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SOME PROPERTIES OF A TEST FOR MULTIMODALITY
BASED ON KERNEL DENSITY -ESTIMATES

B.W. Silverman .

It is a great pleasure for me to have this opportunity to
contribute a paper in honour of David Kendall. It was through David Kendall's
lectures, writings and perscnal communications that I first became interested
in density estimation and the other matters discussed in this paper. He is
a great scientist and a great teacher and my debt to him is enormous. I wish

him a very happy birthday.

1. Introduction

Silverman {198l1) suggested and illustrated a way that kernel
probability density estimates can be used to investigate the number of modes
in the density underlying a given independent identically distributed real

sample. Given an independent sample Xl""Xn from a univariate probability

density £, define the kernel density estimate fn with Gaussian kernel by

£ (t,h) =
n

n " hTle{ (t-x ) /h)
i 1

!

Il o1

1

where the paraméter h is the smoothing parameter or window width and ¢
is the standard normal density function. Kernel density estimates were
introduced by Rosenblatt (1956) and Parzen (1962); the restriction to Gaussian
kernels in this work is made for reasons given in Silverman (1981). Often the
explicit dependence of fn on h will be suppressed.

Consider the problem of testing the null hypothesis that f has
k or fewer modes against the alternative that f has more than k modes.

The statistic suggested for constructing such a tedt was the k-critical

window width hcrit(k)’ defined by

hcrit(k) = inf{h . fn(-,h) has at most k modes}
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In Silverman (1981) it was stated heuristically that large values of h__,
will tend to reject the null hypothesis. The results of this paper sh0wcrlt %
that this procedure does indeed lead to a consistent test.

Subject to certain regularity conditions, it is shown that, under

the null } i i
wwpothesis, hcrit converges stochastically to zero, while this is
not the case under the alternative hypothesis.

othesis is found. It is perhaps interest-

The exact rate of convergence

of h (
crit to zero under the null hyp

ing that this rate of ccnvergence has precisely the sam

um choice of window width for the uniform estimation

e order as the rate of

convergence for the optim

of the density given, for example, by Silverman (1978b}.

In Silverman (1981) a bootstrap procedure fo
was suggested. The idea of boot-

r assessing the

significance of an observed value of h ¢
cri

strap methods in general is to construct a null hypothesis oY model from the
given data, rather than supplying it a priori. In our case the representative

rudfdbysmmdﬁngtMa&mauptot
d; - the resulting density 1is. of

of the null hypothesis is const he point

where a density with k modes is just cbtaine

fn(-,h ) and so has already been found! Si

crit
En("hcrit) is straightforward; choose X uniformly {(with replacement)
from the original data and then add a per

course, mulating from

turbation ¢ to X, where € is

h mean zero and variance h__ .. -
crit
r with an application,

ite to draw some connections

normally distributed wit
are given in

Further gdetails, togethe

Silverman (1981). It is interesting and appos

ur technique 1is actually an example of a

with David Kendall's work. O
ribed by Efron (1979); there, however,

"smoothed bootstrap” technique as desc

ing parameter ig entirely 2

and Kendall {1980) in their investigation of

The 'over—unrounding' teghﬁ{que they :
[

the choice of smeoth rbitrary. & somewhat related

technique was used by Kendall

alignments in archaeological data.
5 was again a way of pres

etails which are only

erving the coarse structure

used in their Section
t really' present if

of the data while erasing fine d
e differs from

ver-unrounding techniqu

the null hypothesis is rejected. The ©
one of which is that

chnique in several det
ampled with replaceme

ed by a random amoull

the smoothed bootstrap te ails,
nt and then perturbed,

the data points are no longer S
t; thus the sampling

but instead each data point is perturb
acement. Another pie

all's work oil the me

ce of data analysis worth mention-

is conducted without repl
galithic yard (Kendall,

ing in this context is D.G. kend
density constructe

4 from the data was used as a basis for

1974). Here again a |
oarse features put not the fine

preserving the ¢

simulation, with the aim of
the megalithic yar

d study a parametric ﬁqdel

structure of the data, ‘though in
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sufficed for this purpose.

A most interesting feature of the over-unrounding procedure used
by Kendall and Kendall (1980) is that the parameter controlling the amount
of random unrounding (or smoothing) is not chosen arbitrarily. Instead, a
criterion based on the phenomenon being studied is used to choose how much
to unround the data; in an informal way, the procedure seeks the smallest
value of the unrounding parameter among those acceptable according to this
criterion. This is of course alsc the case in the method studied in the
present paper.

The remarks made above about the rate of convergence of h

: crit
to zero show that fn(.,h .,) is, in a certain sense, optimally uniformly

crit
consistent as an estimate of the true density f. This gives some theoretical
justification for the bootstrap procedure, since, at least for large samples,
the simulation density fn("hcrit) is likely to be a good estimate (in the
uniform norm) of the true underlying density. A possible drawback for small
samples is the fact that the implied constant in the rate of convergence does
not necessarily take its optimum wvalue.

An interesting open question raised by this discussion is the
pessibility of using hcrit(k) for some value of k 1in developing an
automatic method for choosing the smoothing parameter in density estimation.
Boneva, Kendall and Stefanov (1971) suggested choosing the window width
where 'rabbits' or rapid fluctuations just started to appear. Such a window

rit -

hcrit(k) converges to zero at the optimum rate for all k

formalization of the Boneva-Kendall-Stefanov procedure would give estimates

width would perhaps correspond to hc .. (k) for some k 2 j; since
2

j, a suitable

which converged at the optimal rate, though not necessarily with the optimal
constant multiplier. The fact that _hcrit(k) has the same rate of converg-
ence for all k 2 j provides some explanation for the observation made by
Boneva, Kendall and Stefanov that the estimate seems suddenly to become noisy
as the window width is reduced.

The use of kernel density estimates in mode estimation was
originated by Parzen (1962). The 'gradient method' of cluster analysis is
based on clustering towards modes in the estimated density; see, for example,
Andrews (1972), Fukunaga and Hostetler (1975), and Bock (1977). Papers

related to tests of multimodality are Cox (1266} and Good and Gaskins (1980) .

2. The main result

In this section, the main result of this paper is stated and
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and proved. It is convenient to use the convention throughout that all limits
and implied limits are taken as n tends to infinity. Varying conventions

will apply to unqualified suprema and infima in Propositions 1 and 2 below,

and these will be introduced where necessary. The notations p lim inf and

p lim sup will be used to signify the corresponding limits in probability

as n tends to infinity, and Qp and gp will denote probability ordexs

of magnitude. Define, for h > O,

ath) = R log(h-l) A (1)

The main results are all contained in the following theorem.

Theorem

Suppose f 1is a pounded density with bounded support [a,b],

ns are satisfied:

and suppose that the following conditio
tiable on [a,b]

(i) f is twice continuously differen

(ii) f has exactly ] local maxima on (a,b)

(iii) f£'(a+) > 0, £'(b7) < o

" 2
(iv) min g?%é%' = Cg > O.
z:f'(z)=0
dth constructed from an i.1i.d.

Let hc it(k) be the k-critical window wi
then, if k z 3. defining o 4as in (1) above,

sample of size n from f.

{2)

. -1 2
p lim inf n a{hcrit(k)} 2 3 V2 <,

(3)

-1
and 3 o
p lim sup n a{hcrit(k)} <

while if k < j then there exists a constant ho(f,k) such that

pih .. (k) >h } 1 (4)
crit o]
jon (iv) 1is equivalent, in the presence of the

Note that condit
is strictly

n that £ positive on (a,b]

bi.

other conditions, to the conditio

and f' has no multiple zeros on la,
various assertions of the theorem

It is convenient to prove the
e conditions of the theorem on

th
The first

separately. Except where otherwise stated,
roughout. proposition facilitates

f will be assumed to be true th

the proof of (2).
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Proposition 1. Given any N with

2
0 < cl < 5‘“/2 Co '

suppose the sequence of window widths hn satisfies

ntath ) - . (5)
n 1
Then the number of maxima of fn tends in probability to J.
It follows from Proposition 1 and Silverman (1981) that, for
all k = j, provided (5} holds,

p{h (k) <h } -1
n

crit
and hence that (2) is satisfied.

The proof of Proposition 1 makes use of several lemmas, the
first of which shows that, under certain conditions, maxima and minima of

fn can, eventually, only occur arbitrarily close to theose of f.

lemma 1. Let I be any closed interval contained in [a,b] , such that

I contains ncone of the zeros of f£'. Then, provided h -+ O and
-1 2 n
n hna(hn) -+ 0, it will follow that

P(fn monotonic on I in the same sense as f) > 1

-

Proof. By slight adaptation of the results of Silverman (1978a), it can be
seen that, provided £ 1is bounded, we will have, if h satisfies the
n

assumptions of Propositicon 1,

(1) . (6)

In Silverman (1978a) the uniform continuity of £ was additionally assumed,

but careful examination of the proofs of that paper shows that the derivation

of the rate of stochastic convergence, though net of the exact constant

implied in the gp, goes through under the assumption of bounded f.
Supposing without loss of generality that f is increasing on

I, it follows from the continuity of f' on [a,b] that f£' is bounded



253

away from zero on I and is non-negative on a neighbourhood of I, and hence

by elerentary analysis that

lim inf inf Efé >0 . (7)
I

Combining (6) and (7) completes the proof of Lemma 1.
The next lemma shows that, under suitable conditions, fn will

eventually have exactly one maximum and no minima near each maximum of £,

and exactly one minimum and no maxima near each minimum of f.

Lemma 2. Suppose f'{(z) =0 and £ has a local maximum (respectively

minimum) at z. Suppose hn +~ 0 and

ntath) »c, e (0, 2 ez e (8)
n 2 3
Then, for all sufficiently small € > 0, the probability that f' has
exactly one zero in {z-¢€, 2+¢), and that this zero is a maximum (respect-
ively minimum) of fn' tends to one as n tends to infinity.
f for a

Procf. Only the case of a local maximum will ke considered. The preo

omitted. Throughout this proof

minimum proceeds very similarly and is
[z~¢, 2+e].

unqualified infima and suprema will be taken to be over X in
and f£", choose ¢ sufficiently small that

By the continuity of f

2 3
inf £7(x)° , 2 (9)
sup £(x) 21/2
y > 0 and

. . el
and also [z-e, z+e] ¢ (a,b)- It is then immediate that £'{z-¢
£v  gannot cross zevo in (z2-€, z+¢). Since

£'(z+c) < O since, by (9), o
istency of
f' is continuous at z ¥ £, bY standard results on the const Y n

1962) and Bhattacharya (1967))

(a combination of Parzen {

{10)
P{f;(z*e) > ¢ and fé(z+e) <0} +1

ghtly adapting the proofs of silverman (1976 and 19752)

Very sli
£ f" is only unifor

mly continuous oD a neighbour-
to cope with the fact tha

hood of [z-e, z+e] gives

L1 p
2 erx) - BE | 7K
n n

2
n ? am’ sup
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where
2
Ki = 2 sup f I "
-1
= 3(2n/2) sup £
Since, by elementary analysis, sup‘Ef;(x) - f"(x)| converges to zero, it
' 1
follows from (8) that p lim sup sup|f;(x)-—f"(x)‘ < chg
n
< inf|£"(x) |
by (9). It is immediate that
P{f;(x) <0 for all x in [z-e, z+e]} > 1 . (11)

Combining (1C) and {11) completes the proof of Lemma 2.

To complete the proof of Propbsition l, note first that no
maxima of fn can occur outside the interval (a,b). Let zl,...,z2j 1
be the zeros of f' in (a,b) and choose € sufficiently small to satisfy

the conclusion of Lemma 2 for all zi and to ensure that

< — < + - - e
a < zi~e €2+ < ZymE <tov< zzj_l+e <b . (12)
Applying either Lemma 1l or Lemma 2 as appropriate to each of the intervals
in the partition (12) of the interval (a,b) ccmpletes the proof of Proposi-
tion 1.

The next proposition leads to the proof of assertion (3), in a

similar way to the derivation of (2) from Proposition 1.

Proposition 2. Defining a as in (1) above, suppose that

-1 -1 -5 .
n a(h) -« and n lh > -0 . (13)
n n

Then the number of maxima in fn tends in probability to infinity.

Given any k, it follows from this result and the corollary of
Silverman (198l) that, provided (13) holds,

Plh_ . (k) > hn} +1
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assertion (2) follows at once.
To prove Proposition 2, suppose without loss of generality that

f has a maximum at ©O in  (a,b). Choose a sequence ln which satisfies

3 +>0, h*i =ofn alth)} ,
n n - n
-1
h = &+« and |log zn| | Log hn1 -1 . (14}

The explicit dependence of h and £ on n will often be suppressed. Let

Ij n be the interval f(j-1)&, j&] for integer j = O.

Following Silverman (1978a) apply Theorem 3 of gomlos, Major and

Tusnady (1975) to obtain

1

, _ , -1 2 .
fn(x) = Efn(x) + h n pl(x) + en(x)

i i i i cture as
where p. is a Gaussian process with the same covariance stru

1

n2h(f’ - Ef') and ¢' is a secondary random error.
n n ) .
" ¢'(u) 1in Proposition 1 of Silverman

The process 9, is

cbtained by putting §(u) equal to

(1978a). By elementary analysis and the arguments of gilverman {1978a) we

have, in a neighbourhocod of O,
lEfg(x) - £7(x)| = o)

O(n—lh—glog n) a.

It

|e$(x)|

2 from (13) above i

Il
o}
=

1

10
X
-

and  |£'(x) |

eSe
Since f'(o) -0 and f" eXiStS. It fOllows that, a r

i

- ' o(h)
sup{Ef;(x} + sn{x)l o(jL) + of l
2
ofn th"10g(2/h}) (15

1

5 d subsegquentl
by (13) a (14) above where we adopt the convention. here an u q Y
Y an O v
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in this proof, that ungualified suprema are taken to be over the interval
I, o and that a fixed Jj 1is being ccnsidered.
Js .
We slightly adapt the argument of Silverman (1976) pp. 138-140

to investigate sup Py~ Define

2 -1 2
0% (x) = var o, (x) =h T£0x) [ ¢'7(L + 0(1))
-1 2
=h "f(0) f ¢ (1 + o(l)) for x inm Ij . ,
since the end points of Ij n both converge to zero. Analogously to (12} of
r
Silverman (1976), given any X in (9,2),
| 1
-1 -
Plsup o py < (1 - %ﬁ) {2 log h 12)}2]
-2 -1
£ 0(2 Jlogth "R) (16)

-1 1.2
x Iff lX‘ exp{2 log(h "2) (1 - '5- A) ‘X‘/(l + lX‘)}
j.n
where y(x,y) = corr{p(x),p(y)}. Using a similar argument-to that following

(12) of Silverman (1976), but allowing the interval I to vary, shows that

the expression in (16) is dominated by

) | a-zn°
- -1 - -
0(% ) logth ") (6% (o) + o(1)} Ty o(%)

= "ty log(h™g) > 0

by (14) above. 1
2

It follows that, setting K = {2£(0) f ¢'2} .

I

L

L -1 -
p lim inf sup{h = logt(h lSZ,)}2 Py 2 K (17)

TPy giving a

corresponding result for inf pl. It follows from (15), (17) and the

and that the same result holds if fy is replaced by

corresponding result for inf Dl that
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1

P{Dl crosses -n h(Ef' + ') din I, } =1
n n !
and hence that

P{fn crosses zero in Ij,n} + 1 . (18)

Since (18) holds for all 3j, the number of maxima in £ tends in probability
n

to infinity, completing the proof of Proposition 2.
The final proposition of this section deals with the case where

the alternative hypothesis is true, and shows that hCrit will remain bounded

away from zero.

]

Proposition 3. If k < j then there exists a constant h, >0, depending

on £ and k, such that

P{hcrit(k) > ho} + 1 .

Proof. By arquments analogous to those of the proof of the theorem of

Silverman (19281), making use of the variation diminishing properties of the

Gaussian kernel and the continuity properties of Efn, the number of maxima
in Ef (-,h) is a right continuous decreasing function of h, for h 2 0.
n

By choosing ho sufficiently small, we can ensure that Efn(',ho) has,

independently of n, exactly Jj maxima. Because of the conditions imposed

on f in the statement of the Theorem above, we can also ensure that

Ef;(':ho) is non-zero at all stationary points of Efn(‘,ho).
a 2.2 of Schuster (1969), which does not in

The argument of Lemm
uence of window widths, then

fact require the convergence to zero of the seq

implies that, with probability one,

fﬁ(x'ho) - Efg(x,ho) and f;(x,ho) - Efn(x,ho)

imi that used
both converge to zero uniformly over X. By an argument similar to a
,ho)

in Proposition 1 above, it follows that the number of maxima of f_(-
the number of maxima of Efn(-,ho).

on [a,b] tends almost surely to 3. -
completes the proof of Proposition

2pplying the corollary of Silverman (1981)
3.
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Discussion

It is natural to engquire to what extent the conditions of the
theorem above can be relaxed without affecting the conclusions. In particular
it seems intuitively clear that the condition of bounded support for the
density f should be able to be replaced by some condition on the tails of
f, though the present method of proof cannot deal with this case. Condition
(iv) appears to be more fundamental to the result; if, for example,
fr{o) = £f"(0) =0 = £"'(0), then an examination of fn and Efn near zero
seems to indicate that, under suitable regularity conditions, there will be
no maximum of fn near zero provided f;' - Ef;'l . remains small. A heuristic
argument suggests that a result corresponding to the theorem of Section 2
can be proved, but with «a(h) replaced by h_7log(h_l), so that hcrit
converges to zero more slowly. Even slower convergence will occur for higher
order zeros in f'.

The interest in this discussion lies in the fact that the boot-
strap density constructed using the critical window width will not only have
infinite tails of similar weight to those of the corresponding normal kernels
but will also have a stationary point which is a point of inflexion. The

slower convergence of zero of h provides support for the remark of

rit
Silverman (198l) that the bootstrap test may be conservative; it also bears
out the intuition of P.Huber (private communication) that the bootstrap
procedure may be excessively conservative, though the difference between

1 1

n5 and n 7 convergence is very slight in practice.

The methods of this paper can also be used to study the asymptotic
properties of a corresponding test for the number of points of inflexion in
the density. Both Cox {1966) and Good and Gaskins (1980) prefer to use points
of inflexion as an indication that the density is a mixture. The critical
window width 'will now be the smallest window width for which the density has
k maxima. Under suitable conditions a result corresponding tc the theorem
of Section 2 can be proved, but again, among other changes, aoa(h) will be
replaced by h—7log(l/h) since f; will be replaced by f;' in much of

the argument of the proofs of Propositions 1 and 2.
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