through the following transitions:

stack: [(C (47, [(1,10,-1,2,[])], 42), 47,45,32,1]

stack: [(C (47, [(1,10,-1,2,[]),(1,4,-1,1,[])], 9), 47,45,32,1]

stack: [(R (47, [(1,4,-1,1,[]),(1,10,-1,2,[])], 9), 47,45,32,1]

stack: [(S (50,9) (1,4,-1,1,[])), (R (47, [(1,10,-1,2,[])], 50), 47,45,32,1]

stack: [(R (47, [(1,10,-1,2,[])], 50), 47,45,32,1]

stack: [(S (47, [(1,10,-1,2,[])], 50), 47,45,32,1]

stack: [47,45,32,1]

heap: 1
0(=

32( ) 1 10( ) -1 4 [])✗

32,46
1 (= 45( ) 1 35( ) 0 6 [2])✗

45,49
1 (@ 47( ) 48( ))✗

47,10
0 (λ 11

1 ( )✗)✗

48
1 (= 43( ) 1 10( ) -1 2 [])✗

43
2 (= 8( ) 1 38( ) 0 5 [])✗

8
2(@

7
1( )1 9

2( )2)1

38
1 (= 9( ) 1 4( ) -1 1 [])1

4
0(λ

5
1(λ

6
2(@

7( ) 8( ))1)✓)✓

35
2 (= 8( ) 1 28( ) 0 3 [])✗

28,41
1 (λ 40,44

2 (@ 42,38( ) 43( ))1)✓

Later two substitutions swapping by unsubstitution can be seen.

stack: [32,1]
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heap: 1
0(=

32( ) 1 10( ) -1 4 [])✗

32,46
1 (= 45( ) 1 35( ) 0 6 [2])✗

45,49,55
1 (= 52( ) 1 10( ) -1 2 [])1

52
2 (= 9( ) 1 38( ) 0 5 [])2

9
2( )2

38
1 (= 9( ) 1 4( ) -1 1 [])1

4
0(λ

5
1(λ

6
2(@

7
1( )1 8

2(@
7( ) 9( ))1)1)✓)✓

10
0 (λ 11

1 ( )1)✓

35
2 (= 8( ) 1 28( ) 0 3 [])✗

28,41
1 (λ 40,44

2 (@ 42,38( ) 43,53
2 (@ 51,38( ) 52( ))1)1)✓

Here the variable at address 9 is blocking further reduction and the substitution

at address 46 is able to bind a value for that variable.

The stack goes through the following states:

stack: [(C (32,[(1,35,0,6,[2])],45)), 32,1]

stack: [(R (32,[(1,35,0,6,[2])],45)), 32,1]

stack: [(S (32,45) (1,35,0,6,[2])), 32,1]

stack: [32,1]

heap: 1
0(=

32( ) 1 10( ) -1 4 [])✗

32,46,58
1 (= 57( ) 1 10( ) -1 2 [])✗

57
2 (= 52( ) 2 35( ) 0 6 [])✗

52
2 (= 9( ) 1 38( ) 0 5 [])2

9
2( )2

38
1 (= 9( ) 1 4( ) -1 1 [])1

4
0(λ

5
1(λ

6
2(@

7
1( )1 8

2(@
7( ) 9( ))1)1)✓)✓

35
2 (= 8( ) 1 28( ) 0 3 [])✗

28,41
1 (λ 40,44

2 (@ 42,38( ) 43,53
2 (@ 51,38( ) 52( ))1)1)✓

10
0 (λ 11

1 ( )1)✓

Finally the last reduction steps demonstrate a sequence of three substitutions.

stack: [1]

heap: 1
0(=

32( ) 1 10( ) -1 4 [])✗

32,46,66
1 (= 65( ) 1 10( ) -1 2 [])1
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65,61
2 (= 9( ) 1 28( ) 0 3 [])2

9
2( )2

28,41
1 (λ 40,44

2 (@ 42( ) 43( ))1)✓

42,38
1 (= 9( ) 1 4( ) -1 1 [])1

4
0(λ

5
1(λ

6
2(@

7
1( )1 8

2(@
7( ) 9( ))1)1)✓)✓

43,53
2 (@ 51,38( ) 52( ))1

52
2 (= 9( ) 1 38( ) 0 5 [])2

10
0 (λ 11

1 ( )1)✓

Further reduction is blocked by the variable at address 9, the substitution at

address 1 is able to bind a value to this variable. The binding substitution is unable

to swap with the two in-between substitutions, so these substitutions are performed

along with the binding substitution. Since the node being substituted is variable,

the effect of performing the two in-between substitutions is to rename the variable.

The stack goes through the following states:

stack: [(C (1,[(1,10,-1,4,[])],32)), 1]

stack: [(C (1,[(1,10,-1,2,[]),(1,10,-1,4,[])],65)), 1]

stack: [(C (1,[(1,28,0,3,[]),(1,10,-1,2,[]),(1,10,-1,4,[])],9)), 1]

stack: [(R (1,[(1,28,0,3,[]),(1,10,-1,2,[]),(1,10,-1,4,[])],9)), 1]

stack: [(S (67,(1,28,0,3,[]),9),(R (1,(1,10,-1,2,[]),(1,10,-1,4,[])],67)), 1]

stack: [(R (1,[(1,10,-1,2,[]),(1,10,-1,4,[])],67)), 1]

stack: [(S (68,(1,10,-1,2,[]),67)), (R (1,[(1,10,-1,4,[])],68)), 1]

stack: [(R (1,[(1,10,-1,4,[])],68)), 1]

stack: [(S (1,(1,10,-1,4,[]),68)), 1]

stack: [1]

And the reduction is complete, the result of evaluating (two two I I) is the

identity function, as expected:

stack: [1]

heap: 1,10
0 (λ 11

1 ( )1)✓
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4.9 Discussion

The reduction rules are not as concise as could be hoped for. One of the reasons

for this is that the reduction rules mirror the implementation in that the evaluation

rules and substitution rules are kept separate.

In much the same way that the introduction of a graph sharing, results in reduc-

tion rules more complicated than term rewriting rules, the memo-tables introduce

additional complexity. Perhaps some improvement over the current scheme can be

found.

However, a graphical notation such as is used to describe interaction nets [53, 61]

would be inappropriate as the transformations performed are not strictly local graph

transformations. A term graph rewriting approach [27, 19] would be inappropriate

due to the presence of memo-tables. The syntactic brackets used to specify many

program semantics and transformations [64, 73, 72], would be inappropriate as the

reduction rules apply to graphs not trees.

4.10 Summary

This chapter has presented the reduction rules for completely lazy evaluation and

optimal evaluation. The formalism used enables the reduction rules to be explicitly

named.

The examples reveal just how small the reduction steps are and just how te-

diously reduction proceeds. One of the reasons for this is the fact that all new nodes

are initially tagged with a ✗ even though there is no point ever tagging abstractions,

atoms and pairs with anything other than a ✓. The reasons for this is the close

correspondence between the reduction rules and the implementation, and the con-

ciseness of the implementation. The implementation of the reduction rules presented

in the next chapter is actually shorter that the specification of the reduction rules

in this chapter. This is because the implementation uses higher-order functions. To

help present each reduction rule separately the use of higher-order functions has

been avoided in this chapter. The close correspondence between specification and

implementation is maintained as the examples in this chapter are actually generated

by the implementation in the next chapter.
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Implementation

This chapter presents the implementation of some of the degrees of sharing discussed

in the previous chapter. First a conventional abstract syntax tree representation

of programs is explained (§5.1). The heap with which programs will exist when

executed is introduced (§5.2). A translation by instantiation of the conventional

parse tree representation of the program to the unconventional heap with depth

tags representation is explained (§5.3). A program to perform conventional lazy

evaluation in this unconventional heap is given (§5.4). A novel implementation of

full laziness which can be used on a heap both before and during execution is shown

(§5.5). The memo-table operations required by the completely lazy and optimal

evaluator are explained (§5.6). The implementations of complete-laziness (§5.7) and

optimal evaluation (§5.8) are given.

5.1 Parser

Ef’s syntax is much like Haskell’s. The parser returns a parse tree of type Exp

as shown in Figure 5.1. The Exp data-type makes use of the Atomic data-type to

represent atomic values. The Atomic data-type is also used by the data-types used

to represent the heap.

5.2 Heap

Before the parse tree can be instantiated as a graph, the operation of the heap must

be explained.

At times the result of evaluating a node in the graph will be another node. For
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datatype Atomic =

AInt of int

| AStr of string

| ANil | ATrue | AFalse

datatype Exp =

EAtomic of Atomic

| EVar of string

| EPair of (Exp*Exp)

| ELet of ((string*Exp) list*Exp)

| ELambda of (string*Exp)

| EApply of (Exp*Exp)

Figure 5.1: Expression type used for parse trees.

datatype Val =

VAtomic of Atomic

| VPair of Addr*Addr

| VVar

| VAp of Addr*Addr

| VLambda of Addr

| VDelta of string*Addr list*(Addr*Addr list->unit)

| VSubst of Addr * (int * Addr * int * MemoTable) (comp)
| VSubst of Addr * (int * Addr * int * MemoTable * int list) (opt)

and Tag =

T of int (lazy,full)
| T of int*bool (comp)
| T of int*int option (opt)
| TReachedBy of Addr list*Tag (full)
| TCopiedTo of Addr*Tag (lazy,full)

Figure 5.2: Values and Tags used in the heap.

new : Value*Tag -> Addr

newHole : unit -> Addr

deref : Addr -> Value*Tag

update : Addr*(Value*Tag) -> unit

link : Addr*Addr -> unit

addrEq : Addr*Addr -> bool

addrOrd : Addr*Addr -> order

Figure 5.3: Heap manipulating functions.
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example when reducing a delta node such as if or head. The result cannot simply

be copied as this would lose sharing. One solution is to allow indirection nodes to

exist along side other values in the heap. However this complicates any algorithms

built on top of the heap as they have to know what to do with an indirection node.

The technique adopted here is to handle indirections at a lower level in a way

inspired by the unifiable references distributed with the SML/NJ system. Conven-

tional references in SML support the operations create (ref), update (:=), derefer-

ence (!) and equality (=).

The implementation used here adds the ability to link references and order ref-

erences. Linking references makes one point to another. Ordering is useful for the

memo-tables (see §5.6). Algorithms built on top of this heap abstraction typically

need never worry about indirections. When an algorithm would otherwise explic-

itly place an indirection in the heap, it now just links one node to another. When

dereferencing addresses to nodes, the heap abstraction will never return an indirec-

tion. Any chains of indirections that may build up, are compressed when they are

dereferenced.

The heap is a graph of value-tag pairs, Figure 5.2 shows the definition of Value

and Tag. There are four different versions of Ef described in this chapter: lazy, fully

lazy, completely lazy and optimal. Unless indicated otherwise the code is common

to all implementations. Where a line of code is appended with a comment such

(comp,opt), this indicates that that line is only present in some of the implementa-

tions.

The functions that are used to perform operations on the heap are shown with

their type signatures in Figure 5.3. The function addrOrd is used to compare ad-

dresses so as to make the implementation of the memo-tables more efficient. The

function newHole returns an address for a new node before it is known what will

be put in the node. This is useful for building cyclic structures. The use of tags

makes it easy to more uniformly add information to nodes in the heap. Not all node

strictly speaking need tags, for example there is little point tagging an atomic node

with a depth. Similarly tagging a node to indicate if it is evaluated or blocked on

something is only worthwhile for application and primitive nodes (and substitution

nodes for optimal evaluation). However tagging all nodes in a consistent way makes

the implementation more concise and easier to understand.
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5.3 Instantiation

The parse tree of an expression is translated into a graphical representation, by

instantiating the parse tree in the heap. Instantiation takes a parse tree of type

Exp and returns the address of type Addr of the instantiation. Note how in the

instantiated heap the VVar constructor takes no arguments; the only way to dis-

tinguish variables is by their depth indicated in their tag. It is not necessary to

perform a renaming pass over the parse tree as the names of variables are not used

after instantiation and the transformation performed on the graphical representation

distinguish variables by their depth not their name.

The instantiate function does not create VDelta nodes in the heap. The initial

environment passed to inst is of type (string*Addr) list and includes entries for

the primitive functions, which already exist in the heap.

fun newTag depth = T depth (lazy,full)
fun newTag depth = T (depth,false) (comp)
fun newTag depth = T (depth,NONE) (opt)

fun inst (ed as (env,depth)) exp =

case exp of

EAtomic a => new (VAtomic a,newTag 0)

| EVar var => lookup var env

| EPair (e1,e2) => new (VPair (inst ed e1, inst ed e2),newTag depth)

| ELambda (var,body) =>

let val lamR = newHole()

val varR = new (VVar,newTag (depth+1))

val bodyR = inst ((var,varR)::env,depth+1) body

val _ = update (lamR,(VLambda bodyR,newTag depth))

in lamR end

| EApply (e1,e2) => new (VAp (inst ed e1,inst ed e2),newTag depth)

| ELet (decls,exp) =>

let val holesR = map (fn _ =>newHole()) decls

val (binds,exps) = unzip decls

val new_env = zip (binds,holesR) @ env

val addrs = map (inst (new_env,depth)) exps

val _ = map link (zip (holesR,addrs))

in inst (new_env,depth) exp end

Figure 5.4: Instantiation.
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5.4 Lazy evaluation

Figure 5.5 shows the implementation of the lazy evaluator, and Figure 5.6 show

the implementation of the substitution. The implementation is straightforward.

Note how eval can assume that reducing the function part of an application node

will result in a lambda expression. Since only top-level reductions are performed,

for any correct programs this is a safe assumption. The substitution function is

fairly straightforward also, again simplified by the fact it is only used for top-level

reductions. The subst function copies the entire scope of a function. As each node

is copied it is tagged with the address of where it has been copied to. When nothing

remains to be copied, the graph is cleaned of TCopiedTo tags, by the function clean.

The function value reaches is noteworthy in how it helps abstract the pro-

cess of substitution over different values. This function will be used again in the

implementation of completely lazy and optimal evaluation.

For performing HNF reduction, a slightly modified versions of eval and subst

is used. These versions cope with unreducible nodes, and arbitrary shifts when

performing substitutions under lambdas.
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fun eval addr =

case deref addr of

(VDelta (name, args, func),_) => func (addr,args)

| (VAp (func,arg),_) =>

let val _ = eval func

val (VLambda body,_) = deref func

val copy = subst arg body

val _ clean body

val _ = link (addr,copy)

in eval addr end

| _ => ()

Figure 5.5: eval for lazy evaluation.

and subst arg orig =

case deref orig of

(_,TCopiedTo (to,_))=> to

| (_,T 0) => orig

| (VVar,T 1) => arg

| (value,T depth)=>

let val (childList,rebuild) = value_reaches value

val newAddr = newHole ()

val _ = update (orig,(value,TCopiedTo (newAddr,tag)))

val newChildList = map (subst’ arg) childList

val _ = update (newAddr,(rebuild newChildList,T (depth-1)))

in newAddr end

and clean addr =

case deref addr of

(_,T _) => ()

| (value, TCopiedTo (_,tag)) =>

( update (addr,(value,tag))

; app clean (#1 (value_reaches value)))

and value_reaches (VPair (a1,a2)) = ([a1,a2],fn [a1,a2]=>VPair (a1,a2))

| value_reaches (VAp (a1,a2)) = ([a1,a2], fn [a1,a2]=>VAp (a1,a2))

| value_reaches (VLambda a) = ([a], fn [a]=>VLambda a)

| value_reaches (VDelta (n,args,f)) = (args,fn args=> VDelta (n,args,f))

| value_reaches value = ([],fn []=>value)

Figure 5.6: Substitution for lazy evaluation.
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5.5 Full laziness

As explained in Chapter 2, full laziness can be achieved using the same reduction

mechanism as lazy evaluation. Only a static transformation is required to ensure

graph that is syntactically free of a substitution is not duplicated. Previously this

transformation has been performed on a parse tree. Figure 5.7 shows an algorithm

that achieves the same results on a heap representation.

This scheme works in three stages:

Stage 1 : reached by traverses the graph tagging each node with a TReachedBy

tag containing a list of the nodes that point to it. The function reached by also

sets the depth of all nodes to zero, and returns a list associating the addresses

of lambdas with the address of the variables they bind. The order of this list

is important as the next stage relies upon any nested lambdas occurring later

in the list than the lambda whose scope they are nested within.

Stage 2 : sink bound repeatedly traverses the graph in reverse from each variable

along the TReachedBy tags, setting the depth of the nodes met be to one greater

than the depth of the variables associated lambda. This upward traversal from

each variable does not proceed beyond the lambda that binds the variable.

This stage ends once traversals has been performed from every variable.

Stage 3 : clean cleans the graph of the TReachedBy tags.

This algorithm can be generalised to work for just nodes no shallower than a given

depth, rather than all reachable nodes. This is useful when the transformation is

used dynamically.

Dynamic full laziness has been used to increase the degree of sharing used by head

normal form reduction. After performing reductions under a lambda, but before

applying that lambda, a dynamic full laziness pass can be performed, ensuring as

little graph as possible is copied. Dynamic full laziness would be expensive to apply

very often. Applying it intermittently might be a practical compromise. However

no full laziness passes (dynamic or otherwise) are required in order to pass the tower

of interpreters test, and no worthwhile benefit has been found is using dynamic full

laziness.
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fun floatMFE addrs =

let val lambdavars = reached_by addrs

in (app sink_bound lambdavars; app clean addrs) end

and reached_by addrs =

let val hole = new (VHole,T 0)

val (lamvars,_) = unzip (map (reached_by_rec hole) addrs)

in foldr compose id lamvars [] end

and reached_by_rec from addr =

case deref addr of

(value,TReachedBy (reflist,tag)) =>

let val _ = update (addr, (value,TReachedBy (from::reflist,tag)))

in (id,[]) end

| (value,T depth) =>

let val _ = update (addr, (value,TReachedBy ([from], T 0)))

val (lamvars,vars) =

unzip (map (reached_by_rec addr) (#1(value_reaches value)))

val lamvars’ = foldr compose id lamvars

val vars’ = mergeListsBy (fn ((a,_),(b,_))=>a>b) vars

in

case value of

VVar => (id,[(depth,addr)])

| VLambda body =>

let val (v,vs) = span (fn (d,v)=>d=depth+1) vars’

in (fn x=>(addr,map #2 v)::lamvars’ x,vs) end

| _ => (lamvars’,vars’)

end

and sink_bound (lam,vars) =

let val (VLambda _,TReachedBy (_,T lambda_depth)) = deref lam

in app (sink_bound_rec (lam,lambda_depth+1)) vars end

and sink_bound_rec (lam,new_depth) addr =

let val (value,TReachedBy (reflist, T this_depth)) = deref addr

in if this_depth < new_depth andalso not (addrEq (addr,lam)) then

( update (addr, (value,TReachedBy (reflist, T new_depth)))

; app (sink_bound_rec (lam,new_depth)) reflist)

else ()

end

and clean addr =

case deref addr of

(_,T _) => ()

| (value, TReachedBy (_,tag)) =>

( update (addr,(value,tag))

; app clean (#1 (value_reaches value)))

Figure 5.7: Full laziness graph transformation.
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5.6 Memo-tables

The memo-tables are implemented using red black trees, as explained by Okasaki

[65]. The operations supported on them are shown in Figure 5.8. A node added

to a memo-table must not later become an indirection node. Ordering between the

addresses is used to speed up memo-table access. The address of the node at the

end of any chain of indirection nodes is used to determine this order. If this node

itself were to become an indirection, the ordering in the memo-tables would break

down. Fortunately, the way in which the completely lazy and optimal evaluators

use memo-tables, nodes are always evaluated as far as possible before they are used

as an index into a memo-table. Each memo-table has a unique identifier, which can

be read using the memoId function. This is useful in the implementation of optimal

evaluation as this identifier is used to distinguish substitution nodes originating from

the different beta-reductions.

newMemo : unit -> MemoTable

addMemo : MemoTable -> Addr*(Value*Tag) -> unit

lookupMemo : MemoTable -> Addr -> (Value*Tag) option

memoId : MemoTable -> int

Figure 5.8: Memo-table operations.

5.7 Complete laziness

For complete laziness the constructor VSubst takes five arguments as indicated in

Figure 5.2. These arguments correspond to the address of the node to be substituted,

the depth of the variable to be bound, the address of the argument the variable is to

be bound to, the depth shift to be applied when substituting, and the memo-table

to be used.

When performing top-level reductions, no variables will be encountered and re-

duction can proceed unhindered. When reductions are performed under lambdas

this is no longer the case: an attempted reduction may result in an attempt to

apply a variable, or add a variable. The path between a node that cannot be fur-

ther reduced and the variable it is blocked on may be arbitrarily long. To prevent

repeated traversing of this path only to discover that the reduction is blocked, the

node can be tagged with a boolean indicating whether an attempt has already been
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made to reduce it. Thus the constructor T contains a boolean as shown in Figure

5.2.

The code for the completely lazy evaluator is shown in Figure 5.9. The code is

fairly straightforward. To evaluate a node a check is first made to determine if an

attempt has already been made to evaluate the node. If it has then evaluation on

this node is complete. Otherwise if the node to be evaluated is an application node

the function part is evaluated. If this reduces to a lambda, then a new substitution

is formed and evaluated. If the function part does not reduce to a lambda then

reduction of the application node is blocked (either because of a type-error, or due

to the presence of a variable, the implementation doesn’t distinguish which).

The code to perform substitution is shown in Figure 5.10. The evaluation of

a substitution proceeds firstly by evaluating the node that is to be substituted.

Substitution then proceeds as follows. First the depth of the node to be substituted

is compared to the depth of the variable to be bound. If the node is at a shallower

depth, then the substitution node has reached the end of its scope and shorts itself

out, i.e. the substitution node is replaced with a link to the node that was to

be substituted. Next a check is made to see if the node to be substituted has

been substituted by a related substitution before. (Two substitutions are related

if they originated from the same β-reduction). If it has then the substitution node

is replaced by a link to the result of the previous substitution. If the node to be

substituted is the variable the substitution wishes to bind, as determined by its

depth, then the substitution is replaced by a link to the argument. All other nodes

are copied with their depth incremented by shift, if the node to be copied points

to other nodes (such as a application, abstraction or pair node), then the copied

node points to these same nodes via new substitution nodes.

No attempt to substitute a substitution node will ever occur. The reduction of

the body of the substitution ensures that any substitution is evaluated away before

any attempt to substitute the substitution occurs. It is this evaluation step which

has the specializing effect. By replacing this specializing evaluation step with a

call to a function which only evaluates away substitution nodes and doesn’t reduce

application or delta nodes, the completely lazy implementation can be turned into

an (inefficient) implementation of a lazy evaluation.

After the substitution is finished, (back in Figure 5.9), the result is evaluated.

Delta nodes contain the function used to perform the desired primitive operation.
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fun eval addr =

let val (value,T(depth,blocked)) = deref addr in

if blocked then () else

case value of

VAp (func,arg) =>

(case (eval func; deref func) of

(VLambda body,T (lam_depth,_)) =>

let val bind = lam_depth+1

val shift = depth-bind

val memo = newMemo ()

val _ = update (addr,(VSubst (body,(bind,arg,shift,memo)),

T(depth,false)))

in eval addr end

| _ => set_blocked addr)

| VSubst (addr’,common as (depth,arg,shift,memo)) =>

(eval addr’; link (addr,subst (addr’,common)); eval addr)

| VDelta (name,args,func) => func (addr,args)

| _ => set_blocked addr

end

and set_blocked addr =

let val (value,T(depth,_)) = deref addr

in update (addr,(value,T(depth,true))) end

Figure 5.9: eval for Complete laziness.

and subst (orig,common as (bind,arg,shift,memo)) =

let val (value,T(depth,_)) = deref orig

val new_depth = depth+shift

in if depth < bind then orig else

case lookupMemo memo orig of

SOME copy => copy

| NONE =>

let val copy =

case value of

VVar=>

if depth=bind then arg

else new (VVar,T(new_depth,true))

| VLambda body =>

let val subst_body = new (VSubst (body,common),

T(new_depth+1,false))

in new (VLambda subst_body,T(new_depth,true)) end

| other=>

let val (reaches,rebuild) = value_reaches other

fun mkSubst addr = new (VSubst (addr,common),

T(new_depth,false))

val new_addrs = map mkSubst reaches

in new (rebuild new_addrs,T(new_depth,false)) end

in (addMemo memo (orig,copy); copy) end

end

Figure 5.10: Delayed substitution.
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These primitive functions make calls back to eval as necessary. The implementation

of these primitive functions is not shown here. All other nodes (i.e. atomic, variable

and pairs nodes) are already fully reduced and simply need to be tagged as such.

5.8 Optimal evaluation

To implement optimal evaluation, each node needs to be tagged to indicate which

variable it is blocked on. Rather than just tagging nodes with a bool to indicate

if an attempt has been made to reduce the node, nodes are tagged with an int

option. A node is tagged with:

NONE, if no attempt has been made to evaluate it,

SOME 0, if the node has been evaluated and further reduction is not blocked by the

presence of any variables, and

SOME n, if the node has been evaluated and further reduction is blocked by the need

for a substitution binding a variable at depth n.

Nodes are still tagged with their depth, just as before, so the constructor T is

now of type int*int option -> Tag, as defined in Figure 5.2.

The substitution nodes used for optimal evaluation contain one more fields com-

pared to the substitution nodes used in completely lazy evaluation. This extra field,

typically denoted sb (standing for subst-by) in the code, indicates which substitu-

tions have substituted the substitution.

The key difference between the completely lazy and optimal implementations

of Ef, is the handling of substitution nodes. The completely lazy evaluator only

ever tags a substitution node as unevaluated (✗) as a substitution node is always

reducible. In contrast the optimal Ef only permits a substitution node to be reduced

in two situations:

1. when the graph that the substitution node will substitute requires that sub-

stitution in order to enable further reduction, and

2. when the graph to be substituted is already fully reduced, such as a pair or

lambda node.
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fun eval addr =

let val (value,T(depth,blocked)) = deref addr

in

if blocked <> NONE then () else

case value of

VAp (func,arg) =>

(case (eval func; deref func) of

(VLambda body,T (lambda_depth,_))=>

let

val memo = newMemo ()

val bind = lambda_depth + 1

val shift = depth - bind

val _ = update (addr,(VSubst (body,(bind,arg,shift,memo,[]))

,T(depth,NONE)))

val _ = eval addr

in () end

|(_,T(_,SOME lambda_blocked)) => set_blocked (addr,lambda_blocked)

)

|VDelta (name,args,func) => func (addr,args)

|VVar => set_blocked (addr,depth)

|VSubst (addr’,common as (bind,arg,shift,memo,sb)) =>

(case (eval addr’; deref addr’) of

(_,T(_,SOME subst_blocked)) =>

if subst_blocked=0 orelse subst_blocked=bind then

let val new_addr = (collectSubsts) ([common],addr’)

val _ = link (addr,new_addr)

in eval addr end

else

if subst_blocked < bind

then set_blocked (addr, subst_blocked)

else set_blocked (addr, subst_blocked+shift)

)

|other=> set_blocked (addr,0)

end

and set_blocked (addr,blocked_on) =

let val (value,T(depth,_)) = deref addr

in update (addr,(value,T(depth,SOME blocked_on))) end

Figure 5.11: eval for optimal evaluation.
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and subst (s as (addr,common as (bind,arg,shift,memo,sb))) =

let val (value’,T(depth,_)) = deref addr

val new_depth = depth+shift

in

if depth < bind then addr else

case lookupMemo memo addr of

SOME to’ => to’

| NONE =>

let

val substed_addr =

case value’ of

VSubst (s’ as (addr’,common as (bind’,arg’,shift’,memo’,sb’))) =>

if bind < bind’ then substSubst (depth,s,s’)

else unsubstSubst (depth,s,s’)

| VVar =>

if depth=bind then arg

else new (VVar,T(depth+shift,NONE))

| VLambda body =>

let val new_subst = new (VSubst (body,common),T(new_depth+1,NONE))

in new (VLambda new_subst,T(new_depth,NONE)) end

| other =>

let

fun mkSubst addr = new (VSubst (addr,common),T(new_depth,NONE))

val (reaches,rebuild) = subst_reaches other

val new_substs = map mkSubst reaches

val substed_addr = new (rebuild new_substs,T(new_depth,NONE))

in substed_addr end

val _ = addMemo memo (addr,substed_addr)

in substed_addr end

end

Figure 5.12: Substitution for optimal evaluation.

and collectSubsts (substs,addr) =

let val (value,_) = deref addr

in

case value of

VSubst (subst as (addr’,common as (bind,arg,shift,memo,sb))) =>

if far_enough (substs,(bind,shift,memo,sb)) then rebuildSubsts (substs,addr)

else collectSubsts ((common::substs),addr’)

| other =>

rebuildSubsts (substs,addr)

end

and rebuildSubsts (substs,addr) =

foldl (fn (common,addr) => subst (addr,common)) addr substs

and far_enough ([],subst) = true

| far_enough ((bind,_,shift,memo,sb)::substs, subst’ as (bind’,shift’,memo’,sb’)) =

if bind < bind’ then far_enough (substs,(bind’+shift,shift’,memo’,memoId memo::sb’))

else if (memoId memo’) elem sb then far_enough (substs,(bind’,shift’,memo’,sb’))

else false

Figure 5.13: Handling sequences of substitutions.
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and substSubst

(depth,

(addr, (bind ,arg ,shift ,memo ,sb)),

(addr’,(bind’,arg’,shift’,memo’,sb’))

) =

let

val lower_subst =

new (VSubst (addr’, (bind, arg, shift, memo, sb)),

T(depth+shift-shift’,NONE))

val upper_subst =

new (VSubst (lower_subst,

(bind’+shift,arg’,shift’,memo’,memoId memo::sb’)),

T(depth+shift,NONE))

in upper_subst end

and unsubstSubst

(depth,

(addr, (bind ,arg ,shift ,memo ,sb)),

(addr’,(bind’,arg’,shift’,memo’,sb’))

) =

let

val lower_subst =

new (VSubst (addr’,

(bind-shift’,arg, shift, memo,remove1 (memoId memo’) sb)),

T(depth+shift-shift’,NONE))

val upper_subst =

new (VSubst (lower_subst, (bind’,arg’,shift’,memo’,sb’)),

T(depth+shift,NONE))

in upper_subst end

and remove1 a (l::ls) = if a=l then ls else l::remove1 a ls

Figure 5.14: Substitution swapping.
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If neither of these conditions are met, the substitution node is blocked and is tagged

to indicate which variable a substitution must bind in order to enable further re-

duction.

Figure 5.13 shows how the build up of unswappable substitutions between a re-

quired substitution node and the node to be substituted are handled. eval starts

the process by calling collectSubsts with the required substitution. If the node

the first substitution points to is not a substitution node, then collectSubsts

calls rebuildSubsts which will actually perform the substitution. Otherwise

collectSubsts will call far enough, which tests to see if an entire sequence of

substitutions can substitute/unsubstitute their way through a substitution. If all

the substitutions within the sequence can then rebuildSubsts is called and per-

forms substitutions for each of the substitutions in the sequence. Otherwise the

substitution is added to the existing sequence.

Figure 5.12 shows how substitutions are handled. The main difference from the

completely lazy version is that this version is able swap substitutions. The function

subst is only ever called when the substitution (or unsubstitution) is possible, it

will never encounter two substitutions which cannot be swapped.

There are a number of improvements which could be made to the implementation

of optimal evaluation. Such as using a tree instead of a list to remember which

substitutions are allowed to swap. Also there is room for improvement in the way

sequences of substitutions are handled. However, although it has been interesting

to see how complete laziness can be generalised to optimal evaluation, it achieves a

greater degree of sharing than is needed to achieve the specializing effect of partial

evaluation. Furthermore as will be seen in the next chapter, optimal evaluation is

not suited to removing layers of interpretation, and it is difficult to see how optimal

evaluation could be used to generate specialized code dynamically.

5.9 Summary

This chapter presented implementations of different degrees of sharing, all the way

from lazy to optimal. A full laziness transformation was presented which can be

used on graphs in the heap at run-time.



Chapter 6

Results

This chapter presents the results of experiments conducted, using the lazy, fully

lazy, completely lazy and optimal versions of Ef, and also Asperti et al’s BOHM [8]

optimal evaluator.

Section 6.1 describes the experiments conducted to demonstrate that the com-

pletely lazy Ef does indeed pass the tower of interpreters test. Ef must be able

to pass the this test in order for Ef to be able to specialize programs which are

evaluated indirectly through one or more interpreters. Section 6.2 discusses some of

the limitations of Ef. Sections 6.3 and 6.4 generalise the tower of interpreters results

to heterogeneous towers of interpreters. Section 6.5 describes how well the optimal

Ef and BOHM perform on the tower of interpreters test. Section 6.6 demonstrates

Ef specializing away an imperative interpreter and further specializing the program

evaluated by the imperative interpreter. Finally Section 6.7 compares the lazy, fully

lazy, completely lazy and optimal versions of Ef with each other and BOHM on the

examples presented in the BOHM literature.

Each experiment conducted was run as a separate process to prevent the contents

of the heap in one experiment influencing future experiments. This also makes it

possible to compare experiments in an implementation-language independent man-

ner.

For each experiment the CPU time is reported. This time is the sum of the user

time and the system time reported by the operating system after the process has

finished. The real time is also measured so that the proportion of time spent by

the CPU on each experiment can be calculated. This proportion was over 90% for

all long running experiments (experiments running longer than 10 seconds). This

indicates the experiments were not significantly affected by other processes running



130 CHAPTER 6. RESULTS

on the machine, or by virtual memory paging delays.

For each experiment, the operating system was instructed to terminate the ex-

periment’s process if the process required more than 3600 seconds of CPU time, or

more than 480 MBytes of virtual address space.

The maximum size of each experiment’s address space is also measured. This is

done by intercepting the operating system calls made by a process. After each system

call is complete but before returning control to the process being measured, the

current size of the processes address space is compared with the running maximum.

This technique makes it possible to compare the memory requirements of programs

implemented in different languages.

All experiments were conducted on a Sun with a 270MHz UltraSPARC IIi pro-

cessor and 512MB memory. This computer was running SunOS version 5.6. Version

110.0.3 of SML/NJ was used. Version 4.08.1 of GHC was used. The default compiler

settings were used.

6.1 Towers of interpreters

To demonstrate that the completely lazy version of Ef is able to specialize away

interpretive overhead, a tower of interpreters is constructed. The same interpreter

is used at each stage in the tower. The reason for conducting experiments with

many identical interpretive layers present is to provide convincing evidence that the

execution speed of the program at the top of the tower is the same regardless of the

number of layers of interpretation. If the languages at each layer in the tower were

different then it would not be possible to have the same program at the top of the

tower in all the experiments.

The interpreter used in the tower is shown in Figure 6.1. The interpreter eval-

uates parse trees. An example of such a parse tree is shown in Figure 6.4. The

result of evaluating the parse tree for a function is that function, rather than a

representation of the function. If the parse tree being evaluated is that of the inter-

preter, then the resulting function can be used in just the same way as the original

interpreter. The function primitive takes a string and returns the corresponding

primitive function.

Figure 6.3 shows constructors that can be used to build up suitable parse trees for

the interpreter to process. To indicate to the reader the structure of the parse tree
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eval where

map f x@(x1:xs) = if x==[] then [] else f x1:map f xs

lookup a l@((key,value):ls) = if a==key then value else lookup a ls

a@(a1:as) ++ b = if a==[] then b else a1:(as++b)

eval = evale []

evale env = ee where

ee exp@(tag,a@(a1,a2)) =

if tag=="EVar" then lookup a env else

if tag=="EApply" then (ee a1) (ee a2) else

if tag=="EPrim" then primitive a else

if tag=="EPair" then (ee a1,ee a2) else

if tag=="ELit" then a else

if tag=="ELambda" then (\arg->eval ((a1,arg):env) a2) else

if tag=="ELet" then eval_decls env a1 a2 else

"undefined"

eval_decls env decls = evalenv where

env’ = map decl_to_env decls

evalenv = evale (env’++env)

decl_to_env (id,exp) = (id,evalenv exp)

Figure 6.1: An interpreter for Ef parse trees written in Ef.

addup where

addup n = if n==0 then 0 else n+addup(n-1)

Figure 6.2: A simple program at the top of the tower of interpreters.

data Exp =

EVar var = ("EVar", var) EVar String

ELit lit = ("ELit", lit) |ELit Value

EPrim prim = ("EPrim", prim) |EPrim String

EApply func arg = ("EApply", (func,arg)) |EApply Exp Exp

EPair hd tl = ("EPair", (hd,tl)) |EPair Exp Exp

ELambda var body = ("ELambda", (var,body)) |ELambda String Exp

ELet decls body = ("ELet", (decls,body)) |ELet [(String,Exp)] Exp

Figure 6.3: Parse tree constructors.

ELet let

[("addup", addup=

ELambda "n" (EApply (EApply (EAppply (EPrim "if") \n->if

(EApply (EApply (EPrim "==") (EVar "n")) (ELit 0)) n==0

(ELit 0) then 0

(EApply (EApply (EPrim "+") (EVar "n")) else n+

(EApply (EVar "addup") addup

(EApply (EApply (EPrim "-") (EVar "n")) (ELit 1))))))) (n-1)

)] in

(EVar "addup") addup

Figure 6.4: Parse tree for addup.
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addup

layers 1 10 100 1000 10000

0 0.02s 0.02s 0.01s 0.02s 0.07s
1 0.01s 0.03s 0.01s 0.05s 0.61s
2 0.17s 0.20s 0.48s 3.10s 41.68s
3 0.71s 2.98s 25.75s 258.88s 3238.73s
4 39.10s 228.17s 2185.00s 22564.91s
5 3182.41s

Table 6.1: GHC evaluating a tower of interpreters (time).

addup

layers 1 10 100 1000 10000

0 2.4MB 2.4MB 2.4MB 2.4MB 2.4MB
1 2.9MB 2.9MB 2.9MB 2.9MB 3.9MB
2 2.9MB 2.9MB 2.9MB 2.9MB 5.9MB
3 2.9MB 2.9MB 3.9MB 5.9MB 35.6MB
4 3.9MB 3.9MB 3.9MB 14.1MB
5 3.9MB

Table 6.2: GHC evaluating a tower of interpreters (space).

addup

layers 1 10 100 1000 10000

0 0.03s 0.03s 0.02s 0.02s 0.05s
1 0.07s 0.07s 0.06s 0.16s 1.63s
2 0.64s 0.79s 1.79s 12.11s 116.20s
3 2.50s 12.05s 105.96s 1056.30s
4 166.80s 1019.95s 9700.78s
5 15045.69s

Table 6.3: SML/NJ evaluating a tower of interpreters (time).

addup

layers 1 10 100 1000 10000

0 6.1MB 6.1MB 6.1MB 6.1MB 6.1MB
1 6.7MB 6.7MB 6.7MB 9.4MB 17.0MB
2 10.2MB 10.2MB 10.2MB 13.6MB 30.9MB
3 13.7MB 15.4MB 21.8MB 40.3MB
4 24.2MB 285.7MB 328.6MB
5 34.0MB

Table 6.4: SML/NJ evaluating a tower of interpreters (space).
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built by these constructors, a corresponding Haskell definition for the constructors is

also shown. Ef doesn’t support user defined types and doesn’t distinguish identifiers

by the capitalization of the first letter, so the constructors in Figure 6.1 are just

functions. Although these constructors could be used to construct suitable parse

trees, in practice the parse trees are created by an external process that reads in Ef

source code and outputs a concrete representation of the Ef value representing the

parse tree. This value is then re-parsed by the implementation of Ef being used.

The strings in the parse tree and interpreter such as "EVar" are used to tag

data with types in much the same way constructors are used in Haskell or SML. In

all the example Ef programs shown in this chapter no operations to construct or

take apart strings are performed. The only strings in existence during execution are

those present before execution began.

To demonstrate the advantage of the completely lazy Ef evaluator over more

conventional language implementations, the tower of interpreters experiment is also

conducted with GHC and SML/NJ: simple implementations of Ef written in Haskell

and SML are used. In each experiment, the program at the top of the tower is the

addup function shown in Figure 6.2. For a more complex program at the top of

the tower, the last interpreter can be considered to be at the top. Zero interpretive

layers corresponds to the addup function being written directly in Haskell and SML.

One interpretive layer corresponds to the simple implementation of Ef written in

Haskell or SML directly evaluating the addup function. More layers correspond to

the simple implementation of Ef interpreting one or more layers of the interpreter

in Figure 6.1 interpreting the parse tree of the addup function.

The results in Tables 6.1 and 6.3 indicate that each interpreter in the tower

contributes approximately an 80-fold increase in evaluation time. The important

point here is that the interpretive overhead is multiplicative, not additive.

From Table 6.5 it can be seen that the interpretive overhead when using the

completely lazy Ef is additive and not multiplicative. Each additional interpreter

in the tower contributes approximately 20 seconds to the evaluation time.

The number of additions performed by the addup function at the top of the tower

is varied in order to be able to measure the speed of execution once any additive

overhead due to the number of layers of interpretation has been accounted for. It

can be seen from Table 6.5 that the speed at which the completely lazy Ef adds

numbers using the addup function is the same regardless of the number of layers
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of interpretation used. There is an apparent inconsistency in the speed at which

addup operates. The time difference between evaluating addup 10000 and addup

1000 is more than the ten times the time difference between evaluating addup 1000

and addup 100. However this unexpected slowdown in adding up numbers can also

be seen to be independent of the number of layers of interpretation being used. An

explanation of this slowdown is given in §6.2.

Any small non-linearity in the results in Table 6.5 can be explained by the

additional time taken during garbage collection. It can be seen in Table 6.6 that

the space usage grows linearly with the number of layers of interpretation. Ideally

the space usage would be independent of the number of layers of interpretation. As

each layer is eliminated it no longer has an impact on the speed of evaluation and

yet appears to retain space in the heap. The reason for this is that the specialization

of one interpreter is not finished before the specialization of the next starts. The

specialization of the interpreters takes place concurrently in a lazy fashion. An

explanation of why the space usage is so high is given in §6.2.

The apparent variability in the additional space required by additional inter-

pretive layers is due to the nature of the underlying garbage collector. Ef is im-

plemented in SML/NJ which uses a generational copying garbage collector. The

additional space requested by SML/NJ from the operating system is influenced by

the number of cells in the heap which remain after a garbage collection; this in turn

is influenced by the precise point in time at which a garbage collection is triggered.

So the space used by a program is only an approximate indication of the space

required by the program.

6.2 Infinite unfolding

Using memo-tables to maintain sharing causes Ef to have limitations. As these

memo-tables grow larger, the time taken to update and inspect them grows longer.

Delayed substitutions always evaluate nodes as far as they can before substitut-

ing into them. This evaluation can result in the scope of a substitution becoming

infinite. This occurs when delayed substitution is performed on typical recursive

functions which cannot be reduced to normal form. A simple example is the addup

function from Figure 6.5. Before a substitution node substitutes into the recursive

function call, it reduces the recursive function call. This reduction results in a cyclic

substitution which has an unbounded scope to substitute through. The body of



6.2. INFINITE UNFOLDING 135

n
1 10 100 1000 10000

0 0.04s 0.05s 0.13s 2.00s 119.71s
1 0.91s 0.91s 0.97s 2.89s 118.06s
2 11.99s 12.18s 12.07s 15.01s 131.20s
3 28.01s 28.06s 28.24s 30.33s 149.49s
4 45.02s 44.85s 44.91s 47.22s 167.11s
5 59.55s 59.78s 59.77s 61.92s 186.62s
6 79.07s 78.71s 79.28s 81.37s 203.45s
7 96.63s 96.67s 96.87s 99.17s 226.94s

l 8 113.68s 113.89s 113.98s 116.64s 242.77s
9 132.88s 132.73s 132.13s 135.05s 265.73s
10 150.76s 151.14s 150.90s 153.45s 282.92s
11 170.88s 170.91s 170.06s 173.97s 307.68s
12 194.74s 195.30s 194.52s 196.70s 332.39s
13 216.16s 216.61s 216.31s 219.24s 343.75s
14 239.21s 238.57s 237.74s 241.00s 363.90s
15 251.89s 251.78s 252.21s 253.62s 397.53s
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il l = if l==1 then eval else il (l-1) eval_prs

tower l n = if l==0 then addup n else il l addup_prs n

Time[ tower l n ]

Table 6.5: Ef completely lazy evaluation of a tower of interpreters (time).
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n
1 10 100 1000 10000

0 6.6MB 6.6MB 9.4MB 13.3MB 41.6MB
1 13.9MB 13.9MB 13.9MB 16.6MB 41.8MB
2 33.7MB 33.7MB 33.7MB 42.7MB 71.9MB
3 69.5MB 69.5MB 69.5MB 69.5MB 102.9MB
4 98.1MB 98.1MB 98.1MB 98.1MB 128.0MB
5 116.8MB 116.8MB 117.8MB 117.8MB 156.7MB
6 159.5MB 159.5MB 159.5MB 159.5MB 184.7MB
7 183.8MB 183.8MB 183.8MB 183.8MB 213.6MB

l 8 211.0MB 211.0MB 211.0MB 211.0MB 243.9MB
9 234.5MB 234.5MB 236.1MB 236.1MB 275.3MB
10 257.4MB 257.4MB 257.4MB 257.4MB 302.5MB
11 289.5MB 288.5MB 288.5MB 288.5MB 335.1MB
12 325.7MB 325.7MB 325.7MB 325.7MB 365.9MB
13 359.4MB 359.4MB 359.4MB 359.4MB 384.0MB
14 393.8MB 385.9MB 385.9MB 385.9MB 412.2MB
15 396.2MB 396.2MB 396.2MB 396.2MB 451.7MB
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Table 6.6: Ef completely lazy evaluation of a tower of interpreters (space).
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�1if==1 0 0 +1 if== 0 0 +1=1-1-1 1
Figure 6.5: Infinite unfolding.

the addup function grows to the size of the largest number it is applied to. In this

case the β-reductions are shared across multiple applications, and in principle share

work. However, from a practical point of view, this kind of specializing is worse than

useless: it causes the memo-tables to grow very large and the use of the function to

slow down.

There are tricks that could be used to prevent cyclic substitutions forming. It

would be possible to have every substitution node know which lambda owned the

graph though which the substitution node is substituting. Then when performing

reductions ahead of substitution nodes it would be possible to prevent any applica-

tions that would create an infinite scope. This would ensure that all substitutions

had a finite amount of graph through which to substitute.

However this is not a natural solution. It is not clear that such applications

should always be prevented, and preventing such applications does not prevent the

symptoms from occurring. Preventing cyclic substitutions does not stop function

bodies becoming arbitrarily large. Consider a function (such as addup) made non-

cyclic by using a non-cyclic Y combinator. While no single substitution will have

an infinite scope, the addup function’s body will still grow arbitrarily large. Any

substitution resulting from this very large function being applied will grow similarly

and all the same infinite unfolding slowdown symptoms will occur.
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6.3 Heterogeneous tower — Ef / Ef case

Ef is a relatively simple language and a user could quickly tire of its lack of features.

Rather than program directly in Ef, a user can write in a more sophisticated language

interpreted by Ef.

In order to demonstrate that the experiments in §6.1 were not merely an experi-

mental artifact relying on the interpreters at each layer in the tower being the same,

a heterogeneous tower of interpreters has been built. The interpreter in Figure 6.6 is

an interpreter for Ef case written in Ef. The interpreter in Figure 6.7 is an interpreter

for Ef written in Ef case .

The parse trees evaluated by the Efcase interpreter are much like those evaluated

by the Ef interpreter. The parse trees could be constructed with the same con-

structor functions shown in Figure 6.3, with the addition of a constructor for case

expression. This constructor takes a list of patterns and a list of expressions. The

patterns could be made using the constructors EVar, ELit, and EPair. As before,

the parse trees are actually created by an external process.

The interpreter in Figure 6.6 is shown complete with all utility functions. It is

the parse tree for the entire program which is used in the tower, including the utility

functions.
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eval_efcase where

map f x@(x1:xs) = if x==[] then [] else f x1:map f xs

lookup a l@((key,value):ls) = if a==key then value else lookup a ls

a@(a1:as) ++ b = if a==[] then b else a1:(as++b)

unzip l = (map head l, map tail l)

filter f x@(x1:xs) = if x==[] then [] else

if f x1 then x1:filter f xs else filter f xs

zip x@(x1:xs) y@(y1:ys) = if x==[] || y==[] then [] else (x1,y1):zip xs ys

eval_efcase = evale []

evale env = ee where

lookup_env a = lookup a env

ee exp@(tag,a@(a1,a2)) =

if tag=="EVar" then lookup_env a else

if tag=="EApply" then (ee a1) (ee a2) else

if tag=="EPrim" then primitive a else

if tag=="EPair" then (ee a1,ee a2) else

if tag=="ELit" then a else

if tag=="ELambda" then (\arg->evale ((a1,arg):env) a2) else

if tag=="ELet" then eval_decls env a1 a2 else

if tag=="ECase" then eval_case env (ee a1) a2 else

"undefined"

eval_decls env decls = evalenv where

env’ = map decl_to_env decls

evalenv = evale (env’++env)

decl_to_env (id,exp) = (id,evalenv exp)

eval_case env value cases =

let

(pats,exps) = unzip cases

matches = zip (map (match value) pats) exps

((_,env’),exp’):_ = filter (\((match,env),exp)->match) matches

result = evale (env’++env) exp’

in result

match v@(v1,v2) (tag,p@(p1,p2)) =

if tag=="ELit" then (v==p,[]) else

if tag=="EVar" then (True,[(p,v)]) else

if tag=="EPair" then

let (match1,env1) = match v1 p1

(match2,env2) = match v2 p2

in (match1 && match2,env1++env2)

else "undefined"

Figure 6.6: An interpreter for Ef case parse trees written in Ef.
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eval_ef where

map f x = case x of [] -> []

x1:xs -> f x1 : map f xs

a ++ b = case a of [] -> b

a1:as -> a1:(as++b)

lookup a l@((key,value):ls) = if a==key then value else lookup a ls

eval_ef = evale []

evale env = ee where

ee exp =

case exp of

("EApply",func,arg) -> (ee func) (ee arg)

("ELit",lit) -> lit

("ELet",decls,body) -> eval_decls env decls body

("ELambda",var,body) -> \arg->evale ((var,arg):env) body

("EPair",h,t) -> (ee h,ee t)

("EVar",var) -> lookup var env

("EPrim",prim) -> primitive prim

eval_decls env decls = evalenv where

env’ = map decl_to_env decls

evalenv = evale (env’++env)

decl_to_env (id,exp) = (id,evalenv exp)

Figure 6.7: An interpreter for Ef parse trees written in Ef case .



6.3. HETEROGENEOUS TOWER — EF / EFCASE 141

n
1 10 100 1000 10000

1 0.65s 0.68s 0.69s 1.73s 61.84s
2 4.42s 4.48s 4.47s 5.75s 65.65s
3 8.22s 8.28s 8.27s 9.26s 69.09s
4 15.14s 15.99s 16.05s 16.91s 81.22s
5 18.91s 18.47s 18.90s 19.99s 80.98s
6 25.87s 26.23s 26.29s 27.13s 85.09s
7 30.39s 29.09s 29.28s 30.13s 95.11s

l 8 35.36s 36.32s 37.05s 37.57s 97.33s
9 40.37s 40.15s 40.17s 42.81s 101.86s
10 47.26s 47.81s 47.63s 49.01s 106.60s
11 51.87s 50.81s 51.27s 53.16s 110.66s
12 57.98s 58.23s 58.24s 59.34s 119.84s
13 60.89s 60.84s 61.25s 62.34s 126.55s
14 69.42s 69.16s 70.18s 71.03s 132.45s
15 74.62s 74.37s 73.88s 74.75s 134.17s
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Time[ htower l n ]

hil n =

if n==1 then eval_efcase else

if even n then hil (n-1) eval_ef_prs

else hil (n-1) eval_efcase_prs

even n = n ‘mod‘ 2 == 0

htower l n = hil l addup_prs n

Table 6.7: Ef completely lazy evaluation of a hetergeneous tower of interpreters
(time).
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n
1 10 100 1000 10000

1 11.6MB 11.8MB 11.8MB 15.2MB 37.0MB
2 23.4MB 24.0MB 24.0MB 29.5MB 58.3MB
3 34.4MB 35.2MB 35.0MB 35.0MB 59.0MB
4 43.4MB 49.2MB 48.7MB 48.7MB 82.0MB
5 58.5MB 60.0MB 72.5MB 72.5MB 89.7MB
6 70.8MB 81.0MB 70.6MB 79.0MB 106.7MB
7 85.2MB 73.2MB 84.8MB 76.8MB 134.9MB

l 8 79.6MB 98.5MB 98.5MB 98.5MB 142.1MB
9 94.5MB 109.7MB 94.4MB 126.4MB 147.2MB
10 126.8MB 126.8MB 126.9MB 126.8MB 156.8MB
11 143.8MB 129.2MB 129.2MB 143.6MB 160.5MB
12 118.1MB 128.0MB 128.0MB 128.0MB 191.6MB
13 127.1MB 128.3MB 128.3MB 128.3MB 194.2MB
14 150.7MB 150.7MB 150.7MB 150.7MB 192.4MB
15 173.4MB 173.2MB 173.2MB 173.2MB 209.5MB
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Table 6.8: Ef completely lazy evaluation of a hetergeneous tower of interpreters
(space).
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6.4 Heterogeneous tower — Ef / LispKit Lisp

It is instructive to explore which features of Ef are required in order to use the

techniques presented in this thesis to completely eliminate a layer of interpretation.

Building towers of interpreters provides very strong experimental evidence that a

layer of interpretation has been eliminated.

Two features of Ef which appear essential are:

• non-strict semantics,

• typelessness.

Non-strict semantics are required to be able to use the knot-tying technique

which lazy-specialization relies upon.

Typelessness is required to prevent the double-encoding issues which occur when

specializing typed languages. Although techniques to mitigate the overhead incurred

when self-applying a partial evaluator for a typed language have been developed [56],

the fact still remains that it is representations of values which are manipulated, and

repeated encoding still incurs an overhead.

LispKit Lisp [33] serves as an example of a language which is non-strict and

typeless and yet differs from Ef in some respects:

• LispKit Lisp supports run-time type inspection (RTTI) operations such as

ispair and isfunc,

• LispKit Lisp primitives are non-curried, whereas Ef’s are curried.

In order to implement an interpreter for a language such as LispKit Lisp, which

contain primitives such as ispair and isfunc two approaches could be taken:

1. Extend the implementation of Ef to contain the required primitives,

2. Tag all the values operated on by the LispKit Lisp interpreter so that addi-

tional information is carried around.

Taking the first approach would be simpler, but taking the second approach is

more instructive.

The values operated on by the LispKit Lisp interpreter can be constructed us-

ing the constructor functions shown in Figure 6.8. If the LispKit Lisp interpreter
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VAtomic a = ("VAtomic", a)

VPair h t = ("VPair", (h,t))

VFunc f = ("VFunc", f)

Figure 6.8: Constructor functions for LispKit Lisp values.

eval_efrtti where

map f x@(x1:xs) = if x==[] then [] else f x1:map f xs

lookup a l@((key,value):ls) = if a==key then value else lookup a ls

a@(a1:as) ++ b = if a==[] then b else a1:(as++b)

eval_efrtti = evale []

evale env = ee where

ee exp@(tag,a@(a1,a2)) =

if tag=="EVar" then lookup a env else

if tag=="EApply" then apply (ee a1) (ee a2) else

if tag=="EPrim" then lookup a prims else

if tag=="EPair" then ("VPair", (ee a1,ee a2)) else

if tag=="ELit" then ("VAtomic", a) else

if tag=="ELambda" then ("VFunc", (\arg->evale ((a1,arg):env) a2)) else

if tag=="ELet" then eval_decls env a1 a2 else

"undefined"

eval_decls env decls = evalenv where

env’ = map decl_to_env decls

evalenv = evale (env’++env)

decl_to_env (id,exp) = (id,evalenv exp)

apply ("VFunc", func) arg = func arg

liftop f = ("VFunc", \("VAtomic",a)->

("VFunc", \("VAtomic",b)->

("VAtomic",f a b)))

prims = [

("+", liftop (+)), ("-", liftop (-)), ("*", liftop (*)),

("||", liftop (||)), ("&&", liftop (&&)),

("if", ("VFunc", \("VAtomic",a)->

("VFunc",\b->

("VFunc",\c->

if a then b else c)))),

("==", liftop (==)), ("/=", liftop (/=)),

(":", ("VFunc",\a->

("VFunc",\b->

("VPair", (a,b))))),

("head", ("VFunc",\("VPair",(a,b))->a)),

("tail", ("VFunc",\("VPair",(a,b))->b)),

("ispair", ("VFunc", \(tag,data)->("VAtomic",tag=="VPair"))),

("isfunc", ("VFunc", \(tag,data)->("VAtomic",tag=="VFunc")))

]

Figure 6.9: An interpreter for EfRTTI written in Ef.
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eval_lk where

zip x@(x1:xs) y@(y1:ys) = if x==[] then [] else (x1,y1):zip xs ys

lookup x ((n,v):nvs) = if x==n then v else lookup x nvs

foldl f z l@(l1:ls) = if l==[] then z else foldl f (f z l1) ls

map f x@(x1:xs) = if x==[] then [] else f x1:map f xs

x@(x1:xs) ++ y = if x==[] then y else x1:xs++y

length = foldl (\x _->x+1) 0

eval_lk = eval[]

evale env sexp@(h:t) =

if ispair sexp then

if h == "quote" then quote (head t)

else if h == "lambda" then

let formalArgs = head t

body = head (tail t)

in if length formalArgs == 1 then

(\actualArg -> evale ((head formalArgs, actualArg):env) body) else

(\actualArgs -> evale (zip formalArgs actualArgs++env) body)

else if h == "let" then

let body = head t

decls = tail t

add_decl env (name,exp) = (name,evale env exp):env

env’ = foldl add_decl env decls

in evale env’ body

else if h=="letrec" then

let body = head t

decls = tail t

add_decl env (name,exp) = (name,evale env exp)

env’ = (map (add_decl env’) decls) ++ env

in evale env’ body

else

if length t == 1 then

(evale env h) (evale env (head t)) else

(evale env h) (map (evale env) t)

else lookup sexp env

prim_lk = [

("add", uncurry 2 (+)), ("sub", uncurry 2 (-)),

("mul", uncurry 2 (*)), ("eq", uncurry 2 (==)),

("head", head), ("tail", tail),

("cons", uncurry 2 (:)), ("ispair", ispair),

("if", uncurry 3 (\a b c->if a then b else c))

]

uncurry n f args@(arg1:argss) =

if n==1 then f arg1

else uncurry (n-1) (f arg1) argss

quote a@(h,t) =

if ispair a then (quote h,quote t) else

if a=="NIL" then []

else if a=="t" then True

else if a=="f" then False

else a

Figure 6.10: An interpreter for LispKit Lisp written in EfRTTI .
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(letrec eval_ef

(eval_ef . (lambda (exp) (eval (quote NIL) exp)))

(eval . (lambda (env exp)

(letrec

(if (eq tag (quote ELit)) a

(if (eq tag (quote EVar)) (lookup a env)

(if (eq tag (quote EApply)) ((eval env a1) (eval env a2))

(if (eq tag (quote EPrim)) (lookup a prims)

(if (eq tag (quote EPair)) (cons (eval env a1) (eval env a2))

(if (eq tag (quote ELambda))

(lambda (arg) (eval (cons (cons a1 arg) env) a2))

(if (eq tag (quote ELet))

(letrec (eval env’ a2)

(env’ . (append

(map (lambda (name_exp)

(cons (head name_exp)

(eval env’ (tail name_exp)))) a1)

env

)))

(quote undefined_tag))))))))

(tag . (head exp))

(a . (tail exp))

(a1 . (head a))

(a2 . (tail a))

)))

(lookup . (lambda (x nvs)

(let (if (eq x name) value (lookup x nvss))

(nv . (head nvs))

(name . (head nv))

(value . (tail nv))

(nvss . (tail nvs))

)

))

(prims .

(cons (cons (quote +) (curry2 add))

(cons (cons (quote -) (curry2 sub))

(cons (cons (quote *) (curry2 mul))

(cons (cons (quote if) (curry3 if))

(cons (cons (quote ==) (curry2 eq))

(cons (cons (quote :) (curry2 cons))

(cons (cons (quote head) head)

(cons (cons (quote tail) tail)

(cons (cons (quote ispair) ispair)

(quote NIL)))))))))))

(curry2 . (lambda (f) (lambda (a) (lambda (b) (f a b)))))

(curry3 . (lambda (f) (lambda (a) (lambda (b) (lambda (c) (f a b c))))))

(map lambda (f x)

(if (eq x (quote NIL)) (quote NIL) (cons (f (head x)) (map f (tail x)))))

(foldr . (lambda (f z l) (if (eq l (quote NIL)) z (f (head l) (foldr f z (tail l))))))

(append . (lambda (x y) (foldr cons y x)))

)

Figure 6.11: An interpreter for EfRTTI written in LispKit Lisp.
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n
1 10 100 1000 10000

1 0.71s 0.68s 0.86s 5.88s 256.48s
2 27.01s 26.97s 27.23s 33.58s 297.23s
3 99.61s 99.37s 99.52s 104.88s 359.93s

l 4 140.43s 137.73s 138.36s 143.40s 452.79s
5 224.48s 226.39s 225.70s 230.50s 551.81s
6 263.34s 264.72s 265.39s 268.05s 577.56s
7 357.46s 356.09s 357.55s 362.69s 645.64s
8 400.59s 400.23s 400.10s 406.68s
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even x = x ‘mod‘ 2 == 0

lk_il l =

if l==2 then eval_lift eval_lk else

if even l then lk_il (l-1) ‘apply‘ eval_lk_prs_lift

else lk_il (l-1) ‘apply‘ eval_ef_prs_lift

lktower l n =

if l==1 then eval_prs_lift addup_prs ‘apply‘ ("VAtomic",n) else

if even l then lk_il l ‘apply‘ addup_lk_prs_lift ‘apply‘ ("VAtomic",n)

else lk_il l ‘apply‘ addup_prs_lift ‘apply‘ ("VAtomic",n)

Table 6.9: Completely lazy evaluation of a hetergeneous Ef / LispKit Lisp tower of
interpreters (time).
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n
1 10 100 1000 10000

1 13.6MB 13.6MB 13.6MB 19.3MB 90.7MB
2 54.6MB 54.6MB 54.6MB 65.5MB 118.5MB
3 162.7MB 162.7MB 163.4MB 163.4MB 219.6MB

l 4 210.0MB 207.4MB 207.4MB 207.4MB 277.5MB
5 312.5MB 316.3MB 316.2MB 316.3MB 373.7MB
6 347.4MB 347.6MB 347.6MB 347.4MB 417.5MB
7 446.1MB 446.0MB 446.1MB 446.0MB 498.1MB
8 486.0MB 486.0MB 486.0MB 485.9MB
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Table 6.10: Completely lazy evaluation of a hetergeneous Ef / LispKit Lisp tower
of interpreters (space).
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encoded values using these constructor functions directly, then building a tower in-

cluding such interpreters would result in multiple encodings. Instead the approach

taken is to handle the encoding of values once at the bottom of the tower and not

in every occurrence of a LispKit Lisp interpreter in the tower.

To achieve this one-off handling of value encoding, an enhanced version of Ef,

EfRTTI , is implemented in Ef first. It is within this enhanced version that the

interpreter for LispKit Lisp is written.

Figures 6.9, 6.10 and 6.11 show the implementations of EfRTTI in Ef, LispKit

Lisp in EfRTTI , and EfRTTI in LispKit Lisp.

Tables 6.9 and 6.10 show the time and space requirements for an interpre-

tive tower consisting of one eval efrtti, and a tower of alternating eval lk and

eval ef.

The results indicate, as before, that the interpretive overhead is additive and not

multiplicative. There are some aspects of implementation of LispKit Lisp worthy

of mention. The definition of zip is unusual in that it only tests to see if its first

argument is [], not both as is more usual. The function zip is being used inside

multi-argument function definitions to zip together variables and their values. If

zip tests its second argument this introduces an overhead that is incurred every

time the function that zip is helping to build is called.

It can be seen that the curried primitives in Ef are implemented using the non-

curried primitives in LispKit Lisp and vice-versa. The experiments demonstrate

that this implementation of primitives has no adverse effect on execution speed, the

interpretive overhead is still additive not multiplicative.

It is necessary to handle the implementation of 1-ary functions in LispKit Lisp

slightly differently from the implementation of n-ary functions. Functions of arity

two or greater receive their arguments in a list. If this was the case also for 1-ary

functions, then 1-ary functions would always expect their argument as a singleton

list. This would apply also to functions written in Ef and interpreted by the Ef

interpreter written in LispKit Lisp. If a tower of such interpreters were built, the

placing of arguments in singleton lists would compound, resulting in a multiplicative

interpretive overhead.
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addup

layers 1 3 10 30 100 300 1000 3000 10000

0 0.16s 0.16s 0.16s 0.23s 0.51s 1.54s 7.51s 38.61s 349.91s
1 1.32s 1.31s 1.34s 1.53s 2.22s 4.97s 15.86s 68.23s 426.67s
2 43.16s 43.18s 43.28s 43.83s 45.82s 54.89s 85.40s 201.61s —
3 204.18s 204.88s 205.08s 207.31s 229.06s 279.29s — — —
4 — — — — — — — — —

Table 6.11: Ef optimal evaluation of a tower of interpreters (time).

addup

layers 1 3 10 30 100 300 1000 3000 10000

0 8.8MB 8.8MB 8.8MB 11.8MB 13.1MB 14.0MB 19.7MB 44.6MB 109.6MB
1 15.5MB 15.5MB 15.5MB 13.6MB 16.5MB 22.5MB 34.1MB 83.6MB 215.6MB
2 97.5MB 97.5MB 97.5MB 97.5MB 97.5MB 113.7MB 146.1MB 242.1MB —
3 318.2MB 318.2MB 318.2MB 318.2MB 350.6MB 409.6MB — — —
4 — — — — — — — — —

Table 6.12: Ef optimal evaluation of a tower of interpreters (space).

addup

layers 1 3 10 30 100 300 1000 3000 10000

0 0.04s 0.03s 0.05s 0.04s 0.05s 0.05s 0.05s 0.08s 0.25s
1 0.06s 0.10s 0.13s 0.27s 0.73s 2.02s 7.05s
2 11.98s 16.60s 33.27s — — — — — —
3 — — — — — — — — —

Table 6.13: BOHM optimal evaluation of a tower of interpreters (time).

addup

layers 1 3 10 30 100 300 1000 3000 10000

0 2.1MB 2.1MB 2.1MB 2.1MB 2.1MB 2.1MB 2.2MB 2.4MB 2.9MB
1 2.6MB 2.8MB 3.5MB 5.4MB 12.2MB 31.5MB 99.0MB
2 169.2MB 216.8MB 383.4MB — — — — — —
3 — — — — — — — — —

Table 6.14: BOHM optimal evaluation of a tower of interpreters (space).�1� b�1if1 �f 2 �g 2
�12=bif1 �f 2 �g 2

Figure 6.12: A stuck substitution.
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6.5 Optimal evaluation of towers of interpreters

It would be easy to assume that an optimal evaluator would pass the tower of

interpreters test. However neither the optimal Ef nor BOHM do.

Compared with the completely lazy Ef, both the optimal Ef and BOHM perform

badly. The optimal Ef appears to be having some specializing effect although each

additional layer slows down execution by a factor of two to three. BOHM appears

not to have any specializing effect at all.

In the case of the optimal Ef this is due to memo-tables being shared to a greater

degree than they are with the completely lazy Ef. A simple example demonstrating

the negative effect of this greater degree of sharing can be seen in Figure 6.12.

Using a completely lazy reduction order, the substitution 2 = b will be pushed

through the if before the substitution binding a value for 1 reaches the 1 in the

conditional part of the if. Using Ef’s optimal reduction order the 2 = b substitution

does not proceed until a substitution binding 1 has substituted through both the

2 = b, and the if making it possible for the if to be reduced. Reduction of either

f 2 or g 2 will then proceed. When further reduction becomes blocked on 2, the

2 = b binding substitutes through the nodes between itself and the blocked node.

Some of these nodes result from the substitution binding 1. It is the substitution of

these new nodes that causes the memo-table belonging to 2 = b to grow very large.

The problem is that the function in Figure 6.12 may be applied to any number of

values. As each of these substitute through 2 = b, new nodes beneath 2 = b are

created. The memo-table belonging to 2 = b grows larger every time the function

is applied, resulting in progressively slower execution.

EConst a = ["EConst",a]

EVar a = ["EVar",a]

EOp op arg1 arg2 = ["EOp",op,arg1,arg2]

SAssign l r = ["SAssign",l,r]

SIf c t e = ["SIf",c,t,e]

SGoto l = ["SGoto",l]

Figure 6.13: Constructor functions for embedding flowchart parse trees within Ef.
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power_prs =

[("main",

[SAssign "result" (EConst 1)

,SGoto "loop"

]

)

,("loop",

[SIf (EOp (==) (EVar "n") (EConst 0))

[]

[SAssign "result" (EOp (*) (EVar "result") (EVar "x"))

,SAssign "n" (EOp (-) (EVar "n") (EConst 1))

,SGoto "loop"

]

]

)

]

Figure 6.14: The power program written in a flowchart language.

evalProg names prog init_values = jump "main" init_values where

jump label = lookup label prog’

prog’ = map (\(label,stmts)->(label,evalStmt stmts)) prog

deref n1 = deref’ names where

deref’ (n:ns) (v:vs) = if n1==n then v else deref’ ns vs

assign n1 v1 = assign’ names where

assign’ (n:ns) (v:vs) = if n1==n then (v1:vs) else v:assign’ ns vs

evalStmt stmts@([tag,a,b,c]:rest) values =

if stmts==[] then values else

if tag=="SAssign" then

let value = evalExp b values

values’ = assign a value values

in evalStmt rest values’ else

if tag=="SGoto" then jump a values else

if tag=="SIf" then if evalExp a values

then evalStmt b values

else evalStmt c values

else "undefined"

evalExp [tag,a,b,c] values =

if tag == "EConst" then a else

if tag == "EVar" then deref a values else

if tag == "EOp" then a (evalExp b values) (evalExp c values)

else "undefined"

Figure 6.15: A flowchart interpreter written in Ef.
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ones = 1:ones

take n (l:ls) = if n==0 then [] else l:take (n-1) ls

map f = mapf where mapf x@(x1:xs) = if x==[] then [] else f x1:mapf xs

power1 n x = head (evalProg ["result","n","x"] power_prs [0,n,x])

power2 n x = head (power2’ [1,n,x]) where

power2’ [result,n,x] = if n==0

then [result,n,x] else

power2’ [x*result,n-1,x]

Figure 6.16: Power functions with and without layers of interpretation.

6.6 Specializing a flowchart interpreter

To demonstrate the completely lazy specialization of a strict interpreter, a flowchart

interpreter has been written. Unlike the programs written for Ef case and LispKit

Lisp, there is no concrete syntax for this language. Instead parse trees for the inter-

preter are constructed using the constructor functions in Figure 6.13. An example

program written for the flowchart interpreter is shown in Figure 6.14.

Figure 6.15 shows the interpreter. The function evalProg is called with the list

of names of variables used in a flowchart program, the parse tree of the flowchart

program, and a list of the initial values of the variables in the flowchart program.

Splitting the environment into separate lists of names and values is a standard trick

used to make programs more amenable to specialization [45]. The interpreter uses

the knot-tying technique to bound the number of calls to evalStmt. This ensures

that specialization dependent on the parse tree is finite. It is also necessary to ensure

that names is substituted before the knot is tied. This ensures that specialization

dependent on names is finite.

It can be verified that the interpretive layer has been eliminated in three ways:

1. Look in the heap: If the power function resulting from specialization is par-

tially applied to any number greater than 1, then the heap representation of

the new power function contains no reference to any environment variables or

parse tree constructs.

2. Modify the primitives in the Ef evaluator, in particular the equality test on

strings: After specialization no further string comparisons are performed. This

was the most useful technique when writing the flowchart interpreter. The

implications of binding names after prog in the definition of the function

evalProg (rather than before as shown) were not immediately appreciated.

Having the string comparison test print out successful comparisons made it
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m
1 2 5 10 20 50 100 200 500 1000

1 0.55s 0.52s 0.53s 0.54s 0.56s 0.65s 0.85s 1.37s 3.55s 8.75s
2 0.56s 0.56s 0.55s 0.56s 0.56s 0.66s 0.89s 1.37s 3.66s 9.37s
5 0.54s 0.51s 0.52s 0.53s 0.61s 0.70s 0.90s 1.54s 4.02s 10.20s

10 0.53s 0.58s 0.56s 0.59s 0.61s 0.81s 0.99s 1.76s 4.19s 10.34s
n 20 0.58s 0.55s 0.58s 0.61s 0.64s 0.87s 1.30s 2.26s 6.08s 14.45s

50 0.65s 0.68s 0.70s 0.78s 0.86s 1.34s 2.23s 4.05s 11.05s 24.88s
100 0.84s 0.91s 0.88s 1.04s 1.32s 2.22s 3.85s 7.41s 20.14s 44.70s
200 1.29s 1.32s 1.46s 1.74s 2.24s 4.22s 7.72s 15.40s 40.32s 88.19s
500 3.13s 3.33s 3.82s 4.71s 6.69s 12.78s 23.75s 45.97s 124.05s 265.64s

1000 7.71s 8.06s 9.41s 11.87s 16.90s 32.87s 62.65s 124.66s 337.08s —

Table 6.15: Time[ take m (map (power1 n) ones)]

m
1 2 5 10 20 50 100 200 500 1000

1 0.39s 0.39s 0.38s 0.40s 0.39s 0.48s 0.71s 1.19s 3.49s 8.57s
2 0.37s 0.36s 0.37s 0.33s 0.40s 0.50s 0.67s 1.26s 3.55s 9.04s
5 0.33s 0.37s 0.34s 0.42s 0.41s 0.57s 0.77s 1.29s 3.95s 9.89s

10 0.37s 0.39s 0.37s 0.36s 0.42s 0.56s 0.86s 1.55s 4.63s 11.31s
n 20 0.39s 0.36s 0.38s 0.47s 0.48s 0.65s 1.15s 2.12s 6.03s 14.49s

50 0.44s 0.43s 0.45s 0.55s 0.62s 1.09s 1.92s 3.72s 10.44s 24.68s
100 0.52s 0.51s 0.59s 0.75s 0.95s 1.85s 3.55s 7.36s 19.44s 43.12s
200 0.77s 0.81s 0.91s 1.23s 1.81s 3.78s 7.58s 14.98s 41.10s 89.94s
500 1.69s 1.84s 2.33s 3.28s 5.00s 10.45s 20.34s 41.55s 107.80s 263.08s

1000 4.16s 4.65s 6.27s 8.71s 13.93s 30.54s 60.62s 125.76s 341.28s —

Table 6.16: Time[ take m (map (power2 n) ones)]

quite clear that the parse tree had been specialized away, but the environment

had not.

3. Measure the reduction times: Tables 6.15 and 6.16 shows the reduction times

using the functions in Figure 6.16.

The reduction times shown in Tables 6.15 and 6.16 demonstrate that the com-

bined overheads of specializing the flowchart interpreter to the syntax tree of the

power program, and specializing the resulting power function to the desired power,

are very small. Small as they may be, the overheads are not constant. The dif-

ference between Tables 6.15 and 6.16 is shown in Table 6.17. The most striking

characteristic of this difference is the apparent volatility in the difference between

the execution times, for longer execution runs. This difference ranges approximately

between 16s and -4s. This volatility is not due to random fluctuations in the tim-

ing of experiments. Variations between repeated runs of the same experiment are

typically around 1%. The volatility is due largely to the unpredictable nature of

garbage collections. In some cases this effect results in executions of the power



6.6. SPECIALIZING A FLOWCHART INTERPRETER 155

 1
 10

 100
 1000

iter

 1  10  100  1000
layers

-5

 0

 5

 10

 15

 20

time/s

 1
 10

 100
 1000

iter

 1  10  100  1000
layers

-5

 0

 5

 10

 15

 20

time/s

Table 6.17: Time[ take m (map (power1 n) ones)] - Time[ take m (map

(power2 n) ones)]

function implemented in the interpreted flowchart language running faster than the

power function directly implemented in Ef.

A second trend is that the difference in time taken to specialize the power func-

tion to a given value varies with the value to which the power function is specialized.

The directly implemented power function can be specialized faster. This is due to

infinite unfolding. Some of the substitution nodes used in specializing the flowchart

interpreter get caught up in the infinite unfolding in the resulting power function.

These substitutions arise from applications such as evalStmt a values being re-

duced before a value for values is substituted.

A similar effect can be seen in the towers of interpreters experiments. The first

interpreter in a tower of interpreters is specialized much more quickly than the

remaining interpreters. However the effect is not cumulative.

When a solution to the infinite-unfolding problem is found, these slightly odd

artifacts will no longer appear.

It would be possible to write an interpreter in the flowchart language. However

since the knot-tying trick is not possible in programs written in the flowchart lan-

guage, the amount of specializing required would not be bounded by the size of the

parse trees being interpreted.
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6.7 BOHM examples

There is very little literature on the kinds of programs and styles of programming

that make an optimal evaluator useful. The approach to optimal evaluation pre-

sented in this thesis prompts the observation that optimal evaluation is useful when

a multi-argument function is applied to a combination of arguments and the ben-

efits of specializing the function with respect to its first argument and to its sec-

ond argument are wanted simultaneously. This occurs with expressions such as

map (\x-> map (\y-> f (x,y)) [0..]) [0..]. Although in this example the

values to which y is bound are independent of x, in general these values could

be dependent on x.

The only other existing optimal evaluator for the λ-calculus, is the Bolgna Opti-

mal Higher-order Machine (BOHM) [10, 11], discussed further in §2.11. The litera-

ture on BOHM contains the only descriptions of programs executed with an optimal

evaluator. Many of the programs used to test BOHM are based on Church numerals.

Of the four other based programs presented in the BOHM literature, (Prime, Tran-

sclos, Mergesort and Tartaglia), three are tamed by full laziness (Prime, Transclos

and Mergesort) and three are tamed by complete laziness (Prime, Mergesort and

Tartaglia). These programs are presented in §6.7.1 to §6.7.4, essentially copied, but

converted to Ef’s syntax. The reduction times, space requirements and number of

β-reductions are presented for several reduction schemes with different degrees of

sharing.

The differences in the numbers of β-reductions performed by the optimal Ef and

BOHM are partly due to the way BOHM handles top-level expressions, and partly

due to the way Ef handles primitive functions. (Ef translates expressions such

as 1+2 to (+) 1 2 and represents (+) as \x y->x+y whereas BOHM instantiates

applications of primitive functions directly in place). The number of additional β-

reductions required for Ef is bounded by the number of syntactic occurrences of

primitive functions.
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6.7.1 Prime

-- The following program computes Erathostenes’ sieve.

-- starting approximation function

constOne n = 1

-- (min g n m) is the n-th input value k of g (larger than m)

-- such that (g k)<>0

min g n m = if (g m) == 0 then min g n (m+1)

else if n == 0 then m

else min g (n-1) (m+1)

-- (minIn g n) is the n-th input value k of g such that (g k) <> 0

minIn g n = min g n 1

-- criv computes the next approximation function in

-- Erathostenes’ sieve

criv n g x =

let a = minIn g n

in if (x ‘mod‘ a) /= 0 || (x == a) then g x else 0

-- (iterate n g f) = (g n (g n-1 (g n-2 (.... (g 1 f)...))))

iterate n g f = if n == 0 then f

else g n (iterate (n-1) g f)

-- (prime n x) is 1 if x is prime w.r.t. the n first prime numbers,

-- and 0 otherwise

prime n = iterate n criv constOne

Figure 6.17: Prime numbers program.

Test Ef BOHM
Lazy Full Complete Optimal

prime 2 7 0.20s 0.21s 0.21s 0.30s 0.04s
prime 2 50 0.21s 0.18s 0.21s 0.34s 0.04s
prime 4 15 1.32s 0.23s 0.28s 1.19s 0.02s
prime 5 3500 13.38s 0.29s 0.37s 3.02s 0.04s
prime 6 20 184.74s 0.34s 0.47s 6.40s 0.06s
prime 7 49 3214.39s 0.43s 0.58s 13.22s 0.05s
prime 10 50 — 0.83s 1.32s 77.04s 0.11s

Table 6.18: Prime (time).

The Prime program is taken from Example 7.1 in [10]. The expression prime

n x evaluates to 1 if x is prime with respect to the first n prime numbers, and 0

otherwise.

To understand better how the program works, consider the expression prime

3 x. This expression can be reduced to criv 3 (criv 2 (criv 1 constOne)) x.
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Test Ef BOHM
Lazy Full Complete Optimal

prime 2 7 274 172 59 59 28
prime 2 50 275 173 59 59 28
prime 4 15 12191 701 82 82 49
prime 5 3500 146855 1287 96 96 63
prime 6 20 2076167 2125 112 112 79
prime 7 49 37370515 3319 132 132 99
prime 10 50 — 9619 212 212 179

Table 6.19: Prime (beta).

Test Ef BOHM
Lazy Full Complete Optimal

prime 2 7 8.6MB 8.6MB 11.6MB 11.7MB 2.1MB
prime 2 50 8.6MB 8.6MB 11.6MB 11.7MB 2.1MB
prime 4 15 12.4MB 11.3MB 11.6MB 16.0MB 2.1MB
prime 5 3500 18.3MB 11.3MB 11.6MB 18.6MB 2.2MB
prime 6 20 21.1MB 11.3MB 13.0MB 23.5MB 2.3MB
prime 7 49 31.0MB 11.3MB 13.0MB 39.1MB 2.4MB
prime 10 50 — 11.8MB 15.2MB 147.1MB 2.8MB

Table 6.20: Prime (space).

The function criv, computes the nth approximation of Erathostenes’ sieve from the

n-1th approximation.

The function starting the approximation, constOne, is so approximate it consid-

ers all numbers to be prime. The function computed by criv 1 constOne deter-

mines whether its next argument is divisible by two, and if not, whether it satisfies

constOne. Each successive approximation considers whether its argument is divisi-

ble by the nth prime number and if not whether it satisfies the n-1th approximation.

The reason lazy evaluation has such a hard time evaluating this program is

because of the definition of criv. If the definition is changed to:

criv n g =

let a = minIn g n in

\x->

if (x ‘mod‘ a) /= 0 || (x == a) then g x else 0

Then lazy evaluation is able to proceed unhindered.

This small change to the program makes it possible for the function criv to

compute the nth prime number once before x is bound to a value rather than many

times after x has been bound to a value. This change is automatically achieved by

a full laziness transformation. Complete laziness manages to perform the reduction

of a before x is bound.
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6.7.2 Transclos

-- This file contains an example of function for computing the

-- transitive closure of a graph based on Roy-Warshall algorithm.

-- Nodes are supposed to be integers, and the graph is represented

-- by the characteristic function f of its edges, i.e. f(n,m) = 1

-- iff there is an edge from n to m (and 0 otherwise).

-- (iterate n g f) = (g n (g n-1 (g n-2 (... (g 1 f)))))

iterate n g f = if n == 0 then f

else g n (iterate (n-1) g f)

-- Roy-Warshall’s function phi

phi n g a b = let ga = g a

in if ga n == 1 && g n b == 1 then 1

else ga b

-- transitive closure of a graph with n nodes

tranclos n = iterate n phi

-- the following function represents a graph where each node n

-- is connected to its predecessor

g n m = if n == m+1 then 1 else 0

Figure 6.18: Transclos.

The Transclos program is taken from Example 7.2 in [10]. The expression

transclos 5 g 3 2 can be reduced to

phi 5 (phi 4 (phi 3 (phi 2 (phi 1 g)))) 3 2.

The function g represents the directed graph where each node n is connected to node

n-1. The function computed by phi n ( ... (phi 1 g) ... ) represents the

directed graph where nodes are connected if they are connected either directly or

via any of the nodes n..1 in graph g. For a graph g with n nodes in, transclos n

g computes the transitive closure.

The key to making the program amenable to lazy evaluation is to change the

Test Ef BOHM
Lazy Full Complete Optimal

transclos 5 g 3 2 0.24s 0.22s 0.28s 0.30s 0.01s
transclos 5 g 5 4 0.25s 0.23s 0.27s 0.40s 0.05s
transclos 10 g 2 6 1.59s 0.22s 5.59 0.55s 0.03s
transclos 15 g 5 10 63.79s 0.29s — 1.36s 0.05s
transclos 18 g 17 18 549.89s 0.71s — 2.95s 0.06s
transclos 20 g 5 15 1985.42s 0.35s — 2.51s 0.05s
transclos 20 g 20 1 1622.47s 0.72s — 4.07s 0.05s

Table 6.21: Tranclos (time).
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Test Ef BOHM
Lazy Full Complete Optimal

transclos 5 g 3 2 917 315 144 61 39
transclos 5 g 5 4 1067 434 154 65 43
transclos 10 g 2 6 23161 615 2639 84 62
transclos 15 g 5 10 1030325 1849 — 115 93
transclos 18 g 17 28 8912661 7671 — 154 132
transclos 20 g 5 15 32964849 2744 — 140 118
transclos 20 g 20 1 26738863 9363 — 170 148

Table 6.22: Tranclos (beta).

definition of phi:

phi n g a =

let ga = g a

gan1 = ga n==1

in

\b->

if gan1 && g n b == 1 then 1 else ga b

This change ensures that evaluation of ga n==1 is shared across multiple bindings

of b. Full laziness achieves this transformation automatically. It is interesting to

note that this example demonstrates complete laziness achieving a less effective

degree of sharing than full laziness.

When evaluating the transclos program with a completely lazy evaluator, the

expression ga n==1 is substituted by bindings for n, g and a and reduced as far as

possible before bindings for b are substituted. However this doesn’t enable ga n==1

to be fully reduced before various bindings for b are substituted. The reason for this

is that the variable a is bound to a variable, and this variable is only bound after

various bindings for b have duplicated the expression ga n==1.

Test Ef BOHM
Lazy Full Complete Optimal

transclos 5 g 3 2 8.6MB 8.6MB 11.6MB 11.6MB 2.1MB
transclos 5 g 5 4 8.6MB 8.6MB 11.6MB 12.6MB 2.1MB
transclos 10 g 2 6 11.8MB 11.3MB 22.9MB 12.6MB 2.1MB
transclos 15 g 5 10 20.0MB 11.4MB — 16.5MB 2.2MB
transclos 18 g 17 18 20.5MB 11.8MB — 17.5MB 2.3MB
transclos 20 g 5 15 21.1MB 11.4MB — 17.8MB 2.2MB
transclos 20 g 20 1 20.9MB 11.8MB — 22.5MB 2.3MB

Table 6.23: Tranclos (space).
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6.7.3 Mergesort

-- This file contains a mergesort algorithm operating over arrays

-- of integers represented as functions, i.e. a[i] = a(i).

-- merge of two "arrays"

merge f1 f2 i =

let f11 = f1 1; f21 = f2 1

in if f11 < f21

then if i == 1 then f11 else merge (\x->f1 (x+1)) f2 (i-1)

else if i == 1 then f21 else merge f1 (\x->f2 (x+1)) (i-1)

-- mergesort

mergesort f m n =

if m == n then (\x->if x == 1 then f m else 10000)

else let half = (m+n) ‘div‘ 2

f1 = mergesort f m half

f2 = mergesort f (half+1) n

in merge f1 f2

-- examples of "arrays". In all examples, integers are

-- initially presented in reverse order.

n20 x = 21-x; n40 x = 41-x; n50 x = 51-x; n60 x = 61-x; n70 x = 71-x

test1 = mergesort n20 1 20 10; test2 = mergesort n20 1 20 20

test3 = mergesort n40 1 40 15; test4 = mergesort n40 1 40 30

test5 = mergesort n40 1 40 40; test6 = mergesort n50 1 50 25

test7 = mergesort n50 1 50 40; test8 = mergesort n50 1 50 50

test9 = mergesort n60 1 60 60

Figure 6.19: Mergesort.

Test Ef BOHM
Lazy Full Complete Optimal

test1 4.30s 0.59s 0.85s 5.17s 0.07s
test2 20.46s 0.83s 1.35s 11.49s 0.10s
test3 51.77s 0.94s 1.62s 13.34s 0.13s
test4 357.70s 1.66s 3.11s 32.28s 0.20s
test5 698.62s 2.29s 4.59s 55.69s 0.31s
test6 440.01s 1.64s 3.14s 32.48s 0.19s
test7 1431.91s 2.48s 4.84s 61.13s 0.29s
test8 2402.23s 3.29s 6.52s 92.05s 0.44s
test9 — 4.53s 9.16s 153.75s 0.51s

Table 6.24: Mergesort (time).

The mergesort example is taken from Example 7.3 of [10]. The function

mergesort takes as arguments an array to sort, and two indices into the array

indicating the region to be sorted. Arrays are represented by functions taking an

array index as their argument and evaluating to the contents of the array. When
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Test Ef BOHM
Lazy Full Complete Optimal

test1 48082 3297 228 167 131
test2 241104 7399 392 207 171
test3 632291 7607 391 263 227
test4 4447842 17585 709 333 297
test5 8579516 26382 1016 377 341
test6 5488237 16540 661 349 313
test7 17878176 28543 1040 421 385
test8 29967694 39856 1416 465 429
test9 — 56175 1866 559 523

Table 6.25: Mergesort (beta).

Test Ef BOHM
Lazy Full Complete Optimal

test1 15.1MB 12.0MB 14.5MB 22.7MB 2.5MB
test2 19.6MB 13.4MB 15.9MB 37.9MB 2.9MB
test3 19.7MB 13.6MB 16.9MB 35.8MB 2.9MB
test4 19.7MB 14.6MB 18.0MB 68.5MB 3.9MB
test5 19.7MB 15.6MB 21.3MB 111.1MB 5.0MB
test6 20.5MB 14.8MB 18.0MB 70.5MB 3.8MB
test7 20.5MB 16.0MB 21.2MB 115.5MB 5.1MB
test8 21.7MB 16.0MB 21.2MB 151.8MB 6.4MB
test9 — 17.7MB 27.3MB 239.1MB 8.2MB

Table 6.26: Mergesort (space).

mergesort is applied to four arguments, the first three are arguments to mergesort

and the fourth is an argument to the array computed by mergesort.

The key to making the mergesort program amenable to lazy evaluation is to

change the merge function:

merge f1 f2 =

let f11 = f1 1; f21 = f2 1

merge1 = merge (\x->f1 (x+1)) f2

merge2 = merge f1 (\x->f2 (x+1))

in \i-> if f11 < f21

then if i == 1 then f11 else merge1 (i-1)

else if i == 1 then f21 else merge2 (i-1)

This change is performed automatically by a full laziness transformation. With-

out this change, the arrays computed by merge are recomputed every time they are

indexed.

Complete laziness achieves the same effect by reducing the expressions that are

computationally independent of i before a binding of i is substituted though the

body of merge.
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6.7.4 Tartaglia

-- row 0

init x = if x == 1 then 1 else 0

-- the function "eval" evaluates an input function f in the interval 0-n

eval f x = eval’

where eval’ n = if n == 0 then 0

else if x == n then (f n)

else (eval’ (n-1))

-- next row in tartaglia’s triangle

next f x = f (x-1) + f x

-- tartaglia m n gives the n-th element in the m-th row of

-- tartaglia’s triangle

tartaglia m =

if m == 0 then init

else \x->eval (next (tartaglia (m-1))) x (m+1)

Figure 6.20: Tartaglia.

Test Ef BOHM
Lazy Full Complete Optimal

tartaglia 9 5 1.57s 1.13s 0.35s 1.59s 0.05s
tartaglia 13 7 19.72s 13.37s 0.47s 4.15s 0.04s
tartaglia 17 9 276.88s 189.33s 0.62s 8.18s 0.09s
tartaglia 20 10 1983.01s 1378.92s 0.79s 13.39s 0.12s
tartaglia 23 12 — — 1.00s 19.17s 0.14s
tartaglia 35 18 — — 2.53s 70.20s 0.40s
tartaglia 40 20 — — 3.66s 112.13s 0.58s

Table 6.27: Tartaglia (time).

Test Ef BOHM
Lazy Full Complete Optimal

tartaglia 9 15 21072 16332 102 57 27
tartaglia 13 7 302603 233853 156 65 35
tartaglia 17 9 4414984 3415848 226 73 43
tartaglia 20 10 32164160 25040982 288 79 49
tartaglia 23 12 — — 361 85 55
tartaglia 35 18 — — 739 109 79
tartaglia 40 20 — — 938 119 89

Table 6.28: Tartaglia (beta).

The Tartaglia example is taken from Example 7.4 in [10]. The expression

tartaglia m x computes the xth element on the mth row of Tartaglia’s triangle

[76] also known as Pascal’s triangle [66] and Yang Hui’s triangle [83].
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Test Ef BOHM
Lazy Full Complete Optimal

tartaglia 9 5 11.8MB 11.9MB 11.6MB 15.3MB 2.2MB
tartaglia 13 7 16.7MB 15.2MB 12.3MB 20.2MB 2.3MB
tartaglia 17 9 20.0MB 20.1MB 12.3MB 24.4MB 2.5MB
tartaglia 20 10 20.8MB 19.9MB 14.1MB 29.9MB 2.8MB
tartaglia 23 12 — — 14.1MB 38.1MB 3.0MB
tartaglia 35 18 — — 15.9MB 107.2MB 4.8MB
tartaglia 40 20 — — 16.6MB 157.3MB 6.1MB

Table 6.29: Tartaglia (space).

The eval function in the Tartaglia program performs a form of memoization

when evaluated with a completely lazy evaluator. It takes a function f, an argument,

x, and an upper limit, n, on the domain of f. To compute its result, eval creates a

chain of conditionals comparing the value of x with numbers from n downto 0, when

a match is found f is computed with that found value.

The definition of eval contains if x==n then f n else ... . The use of f n

instead of f x is crucial! Although the variable x is bound before n in the definition

of eval, in the location where eval is called, a value for n is bound while x is

bound to the \x-> in the definition of tartaglia. It is beneath this \x-> that the

memoizing chain of conditionals will be built. As lazy and fully lazy evaluators do

not perform reductions under λ’s, they are not able to perform memoization in this

way.

To enable lazy and fully lazy evaluation to benefit from the same memoization,

eval can be rewritten (somewhat more simply):

eval f =

let table=map f (from 0)

in \x n-> if x==0 || x>n then 0 else table!!x

Where from, !!, and map are defined in the usual way:

from n = n:from (n+1)

(l1:ls) !! n = if n==0 then l1 else ls!!(n-1)

map f x@(x1:xs) = if x==[] then [] else f x1:map f xs
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6.7.5 Church numerals

I x = x

zero f x = x

one f x = f x

two f x = f(f x)

three f x = f(f(f x))

...

succ n x y = x (n x y)

add m n x y = m x (n x y)

mult n m x = n (m x)

pair x y z = z x y

fst x y = x

snd x y = y

nextfact p = let n1 = p fst

n2 = succ (p snd)

in pair (mult n1 n2) n2

fact n = n nextfact (pair one zero) fst

nextfibo p = let n1 = p fst

n2 = p snd

in pair (add n1 n2) n1

fibo n = n nextfibo (pair zero one) fst

Figure 6.21: Church numeral programs.

Test Ef BOHM
Lazy Full Complete Optimal

f one 0.43s 0.42s 0.43s 0.46s 0.05s
f two 0.42s 0.40s 0.45s 0.45s 0.04s
f three 0.41s 0.44s 0.45s 0.40s 0.04s
f four 3.68s 3.76s 32.38s 0.46s 0.05s
f five — — — 0.46s 0.06s
f six — — — 0.54s 0.05s
f seven — — — 0.55s 0.07s
f eight — — — 0.65s 0.07s
f nine — — — 1.02s 0.18s
f ten — — — 1.82s 0.63s
f eleven — — — 3.63s 2.39s
f twelve — — — 7.35s 10.39s
f thirteen — — — 15.86s 47.55s
f fourteen — — — 35.46s 228.50s
f fifteen — — — 77.21s 984.82s

Table 6.30: f x = x two two I I (time).
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Test Ef BOHM
Lazy Full Complete Optimal

f one 16 16 16 14 14
f two 45 45 37 19 19
f three 534 534 292 24 24
f four 131111 131111 65599 29 29
f five — — — 34 34
f six — — — 39 39
f seven — — — 44 44
f eight — — — 49 49
f nine — — — 54 54
f ten — — — 59 59
f eleven — — — 64 64
f twelve — — — 69 69
f thriteen — — — 74 74
f fourteen — — — 79 79
f fifteen — — — 84 84

Table 6.31: f x = x two two I I (beta).

Test Ef BOHM
Lazy Full Complete Optimal

f one 11.3MB 11.4MB 11.6MB 11.6MB 2.2MB
f two 11.3MB 11.4MB 11.6MB 11.6MB 2.2MB
f three 11.3MB 11.4MB 11.6MB 11.6MB 2.2MB
f four 13.5MB 13.5MB 47.2MB 11.6MB 2.2MB
f five — — — 11.6MB 2.2MB
f six — — — 11.6MB 2.2MB
f seven — — — 12.1MB 2.2MB
f eight — — — 12.1MB 2.2MB
f nine — — — 13.4MB 2.2MB
f ten — — — 14.6MB 2.3MB
f eleven — — — 18.4MB 2.4MB
f twelve — — — 23.5MB 2.6MB
f thirteen — — — 35.3MB 3.0MB
f fourteen — — — 62.1MB 3.9MB
f fifteen — — — 114.6MB 5.6MB

Table 6.32: f x = x two two I I (space).

Test Ef BOHM
Lazy Full Complete Optimal

f one 0.40s 0.43s 0.43s 0.41s 0.03s
f two 0.40s 0.42s 0.44s 0.48s 0.04s
f three — — — 0.49s 0.04s
f four — — — 0.85s 0.20s
f five — — — 10.91s 44.59s
f six — — — 266.57s —

Table 6.33: f x = x x x I I (time).
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Test Ef BOHM
Lazy Full Complete Optimal

f one 10 10 10 10 10
f two 45 45 37 19 19
f three — — — 40 40
f four — — — 79 79
f five — — — 142 142
f six — — — 235 —

Table 6.34: f x = x x x I I (beta).

Test Ef BOHM
Lazy Full Complete Optimal

f one 11.3MB 11.4MB 11.6MB 11.6MB 2.2MB
f two 11.3MB 11.4MB 11.6MB 11.6MB 2.2MB
f three — — — 11.6MB 2.2MB
f four — — — 13.2MB 2.3MB
f five — — — 26.7MB 3.7MB
f six — — — 260.7MB —

Table 6.35: f x = x x x I I (space).

Test Ef BOHM
Lazy Full Complete Optimal

fact one I I 0.39s 0.46s 0.39s 0.41s 0.05s
fact three I I 0.41s 0.42s 0.44s 0.46s 0.06s
fact five I I 0.45s 0.45s 0.47s 0.47s 0.03s
fact seven I I 1.14s 0.73s 3.62s 0.51s 0.07s
fact nine I I 60.70s 23.46s — 0.59s 0.04s
fact ten I I 607.02s 239.11s — 0.67s 0.05s
fact twenty I I — — — 2.03s 0.09s

Table 6.36: Factorials (time).

Test Ef BOHM
Lazy Full Complete Optimal

fact one I I 28 28 28 28 30
fact three I I 80 77 64 53 55
fact five I I 540 402 292 82 84
fact seven I I 17848 11963 7756 115 117
fact nine I I 1227476 818408 — 152 154
fact ten I I 12113890 8076032 — 172 174
fact twenty I I — — — 427 429

Table 6.37: Factorials (beta).

Test Ef BOHM
Lazy Full Complete Optimal

fact one I I 11.3MB 11.4MB 11.6MB 11.6MB 2.2MB
fact three I I 11.3MB 11.4MB 11.6MB 11.6MB 2.2MB
fact five I I 11.3MB 11.4MB 11.6MB 11.6MB 2.2MB
fact seven I I 11.6MB 11.8MB 16.7MB 12.0MB 2.2MB
fact nine I I 28.4MB 34.1MB — 12.1MB 2.2MB
fact ten I I 137.8MB 107.6MB — 12.1MB 2.2MB
fact twenty I I — — — 15.8MB 2.2MB

Table 6.38: Factorials (space).
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Test Ef BOHM
Lazy Full Complete Optimal

fibo one I I 0.37s 0.38s 0.36s 0.34s 0.05s
fibo four I I 0.37s 0.34s 0.37s 0.38s 0.04s
fibo seven I I 0.37s 0.41s 0.40s 0.44s 0.03s
fibo ten I I 0.40s 0.40s 0.54s 0.60s 0.04s
fibo thirteen I I 0.50s 0.50s 1.11s 1.57s 0.06s
fibo sixteen I I 0.92s 0.83s 4.57s 7.30s 0.13s
fibo nineteen I I 2.61s 2.56s 22.73s 37.46s 0.40s

Table 6.39: Fibonacci (time).

Test Ef BOHM
Lazy Full Complete Optimal

s β

fibo one I I 26 26 26 26 28
fibo four I I 85 85 71 61 63
fibo seven I I 232 232 166 104 106
fibo ten I I 747 747 461 179 181
fibo thirteen I I 2822 2822 1604 390 392
fibo sixteen I I 11505 11505 6339 1177 1179
fibo nineteen I I 48180 48180 26290 4404 4406

Table 6.40: Fibonacci (beta).

Test Ef BOHM
Lazy Full Complete Optimal

fibo one I I 11.5MB 11.3MB 11.5MB 11.5MB 2.2MB
fibo four I I 11.5MB 11.3MB 11.5MB 11.5MB 2.2MB
fibo seven I I 11.5MB 11.3MB 11.5MB 11.5MB 2.2MB
fibo ten I I 11.5MB 11.3MB 12.0MB 12.1MB 2.2MB
fibo thirteen I I 11.5MB 11.8MB 14.2MB 15.8MB 2.2MB
fibo sixteen I I 11.8MB 12.4MB 18.8MB 24.0MB 2.4MB
fibo nineteen I I 13.0MB 15.8MB 49.3MB 72.6MB 3.3MB

Table 6.41: Fibonacci (space).
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The Church numeral experiments are taken from §9.5 of [10]. The Church nu-

meral representation of a number n is a function which applies its first argument

n-times to its second argument. Examples are shown in Figure 6.21. By supply-

ing inc and 0 as the arguments (where inc is \x->x+1), it is possible to convert

a Church numeral into the number it represents. The time taken to perform this

conversion is proportional to the number represented.

In the examples shown the arguments used to force the evaluation of the Church

numerals are I I. For lazy and fully lazy evaluation, the use of inc 0 or I I makes

little difference. For optimal evaluation however, the ability to reduce x I to I,

where x is a Church numeral, makes all the difference.

If the Church numerals n and m represent the numbers n and m, then the function

computed by n m represents the number mn . The number represented by the Church

numerals computed by x x x, is x xx

. Thus the numbers represented by the Church

numerals computed in Figure 6.33 are: 1, 16, 19683, 4.29 × 109, 2.98 × 1017 and

1.03× 1028.

To understand why optimal evaluation has such an advantage over lazy, fully

lazy and completely lazy reduction orders, it is useful to consider the normal-order

reduction of two two I I.

0: (\f x->f(f x))(\f x->f(f x))(\y->y)(\y->y)

1: (\x f->\x->f(f x))((\f x->f(f x))x))(\y->y)(\y->y)

2: (\f x->f(f x))((\f x->f(f x))(\y->y))(\y->y)

3: (\x->(\f x->f(f x))(\y->y)((\f x->f(f x))(\y->y)x))(\y->y)

4: (\f x->f(f x))(\y->y)((\f x->f(f x))(\y->y)(\y->y))

5: (\x y->y)((\y->y)x))((\f x->f(f x))(\y->y)(\y->y))

6: (\y->y)((\y->y)((\f x->f(f x))(\y->y)(\y->y)))

7: (\y->y)((\f x->f(f x))(\y->y)(\y->y))

8: (\f x->f(f x))(\y->y)(\y->y)

9: (\x->(\y->y)((\y->y)x))(\y->y)

10: (\y->y)((\y->y)(\y->y))

11: (\y->y)(\y->y)

12: \y->y

This can be viewed more concisely as:

0: two two I I

2: two (two I) I

4: two I (two I I)

6: I (I (two I I))

7: I (two I I)

8: two I I

10: I (I I)

11: I I

12: I
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This normal-order evaluation takes 12 β-reductions, a lazy evaluator takes 11, as

the application of two I in β-reduction 5 and 9 is shared. This application results in

(\x->I(I x)). Clearly there would be benefit in performing the I applications in-

place under the \x->. Optimal evaluation achieves this and saves two β-reductions

as the I’s are reduced once before (\x->I(I x)) is applied and not twice afterward.

Completely lazy evaluation however does not achieve this sharing. The reason for

this is that the application two I is never formed in the completely lazy evaluation.

The problem is that completely lazy evaluation specializes the first two to the second

two resulting in four, preventing the application two I ever coming into existence.

The reductions performed by completely lazily evaluating two two are:

0: (\f x->f(f x))(\g y->g(g y))

1: \x->(\g y->g(g y))((\g y->g(g y))x)

2: \x->(\g y->g(g y))(\y->x(x y))

3: \x y->(\y->x(x y))((\y->x(x y))y)

4: \x y->(\y->x(x y))(x(x y))

5: \x y->x(x(x(x y)))

To avoid showing the complicated sharing mechanisms, which for the present

discussion would not help, the reductions above are not shown in the order the

completely lazy evaluator performs them. The order shown above is the order in

which an evaluator with the impossible foresight to know which arguments and which

redexes in a function body can be reduced without performing unneeded reductions.

The important factor here is which reductions are performed, not the order.

In the reduction of two two I I, reducing two two to four does not save any

work, as this function is only used once. In the evaluation of two two two I I how-

ever terms such as two two are applied more than once and so are worth specializing.

There is a conflict between specializing two two, and leaving it unspecialized so as

to specialize two I later. The benefits from specializing two two are small com-

pared to specializing two I. To reduce terms of the form x x x I I (where x is a

Church numeral) effectively, nothing as complex as optimal evaluation is required.

Just ensuring the reduction of x I to I is the only specializing reduction performed

is sufficient.

In the Fibonacci example, the optimal evaluators have no great advantage over

the other reduction orders. The reason for this can be seen in the way in which

the Church numerals are combined. In the other examples the Church numeral

operations have been exponentiation and multiplication. For both these operations

multiple copies of Church numerals are made. However in the Fibonacci example
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the only operation performed on Church numerals is addition. Inspection of the

definition of add reveals that it does not make multiple copies of its arguments, so

there is little sharing for an optimal evaluator to exploit.

6.8 Summary

The experiments presented in this chapter were chosen firstly to demonstrate the

unique capabilities of a completely lazy evaluator, and secondly to demonstrate the

apparent correctness of the optimal implementation of Ef.

The experiments chosen to test the optimal implementation of Ef include all the

experiments previously used to demonstrate the power of BOHM. Analysis of these

experiments and further testing of these experiments with fully lazy and completely

lazy evaluators reveal how little is understood about the potential uses of an optimal

evaluator.

This chapter has demonstrated how the completely lazy Ef can eliminate lay-

ers of interpretation, both for functional layers and imperative layers. It has been

demonstrated that the optimal Ef reduces terms in essentially the same number of

β-reductions as BOHM. A contribution to the understanding of when an optimal

evaluator might be useful has been made by demonstrating that current implemen-

tations do not eliminate layers of interpretation.

Complete laziness has some interesting properties. It has never been this easy

to eliminate layers of interpretation before. It also has some serious drawbacks, as

absolutely everything is specialized. In partial evaluation the decision of what to

specialize and what to residualize is crucial; if too much is specialized the partial

evaluator may not terminate, if too little is specialized; there may not be much

improvement in the specialized program. By performing the specialization only

when needed, the specialize-residualize decision is changed from a semantic decision

to an operational decision. However always choosing to specialize is not sensible

operationally. For any long-running program, in which recursive function calls are

used a lot, the memo-tables will grow very large, and execution painfully slow.
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Chapter 7

Conclusions

The lambda calculus supports many possible reduction strategies but does not han-

dle sharing and cycles. Functional language implementations handle sharing and

cycles but only support top-level reduction strategies. The novel results in this

thesis bridge the gap between the lambda calculus and functional language im-

plementation techniques more elegantly than has been done before. However the

research was originally intended to take place very much on the language implemen-

tation side. The earliest version of Ef with specializing capabilities was based on the

G-machine [41]. This implementation was unable to pass the tower of interpreters

test. As subsequent layers of functional language implementation refinement were

undone, the implementation looked increasingly like a simple lambda-calculus in-

terpreter. It was only when the implementation reached its current state that the

tower of interpreters test was passed. How the removed layers of functional language

implementation refinement can best be re-applied remains to be seen.

7.1 Review of contributions

Chapter 2: Background

• The identification of a difference between static full laziness and dynamic full

laziness is original

This seems like a subtle point, however its discovery was a real break-through for

the author. Many late-night hours were spent trying to witness the ‘remarkable self-

optimizing properties’ of Turner’s combinators in a dynamic setting, before it was

realized that Turner’s combinators did not achieve full-laziness via some dynamic
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properties, but via the static optimization rules Turner applied.

Chapter 3: Degrees of Sharing

• The use of depth to delimit the scope of a function is original.

The importance of this crucial break-through was unfortunately discovered at

a very late stage of the research. This scheme was originally envisaged as a minor

optimization to aid in implementing dynamic full laziness. Although identifying

scope dynamically within a lambda graph has been done before [3], assigning natural

numbers to the scopes so as to manipulate substitutions is original.

• The identification of a partial ordering between some degrees of sharing is

original.

This discovery was also a major break-through. Many months were spent mistak-

enly thinking complete-laziness should subsume full-laziness and maintain dynamic

full-laziness. Only when this expectation of complete-laziness was dropped was the

tower of interpreters test passed.

• The classification of reduction strategies in terms of: substitute-by-name,

substitute-by-value and substitute-by-need is original. Their analogy to, and

orthogonality with, call-by-name, call-by-value and call-by-need is original.

This classification helps put the results in context. Although numerous ugly

implementation attempts were made to solve the tower of interpreters test, it is

pleasing to see that the successful technique can retrospectively be explained with

reference to this function body reduction strategy classification.

• The use of memo-tables to achieve call-by-need and substitute-by-need is orig-

inal.

The use of memo-tables was rejected at a very early stage in the research. Memo-

tables are simple to understand, but they are not a pleasing way to achieve call-by-

need and substitute-by-need. More than a year was spent trying to find something

more elegant than memo-tables. Trying to devise a scheme which passes the tower

of interpreters test without incurring some other overhead such as the infinitely

growing memo-tables, feels like trying to stamp out all the bumps in a badly fitting

carpet. Perhaps there is some fundamental limitation here, or perhaps some major

break-through still remains to be found.
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• Explaining optimal evaluation in terms of the simultaneous specialization of a

function to multiple arguments is original.

This thesis has not attempted to find a use for optimal evaluators. The ob-

servation that optimal evaluators may be useful for simultaneous specializing of a

function to multiple arguments remains to be explored further.

• The generalization of a completely lazy evaluator to an optimal evaluator is

original.

This result was achieved more by accident than design, the intention was to find

a convincing argument to explain why complete laziness could not be generalized to

optimal evaluation.

The correctness of the implementation is unclear. The mechanism used to test

if two substitutions can swap may be too crude to cope with the full generality of

cyclic terms. The results chapter demonstrates that the implementation produces

the correct results in the expected number of beta reductions. The test programs

used contain cycles, and no programs are known for which the implementation fails.

Chapter 4: Reduction Rules

• The notation used to represent graphs with memo-tables in a term-like fashion

is original.

Existing notations fail to suitably capture sharing. This new notation may prove

to have some lasting significance.

• The reduction rules for complete laziness and optimal evaluation are original.

These reduction rules help demonstrate the utility of the new notation, and make

precise the reduction techniques explained in the previous chapter.

Chapter 5: Implementation

• The implementation of full laziness by graph transformation is original.

Dynamic full laziness was originally thought important in passing the tower

of interpreters test. However as this has since proved not the be the case, the

implementation of full laziness by graph transformation has no great significance.
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• The implementation of complete laziness is the first ever.

The conciseness of the implementation helps convey how elegant the underlying

ideas are.

• The implementation of optimal evaluation with memo-tables is original.

The optimal implementation of Ef is relatively concise. However questions about

its correctness still remain.

Chapter 6: Results

• The first ever evaluator to pass the tower of interpreters test is demonstrated.

The solid experimental evidence makes it clear the tower of interpreters test has

been passed. The overhead is indeed additive and not multiplicative. However there

is much scope for significantly reducing this additive overhead.

• Examples demonstrate that interpreters used in a tower of interpreters may

introduce additional features and the interpretive overhead is still eliminated.

The results are not just an experimental artifact but do indeed work for many

language implementations.

• Existing implementations of optimal evaluators are shown to not pass the tower

of interpreters test.

This result was a surprise. The author had assumed an optimal evaluator would

pass the tower of interpreters test, and that the potential benefit of an evaluator with

a lesser degree of sharing would be in the opportunities for various constant-factor

compiler optimizations.

• The specializing effect of complete laziness is shown to be inheritable by an

imperative language as well as functional languages.

This result helps demonstrate the wider applicability of the lazy specialization

technique. Whether it would be possible to add some language construct to the

imperative language such as an explicit memo-table construct so as to enable suitable

knot-tying interpreters written in the imperative language to be specialized away is

still an open question.
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• Numerous test programs are executed with lazy, fully lazy, completely lazy and

optimal evaluators, and the results analysed.

These experiments have demonstrated how little is known about what optimal

evaluators might be useful for. It is not the aim of this thesis to advocate the use

of optimal evaluation.

7.2 Evaluation

The aim of this research was to contribute to functional language implementation

techniques. However the techniques developed currently are not suitable for gen-

eral use. In retrospect it is clear that the theoretical underpinnings of language

implementations were lacking. This research will help provide those underpinnings.

7.3 Future work

Annotations

The most promising direction for future research is the investigation of annotation

schemes to control which reductions under lambdas are performed. The annota-

tions used by partial evaluators are not suitable as these annotations cannot be

inherited from the specializing language to the language being interpreted. The

author has recently accidentally discovered that well placed seq function applica-

tions can dramatically alleviate the overhead of memo-tables. Ideally it should be

possible to avoid using memo-tables at all. Perhaps some form of strictness annota-

tion on function bodies could be used to good effect. Just as strictness annotations

give the programmer the freedom to choose between call-by-need and call-by-value,

some variant on strictness annotations could be used to enable the programmer to

choose between substitute-by-name and substitute-by-value on different parts of a

function body. Beyond annotations, it may be fruitful to explore how far binding

time analysis can be automated.

Types

Writing an interpreter in a typed language typically results in an explicit universal

type representation. This will introduce a multiplicative overhead if the specializa-
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tion techniques presented in this thesis are used. Perhaps Hughes’ type specialization

[40] or dependent types [16] can come to the rescue.

Efficient complete laziness

Whether it will ever be possible to implement a completely lazy evaluator able to

pass the tower of interpreters test and not have undesirable slow-down inefficiencies

such as those seen when using memo-tables is an open question. Implementing a

completely-lazy evaluator has been useful in exploring one end of a spectrum of

implementation possibilities between never specializing function bodies and always

specializing function bodies. It would be appealing to have an evaluator able to

pass the tower of interpreters test and still be no more than a constant factor slower

than conventional evaluators. From this starting point programmers could consider

use the of residualize annotations as purely a constant-factor speed-up issue. The

author suspects that such a goal may be impossible, and that programmers will still

start from the other end of the spectrum and add specialize annotations to achieve

speed-ups exponential in the number of layers of interpretation.

Optimal evaluation

This thesis has not tried to justify the use of an optimal evaluator. However some

interesting questions have been raised. Is it possible for an optimal evaluator to pass

the tower of interpreters test? Is it possible to do this without being more than a

constant factor slower than a conventional evaluator? Achieving this would clearly

surpass achieving efficient complete laziness, it is not even clear efficient complete

laziness is achievable. There may be some benefit to exploring the sort of programs

optimal evaluators are good for. The programs which have previously been used to

demonstrate the abilities of optimal evaluators did not provide evidence that there

was a use for optimal evaluators. Perhaps exploring the issue of specializing a func-

tion along multiple dimensions will produce examples demonstrating the potential

use for an optimal evaluator.

7.4 Final remark

The author is confident that the results in this thesis will contribute to a usable lazily

specializing language. However until such an implementation has been achieved the
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promise of the results in this thesis remain unproven. Only time will tell how

significant the results prove to be.
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