
©ISO/IEC ISO/IEC 9899:1999 (E)

6. Language
6.1 Notation

1 In the syntax notation used in this clause, syntactic categories (nonterminals) are
indicated byitalic type, and literal words and character set members (terminals) bybold
type . A colon (:) following a nonterminal introduces its definition. Alternative
definitions are listed on separate lines, except when prefaced by the words ‘‘one of’’. An
optional symbol is indicated by the subscript ‘‘opt’’, so that

{ expressionopt }

indicates an optional expression enclosed in braces.

2 When syntactic categories are referred to in the main text, they are not italicized and
words are separated by spaces instead of hyphens.

3 A summary of the language syntax is given in annex A.

6.2 Concepts

6.2.1 Scopes of identifiers

1 An identifier can denote an object; a function; a tag or a member of a structure, union, or
enumeration; a typedef name; a label name; a macro name; or a macro parameter. The
same identifier can denote different entities at different points in the program. A member
of an enumeration is called anenumeration constant. Macro names and macro
parameters are not considered further here, because prior to the semantic phase of
program translation any occurrences of macro names in the source file are replaced by the
preprocessing token sequences that constitute their macro definitions.

2 For each different entity that an identifier designates, the identifier isvisible (i.e., can be
used) only within a region of program text called itsscope. Different entities designated
by the same identifier either have different scopes, or are in different name spaces. There
are four kinds of scopes: function, file, block, and function prototype. (Afunction
prototypeis a declaration of a function that declares the types of its parameters.)

3 A label name is the only kind of identifier that hasfunction scope. It can be used (in a
goto statement) anywhere in the function in which it appears, and is declared implicitly
by its syntactic appearance (followed by a: and a statement).

4 Every other identifier has scope determined by the placement of its declaration (in a
declarator or type specifier). If the declarator or type specifier that declares the identifier
appears outside of any block or list of parameters, the identifier hasfile scope, which
terminates at the end of the translation unit. If the declarator or type specifier that
declares the identifier appears inside a block or within the list of parameter declarations in
a function definition, the identifier hasblock scope, which terminates at the end of the
associated block. If the declarator or type specifier that declares the identifier appears

§6.2.1 Language 29


