IX4INOOD

MKII

MKIV

IX4INOOD

Contents

Introduction

VI

Vil

VIl

Xl

X

XII

\%

XV

XVI

XVII

XVIII

XIX

XX

XXI

XXII

From Mkl to MkIV

How Lua fits in
Initialization revised

An example: CalcMath
Going uTrF

Afresh look at fonts
Token speak

How about performance
Nodes and attributes
Dirty tricks

Going beta

Zapfing fonts

Arabic

Colors redone

Chinese, Japanese and Korean, aka CJK
Optimization

XML revisioned

Breaking apart
Collecting garbage

Nice to know

The luafication of TeX and CONTEXT

The MetaPost Library

19
23
27
31
47

57

75
79
37
99

107
17

125
131

145

XXII

XXIV

XXV

XXVI

XXVII

XXVIII

XXIX

XXX

XXXI

XXXII

XXX

XXXIV

XXXV

The LualpX Mix

How to convince Don and Hermann to use LUATEX
OPENTYPE: too open?
It works!

Virtual Reality
Everything structure
Tracking

The order of things
Unicode math

User code

Just plain

Halfway

Where do we stand

197
215
223
229
233
237
245

261
269
289
293
299

307

Introduction

In this document | will keep track of the transition of CONTEXT from Mkll to MklV, the latter
being the Lua aware version.

The development of LUATEX started with a few email exchanges between me and Hartmut
Henkel. 1 had played a bit with Lua in ScITE and somehow felt that it would fit into TgX
quite well. Hartmut made me aversion of PDFTEX which provided a \1ua command. After
exploring this road a bit Taco Hoekwater took over and we quickly reached a point where
the pDFTEX development team could agree on following this road to the future.

The development was boosted by a substantial grant from Colorado State University in
the context of the Oriental TEX Project of Idris Samawi Hamid. This project aims at bring-
ing features into TeX that will permit CONTEXT to do high quality Arabic typesetting. Due
to this grant Taco could spent substantial time on development, which in turn meant that
| could start playing with more advanced features.

This document is not so much a users manual as a history of the development. Consider
ita collection of articles, and some chapters indeed have ended up in the journals of user
groups. Things may evolve and the way things are done may change, but it felt right to
keep track of the process this way. Keep in mind that some features may have changed
while LUATEX matured.

Just for the record: development in the LUATEX project is done by Taco Hoekwater, Hart-
mut Henkel and Hans Hagen. Eventually, the stable versions will become ppFIEX version 2
and other members of the pDFIEX team will be involved in development and mainte-
nance. In order to prevent problems due to new and maybe even slightly incompatible
features, PDFIEX version 1 will be kept around as well, but no fundamentally new features
will be added to it. For practical reasons we use LUATEX as the name of the development
version but also for PDFTEX 2. That way we can use both engines side by side.

This document is also one of our test cases. Here we use traditional TgX fonts (for math),
Typer and OPeNTYPE fonts. We use color and include test code. Taco and | always test new
versions of LUATEX (the program) and MkIV (the macros and Lua code) with this document
before a new version is released. It also means that there can be temporary flaws in the
rendering. Keep tuned,

Hans Hagen, Hasselt NL,
August 2006-2016

http://www.luatex.org

Introduction 3

4 Introduction

| From MKkl to MkIV

Sometime in 2005 the development of LUATEX started, a further development of PDFTEX
and a precursor to PDFIEX version 2. This TgX variant will provide:

21-32 bitinternals plus a code cleanup

flexible support for OPENTYPE fonts

an internal utr data flow

the bidirectional typesetting of ALEPH

Lua callbacks to the most relevant TgX internals
some extensions to TgX (for instance math)

an efficient way to communicate with MeTAPosT

In the tradition of TgX this successor will be downward compatible in most essential parts
and in the end, there is still PDFTEX version 1 as fall back.

In the mean time we have seen another unicode variant show up, XjIgX which is under
active development, uses external libraries, provides access to the fonts on the operating
system, etc.

From the beginning, CONTEXT always worked with all engines. This was achieved by con-
ditional code blocks: depending on what engine was used, different code was put in
the format and/or used at runtime. Users normally were unaware of this. Examples of
engines are e-TgX, ALEPH, and XJIX. Because nowadays all engines provide the e-TgX fea-
tures, in August 2006 we decided to consider those features to be presentand drop pro-
viding the standard TEX compatible variants. This is a small effort because all code that is
sensitive for optimization already has e-TgX code branches for many years.

However, with the arrival of LUATEX, we need a more drastic approach. Quite some exist-
ing code can go away and will be replaced by different solutions. Where TgX code ends
up in the formatfile, along with its state, Lua code will be initiated at run time, after a Lua
instance is started. CONTEXT reserves its own instance of LUA.

Most of this will go unnoticed for the users because the user interface will not change. For
developers however, we need to provide a mechanism to deal with these issues. This is
why, for the first time in CONTEXT's history we will officially use a kind of version tag. When
we changed the low level interface from Dutch to English we jokingly talked of version 2.
So, it makes sense to follow this lead.

e CoNTXT Mkl At that moment we still had a low level Dutch interface, invisible for
users but not for developers.

e CONTEXT MkIl We now have a low level English interface, which (as we indeed saw
happen) triggers more development by users.

e CONITEXT MKIV This is the next generation of CONTEXT, with parts re—-implemented.
It's an at some points drastic system overhaul.

From Mkll to MkIV 5

Keep in mind that the functionality does not change, although in some places, for in-
stance fonts, MklV may provide additional functionality. The reason why most users will
not notice the difference (maybe apart from performance and convenience) is that at the
user interface level nothing changes (most of it deals with typesetting, not with low level
details).

The hole in the numbering permits us to provide a Mklll version as well. Once XJIgX is
stable, we may use that slot for XjTgX specific implementations.

As per August 2006 the banner is adapted to this distinction:

ver: 2006.09.06 22:46 MK II fmt: 2006.9.6
ver: 2006.09.06 22:47 MK IV fmt: 2006.9.6

This numbering system is reflected at the file level in such a way that we can keep devel-
oping the way we do, i.e. no files all over the place, in subdirectories, etc.

Most of the system’s core files are not affected, but some may be, like those dealing with
fonts, input- and output encodings, file handling, etc. Those files may come with different
suffixes:

e somefile.tex: the main file, implementing the interface and common code
e somefile.mkii: mostly existing code, suitable forgood old TEX (e-TgX, PDFTEX, ALEPH).

e somefile.mkiv: code optimized foruse with LUATEX, which could follow completely
different approaches

e somefile.lua: LuA code, loaded at format generation time and/or runtime

As said, some day somefile.mkiii code may show up. Which variant is loaded is de-
termined automatically at format generation time as well as at run time.

6 From Mkll to MkIV

I How LuAfits in

introduction

Here | will discuss a few of the experiments that drove the development of LUATEX. It
describes the state of affairs around the time that we were preparing for TuG 2006. This
development was pretty demanding for Taco and me but also much fun. We were in a
kind of permanent Skype chat session, with binaries flowing in one direction and TgX and
Lua code the other way. By gradually replacing (even critical) components of CONTEXT we
had a real test bed and torture tests helped us to explore and debug at the same time.
Because Taco uses LINUX as platform and | mostly use MS WINDOws, we could investigate
platform dependent issues conveniently. While reading this text, keep in mind that this
is just the beginning of the game.

| will not provide sample code here. When possible, the MkIV code transparantly re-
places Mkll code and users will seldom notices that something happens in different way.
Of course the potential is there and future extensions may be unique to MkIV.

compatibility

The first experiments, already conducted with the experimental versions involved run-
time conversion of one type of input into another. An example of this is the (Tl) calcula-
tor math input handler that converts a rather natural math sequence into TgX and feeds
that back into TgX. This mechanism eventually will evolve into a configurable math input
handler. Such applications are unique to MklV code and will not be backported to MklI.
The question is where downward compatibility will become a problem. We don't ex-
pect many problems, apart from occasional bugs that result from splitting the code base,
mostly because new features will not affect older functionality. Because we have to re-
organize the code base a bit, we also use this opportunity to start making a variant of
CoNTEXT which consists of building blocks: MEeTATEX. This is less interesting for the aver-
age user, but may be of interest for those using CONTEXT in workflows where only part of
the functionality is needed.

metapost

Of course, when | experiment with such new things, | cannot let METAPOST leave un-
touched. And so, in the early stage of LUATEX development | decided to play with two
METAPOST related features: conversion and runtime processing.

Conversion from MEeTAPOsT output to pDF is currently done in pure TgX code. Apart from
convenience, this has the advantage that we can let TgX take care of font inclusions. The

How Luafitsin 7

tricky part of this conversion is that METAPOST output has some weird aspects, like Dvips
specific linewidth snapping. Another nasty element in the conversion is that we need to
transform paths when pens are used. Anyhow, the converter has reached a rather stable
state by now.

One of the ideas with MeTAPosT version 17 is that we will have an alternative output mode.
In the perspective of LUATEX it makes sense to have a Lua output mode. Whatever con-
verter we use, it needs to deal with MeTAFUN specials. These are responsible for special
features like transparency, graphic inclusion, shading, and more. Currently we misuse
colors to signal such features, but the new pre/post path hooks permit more advanced
implementations. Experimenting with such new features is easier in Lua than in TgX.

The MKIV converter is a multi-pass converter. Firstwe clean up the MetaPosT output, next
we convert the PosTScriPT code into Lua calls. We assume that this Lua code eventually
can be output directly from MeTaPosT. We then evaluate this converted Lua blob, which
results in TEX commands. Think of:

1.2 setlinejoin

turned into:

mp.setlinejoin(1.2)

becoming:

\PDFcode{1.2 j}

which is, when the PDFTEX driver is active, equivalent to:
\pdfliteral{1.2 j}

Of course, when paths are involved, more things happen behind the scenes, but in the
end an mp . path enters the Lua machinery.

When the MkIV converter reached a stable state, tests demonstrated then the code was
upto 20% slower that the pure TgX alternative on average graphics, and but faster when
many complex path transformations (due to penshapes) need to be done. This slow-
down was due to the cleanup (using expressions) and intermediate conversion. Because
Taco develops LUATEX as well as maintains and extends MEetaPosT, we conducted experi-
ments that combine features of these programs. As a result of this, shortcuts found their
way into the METAPOST output.

8 How Luafitsin

oeps

®
" g

N
~
N
. A
. \
T \
. \
P : \
. !
: /
L /
L /
7
7
-
_-

Figure Il.1 converter test figure

Cleaning up the METAPOST output using LUA expressions takes relatively much time. How-
ever, starting with version 0.970 MEeTaPosT uses a preamble, which permits not only short
commands, but also gets rid of the weird linewidth and filldraw related PostScripT con-
structs. The moderately complex graphic that we use for testing (figure I1.1) takes over 16
seconds when converted 250 times. When we enable shortcuts we can avoid part of the
cleanup and runtime goes down to under 7.5 seconds. This is significantly faster than the
Mkll code. We did experiments with simulated Lua output from MeTAPosT and then the
MkIV converter really flies. The values on Taco’s system are given between parenthesis.

prologues/mpprocset 1/0 1/1 2/02/1
Mkl 8.5(5.7) 8.0(55 8.88.5
MkIV 16.1(10.6) 7.2(4.5) 16.3 7.4

The main reason for the huge difference in the MkIV times is that we do a rigourous
cleanup of the older MeTaPosT output in order avoid messy the messy (but fast) code
that we use in the Mkll converter. Think of:

0 0.5 dtransform truncate idtransform setlinewidth pop
closepath gsave fill grestore stroke

In the MkII converter, we push every number or keyword on a stack and use keywords as
trigger points. In the MkIV code we convert the stack based PostScripT calls to Lua func-
tion calls. Lines as shown are converted to single calls first. When prologues is set to 2,
such line no longer show up and are replaced by simple calls accompanied by defini-
tions in the preamble. Not only that, instead of verbose keywords, one or two character
shortcuts are used. This means that the Mkll code can be faster when procsets are used
because shorter strings end up in the stack and comparison happens faster. On the other
hand, when no procsets are used, the runtime is longer because of the larger preamble.

How Luafitsin 9

Because the converter is used outside CONTEXT as well, we support all combinations in
order not to get error messages, but the converter is supposed to work with the following
settings:

1
1

prologues
mpprocset

We don't need to set prologues to 2 (font encodings in file) or 3 (also font resources in
file). So, in the end, the comparison in speed comes down to 8.0 seconds for Mkll code
and 7.2 seconds for the MkIV code when using the latest greatest MetaAPosT. When we
simulate Lua output from MEeTaPosT, we end up with 4.2 seconds runtime and when ME-
TAPOsT could produce the converter’s TEX commands, we need only 0.3 seconds for em-
bedding the 250 instances. This includes TgX taking care of handling the specials, some
of which demand building moderately complex pDF data structures.

But, conversion is not the only factor in convenient METAPOST usage. First of all, runtime
METAPOST processing takes time. The actual time spent on handling embedded MetaPost
graphics is also dependent on the speed of starting up MeraAPosT, which in turn depends
on the size of the TEX trees used: the bigger these are, the more time kpPse spends on load-
ing the 1s-R databases. Eventually this bottleneck may go away when we have MetaPost
asalibrary. (In CONTEXT one can also run MetaPost between runs. Which method is faster,
depends on the amount and complexity of the graphics.)

Anotherfactorin dealing with METAPOST, is the usage of textin a graphic (btex, textext,
etc.). Taco Hoekwater, Fabrice Popineau and | did some experiments with a persistent
METAPOST session in the background in order to simulate a library. The results look very
promising: the overhead of embedded MeTaPosT graphics goes to nearly zero, especially
when we also let the parent TgX job handle the typesetting of texts. A side effect of these
experiments was a new mechanism in CONTEXT (and MeTaFuN) where TEX did all typeset-
ting of labels, and MeTAPosT only worked with an abstract representation of the result.
This way we can completely avoid nested TgX runs (the ones triggered by MEeTAPOST). This
also works ok in Mkll mode.

Using a persistent METAPOST run and piping data into it is not the final solution if only
because the terminal log becomes messed up too much, and also because intercepting
errors is real messy. In the end we need a proper library approach, but the experiments
demonstrated that we needed to go this way: handling hundreds of complex graphics
that hold typeset paragraphs (being slanted and rotated and more by MetaPosT), tooks
mere seconds compared to minutes when using independent MeTAPOST runs for each
job.

characters

Because LUATEX is UTF based, we need a different way to deal with input encoding. For
this purpose there are callbacks that intercept the input and convert it as needed. For

10 How LuAfitsin

context this means that the regime related modules get a Lua based counterparts. As a
prelude to advanced character manipulations, we already load extensive unicode and
conversion tables, with the benefit of being able to handle case handling with Lua.

The character tables are derived from unicode tables and Mkll CoNTgXT data files and
generated using MTXTOOLS. The main character table is pretty large, and this made us
experiment a bit with efficiency. It was in this stage that we realized that it made sense to
use precompiled Lua code (using 1uac). During format generation we let CONTEXT keep
track of used Lua files and compiled them on the fly. For a production run, the compiled
files were loaded instead.

Because at that stage LUATEX was already a merge between pDFTEX and ALepH, we had
to deal with pretty large format files. About that moment the CONTEXT format with the
english user interface amounted to:

date luatex pdftex xetex aleph
2006-09-18 9552042 7068643 8374996 7942044

One reason for the large size of the format file is that the memory footprint of a 32 bit TEX
is larger than that of good old TgX, even with some of the clever memory allocation tech-
niques as used in LUATEX. After some experiments where size and speed were measured
Taco decided to compress the format using a level 3 zip compression. This brilliant move
lead to the following size:

date luatex pdftex xetex aleph
2000-10-23 3135568 7095775 8405764 7973940

The first zipped versions were smaller (around 2.3 meg), but in the meantime we moved
the Lua code into the format and the character related tables take some space.

How stable are the mentioned numbers? Ten months after writing the previous text we get the
following numbers:

date luatex pdftex xetex aleph
2007-08-16 5603676 7505925 83838538 8369206

They are allsome 400K larger, which is probably the result of changes in hyphenation pat-
terns (we now load them all, some several times depending on the font encodings used).
Also, some extra math support has been brought in the kernel and we predefine a few
more things. However, LUATEX's format has become much larger! Partly this is the result of
more Lua code, especially OPeNTYPE font handling and attributes related code. The extra
TEX code is probably compensated by the removal of obsolete (at least for MkIV) code.
However, the significantly larger number is mostly there because a different compression
algorithm is used: speed is now favoured over efficiency.

How LuAfitsin 11

debugging

In the process of experimenting with callbacks | played a bit with handling TgX error in-
formation. An option is to generate an HTML page instead of spitting out the usual blob of
into on the terminal. In figure Il.2 and figure 1.3 you can see an example of this.

¥ ConTeXt Error Information - Mozilla Firefox

e Edt View Go Bookmarks Tools Hep

@ - g0 @ [1 fles 472 manusls us rest bricstatus.htm. ¥ 0 [[C

&3 Lotest Headines
‘ |_| ConText Error Information ‘ (]

ConTeXt Error Information

Job Name: test-brk ConTeXt Version: 2006.10.23 09:54 Real Page: 1 Page: 1

Done B 0.210s

Figure Il.2 An example error screen.

Playing with such features gives us an impression of what kind of access we need to TgX's
internals. It also formed a starting point for conversion routines and a mechanism for
embedding Lua code in HTML pages generated by CONTEXT.

fileio

Replacing TeX's in- and output handling is non-trival. Not only is the code quite inter-
woven in the wes2c source, but there is also the kpst library to deal with. This means
that quite some callbacks are needed to handle the different types of files. Also, there is
output to the log and terminal to take care of.

Getting this done took us quite some time and testing and debugging was good for some
headaches. The mechanisms changed a few times, and TgX and Lua code was thrown

12 How LuAfitsin

) ConTeXt Debug Information - Mozilla Firefox

fle Edt Vew Go Bookmerks Tools Help

G- - E Q) B [e manustspus est brkstatus. il ¥ 0 |G |

[Latest Headines

| (1] conText Error nformation || (] conText Debug Information || [conText Debug nformation || L conText Debug information \ || ConTeXt Debug Information ‘

ConTeXt Debug Information

Scratch Variables

index dimen count toks
0 2pt 2 \The key
opt 0
opt
opt:
opt

Internal Variables

variable

Job Name: test-brk ConTeXt Version: 2006.10.23 09:54 Real Page: 2 Page: 2

Done & 0.231s

Figure 1.3 An example debug screen.

away as soon as better solutions came around. Because we were testing on real docu-
ments, using a fully loaded CONTEXT we could converge to a stable version after a while.

Getting this 10 stuff done is tightly related to generating the format and starting up LUATEX.
If you want to overload the file searching and 10 handling, you need overload as soon
as possible. Because LUATEX is also supposed to work with the existing kpst library, we
still have that as fallback, but in principle one could think of a kpsE free version, in which
case the default file searching is limited to the local path and memory initialization also
reverts to the hard coded defaults. A complication is that the soure code has kpsE calls
and references to kpse variables all over the place, so occasionally we run into interesting

bugs.

Anyhow, while Taco hacked his way around the code, | converted my existing Rusy based
KPSE variant into Lua and started working from that point. The advantage of having our
own 10 handler is that we can go beyond kpst. For instance, since LUATEX has, among a
few others, the zip libraries linked in, we can read from zip files, and keep all TgX related
files in Tos compliant zip files as well. This means that one can say:

\input zip:///somezipfile.zip?name=/somepath/somefile.tex

How LuAfitsin 13

and use similar references to access files. Of course we had to make sure that kpsk like
searching in the TDs (standardized TgX trees) works smoothly. There are plans to link the
curl library into LUATEX, so that we can go beyong this and access repositories.

Of course, in order to be more or less kpse and wes2c compliant, we also need to support
this paranoid file handling, so we provide mechanisms for that as well. In addition, we
provide ways to create sandboxes for system calls.

Getting to intercept all log output (well, most log output) was a problemin itself. For this
| used a (preliminary) xmL based log format, which will make log parsing easier. Because
we have full control over file searching, opening and closing, we can also provide more
information about what files are loaded. For instance we can now easily trace what Trm
files TEX reads.

Implementing additional methods for locating and opening files is not that complex be-
cause the library that ships with CoNTEXT is already prepared for this. For instance, imple-
menting support for:

\input http://www.someplace.org/somepath/somefile.tex

involved a few lines of code, most of which deals with caching the files. Because we
overload the whole 10 handling, this means that the following works ok:

\placefigure
(101
{http handling}
{\externalfigure
[http://www.pragma-ade.com/show-gra.pdf]
[page=1,width=\textwidth]}

Other protocols, like frp are also supported, so one can say:

\typefile {ftp://anonymous:@ctan.org/tex-archive/systems\
/knuth/1lib/plain.tex}

On the agenda is playing with database, but by the time that we enter that stage linking
the curl libraries into LUATEX should have taken place.

verbatim

The advance of LUATEX also permitted us to play with a long standing wish of catcode
tables, amechanismto quickly switch between different ways of treating input characters.
An example of a place where such changes take place is verbatim (and in CONTEXT also
when dealing with XML input).

14 How Luafitsin

| | = A]

MetaFost |

< Graphics

Once upon a time we started using MetaPost, the
graphic companion to TgX. Since then it has been

our main tool for making graphics. Welcome to
our little showcase. You can click on the graphic
to show the real thing.

' 3 - A w

Figure ll.4 http handling

We already had encountered the phenomena that when piping back results from Lua to
TeX, we needed to take care of catcodes so that TEX would see the input as we wished.
Earlier experiments with applying \scantokens to a result and thereby interpreting the
result conforming the current catcode regime was not sufficient or at least not handy
enough, especially in the perspective of fully expandable Lua results. To be honest, the
\'scantokens command was rather useless for this purposes due to its pseudo file nature
and its end—of-file handling but in LUATEX we now have a convenient \scantextokens
which has no side effects.

Once catcode tables were in place, and the relevant CONTEXT code adapted, | could start
playing with one of the trickier parts of TgX programming: typesetting TgX using TgX, or
verbatim. Because in CONTEXT verbatim is also related to buffering and pretty printing,
all these mechanism were handled at once. It proved to be a pretty good testcase for
writing LUA results back to TgX, because anything you can imagine can and will interfere
(line endings, catcode changes, looking ahead for arguments, etc). This is one of the
areas where MklV code will make things look more clean and understandable, especially
because we could move all kind of postprocessing (needed for pretty printing, i.e. syntax
highlighting) to LUA. Interesting is that the resulting code is not beforehand faster.

How LuAfitsin 15

Pretty printing 1000 small (one line) buffers and 5000 simple \type commands perform
as follows:

TXnormal TgX pretty Lua normal Lua pretty

buffer 2.5(2.35) 4.5(3.05) 2.2(1.8) 2.5(2.0)
inline 7.7(4.90) 11.5(7.25) 9.1(6.3) 10.9 (7.5)

Between braces the runtime on Taco’s more modern machine is shown. It’s not that easy
to draw conclusions from this because TgX uses files for buffers and with Lua we store
buffers in memory. For inline verbatim, Lua call’s bring some overhead, but with more
complex content, this becomes less noticable. Also, the Lua code is probably less opti-
mized than the TiX code, and we don’t know yet what benefits a Just In Time Lua compiler
will bring.

xml

Interesting is that the first experiments with xmL processing don’t show the expected gain
in speed. This is due to the fact that the CONTEXT XML parser is highly optimized. However,
if we want to load a whole xmLfile, for instance the formal CONTEXT interface specification
cont-en.xml, thenwe can bring down loading time (as well as TeX memory usage) down
from multiple seconds to a blink of the eyes. Experiments with internal mappings and
manipulations demonstrated that we may not so much need an alternative for the current
parser, but can add additional, special purpose ones.

We may consider linking xsLTPROC into LUATEX, but this is yet undecided. After all, the
problem of typesetting does not really change, so we may as well keep the process of
manipulating and typesetting separated.

multipass data

Those who know CONTEXT a bit will know that it may need multiple passes to typeset a
document. CONTEXT not only keeps track of index entries, list entries, cross references,
but also optimizes some of the output based on information gathered in previous passes.
Especially so called two—pass data and positional information puts some demands on
memory and runtime. Two-pass data is collapsed in lists because otherwise we would
run out of memory (at least this was true years ago when these mechanisms were intro-
duced). Positional information is stored in hashes and has always put a bit of a burden
on the size of a so called utility file (CONTEXT stores all information in one auxiliary file).

These two datatypes were the first we moved to a Lua auxiliary file and eventually all
information will move there. The advantage is that we can use efficient hashes (without
limitations) and only need to run over the file once. And LuA is incredibly fast in loading
the tables where we keep track of these things. Forinstance, a testfile storing and reading

16 How LuAfits in

10.000 complex positions takes 3.2 seconds runtime with LUATEX but 8.7 seconds with
traditional PDFTEX. Imagine what this will save when dealing with huge files (400 page
300 Meg files) that need three or more passes to be typeset. And, now we can without
problems bump position tracking to milions of positions.

resources

Finding files is somewhat tricky and has a history in the TEX community and its distribu-
tions. For reasons of packaging and searching files are organized in a tree and there are
rules for locating files of given types in this tree. When we say

\input blabla.tex

TEX will look for this file by consulting the path specification associated with the filetype.
When we say

\input blabla

TeX will add the . tex suffix itself. Most other filetypes are not seen by users but are dealt
with in a similar way internally.

As mentioned before, we support reading from other resources than the standard file sys-
tem, for instance we can input files from websites or read from zip archives. Although this
works quite well, we need to keep in mind that there are some conflicting interests: struc-
tured search based on type related specifications versus more or less explicit requests.

\input zip:///archive.zip?name=blabla.tex
\input zip:///archive.zip?name=/somepath/blabla.tex

Here we need to be rather precise in defining the file location. We can of course build
rather complex mechanisms for locating files here, but at some point that may backfire
and result in unwanted matches.

If you want to treat a zip archive as a TgX tree, then you need to register the file:

\usezipfile[archive.zip]
\usezipfile[tex.zip] [texmf-local]
\usezipfile[tex.zip7tree=texmf-local]

The first variant registers all files in the archive, but the next two are equivalent and only
registerasubtree. Theregistered tree is prepended to the TEXMF specification and thereby
may overload existing trees.

If an acrhive is not a real TgX tree, you can access files anywhere in the tree by using wild-
cards

How LuAfitsin 17

\input */blabla.tex
\input */somepath/blabla.tex

These mechanisms evolve over time and it may take a while before they stabelize. For
instance, the syntax for the zip inclusion has been adapted more than a year after this
chapter was written (which is why this section is added).

18 How LuAfitsin

Il Initialization revised

Initializing LUATEX in such a way that it does what you want it to do your way can be tricky.
This has to do with the fact that if we want to overload certain features (using callbacks)
we need to do that before the orginals start doing their work. For instance, if we want
to install our own file handling, we must make sure that the built-in file searching does
not get initialized. This is particularly important when the built in search engine is based
on the kpsE library. In that case the first serious file access will result in loading the 1s-R
filename databases, which will take an amount of time more or less linear with the size
of the TgX trees. Among the reasons why we want to replace kpse are the facts that we
want to access zIp files, do more specific file searches, use HTTP, FTP and whatever comes
around, integrate CONTEXT specific methods, etc.

Although modern operating systems will cache files in memory, creating the internal data
structures (hashes) from the rather dumb files take some time. On the machine where |
was developing the first experimental LUATEX code, we're talking about 0.3 seconds for
PDFIEX. One would expect a Lua based alternative to be slower, but it is not. This may
be due to the different implementation, but for sure the more efficient file cache plays
arole as well. So, by completely disabling kpse, we can have more advanced 10 related
features (like reading from zip files) at about the same speed (or even faster). In due time
we will also support progname (and format) specific caches, which speeds up loading. In
case one wonders why we bother about a mere few hundreds of milliseconds: imagine
frequent runs from an editor or sub—runs during a job. In such situation every speed up
matters.

So, back to initialization: how do we initialize LUATEX. The method described here is de-
veloped for CONTEXT but is not limited to this macro package; when one tells TEXEXEC to
generate formats using the ——1uatex directive, it will generate the CONTEXT formats as
well as MPTOPDF using this engine.

For practical reasons, the Lua based 10 handler is kpse compliant. This means that the
normal texmf . cnf and 1s-R files can be used. However, their content is converted in
a more Lua friendly way. Although this can be done at runtime, it makes more sense to
to this in advance using LuaTooLs. The files involved are:

input raw input runtime input runtime fallback
1s-R files.luc files.lua
texmf.lua temxf.cnf configuration.luc configuration.lua

In due time LuaToOLS will generate the directory listing itself (for this some extra libraries
need to be linked in). The configuration file(s) eventually will move to a Lua table format,
and when a texmf . 1uafile is present, that one will be used.

Initialization revised 19

luatools --generate

Thiscommand will generate the relevant databases. Optionally you can provide --minimize
which will generate a leaner database, which in turn will bring down loading time to (on

my machine) about 0.1 sec instead of 0.2 seconds. The -—sort option will give nicer
intermediate (. 1ua) files that are more handy for debugging.

When done, you can use LuatooLs roughly in the same manner as kPsewHicH, for instance
to locate files:

luatools texnansi-lmrl10.tfm
luatools —--all tufte.tex

You can also inspect its internal state, for instance with:

luatools --variables --pattern=TEXMF
luatools —--expansions --pattern=context

This will show you the (expanded) variables from the configuration files. Normally you
don’t need to go that deep into the belly.

The LuatooLs script can also generate aformat and run LUATEX. For CONTEXT this is normally
done with the TgXexec wrapper, for instance:

texexec --make --all --luatex
When dealing with this process we need to keep several things in mind:

LUATEX needs a Lua startup file in both ini and runtime mode
these files may be the same but may also be different

here we use the same files but a compiled one in runtime mode
we cannot yet use a file location mechanism

A .lucfileis a precompiled Lua chunk. In orderto guard consistency between Lua code
and tex code, CONTEXT will preload all Lua code and store them in the bytecode table
provided by LUATEX. How this is done, is another story. Contrary to these tables, the ini-
tialization code can not be putinto the format, if only because at that stage we still need
to set up memory and other parameters.

In our case, especially because we want to overload the 10 handler, we want to store
the startup file in the same path as the format file. This means that scripts that deal with
format generation also need to take care of (relocating) the startup file. Normally we will
use TEXexec but we can also use LUATOOLS.

Say that we want to make a plain format. We can call Luatoots as follows:

20 Initialization revised

luatools --ini plain
This will give us (in the current path):

120,808 plain.fmt

2,650 plain.log
80,767 plain.lua
64,807 plain.luc

From now on, only the plain.fmt and plain. luc file are important. Processing a file
test \end

can be done with:

luatools --fmt=./plain.fmt test

This returns:

This is luaTeX, Version 3.141592-0.1-alpha-20061018 (Web2C 7.5.5)
(./test.tex [1])

Output written on test.dvi (1 page, 260 bytes).

Transcript written on test.log.

which looks rather familiar. Keep in mind that at this stage we still run good old Plain TgX.
In due time we will provide a few files that will making work with Lua more convenient
in Plain TgX, but at this moment you can already use for instance \directlua.

In case you wonder how this is related to CONTEXT, well only to the extend that it uses a
couple of rather generic CONTEXT related Lua files.

COoNTEXT users can best use TEXexec which will relocate the format related files to the reg-
ular engine path. In LUATOOLS terms we have two choices:

luatools --ini cont-en
luatools --ini --compile cont-en

The differenceisthatin thefirst case context . luais used as startup file. This Luafile cre-
atesthe cont-en. lucruntimefile. Inthe second call LuatooLs will createa cont-en. lua
file and compile that one. An even more specific call would be:

luatools --ini --compile --luafile=blabla.lua cont-en
luatools --ini --compile --lualibs=bla-1.lua,bla-2.lua cont-en

This call does not make much sense for CONTEXT. Keep in mind that LuatooLs does not
set up user specific configurations, for instance the ——all switch in TEXexec will set up all
patterns.

Initialization revised 21

| know that it sounds a bit messy, but till we have a more clear picture of where LUATEX is
heading this is the way to proceed. The average CONTEXT user won't notice those details,
because TgXexec will take care of things.

Currently we follow the Tps and wes2c conventions, but in the future we may follow dif-
ferent or additional approaches. This may as well be driven by more complex 1o models.
For the moment extensions still fit in. For instance, in order to support access to remote
resources and related caching, we have added to the configuration file the variable:

TEXMFCACHE = $TMP;$TEMP; $TMPDIR ; $HOME ; $TEXMFVAR ; $VARTEXMF ; .

22 Initialization revised

IV An example: CalcMath

introduction

For a long time TEX's way of coding math has dominated the typesetting world. How-
ever, this kind of coding is not that well suited for non academics, like schoolkids. Often
kids do know how to key in math because they use advanced calculators. So, when a
couple of years ago we were implementing a workflow where kids could fill in their math
workbooks (with exercises) on-line, it made sense to support so called Texas Instruments
math input. Because we had to parse the form data anyway, we could usea [[and]] as
math delimiters instead of $. The conversion too place right after the form was received

by the web server.

sin(x) + x72 + x~(1+x) + 1/x"2

mean (x+mean (y))

int(a,b,c)

(1+x) / (1+x) + (1+x)/(1+(1+x) / (1+x))

10E-2

(1+x) /x

(1+x) /12
(1+x)/-12

1/-12

12x/ (1+x)

exp (x+exp(x+1))
abs(x+abs(x+1)) + pi + inf
Dx Dy

D(x+D(y))

Df (x)

g(x)

sqrt(sin~2(x)+cos~2(x))

sin(x) + 22 + z1* +

r+y

a
[
b
1+x 1+x

1+ZC + 1+%

10 x 102

1+x
T

1+x
12

14+x

—12

L
12

12z
14+x

em+ez+1

|z + |x + 1|| + 7 + inf

de dy
dz dz

Lar Sy

£’ ()
g(x)
V/sin?(z) + cos?(x)

By combining Lua with TgX, we can do the conversion from calculator math to TEX imme-
diately, without auxiliary programs or complex parsing using TEX macros.

An example: CalcMath 23

tex
In a CONTEXT source one can use the \calcmath command, as in:

The strange formula \calcmath {sqrt(sin~2(x)+cos”2(x))} boils
down to

One needs to load the module first, using:
\usemodule [calcmath]

Because the amount of code involved is rather small, eventually we may decide to add
this support to the M«IV kernel.

xml

Coding math in TgX is rather efficient. In xML one needs way more code. Presentation
MATHML provides a few basic constructs and boils down to combining those building
blocks. Content MATHML is better, especially from the perspective of applications that
need to do interpret the formulas. It permits for instance the CONTEXT content MATHML
handler to adapt the rendering to cultural driven needs. The OPENMATH way of coding is
like content MATHML, but more verbose with less tags. Calculator math is more restrictive
than TgX math and less verbose than any of the xmL variants. It looks like:

<icm>sqrt(sin~2(x)+cos”™2(x))</icm> test
And in display mode:

<dcm>sqrt(sin~2(x)+cos™2(x))</dcm> test

speed

This script (which you can find in the CONTEXT distribution as soon as the MkIV code vari-
ants are added) is the first real TEX related Lua code that | wrote; so far | had only written
some wrapping and spell checking code for the ScITE editor. It also made a nice demo
for a couple of talks that I held at usergroup meetings. The script has a lot of expressions.
These convert one string into another. They are less powerful than regular expressions,
but pretty fast and adequate. The feature | miss most is alternation like (1|st)uck but
it'’s a small price to pay. As the Lua manual explains: adding a posix compliant regexp
parser would take more lines of code than Lua currently does.

On my machine, running this first version took 3.5 seconds for 2500 times typesetting
the previously shown square root of sine and cosine. Of this, 2.1 seconds were spent on
typesetting and 1.4 seconds on converting. After optimizing the code, 0.8 seconds were

24 Anexample: CalcMath

used for conversion. A stand alone Lua takes .65 seconds, which includes loading the
interpreter. On atest of 25.000 sample conversions, we could gain some 20% conversion
time using the LUAJIT just in time compiler.

An example: CalcMath 25

26 An example: CalcMath

V Going UTF

LUATEX only understands input codes in the Universal Character Set Transformation For-
mat, aka ucs Transformation Format, better known as: utr. There is a good reason for this
universal view on characters: whatever support gets hard coded into the programs, it’s
never enough, as 25 years of TEX history have clearly demonstrated. Macro packages often
support more or less standard input encodings, as well as local standards, user adapted
ones, etc.

There is enough information on the Internet and in books about what exactly is uTr. If you
don’t know the details yet: uTr is a multi-byte encoding. The characters with a bytecode
up to 127 map onto their normal Ascii representation. A larger number indicates that the
following bytes are part of the character code. Up to 4 bytes make an utr-8 code, while
UTF-16 always uses two pairs of bytes.

byte1 byte2 byte3 byteg unicode
192-223 128-191 ox8o-ox7ff
224-239 128-191 128-191 ox8o0-oxffff
240-247 128-191 128-191 128-191 oxi10o000-oxiffff

In UTF-8 the characters in the range 128-191 are illegal as first characters. The characters
254 and 255 are completely illegal and should not appear at all since they are related to
UTF-16.

Instead of providing a never-complete truckload of other input formats, LUATEX sticks to
one input encoding but at the same time provides hooks that permits users to write filters
that preprocess their input into UTF.

While writing the LUATEX code as well as the CoNTgXT input handling, we experimented a
lot. Right from the beginning we had a pretty clear picture of what we wanted to achieve
and how it could be done, but in the end arrived at solutions that permitted fast and
efficient Lua scripting as well as a simple interface.

What is involved in handling any input encoding and especially utr?. First of all, we
wanted to support UTF-8 as well as UTF-16. LUATEX implements uTF-8 rather straightfor-
ward: it just assumes that the input is usable uTr. This means that it does not combine
characters. There is a good reason for this: any automation needs to be configurable
(on/off) and the more is done in the core, the slower it gets.

In UNICODE, when a character is followed by an ‘accent’, the standard may prescribe that
these two characters are replaced by one. Of course, when characters turn into glyphs,
and when no matching glyph is present, we may need to decompose any character into
components and paste them together from glyphs in fonts. Therefore, as a first step, a

Going utF 27

collapser was written. In the (pre)loaded Lua tables we have stored information about
what combination of characters need to be combined into another character.

So, an a followed by an ~ becomes a and an e followed by " becomes &. This process is
repeated till no more sequences combine. Afterafew alternatives we arrived ata solution
that is acceptably fast: mere milliseconds per average page. Experiments demonstrated
that we can not gain much by implementing this in pure C, but we did gain some speed
by using a dedicated loop—over-utf-string function.

A second uTr related issue is UTF-16. This coding scheme comes in two endian variants.
We wanted to do the conversion in Lua, but decided to play a bit with a multi-byte file
read function. After some experiments we quickly learned that hard coding such meth-
ods in TiX was doomed to be complex, and the whole idea behind LUATEX is to make
things less complex. The complexity has to do with the fact that we need some control
over the different linebreak triggers, that is, (combinations of) character 10 and/or13. In
the end, the multi-byte readers were removed from the code and we ended up with a
pure Lua solution, which could be sped up by using a multi-byte loop-over-string func-
tion.

Instead of hard coding solutions in LUATEX a couple of fast loop—over—string functions
were added to the Lua string function repertoire and the solutions were coded in Lua. We
did extensive timing with huge uTF-16 encoded files, and are confident that fast solutions
can be found. Keep in mind that reading files is never the bottleneck anyway. The only
drawback of an efficient uTF-16 reader is that the file is loaded into memory, but this is
hardly a problem.

Concerning arbitrary input encodings, we can be brief. It's rather easy to loop over a
string and replace characters in the 0-255 range by their utF counterparts. All one needs
is to maintain conversion tables and TeX macro packages have always done that.

Yet another (more obscure) kind of remapping concerns those special TgX characters. If
we use a traditional TgX auxiliary file, then we must make sure that for instance percent
signs, hashes, dollars and other characters are handled right. If we set the catcode of the
percent sign to ‘letter’, then we get into trouble when such a percent sign ends up in the
table of contents and is read in under a different catcode regime (and becomes for in-
stance a comment symbol). One way to deal with such situations is to temporarily move
the problematic characters into a private UNiCODE area and deal with them accordingly.
In that case they no longer can interfere.

Where do we handle such conversions? There are two places where we can hook con-
verters into the input.

1. each time when we read a line from afile, i.e. we can hook conversion code into the
read callbacks

28 Going UTF

2. using the special process_input_buffer callback which is called whenever TgX
needs a new line of input

Because we can overload the standard file open and read functions, we can easily hook
the UTF collapse function into the readers. The same is true for the utr-16 handler. In
CoNTEXT, for performance reasons we load such files into memory, which means that we
also need to provide a special reader to TEX. When handling utr-16, we don’t need to
combine characters so that stage is skipped then.

So, to summarize this, here is what we do in CONTgXT. Keep in mind that we overload the
standard input methods and therefore have complete control over how LUATEX locates
and opens files.

1. When we have a utrfile, we will read from that file line by line, and combine charac-
ters when collapsing is enabled.

2. When LUATEX wants to open a file, we look into the first bytes to see if it is a UTF-16
file, in either big or little endian format. When this is the case, we load the file into
memory, convert the data to utr-8, identify lines, and provide a reader that will give
back the file linewise.

3. When we have been told to recode the input (i.e. when we have enabled an input
regime) we use the normal line-by-line reader and convert those lines on the fly into
valid utr. No collapsing is needed.

Because we conduct our experiments in CONTEXT MkIV the code that we provide may
look a bit messy and more complex than the previous description may suggest. But keep
in mind that a mature macro package needs to adapt to what users are accustomed to.
The fact that LUATEX moved on to uTr input does not mean that all the tools that users use
and the files that they have produced over decades automagically convert as well.

Because we are now living in a utr world, we need to keep that in mind when we do
tricky things with sequences of characters, for instance in processing verbatim. When
we implement verbatim in pure TEX we can do as before, but when we let Lua kick in,
we need to use string methods that are utr-aware. In addition to the linked-in UNicoDE
library, there are dedicated iterator functions added to the string namespace; think of:

for ¢ in string.utfcharacters(str) do
something with(c)
end

Occasionally we need to output raw 8-bit code, for instance to bvi or pDF backends (spe-
cials and literals). Of course we could have cooked up a truckload of conversion func-
tions for this, but during one of our travels to a TgX conference, we came up with the
following trick.

Going utF 29

We reserve the top 256 values of the UNIcODE range, starting athexadecimal value ox110000,
for byte output. When writing to an output stream, that offset will be subtracted. So,
0Xx1100Ag9 is written out as hexadecimal byte value Ag, which is the decimal value 169,
which in the Latin 1 encoding is the slot for the copyright sign.

30 GoingUTF

VI A fresh look at fonts

readers

Now that we have the file system, Lua scriptintegration, input encoding and basic logging
in place, we have arrived at fonts. Although today OpeNTYPE fonts are the fashion, we still
need to deal with TgX’s native font machinery. Although Latin Modern and the TgX Gyre
collection will bring us many free OPENTYPE fonts, we can be sure that for a long time TypE1
variants will be used as well, and when one has lots of bought fonts, replacing them with
OPeNTYPE updates is not always an option. And so, reimplementing the readers for TgX
Font Metrics (tfm files) and Virtual Fonts (v£ files), was the first step.

Because ALepH font handling was integrated already, Taco decided to combine the TFm
and orMm readers into anew one. The combined loader is written in Cand produces tables
that are accessible from within Lua. A problem is that once a font is used, one cannot
simply change its metrics. So, we have to make sure that we apply changes before a font
is actually used:

\font\test=texnansi-lmr at 31.415 pt
\test Yet another nice Kate Bush song: Pi

In this example, any change to the fontmetrics has to be done before test is invoked.
For this purpose the define_font callbackis provided. Below you see an experimental
overload:

callback.register("define_font", function (name,area,size)
return fonts.patches.process(font.read_tfm(name,size))
end)

The fonts.patched.process function (currently in CONTEXT MkIV) implements a mech-
anism for tweaking the font parameters in between. In order to get an idea of further
features we played a bit with ligature replacement, character spacing, kern tweaking etc.
Think of such a function (or a chain of functions) doing things similar to:

callback.register("define_font", function (name,area,size)

local tfmblob = font.read tfm(name,size) -- build in loader

tfmblob.characters[string.byte("f")].ligatures = nil

return tfmblob -- datastructure that TeX will use internally
end)

Of course the above definition is not complete, if only because we need to handle chained
ligatures as well (fl followed by i).

A fresh look at fonts 31

In practice we prefer a more abstract interface (at the macro level) but the idea stays the
same. Interesting is that having access to the internals this way already makes our TEX Live
more interesting. (We cannot demonstrate this trickery here because when this docu-
ment is processed you cannot be sure if the experimental interface is still in place.)

When playing with this we ran into problems with file searching. When performing the
backend role, LUATEX will look in the TgX tree if there is a corresponding virtual file. It took
awhile and abitoftracing (which is notthat hard in the Lua based reader) to figure out that
the omega related path definitions in texmf . cnf files were not correct, something that
went unnoticed because omega never had a backend integrated and the pvi processors
did multiple searches to get around this.

Currently, if you want to enable extensive tracing of file searching and loading, you can
set an environment variable:

MTX.INPUT.TRACE=3

This will produce alot ofinformation about whatfile is asked for, what types (tex, font, etc)
determines the search, along what paths is being searched, what readers and locators are
used (file, zip, protocol), etc.

AFM

While Taco implemented the virtual font reader —eventually its data will be merged with
the TFm table— | started playing with constructing Tem tables directly. Because CONTEXT
has a rather systematic naming scheme, we can rather easily see which encoding we are
dealing with. This means that in principle we can throw all encoded Trum files out of our
tree and construct the tables using the Arm file and an encoding vector.

It took us a good day to figure out the details, but in the end we were able to trick LUATEX
into using ArM files. With a bit of internal caching it was even reasonable fast. When the
basic conversion mechanism was written we tried to compare the results with existing
TFM metrics as generated by afm2tfmand afm2pl. Doing so was less trivial than we first
thought. To mention a few aspects:

heights and depths have a limited number of values in TgX

we need to convert to TgX's scaled points

rounding errors of one scaled point occur

afm2tfm can only add kerns when virtual fonts are used

afm2tfm adds some extra ligatures and also does some kern magic
afm2pl adds even more kerns

the tools remove kern pars between digits

32 Afresh look at fonts

In this perspective we need not be too picky on what exactly a ligature is. An example
of a ligature is £i and such a character can be in the font. In the Trm file, the definition
of £ contains information about what to do when it’s followed by an i: it has to insert a
reference (character number) pointing to the fi glyph.

However, because TgX was written in Ascil time space, there was a problem of how to
get access to for instance the Spanish quotation and exclamation marks. Here the liga-
ture mechanism available in the TFM format was misused in the sense that a combination
of exclam and quoteleft becomes exclamdown. In a similar fashion will two single
quotes become a double quote. And every TgXie knows that multiple hyphens combine
into - (endash) and — (emdash), where the later one is achieved by defining a ligature
between an endash and a hyphen.

Of course we have to deal with conversions from Arm units (1000 per em) to TgX's scaled
points. Such conversions may be sensitive for rounding errors. Because we noticed dif-
ferences of one scaled point, | tried several strategies to get the results consistent but
so far | didn’t manage to find out where these differences come from. Rounding errors
seem to be rather random and | have no clue what strategy the regular converters fol-
low. Another fuzzy area are the font parameters (visible as font dimensions for users): |
wonder how many users really know what values are used and why.

You may wonder to what extend this rounding problem will influence consistent type-
setting. We have no reason to assume that the rounding error is operating system depen-
dent. This leaves the different methods used and personally | have no problems with the
direct reader being not 100% compatible with the regular tools. First of all it’s an illusion
to think that TgX distributions are stable over the years. Fonts and conversion tools are
being updated every now and then, and metrics change over time (apart from Computer
Modern which is stable by definition). Also, pattern file are updated, so paragraphs may
be broken into lines different anyway. If you really want stability, then you need to store
the fonts and patterns with your document.

As we already mentioned, the regular converter programs add kerns as well. Treating
common glyph shapes similaris notuncommon in CoNTEXTso | decided to provide meth-
ods foradding ‘missing” kerns. For example, with regards to kerning, we can treateacute
the same way as an e. Some ligatures, like ae or £i, need to be seen fromtwo sides: when
looked at from the left side they resemble an a and £, but when kerned at their right, they
are to be treated as e and i.

So, when all this is taken care of, we will have a reasonable robust and compatible way
to deal with Arm files and when this variant is enabled, we can prune our TgX trees pretty
well. Also, now that we have font related tables, we can start moving tables built out of
TeX macros (think of protruding and hz) to Lua, which will not only save us much hash
entries but also permits us faster implementations.

A fresh look at fonts 33

The question may arise why there is no hard coded Arm reader. Although some speed up
can be achieved by reading the table with Arm data directly, there would still be the issue
of making that table accessible for manipulations as described (costs time too). The Afm
formatis human readable contrary to the TrM format and therefore they can conveniently
be processed by Lua. Also, the possible manipulations may differ per macro package,
user, and even documents. The changes of users and developers reaching an agreement
about such issues is near zero. By writing the reader in Lua, a macro package writer can
also implement caching mechanisms that suits the package. Also, keep in mind that we
often only need to load about four Arm files or a few more when we mix fonts.

In my main tree (regular distributions) there are some 350 files in texnansi encoding
that take over 2 MByte. My personal font tree has over a thousand such entries which
means that we can prune the tree considerably when we use the Arm loader. Why bother
about TFM when Arm can do the job.

In order to reduce the overhead in reading the Arm file, we now use external caching,
which (in CONTEXT MkIV) boils down to serializing the internal Arm tables and compiling
them to bytecode. As a result, the runtime becomes comparable to a run using regular
TFM files. On this document usign the Arm reader (cached) takes some .3 seconds more
on 8 seconds total (28 pages in Optima Nova with a couple of graphics).

While we were playing with this, Hermann Zapf surprised me by sending me a cp with
his marvelous new Palatino Sans. So, instead of generating TFM metrics, | decided to use
ttf2afm to generate me an ArM file from the TRUETYPE files and use these metrics. It
worked right out of the box which means that one can copy a set of font files directly
from the source to the tree. In a demo document the Palatino Sans came out quite well
and so we will use this font to explore the upcoming Open Type features.

Because we now have less font resources (only two files per font) we decided to get away
from the spread-all-over—the-tree paradigm. For this we introduced

../fonts/data/vendor/collection
like:

./fonts/data/tex/latin-modern
./fonts/data/tex-gyre/bonum
../fonts/data/linotype/optima-nova
./fonts/data/linotype/palatino-nova
./fonts/data/linotype/palatino-sans

Of course one needs to adapt the related font paths in the configuration files but getting
that done in tex distributions is another story.

34 Afresh look at fonts

map files

Reading an Arm file is only part of the game. Because we bypass the regular Tem reader
we may internally end up with different names of fonts (and/or files). This also means
that the map files that map an internal name onto an font (outline) file may be of no use.
The map file also specifies the encoding file which maps character numbers onto names
used in font files.

The map file maps a font name to a (preferable outline) font resource file. This can be a
file with suffix pfb, ttf, otf or alike. When we convert am Arm file into a more suitable
format, we also store the associated (outline) filename, that we use later when we assem-

ble the map line data (we use \pdfmapline to tell LUATEX how to prepare and embed a
file.

Eventually LUATEX will take care of all these issues itself thereby rendering map files and
encoding files kind of useless. When loading an Arm file we already have to read en-
coding files, so we have all the information available that normally goes into the map
file. While conducting experiments with reading Arm files, we therefore could use the
\pdfmapline primitive to push the right entries into font inclusion machinery. Because
CoNTgXT already handles map data itself we could easily hook this into the normal han-
dlers for that. (There are some nasty synchronization issues involved in handling map
entries in general but we will not bother you with that now).

Although eventually we may get rid of map files, we also used the general map file han-
dling in CONTEXT as a playground for the xmL handler that we wrote in LuA. Playing with
many map files (a few KBytes) coded in xmL format, or with one big map file (easily 800
MBytes) makes a good test case for loading and dumping

But why bother too much about map files in LUATEX . . . they will go away anyway.

OTF & TTF

One of the reasons for starting the LUATEX development was that we wanted to be able
to use OPENTYPE (and TRUETYPE) fonts in PDFTEX. As a prelude (and kind of transition) we
first dealt with Type1 using either Trm or ArM. For TgX it does not really matter what font
is used, it only deals with dimensions and generic characteristics. Of course, when fonts
offer more advanced possibilities, we may need more features in the TgX kernel, but think
of Hz or protruding as provided by pDFTEX: it’s not part of the font (specification) but of the
engine. The same is actually true for kerning and ligature building, although here the font
(data) may provide the information needed to deal with it properly.

OpeNTYPE fonts come with features. Examples of features are using oldstyle figures or tab-
ular digits instead of the default ones. Dealing with such issues boils down to replacing

A fresh look at fonts 35

one character representation by another or treating combinations of character in the in-
put differently depending on the circumstances. There can be relationships between
languages and scripts, but, as TgXies know, other relationships exist as well, for instance
between content and visualization.

Therefore, it will be no surprise that LUATEX does not simply implement the OPENTYPE
specification as such. On the one hand it implements a way to load information stored
in the font, on the other hand it implements mechanisms to fullfil the demands of such
fonts and more. The glue between both is done with Lua. In the simple case of ligatures
and kerns this goes as follows. A user (or macropackage) specified a font, and this call can
be intercepted using a callback. This callback can use a built in function that loads an otr
or TTF font. From this table, a font table is constructed that is passed on to TgX. The con-
struction may involve building ligature and kerning tables using the information present
in the font file, but it may as well mean more. So, given a bare LUATEX system, OPENTYPE
font supportis not giving you automatically handling of features, or more precisely, there
is no hard coded support for features.

This may sound as a disadvantage but as soon as you start looking at how TgX users use
their system (in most cases by using a macro package) you may understand that flexibility
is larger this way. Instead of adding more and more control and exceptions, and thereby
making the kernel more instable and complex, we delegate control to the macro pack-
age. The advantage is that there are no (everlasting) discussions on how to deal with
things and in the end the user will use a high level interface anyway. Of course the macro
package needs proper access to the font’s internals, but this is provided: the code used
for reading in the data comes from FontForge (an advanced font editor) and is presented
via Lua tables in a well organized way.

Given that users expect OPENTYPE features to be supported, how do we provide an inter-
face. In CONTEXT the user interface has always be an important aspect and consistency is
a priority. On the other hand, there has been the tradition of specifying the size explicity
and a new custom introduced by X3IgX to enhance fontname with directives. Traditional
TeX provides:

\font \name filename [optional size]
XJIEX accepts

\font \name "fontname[:optional features]" [optional size]
\font \name fontnamel[:optional features] [optional size]

Instead of afontname one can pass a filename between square brackets. LUATEX handles:

\font \name anything [optional size]
\font \name {anything} [optional size]

36 Afreshlook at fonts

where anything as well as the size are passed on to the callback.

This permits us to implement a traditional specification, support XjTgX like definitions, and
easily pass information from a macro package down to the callback as well. Interpreting
anything is done in LuA.

While implementing the Lua side of the loader we took a similar approach as the Arm
reader and cached intermediate tables as well as keep track of font names (in addition
to filenames). In order to be able to quickly determine the (internal) font name of an
OpeNTYpE font, special loader functions are provided.

The size is kind of special, because we can have specifications like

at 10pt
at 3ex
at \dimexpr\bodyfontsize+lipt\relax

This means that we need to handle that on the TgX side and pass the calculated value to
the callback.

Virtual fonts have a rather special nature. They permit you to define variations of fonts
using other fonts and special (Dvi related) operators. However, from the perspective of
TeX itself they don't exist at all. When you create a virtual font you also end up with a
TrM file and TpX only needs this file, which defined characters in terms of a width, height,
depth and italic correction as well as associates characters with kerning pairs and liga-
tures. TgX leaves it to the backend to deal the actual glyphs and therefore the backend
will be confronted by the internals of a virtual font. Because pDFTEX and therefore LUATEX
has the backend built in, it is capable of handling virtual fonts information.

In LUATEX you can build your own virtual font and this will suit us well. It permits us for
instance to complete fonts that lack certain characters (glyphs) and thereby let us get rid
of ugly macro based fallback trickery. Although in CONTEXT we will provide a high level
interface, we will give you a taste of Lua here.

callback.register("define_font", function(name,size)

if name == "demo" then
local f = font.read _tfm('texnansi-lmri0',size)
if f then

local capscale, digscale = 0.85, 0.75

f.name, f.type = name, 'virtual'

f.fonts = {
{ name="texnansi-lmr10" , size=size },
{ name="texnansi-lmss10", size=size*capscale },
{ name="texnansi-lmtt10", size=sizex*digscale }

Afresh look at fonts 37

for k,v in pairs(f.characters) do
local chr = utf.char(k)
if chr:find("[A-Z]") then
v.width = capscalexv.width
v.commands = {
{"special”,"pdf: 1 0 0 rg"},
{"font",2}, {"char",6k},
{"special","pdf: 0 g"}
}
elseif chr:find("[0-9]") then
v.width = digscale*v.width
v.commands = {
{"special","pdf: 0 0 1 rg"},
{"font",3}, {"char",bk},
{"special","pdf: 0 g"}
}
else
v.commands = {
{"font",1}, {"char",k}

}
end
end
return f
end
end
return font.read_tfm(name,size)
end)

Here we define a virtual font that uses three real fonts and which font is used depends on
the kind of character we're dealing with (inreal world situations we can best use the MkIV
function that tells what class a character belongs to). The commands table determines
what glyphs comes out in what way. We use a bit of literal pdf code to color the special
characters but generally color is not handled at the font level.

This example can be used like:

\font\test=demo \test

Hi there, this is the first (number 1) example of playing with
Virtual Fonts, some neat feature of \TeX, once you have access
to it. For instance, we can misuse it to fill in gaps in fonts.

During development of this mechanism, we decided to save some redundant loading by
permitting id’s in the fonts array:

38 Afresh look at fonts

callback.register("define_font", function(name,size)

if name == "demo" then
local f = font.read tfm('texnansi-lmri0',size)
if f then

local id = font.define(f)
local capscale, digscale = 0.85, 0.75
f.name, f.type = name, 'virtual'
f.fonts = {
{ id=iqd },
{ name="texnansi-lmss10", size=size*capscale 1},
{ name="texnansi-lmtt10", size=sizex*digscale }
+
for k,v in pairs(f.characters) do
local chr = utf.char(k)
if chr:find("[A-Z]") then
v.width = capscale*v.width
v.commands = {
{"special”,"pdf: 1 0 O rg"},
{"slot",2,k},
{"special","pdf: 0 g"}
}
elseif chr:find("[0-9]") then
v.width = digscale*v.width
v.commands = {
{"special”,"pdf: 0 0 1 rg"},
{"slot",3,k},
{"special","pdf: 0 g"}
+
else
v.commands = {
{"slot",1,k}

}
end
end
return f
end
end
return font.read_tfm(name,size)

end)

Hardwiring fontnames in callbacks this way does not deserve a price and when possible
we will provide better extension interfaces. Anyhow, in the experimental CONTEXT code
we used calls like this, where demo is an installed feature.

Afresh look at fonts 39

\font\myfont = special@demo-1 at 12pt \myfont

Hi there, this is the first (number 1) example of playing with Virtual
Fonts,

some neat feature of \TeX, once you have access to it. For instance,
we can

misuse it to fill in gaps in fonts.

Hi there, this is the first (number 1) example of playing with Virtual Fonts, some neat
feature of TgX, once you have access to it. For instance, we can misuse it to fill in gaps

in fonts.

Keep in mind that this is just an example. In practice we will not do such things at the font
level but by manipulating TgX's internals.

While developingthis functionality and especially when Taco was programming the back-
end functionality, we used more sane MkIV code. Think of (still Lua) definitions like:

\ctxlua {
fonts.definers.methods.install ("weird", {
{ "copy-range", "lmromanlO-regular" }
{ "copy-char", "ImromanlO-regular", 65, 66
I
{ "copy-range", "lmsans10-regular", 0x0100, OxO1FF
r
{ "copy-range", "Imtypewriter10-regular", 0x0200, OxFFOO
r
{ "fallback-range", "lmtypewriterl1O-regular", 0x0000, 0x0200
b
o)
}

Again, this is not the final user interface, but it shows the direction we're heading. The
result looks like:

\font\test={myfont@weird} at 12pt \test
\eacute \rcaron \adoublegrave \char65

This shows up as:
éraB
Here the @ tells the (new) CoNTEXT font handler what constructor should be used.

Because some testers already have XjIgX font support files, we also support a X3IgX like
definition syntax.

40 Afresh look at fonts

\font\test={lmroman10-regular:dlig;liga}\test

f i fi ffi \crlf

f i f\kernOpti f\kernOptf\kernOpti \crlf

\char64259 \space\char64256 \char105 \space \char102\char102\char105

This gives:

fififh
fififfi
fii fii i

We are quite tolerant with regards to this specification and will provide less dense meth-
ods as well. Of course we need to implement a whole bunch of features but we will do
this in such a way that we give users full control.

encodings

By now we've reached a stage where we can get rid of font encodings. We now have
the full unicode range available and no longer depend on the font encoding when we
hyphenate. In a previous chapter we discussed the difference in size between formats.

date luatex pdftex
2006-10-23 3135568 7095775
2007-02-18 3373206 7426 451
2007-02-19 3060103 7426 451

The size of the formats has grown a bit due to a few more patterns and a extra preloaded
encoding. But the LUATEX format shrinks some 10% now that we can get rid of encod-
ing support. Some support for encodings is still present, so that one can keep using the
metric files that are installed (for instance in project related trees that have special fonts)
although Arm/Typet files or OPENTYPE fonts will be used when available.

A couple of years from now, we may throw away some Lua code related to encodings.

files

TeX distributions tend to be rather large, both in terms of files and bytes. Fonts take most
of the space. The merged TgXLive 2007 trees contain some 60.000 files that take 1.123
MBytes. Of this, 25.000 files concern fonts totaling to 431 MBytes. A recent CONTEXT
distribution spans 1200 files and 20 MBytes and a bit more when third party modules are
taken into account. The fonts in TgXLive are distributed as follows:

format files bytes

Afresh look at fonts 41

AFM 1.769 123.068.970 443 22.290.132

TFM 10.613 44.915.448 2.346 8.028.920
VF 3.798 6.322.343 861 1.391.684
TYPE1 2.904 180.567.337 456 18.375.045
TRUETYPE 22 1.494.943
OPENTYPE 144 17.571.732
ENC 268 782.680
MAP 406 6.098.982 110 129.135
OFM 39 10.309.792
OVF 39 413.352
OvP 22 2.698.027

SOURCE 4.736 25.932.413

We omitted the more obscure file types. The lasttwo columns show the numbers for one
of my local font trees.

In due time we will see a shift from Type1 to OPeNTypPE and TRUETYPE files and because these
fonts are more complete, they may take some more space. More important s that the TgX
specific font metric files will phase out and the less Type1 fonts we have, the less ArM com-
panions we need (AfrMm files are not compressed and therefore relatively large). Mapping
and encoding files can also go away.

In LUATEX we can do with less files, but the number of bytes may grow a bit depending
on how much is catched (especially fonts). Anyhow, we can safely assume that a LUATEX
based distributions will carry less files and less bytes around.

fallbacks

Do we need virtual fonts? Currently in CONTEXT, when a font encoding is chosen, a fall-
back mechanism stepsin assoon asa characteris notinthe encoding. Sofar, so good. But
occasionally we run into a font that does not (completely) fits an encoding and we end
up with defining a non standard one. In traditional TeX a side effects of font encodings is
that they relate to hyphenation. CONTEXT can deal with that comfortably and multiple in-
stances of the same set of hyphenation patterns can be loaded, but for custom encodings
this is kind of cumbersome.

In LUATEX we have just one font encoding: UNicobe. When OPENTYPE fonts are used, we
don’t expect many problems related to missing glyphs, but you can bet on it that they will
occur. This is where in CONTEXT MkIV fallbacks will be used and this will be implemented
using vitual fonts. The advantage of using virtual fonts is that we still deal with proper
characters and hyphenation will take place as expected. And since virtual fonts can be
defined on the fly, we can be flexible in our implementation. We can think of generic

42 Afresh look at fonts

with thi
now ha
for insta

And with normal (non forced fallbacks) it looks as follows. As it happens, this font has a
cent symbol so no fallback is needed.

v yd .o .o X ¥
cC ¢ s é a u O I b
v 7/ .o oo ~ ¥
c ¢ ¢c ¢ s € a u O I b
The font definition callback intercepts the demo-2 and a couple of chained lua functions
make sure that characters missingin the fontare replaced by fallbacks. In the case of miss-

ing composed characters, they are constructed from their components. In this particular
example we have told the handler to assume that all composed characters are missing.

memory

Traditional TgX has been designed for speed and a small memory footprint. Todays im-
plementations are considerably more generous with the amount of memory that you can
use (hash, fonts, main memory, patterns, backend, etc). Depending on how complicated
a document layout it, memory may run into tens of megabytes.

Because LUATEX is not only suitable for wide fonts, but also does away with some of the
optimizations in the TgX code that complicate extensions, it has a larger footprint that
PDFIEX. When implementing the OPeNTYPE font basics, we did quite some tests with re-
spectto memory usage. Getting the numbers right is non trivial because the Lua garbage
collector is interfering. For instance, on my machine a test file with the regular CONTEXT
setup of of Latin Modern fonts made Lua allocate 130 MB, while the same run on Taco’s
machine took 100 MB.

When a font data table is constructed, it is handled over to TgX, and turned into the in-
ternal font data structures. During the construction of that TaB| E at the Lua end, CONTEXT
MkIV disables the garbage collector. By doing this, the time needed to construct and
scale a font can be halved. Curious to the amount of memory involved in passing such a
table, | added the following piece of code:

if type(fontdata) == "table" then
local s = statistics.luastate_bytes
local t = table.copy(fontdata)
local d = statistics.luastate_bytes-s

texio.write_nl(string.format("table memory footprint: %s",d))
end

Itturned out that a Regular Latin Modern font (OPENTYPE) takes around 8oo KB. However,
more interesting was that by adding this snippet of testcode which duplicted the table
in order to measure its size, the total memory footprint dropped to 100 MB (about the

44 Afresh look at fonts

amountused on Taco’s machine). This demonstrates that one should be very careful with
drawing conclusions.

Because fonts are rather important in TgX and because there can be lots of them used, it
makes sense to keep an eye on memory as well as performance. Because many manipu-
lations now take place in Lua, it no longer makes sense to let TgX buffer fonts. In plain TeX
one finds these magic

\font\preloaded=cmr10
\font\preloaded=cmri2

lines. The second definitions obscures the first, but the cmr10 stays loaded.

\font\one=cmr10 at 10pt
\font\two=cmr10 at 10pt

These two definitions make TgX load the font only once. However, since we can now
delegate loadingto Lua, TEX no longer helps us there. Forinstance, TeX has no knowledge
to what extend this cmr10 font has been manipulated and therefore both instances may
actually differ.

When you use a callback to define the font, TiX passes a font id number. You can use
this number as a reference to a loaded font (that is, passed to TgX). If instead of a table,
you return a number, TgX will reuse the already loaded font. This feature can save you
a lot of time, especially when a macro package (like CONTEXT) defines fonts dynamically
which means that when groupingis used, fonts get (re)defined a lot. Of course additional
caching can take place at the Lua end, but there one needs to take into account more
than just the scaled instance. Think of OPENTYPE features or virtual font properties. The
following are quite certainly different setups, in spite of the common size.

\font\one=1lmr10@demo-1 at 10pt
\font\two=1lmr10@demo-2 at 10pt

When scaling a font, one not only needs to handle the regular glyph dimensions, but
also the kerning tables. We found out that dealing with such issues takes some 25% of
the time spent on loading Latin Modern fonts that have rather extensive kerning tables.
When creating a virtual font, copying glyph tables may happen a lot. Deep copying ta-
bles takes a bit of time. This is one of the reasons why we discussed (and consider) some
dedicated support functions so that copying and recalculating tables happens faster (less
costly hash lookups and such). On the other hand, the time wasted on calculations (in-
cluding rounding to scaled points) can be neglected.

The following table shows what happens when we enforce a different garbage collecting
scheme. This test was triggered by another experimentwhere atregular time, forinstance
after a pag eis shipped out, say

Afresh look at fonts 45

collectgarbage("collect")

However, such a complete sweep has drastic consequences for the runtime. But, since
the memory footprint becomes 10-15% less by doing so, we played a bit with

collectgarbage("setstepmul", somenumber)

When processing a not so large file but one that loads a bunch of open type fonts, we get
the following values. The left setis on linux (Taco’s machine) and the right set in mine.

stepmul run(s) mem (MB) run(s) mem (MB)

200 1.58 69.14 5.6 84.17
1000 1.63 69.14 6.5 72.32
2000 1.64 60.66 6.8 73.53

10000 1.71 59.94 7.0 72.30

Since | use an old laptop running Windows with a probably different TgX configuration
(fonts), and under some load, both columns don’t compare well, but the general idea is
the same. For practical usage a value of 1000 is probably best, especially because mem-
ory intensive font and script loading only happens at the first couple of pages.

46 Afresh look at fonts

VIl Token speak

tokenization

Most TEX users only deal with (keyed in) characters and (produced) output. Some will play
with boxes, skips and kerns or maybe even leaders (repeated sequences of the former).
Others will be grateful that macro package writers take care of such things.

Macro writers on the other hand deal properties of characters, like catcodes and a truck-
load of other codes, with lists made out of boxes, skips, kerns and penalties but even they
cannot look much deeper into TgX’s internals. Their deeper understanding comes from
reading the TeXbook or even looking at the source code.

When someone enters the magic world of TEX and starts asking around on a bit, he or she
will at some point get confronted with the concept of ‘tokens’. A token is what ends up
in TEX after characters have entered its machinery. Sometimes it even seems that one is
only considered a qualified macro writer if one can talk the right token-speak. So what
are those magic tokens and how can LUATEX shed light on this.

Inamomentwe will show examples of how LUATEX turns characters into tokens, but when
looking at those sequences, you need to keep a few things in mind:

e Asequence of characters that starts with an escape symbol (normally this is the back-
slash) is looked up in the hash table (which relates those names to meanings) and re-
placed by its reference. Such a reference is much faster than looking up the sequence
each time.

e Characters can have special meanings, for instance a dollar is often used to enter and
exit math mode, and a percent symbol starts a comment and hides everything follow-
ing it on the same line. These meanings are determined by the character’s catcode.

e All the characters that will end up actually typeset have catcode ‘letter’ or ‘other’ as-
signed. A sequence of items with catcode ‘letter’ is considered a word and can po-
tentially become hyphenated.

examples

We will now provide a few examples of how TgX sees your input.

Hi there!

cmd meaning properties
letter H

letter i

Token speak 47

spacer
letter
letter
letter
letter
letter
other

- 0O KB 0 B

Here we see three kind ot tokens. At this stage a space is still recognizable as such but
later this will become a skip. In our current setup, the exclamation mark is not a letter.

Hans \& Taco use Lua\TeX \char 33\relax

cmd meaning properties
letter H
letter a
letter n
letter S
spacer

char_given &
spacer

letter T
letter a
letter C
letter o]
spacer

letter

letter S
letter

spacer

letter L
letter u
letter a
call TeX expandable protected
char_num char
other 3
other 3
relax relax

Here we see afew new tokens, a‘char_given”and a‘call’. The firstrepresentsa \chardef
i.e.areferenceto acharacterslotinafont, and the second one a macro that will expand to
the TgX logo. Watch how the space after a control sequence is eaten up. The exclamation
mark is a direct reference to character slot 33.

48 Token speak

\noindent {\bf Hans} \par \hbox{Taco} \endgraf

cmd

meaning properties

start_par
left_brace
call

letter
letter
letter
letter
right_brace
spacer
par_end
make box
left_brace
letter
letter
letter
letter
right_brace
spacer
par_end

noindent

bf

n B o

par
hbox

o o p H

endgraf

expandable protected

As you can see, some primitives and macro’s that are bound to them (like \endgraf)
have an internal representation on top of their name.

before \dimen2=10pt after \the\dimen2

cmd meaning properties
letter b
letter e
letter f
letter o}
letter T
letter e
spacer

register dimen
other 2
other =
other 1
other 0
letter P
letter t

Token speak 49

spacer

letter a

letter f

letter t

letter e

letter r

spacer

the the expandable
register dimen

other 2

Asyou can see, registers are not explicitly named, one needs the associated register code
to determine it’s character (a dimension in our case).

before \inframed|[width=3cm]{whatever} after

cmd meaning properties

letter b
letter
letter
letter
letter
letter
spacer
call inframed expandable protected
other
letter
letter
letter
letter
letter
other
other
letter
letter
other
left_brace
letter
letter
letter
letter
letter
letter

® H O FH O

B ¢ o 5

— B 0o Ww

S 0Ot p B

50 Token speak

letter e
letter T
right_brace
spacer
letter
letter
letter
letter
letter

H ®©O c H P

As you can see, even when control sequences are collapsed into a reference, we still end
up with many tokens, and because each token has three properties (cmd, chrand id) in
practice we end up with more memory used after tokenization.

compound | - |word

cmd meaning properties

letter
letter
letter
letter
letter
letter
letter
letter
call
other
call
letter
letter
letter
letter

— QB e O B OO0

active expandable protected

active expandable protected

AR O 5 —

This example uses an active character to handle compound words (a CONTEXT feature).

hm, \directlua O { tex.sprint("Hello World") }

cmd meaning properties
letter h

letter m

other s

spacer

convert directlua expandable

Token speak 51

other 0
spacer

left_brace

spacer

letter t
letter e
letter
other
letter
letter
letter
letter
letter
letter
other
other
letter
letter
letter
letter
letter
spacer
letter
letter
letter
letter
letter
other
other "
other)
spacer
right_brace

O HHFHOMID =~ct B H HT ®

- QKR O =

The previous example shows what happens when we include a bit of Lua code . . . itis
just seen as regular input, but when the string is passed to Lua, only the chr property is
passed, so we no longer can distinguish between letters and other characters.

A macro definition converts to tokens as follows.

cmd meaning properties
def def
undefined_cs expandable

mac_param

52 Token speak

other 1
mac_param

other 2
left _brace

other [
mac_param

other 2
other]
other [
mac_param

other

other]
right_brace
spacer
undefined_cs expandable
left_brace

letter A
right_brace
left_brace

letter B
right_brace

As we already mentioned, a token has three properties. More details can be found in the
reference manual so we will not go into much detail here.

The original interceptor for tokens but that one has been replaced by a more powerful
scanning mechanism. The following text is no longer applicable but kept as historic
reference. The new token scanner is discussed in later articles.

A most simple callback is:

\starttyping
callback.register('token_filter', token.get_next)
\stoptyping

In principle you can call \type {token.get_next} anytime you want
to intercept a token. In that case you can feed back tokens into
\TEX\ by using a trick like:

\starttyping
function tex.printlist(data)
callback.register('token_filter', function ()
callback.register('token_filter', nil)

Token speak 53

return data
end)
end
\stoptyping

Another example of usage is:

\starttyping
callback.register('token_filter', function ()
local t = token.get_next
local cmd, chr, id = t[1], t[2], t[3]
-- do something with cmd, chr, id
return { cmd, chr, id }
end)
\stoptyping

There is a whole repertoire of related functions, one is \type
{token.create}, which can be used as:

\starttyping

tex.printlistq{
token.create("hbox"),
token.create(utf.byte("{"), 1),
token.create(utf.byte("?"), 12),
token.create(utf.byte("}"), 2),

+

\stoptyping

This results in: \ctxlua {
tex.printlist{
token.create("hbox"),
token.create(utf.byte("{"), 1),
token.create(utf.byte("?"), 12),
token.create(utf.byte("}"), 2),

}

While playing with this we made a few auxiliary functions that
permit things like:

\starttyping

tex.printlist (table.unnest ({
tokens.hbox,

54 Token speak

tokens.bgroup,
tokens.letters("12345"),
tokens.egroup,

LIDND
\stoptyping

Unnesting is needed because the result of the \type {letters} call
is a table, and the \type {printlist} function wants a flattened
table.

The result looks like: \ctxlua {
local t = table.unnest {
tokens.hbox,
tokens.bgroup,
tokens.letters("12345"),
tokens.egroup,

}
tex.printlist (t)
tokens.collectors.show(t)

In practice, manipulating tokens or constructing lists of tokens
this way is rather cumbersome, but at least we now have some
kind of access, if only for illustrative purposes.

\starttyping
\hbox{12345\hbox{54321}}
\stoptyping

can also be done by saying:

\starttyping

tex.sprint ("\\hbox{12345\\hbox{54321}}")

\stoptyping

or under \CONTEXT's basic catcode regime:

\starttyping

tex.sprint(tex.ctxcatcodes, "\\hbox{12345\\hbox{54321}}")
\stoptyping

If you like it the hard way:

Token speak 55

\starttyping
tex.printlist (table.unnest ({
tokens.hbox,
tokens.bgroup,
tokens.letters("12345"),
tokens.hbox,
tokens.bgroup,
tokens.letters(string.reverse("12345")),
tokens.egroup,
tokens.egroup
LADND
\stoptyping

This method may attract those who dislike the traditional \TEX\
syntax for doing the same thing. Okay, a careful reader will
notice that reversing the string in \TEX\ takes a bit more
trickery, so \unknown

The tokens etc. examples shows here make no sense anyway as we have a more ex-
tensive interface to the macro language: context.

56 Token speak

VIII How about performance

remark

The previous chapters already spent some words on performance and memory usage. By
the time that Taco and | were implementing, discussing and testing the callbacks related
to node lists, we were already convinced thatin all areas covered so far (file management,
handling input characters, dealing with fonts, conversion to tokens, string and table ma-
nipulation, enz.) the TEX-LuA pair was up to the task And so we were quite confident that
processing nodes was not only an important aspect of LUATEX but also quite feasable in
terms of performance (after all we needed it in order to deal with advanced typesetting
of Arab). When Taco was dealing with the TgX side of the story, | was experimenting with
possible mechanisms at the Lua end.

At the same time | got the opportunity to speed up the MeTAPOST to PDF converter and
both activities involved some timing. Here | report some of the observations that we
made in this process.

parsing

Expressions in Lua are powerful and definitely faster than regular expressions found in
other languages, but they have some limits. Most noticeably is the lack of alternation. In
RuUBY one can say:

str = "there is no gamma in here, just an beta"

if str =~ /(alph|bet|delt)a/ then
print ($1)
end

butin Lua you need a few more lines:

str = "there is no gamma in here, just an beta"

for _, v in pairs({'alpha', 'beta','delta'}) do
local s = str:match(v)

if s then
print(s)
break
end

end

How about performance 57

Interesting is that upto now | didn’t really miss alternation but it may as well be that the
lack of it drove me to come up with different solutions. For CONTEXT MkIV the MEeTAPOST
to PDF converter has been rewritten in Lua. This is a prelude to direct Lua output from
METAPOST but | needed the exercise. It was among the first Lua code in MkIV.

Progressive (sequential) parsing of the data is an option, and is done in Mkll using pure
TeX. We collect words and compare them to PostScript directives and act accordingly.
The messy parts are scanning the preamble, which has specials to be dealt with as well as
lots of unpredictable code to skip, and the f show command which adds text to a graphic.
But real dirty are the code fragments that deal with setting the line width and penshapes
so the cleanup of this takes some time.

In Lua a different approach is taken. There is an mp table which collects a lot of functions
that more or less reflect the output of MeTAPosT. The functions take care of generating the
right pPDF code and also handle the transformations needed because of the differences
between PostScripT and pDF.

The sequential PostScripT that comes from MeTAPOsT is collected in one string and con-
verted using gsub into a sequence of Lua function calls. Before this can be done, some
cleanup takes place. The resulting string is then executed as Lua code.

As an example:

1 0020 0 curveto
becomes
mp.curveto(1,0,0,2,0,0)
which results in:

\pdfliteral{i 0 0 2 0 O c}

In between, the path is stored and transformed which is needed in the case of penshapes,
where some PosTScripT feature is used that is not available in pDF.

Duringthe development of LUATEX a new feature was added to Lua: 1peg. With 1pegyou
can define text scanners. In fact, you can build parsers for languages quite conveniently
so without doubt we will see it show up all over MkIV.

Since | needed an exercise to get accustomed with 1peg, | rewrote the mentioned con-
verter. I'm sure that a better implementation is possible than | did (after all, POstScripT is
a language) but | went for a speedy solution. The following table shows some timings.

gsub lpeg

58 How about performance

2.5 0.5 100 times test graphic
9.2 1.9 100 times big graphic

The test graphic has about everything that MetAPosT can output, including special tricks
that deal with transparency and shading. The big one is just four copies of the test graphic.

So, the 1peg based variant is about 5 times faster than the original variant. I'm not saying
that the original implementation is that brilliant, but a 5 time improvement is rather nice
especially when you consider that 1peg is still experimental and each version performs
better. The tests were done with 1peg version 0.5 which performs slightly faster than its
predecessor.

It's worth mentioning that the original gsub based variant was already a bit improved
compared to its first implementation. There we collected the TgX (PDF) code in a table
and passed it in its concatenated form to TgX. Because the Lua to TgX interface is by now
quite efficient we can just pass the intermediate results directly to TgX.

file io

The repertore of functions that deal with individual characters in Lua is small. This does
not bother us too much because the individual character is not what TeX is mostly dealing
with. A character or sequence of characters becomes a token (internally represented by
atable) and tokens resultin nodes (again tables, but larger). There are many more tokens
involved than nodes: in CONTEXT a ratio of 200 tokens on 1 node are not uncommon. A
letter like x become a token, but the control sequence \command also ends up as one
token. Later on, this x may become a character node, possibly surrounded by some kern-
ing. The input characters width resultin 5 tokens, but may not end up as nodes at all, for
instance when they are part of a key/value pair in the argument to a command.

Just as there is no guaranteed one-to-one relationship between input characters and
tokens, there is no straight relation between tokens and nodes. When dealing with input
itis good to keep in mind that because of these interpretation stages one can never say
that 1 megabyte of input characters ends up as 1 million something in memory. Just think
of how many megabytes of macros get stored in a format file much smaller than the sum
of bytes.

We only deal with characters or sequences of bytes when reading from an input medium.
There are many ways to deal with the input. For instance one can process the input lines
as TeX sees them, in which case TgX takes care of the utr input. When we're dealing with
other input encodings we can hook code into the file openers and readers and convert
the raw data ourselves. We can for instance read in a file as a whole, convert it using the
normal expression handlers or the byte(pair) iterators that LUATEX provides, or we can go
real low level using native LuA code, as in:

How about performance 59

do
local function nextbyte(f)
return f:read(1)
end

function io.bytes(f)
return nextbyte, f
end
end

f = io.open("somefile.dat")

for b in io.bytes(f) do
do_something(b)

end

f:close()

Of course in practice one will need to integrate this into one of the reader callback, but
the principle stays the same. In case you wonder if calling functions for each byte is fast
enough . .. it's more than fast enough for normal purposes, especially if we keep in mind
that other tasks like reading of, preparing of and dealing with fonts of processing token
lists take way more time. You can be sore that when half a second runtime is spent on
reading a file, processing may take minutes. If one wants to sqeeze more performance
out of this part, it's always an option to write special libraries for that, but this is beyond
standard LUATEX. We found out that the speed of loading data from files in Lua is mostly
related to the small size of LuA’s file buffer. Reading data stored in tables is extremely fast,
and even faster when precompiled into bytecode.

tables

When Taco and | were experimenting with the callbacks that intercept tokens and nodes,
we wondered what the impact would be on performance. Although in MkIV we allocate
quite some memory due to font handling, we were pretty sure that handling TeX's internal
lists also could have theirimpact. Data related to fonts is not always subjected to garbage
collection, simply because it’s to be available permanently. List processing on the other
hand involves a lot of temporary allocated tables. During a run a real huge amount of to-
kens passes the machinery. When digested, they become nodes. Fortestingwe normally
use this document (with the name mk . tex) and at the time of writing this, it has some 48

pages.

This document is of moderately complexity, but not as complex as the documents that
I normally process; they have with lots of graphics, layers, structural elements, maybe a
bit of xmL parsing, etc. Nevertheless, we're talking of some 24 million tokens entering the

60 How about performance

engine for 50 pages of text. Contrary to this the number of nodes is small: only 120 thou-
sand but the tables making up the nodes are more complex than token tables (with three
numbers per token). When all tokens are intercepted and returned unchanged, on my
machine the run is progressively slow and memory usage grows from 75M to 112M. There
is room for improvement there, especially in the garbage collector.

Side note: quite some of these tokens result from macro expansion. Also, when in the
input a \command is used, the callback passes it as one token. A command stores in
a format is already tokenized, but a command read from the input is tokenized when
read, so behind each token reported there can be a few more input characters, but their
number can be neglected compared to tokens originating from the macro package.

The token callback is rather slow when used for a whole document. However, this is
typically a callback that will only be used in very special situations and for a controlled
number of tokens. The node callback on the other hand can be set permanently. Fortu-
nately the number of nodes is relatively small. The overhead of a simple token handler
that just counts nodes is around 5% but most common manipulations with token lists
don’t take much more time. For instance, experiments with adding kerns around punc-
tuation (a French speciality) hardly takes time, resolving ligatures is not really noticeable
and applying inter—character spacing to a whole document is not that slow either. Ac-
tually, the last example is kind of special because it more than doubles the size of the
node lists. Inserting or removing table elements in relatively slow when tables are large
but there are some ways around this.

One of the reasons of whole-document token handling being slow is that each token is a
three—element table and so the garbage collector has to work rather hard. The efficiency
of this process is also platform dependent (or maybe compiler specific). Manipulating
the garbage collector parameters does not improve performance, unless this forces the
collector to be inefficient at the cost of a lot of memory.

However, when we started dealing with nodes, | gave tuning the collector another try
and on the mentioned test document the following observations were made when ma-
nipulating the step multiplier:

step runtime memory

200 24.0 80.5M
175 21.0 78.2M
150 22.0 74.6M
160 22.0 74.6M
165 21.0 77.6M
125 21.5 89.2M
100 21.5 88.4M

As aresult, | decided to set the stepmul variable to 165.

How about performance 61

\ctxlua{collectgarbage("setstepmul", 165)}

However, when we were testing thenew 1peg based MEeTAPosT converter, we ran into
problems. Fortable intensive operations, temporary disabling the garbage collector gave
a significant boost in speed. While testing performance we used the following loop:

\dorecurse {2000} {
\setbox \scratchbox \hbox \bgroup
\convertMPtoPDF{test-mps-procset.mps}{1}{1}
\egroup
}

In such a loop, turning the garbage collector on and off is disasterous. Because no other
LuA calls happen between these calls, the garbage collector is never invoked at all. As
a result, memory growed from the baseline of 45M to 120MB and processing became
incrementally slow. | found out that restarting the collector before each conversion kept
memory usage low and the speed also remained okay.

\ctxlua{collectgarbage("restart")}

Further experiments learned that it makes sense to restart the collector at each shipout
and before table intense operations. On mk . tex this results in a memory usage of 74M
(at the end of the run) and a runtime of 21 seconds.

Concerning nodes and speed/allocation issues, we need to be aware of the fact that this
was still somewhat experimental and in the final version of LUATEX callbacks may occur
at different places and lists may be subjected to parsing multiple times at different mo-
ments and locations (for instance when we start dealing with attributes, an upcoming new
feature).

Back to tokens. The reason why applying the callback to every token takes a while has
to do with the fact that each token goes through the associated function. If you want to
have an idea of what this means for 24 million tokens, just run the following Lua code:

for i=1,24 do
print (i)
for j=1,1000%1000 do
local t = {1, 2, 3}
end
end
print(os.clock())

This takes some 60 seconds on my machine. The following code runs about three times
faster because the table has not to be allocated each time.

62 How about performance

t={1, 2, 3%

for i=1,24 do
print (i)
for j=1,1000%x1000 do

t[1]=4 t[2]=5 t[3]=6

end

end

print(os.clock())

Imagine this code to be interwoven with other code and TgX doing things with the tokens
itgets back. The memory pool will be scattered and garbage collectingwill become more
difficult.

However, in practice one will only apply token handling to a marked piece of the input
data. Itis for this reason that the callback is not:

callback.register('token_filter', function(t)
return t
end)

but instead

callback.register('token_filter', function()
return token.get_next ()
end)

This gives the opportunity to fetch more than one token and keep fetchingtill a criterium
is met (for instance a sentinel).

Because token.get_next is not bound to the callback you can fetch tokens anytime
you want and only use the callback to feed back tokens into TgX. In CONTEXT MkIV there
is some collect and flush tokens present. Here is a trivial example:

\def\SwapChars{\directlua 0 {

do
local t = { token.get_next(), token.get_next() }
callback.register('token_filter', function()
callback.register('token_filter', nil)
return { t[2], t[1] }
end)
end

1}

\SwapChars HH \SwapChars TH

How about performance 63

Collecting tokens can take place inside the callback but also outside. This also gives you
the opportunity to collect them in efficient ways and keep an eye on the memory de-
mands.

Of course using TeX directly takes less code:
\def\SwapChars#1#2{#2#1}

The example shown here involves so little tokens that running it takes no noticeable time
Here we show this definition in tokenized form:

cmd meaning properties
def def

undefined_cs expandable
mac_param

other 1

mac_param

other 2

left_brace

mac_param

other 2

mac_param

other 1

right_brace

64 How about performance

IX Nodes and attributes

introduction

Here we will tell a bit about the development of node access in LUATEX. We will also in-
troduce attributes, a feature closely related to nodes. We assume that you are somewhat
familiar with TgX's nodes: glyphs, kerns, glue, penalties, whatsits and friends.

tables

Access to node lists has been implemented rather early in the development because we
needed it to fulfil the objectives of the Oriental TgX project. The first implementation
used nested tables, indexed by number. In that approach, the first entry in each node
indicated the type in string format. At that time a horizontal list looked as follows:

list = {
[1] = "hlist",
[2] = 0,
[8] = A
[1] = {
[1] = "glyph”:
s
[2] = {
+
+

Processing such lists is rather convenient since we can use the normal table iterators.
Because in practice only a few entries of a node are accessed, working with numbers
is no real problem: in slot1we have the type, en in the case of a horizontal or vertical list,
we know that slot 8 is either empty or a table. Looping over the list is done with:

for i, node in ipairs(list) do
if node[1] == "glyph" then
list[i] [6] = string.byte(string.upper(string.char(node[5])))
end
end

Node processing code hooks into the box packagers and paragraph builder and a few
more places. This means that when using the table approach a lot of callbacks take place

Nodes and attributes 65

where TgX has to convert to and from LuA. Apart from processing time, we also have to
deal with garbage collection then and on an older machine with insufficient memory
interesting bottlenecks show up. Therefore some following optimizations were imple-
mented at the TgX end of the game.

Side note concerning speed: when memory of processing speed is low, runtime can in-
crease five to tenfold compared to PDFTEX when one does intensive node manipulations.
This is due to garbage collection at the Lua end and memory (de)allocation at the TEX end.
There is not much we can do about that. Interfacing has a price and hardware is more
powerful than when TgX was written. Processing the TEX book using no callbacks is not
that much slower than using a traditional TgX engine. However, nowadays fonts are more
extensive, demands for special features more pressing and that comes at a price.

When the listis not changed, the callback function can return the value true. This signals
TEX that it can keep the original list. When the list is empty, the callback function can
return the value false. This signals TgX that the list can be discarded.

In order to minimize conversions and redundant processing, nested lists were not passed
as table but as a reference. One could expand such a list when needed. For instance,
when one hooksthe same functioninthehpack_filterandpre_linebreak_filter
callbacks, this way one can be pretty sure that each node is only processed once. Boxed
material that is part of the paragraph stream first enters the box packers and then already
is processed before it enters the paragraph callback. Of course one can decide the ex-
pand the referred sublist and process it again. Keep in mind that we're still talking of a
table approach, but we're slowly moving away from big conversions.

In principle one caninsertand delete nodes in such a list but given that the average length
of a list representing a page is around 4000, you can imagine that moving around a large
amount of data is not that efficient. In order to cope with this, we experimented a lot and
came to solutions which will be discussed later on.

At the Lua end some tricks were used to avoid the mentioned insertion and deletion
penalty. When a node was deleted, we simply set its value to false. Deleting all glyphs
then became:

for i, node in ipairs(list) do
if node[1] == "glyph" then
list[i] = false
end
end

When TgX converted a Lua table back into its internal representation, itignored such false
nodes.

66 Nodes and attributes

For insertion a dummy node was introduced at the Lua end. The next code duplicates
the glyphs.

for i, node in ipairs(list) do
if node[1] == "glyph" then
list[i] = { 'inline', 0, nil, { node, node } }
end
end

Just before we passed the resulting list back to TgX we collapsed these inline pseudo
nodes. This was a rather fast operation.

So far so good. But then we introduced attributes and keeping track of them as well as
processing them takes quite some processing power. Nodes with attributes then looked
like:

someglyph = {

[1] = "glyph", -- type

[2] = 0, -- subtype
[31 = { [1] =5, [4] = 10 }, -- attributes
[4] = 88, -- slot

[5] = 32 -- font

¥

Constructing attribute tables for each node is costly in terms of memory usage and pro-
cessing time and we found out that the garbage collector was becoming a bottleneck,
especially when resources are thin. We will go into more detail about attributes else-
where.

lists

At the same time that we discussed these issues, new Dutch word lists (adapted spelling)
were published and we started wondering if we could use such lists directly for hyphen-
ation purposes instead of relying on traditional patterns. Here the first observation was
that handling these really huge lists is no problem at all. Okay, it costs some memory but
we only need to load one of maybe a few of these lists. Hyphenating a paragraph us-
ing tables with hyphenated words and processing the paragraph related node list is not
only fast, it also gives us the opportunity to cross font boundaries. Of course there are
kerns and ligatures to deal with but this is no big deal. Atleast it can be an alternative or
addendum to the current hyphenator. Some languages have very small pattern files or a
very systematic approach to hyphenation so there is no reason to abandon the traditional
ways in all cases. Take your choice.

Nodes and attributes 67

When experimenting with the new implementation we tested the performance by letting
Lua take care of hyphenation, spell checking (marking words) and adding inter—character
kerns. When playing with big lists of words we found out that the caching mechanism
could notbe used due to some limitations in the Lua byte code interpreter, so eventually
we ended up with a dedicated loader.

However, again we ran into performance problems when lists became more complex.
And so, instead of converting TeX datastructures into Lua tables userdata types came into
view. Taco already had reimplemented the node memory management, so a logical next
step was to reimplement the callbacks and box related code to deal with nodes as linked
lists. Since this is now the fashion in LUATEX, you may forget the previous examples, al-
though it is not that hard to introduce table representations again once we need them.

Of course this resulted in an adaption to the regular TgX code but a nice side effect was
that we could now use fields instead of indexes into the node data structure. There is
a small price to pay in terms of performance, but this can be compensated by clever
programming.

someglyph = {
type = 41,
subtype = 0,
attributes = <attributes>,
char = 88,
font = 32
+

Attributes themselves are userdata. The same is true for components that are present
when we're for instance dealing with ligatures.

As you can see, in the field variant, a type is a number. In practice, because Lua hashes
strings, working with strings is as fast when comparing, but since we now have the more
abstract type indicator, we stick with the numbers, which saves a few conversions. When
dealing with tables we get code like:

function loop_over_nodes(list)
for i, n in ipairs(list)
local kind = n[1]
if kind == "hlist" or kind == "vlist" then

end
end
end

But now that we have linked lists, we get the following. Node related methods are avail-
able in the node namespace.

68 Nodes and attributes

function loop_over_nodes (head)

end

local hlist, vlist =
while head do

local kind = head.type

if kind == hlist or kind == vlist then

end
head = head.next
end

node.id('hlist'), node.id('vlist')

Using an abstraction (i.e. a constant representing hlist looks nice here, which is why
numbers instead of strings are used. The indexed variant is still supported and there we
have strings.

Going from a node list (head node) to a table is not that complex. Sometimes this can be
handy because manipulating tables is more convenient that messing around with user-
data when it comes down to debugging or tracing.

function nodes.totable(n)

end

function totable(n)
local f, tt =
for _,v in ipairs(f)
local nv = n[v]
if nv then
local tnv =
if tnv ==
tt [v]

do

type (nv)

else —- userdata

tt[v] =
end
end
end
return tt
end
local t =
while n do
t[#t+1] =
n.next

{1}

totable(n)
n=

end

return t

nodes.totable(nv)

node.fields(n.id,n.subtype), { }

"string" or tnv == "number" then
nv

Nodes and attributes

69

It will be clear that here we collect data in Lua while treating nodes as userdata keeps
most of it at the TgX side and this is where the gain in speed comes from.

side effects

While experimenting with node lists Taco and | ran into a peculiar side effect. One of the
tests involved adding kerns between glyphs (inter character spacing as sometimes uses
in titles in a large print). When applied to a whole document we noticed that at some
places (words) the added kerning was gone. We used the subtype zero kern (which is
most efficient) and in the process of hyphenating TgX removes these kerns and inserts
them later (but then based on the information stored in the font.

The reason why TeX removes the font related kerns, is the following. Consider the code:
\setboxO=\hbox{some text} the text \unhcopyO has width \the\wdO

While constructing the \hbox, TeX will apply kerning as dictated by the font. Otherwise
the width of the box would not be correct. This means that the node list entering the
linebreak machinery contains such kerns. Because hyphenating works on words TgX will
remove these kerns in the process of identifying the words. It creates a string, removes
the original sequence of nodes, determines hyphenation points, and add the result to
the node list. For efficiency reasons TEX will only look at places where hyphenation makes
sense.

Now, imagine that we add those kerns in the callback. This time, all characters are sur-
rounded by kerns (which we gave subtype zero). When TgX is determining feasable break-
points (hyphenation), it will remove those kerns, but only at certain places. Because our
kerns are way larger than the normal interglyph kerns, we suddenly end up with an in-
tercharacter spaced paragraph that has some words without such spacing but the font
dictated kerns.

most words are spaced but somewords are not

Of course a solution is to use a different kern, but at least this shows that the moment of
processing nodes as well as the kind of manipulations need to be chosen with care.

Kerning is a nasty business anyway. Imagine the following word:

effe

When typeset this turns into three characters, one of them being a ligature.
[char e] [liga ff (components f f)] [char e]

However, in Dutch, such a word hyphenates as:

70 Nodes and attributes

ef-fe
This means that in the node list we eventually find something:

[char e] [disc (f-) (f) (skip 1)] [liga ff (components f f)] [char
el

So, eventually we need to kern between the character sequences [e,f-], [ff], [ff,e] and
[f.e].

attributes

We now arrive at attributes, a new property of nodes. Before we explain a bit more what
can be done with them, we show how to define a new attribute and toggle it. In the
following example the \visualizenextnodes macro is part of CONTEXT MKIV.

\newattribute\aa
\newattribute\ab
\visualizenextnodes \hbox {\aal T{\ab3\aa2 E}X}

For the sake of this example, we start the allocation at 2000 because we don’t want to
interfere with attributes already defined in CONTEXT. The node list resulting from the box
is shown at the next page. As you can see here, internally attributes become a linked list
assigned to the attr field. This means that one has to do some work in order to ins