Lecture 5

Forms and operators

Now we introduce the main object of this course — namely forms in Hilbert spaces. They
are so popular in analysis because the Lax-Milgram lemma yields properties of existence
and uniqueness which are best adapted for establishing weak solutions of elliptic partial
differential equations. What is more, we already have the Lumer-Phillips machinery at
our disposal, which allows us to go much further and to associate holomorphic semigroups
with forms.

5.1 Forms: algebraic properties

In this section we introduce forms and put together some algebraic properties. As domain
we consider a vector space V' over K.
A sesquilinear form on V' is a mapping a: V' x V — K such that

a(u+ v, w) = alu, w) + a(v,w), a(Au, w) = Aa(u,w),

a(u,v+w) = a(u,v) + a(u,w), alu, ) = \a(u,v)

for all u,v,w eV, A € K.

If K =R, then a sesquilinear form is the same as a bilinear form. If K = C, then a is
antilinear in the second variable: it is additive in the second variable but not homogeneous.
Thus the form is linear in the first variable, whereas only half of the linearity conditions
are fulfilled for the second variable. The form is 1%-linear; or sesquilinear since the Latin
‘sesqui’ means ‘one and a half’.

For simplicity we will mostly use the terminology form instead of sesquilinear form. A
form a is called symmetric if

a(u,v) = a(v,u)  (u,v€V),
and a is called accretive if
Rea(u,u) >0 (ueV).

A symmetric form is also called positive if it is accretive.
In the following we will also use the notation

a(u) = a(u, u) (ueV)

for the associated quadratic form.



50

5.1 Remarks. (a) If K= C, then each form a satisfies the polarisation identity

1
a(u,v) = 1 (a(u+v) — alu —v) +ia(u+ v) — ia(u — iv)) (u,v e V).
In particular, the form is determined by its quadratic terms. The identity also shows that
a is symmetric if and only if a(u) € R for all u € V. This characterisation is obviously
only true if K = C. So here we have a case where the choice of the field matters.

(b) If K = C, then a is positive symmetric if and only if a(u) € [0, 00) for all u € V.

Now we may again consider K = C or R. Recall that a scalar product is a symmetric
form a which is definite, i.e., a(u) > 0 for all w € V'\ {0}. For Schwarz’s inequality to
hold we do not need definiteness. In fact, we may even consider a version which involves
two symmetric forms. This will be useful later on.

Note that each form a satisfies the parallelogram identity

a(u+v) + alu —v) = 2a(u) + 2a(v) (u,v € V).

5.2 Proposition. (Schwarz’s inequality) Let a,b: V x V' — K be two symmetric forms.
Assume that |a(u)| < b(u) for allu € V. Then

la(u, v)| < b(uw)2b(v)/? (u,v e V). (5.1)

Proof. Let u,v € V. In order to show (5.1) we may assume that a(u,v) € R (in the
complex case replace u by yu with a suitable v € C, |y| = 1). Then a(u,v) = a(v, u) by
the symmetry of a, and therefore

a(u,v) = i(a(u +v) — alu — v)).

Hence from the hypothesis one obtains

(b(u) + b(v)),

N

la(u,v)| < %(b(u +0) +b(u—v)) =

in virtue of the parallelogram identity.
Let s > b(u)'/2, ¢ > b(v)'/2. Then

1 1
a(—u, —v) < st
s 't 2

E(M—I-l)i—g)) < st.

la(u,v)| = st =

Taking the infimum over s and ¢ we obtain (5.1). O
Finally, we introduce the adjoint form. Let a: V x V' — K be a form. Then
a*(u,v) == a(v,u) (u,v e V)

defines a form a*: V x V' — K. Thus a is symmetric if and only if a = a*. In the case of
complex scalars, the forms

1 . 1 .
Rea = §(a+a )and Ima := Z(G a”)
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are symmetric and
a=Rea-+ilma.

We call Rea the real part and Ima the imaginary part of a. Note that (Rea)(u) =
Rea(u) and (Ima)(u) = Ima(u) for all uw € V.

There is another algebraic notion — only used for the case K = C — that will play a role
in this course. A form a: V x V — C is sectorial if there exists 0 € [0,7/2) such that
a(u) € {z € C\ {0}; |Argz| < 0} U {0} for all u € V. If we want to specify the angle, we
say that a is sectorial of angle 0. It is obvious that a form a: V x V' — C is sectorial if
and only if there exists a constant ¢ > 0 such that

Ima(u)| < cRea(u) (ueV).

(The angle 0 and the constant ¢ are related by ¢ = tan.)

5.2 Representation theorems

Now we consider the case where the underlying form domain is a Hilbert space V' over
K. An important result is the classical representation theorem of Riesz-Fréchet: If n is a
continuous linear functional on V', then there exists a unique u € V' such that

nw) = (wlu)y,  (veV)

(cf. [Bre83; Théoreme V.5]).

The purpose of this section is to generalise this result. First of all, in the complex case,
it will be natural to consider the antidual V* of V instead of the dual space V’. More
precisely, if K = R, then V* = V"’ is the dual space of V, and if K = C, then we denote by
V* the space of all continuous antilinear functionals. (We recall that n: V' — C is called
antilinear if n(u + v) = n(u) +n(v) and n(Au) = An(u) for all u,v € V, A € C.) Then V*
is a Banach space over C for the norm [|n|y, = supy, < [n(v)]. For n € V* we frequently
write

(m,v) ==nlv) (veV).

Of course, the theorem of Riesz-Fréchet can be reformulated by saying that for each
n € V* there exists a unique v € V' such that

nw) = (ufv)y,  (veV)

We will also need the Riesz isomorphism ®: V' — V* u— (u|-). It is easy to see that
® is linear and isometric. The Riesz-Fréchet theorem shows that ® is surjective.

Next we derive a slight generalisation of the Riesz-Fréchet theorem, the omni-present
Lax-Milgram lemma.

A form a: V x V — K is called bounded if there exists M > 0 such that

la(u, v)] < Ml[ullyllvlly (u,0 € V). (5.2)
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It is not difficult to show that boundedness of a form is equivalent to continuity; see
Exercise 5.1. The form is coercive if there exists o > 0 such that

Rea(u) > alul|} (weV). (5.3)
Ifa: VxV — Kis a bounded form, then
(Au,v) == a(u,v) (u,v €V)

defines a bounded operator A: V' — V* with || A| ;1) < M, where M is the constant
from (5.2). Incidentally, each bounded operator from V to V* is of this form. Coercivity
implies that A is an isomorphism: this is the famous Lax-Milgram lemma.

Before stating and proving the Lax-Milgram lemma we treat the ‘operator version’.

5.3 Remark. Let A € L(V) be coercive, i.e.,
Re(Aulw) > allul}  (ueV),

with some o« > 0. Then, obviously, A — ol is accretive, and Remark 3.20 implies that
A —al is m-accretive. Therefore A = ol + (A — al) is invertible in £(V), and [|A7L|| < L
(see Lemma 3.16, Remark 3.17 and Lemma 3.19).

5.4 Lemma. (Laz-Milgram) Let V be a Hilbert space, a: V x V. — K a bounded and
coercive form. Then the operator A: V — V* defined above is an isomorphism and
A vy < L with a > 0 from (5.3).

Proof. Composing A with the inverse of the Riesz isomorphism ®: V' — V* we obtain an
operator 1A € L(V) satisfying

Re (" Au|u) = Re (Au, u) = Rea(u,u) > olull? (weV).

From Remark 5.3 we conclude that @1 A is invertible in £(V), and ||(®~1A) 7| < L. As
® is an isometric isomorphism we obtain the assertions. m

If the form is symmetric, then the Lax-Milgram lemma is the same as the theorem
of Riesz-Fréchet. In fact, then @ is an equivalent scalar product, i.c., a(u)'/? defines an
equivalent norm on V.

5.3 Semigroups by forms, the complete case

Here we come to the heart of the course: we prove the first generation theorem. With a
coercive form we associate an operator that is m-sectorial and thus yields a contractive,
holomorphic semigroup. The Lumer-Phillips theorem in its holomorphic version (Theo-
rem 3.22) characterises generators of such semigroups by sectoriality and a range condition.
In concrete cases the range condition leads to a partial differential equation (mostly of
elliptic type) which has to be solved. If the operator is associated with a form, then the
Lax-Milgram lemma does this job, so the range condition is automatically fulfilled. At
first we will explain how we associate an operator with a form.
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We use the terminology “complete case” since in this lecture the form domain is a
Hilbert space. After having seen a series of examples in diverse further lectures, we will
also meet the “non-complete case” where the form domain is just a vector space.

Let V, H be Hilbert spaces over K and let a: V' x V — K be a bounded form. Let
j € L(V, H) be an operator with dense range. We consider the condition that

uweV, jlu)=0, a(u) =0 implies u = 0. (5.4)

Let
A={(z,y) e Hx H; JueV: jlu) =z, a(u,v) = (y|jv)) (veV)}.

5.5 Proposition. (a) Assume (5.4). Then the relation A defined above is an operator
in H. We call A the operator associated with (a,j) and write A ~ (a, j).

(b) If a is accretive, then A is accretive.

(¢) If K= C and a is sectorial, then A is sectorial of the same angle as a.

Proof. (a) It is easy to see that A is a subspace of H x . Let (0,y) € A. We have to show
that y = 0. By definition there exists u € V' such that j(u) = 0 and a(u,v) = (y|j(v))y
for all v € V. In particular, a(u) = 0. Assumption (5.4) implies that v = 0. Hence
(y]j(v))y =0 for all v € V. Since j has dense range, it follows that y = 0.

(b), (c¢) If x € dom(A), then there exists u € V such that j(u) = x and such that
a(u,v) = (Aj(u)|j(v)) for all v € V| and then a(u,u) = (Aj(u)|j(u)) = (Az | z).

If Rea(u,u) > 0 (u € V), then Re (Ax|x) > 0 for all # € dom(A), and this proves (b).
Also, in the complex case, num(A) is contained in {a(v); v € V'}, and this proves (c). O

5.6 Remark. Let V. H, a,j be as above, and let w € R. Then
b(u,v) = alu,v) +w(j(u) |jv))  (uveV)

defines a form satisfying (5.4) as well (with a replaced by b). Let B be the operator
associated with (b, 7).
Let x,y € H. Then for all u,v € V' with j(u) = « we have
a(u,v) = (y[j(v)) <= blu,v) = (y +wz]j(v)).
This shows that
(v,y) € A < (z,y +wx) € B.

Therefore B = A+ wl.
Now we prove the first generation theorem for forms. Note that coercivity implies (5.4).
5.7 Theorem. (Generation theorem, complete case, part 1) Let a: V xV — K be bounded

and coercive and let j € L(V, H) have dense range. Let A be the operator associated with
(a,7). Then A is m-accretive, i.e., —A generates a contractive Cy-semigroup on H.
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Proof. Clearly, the hypothesis that a is coercive implies that a is accretive. Hence A is
accretive by Proposition 5.5(b). In order to show that A is m-accretive we have to show
the range condition ran(/ + A) = H. Define the form b: V x V' — K by

b(u,v) == alu,v) + (j(u)|j(v)) (u,v € V).

Then b is bounded and coercive; recall from Remark 5.6 that the operator I + A is
associated with (b, 7).

Let y € H. Then n(v) := (y|j(v)), defines an element n € V*. By the Lax-Milgram
lemma there exists u € V' such that

b(u,v) = (y[i(v)y  (veV).
This implies that  := j(u) € dom(A) and (I + A)z = y. O

5.8 Remark. For later use we explain that the construction presented in the proof of
Theorem 5.7 yields a closed expression for the inverse of [ + A.

In order to derive this expression we let B: V' — V* denote the ‘Lax-Milgram operator’
associated with the form b used above, i.e.,

(Bu,v) = blu,v)  (u,v€V).
Further we define k: H — V*, y — (y|j(-))5. Then

[{F) o)l < lyllglls)lly < lllyllgllvly (e H veV),

and this inequality implies that k € L(H,V*), ||k| < |l7]|-

Now, starting with y € H we obtain (with the notation used in the proof of Theorem 5.7)
n=k(y), u= By, = j(u). This results in z = jB1k(y), and using (I + A)x = y and
the invertibility of I + A we obtain (I + A)~! = jB k.

In the complex case one also obtains results concerning sectoriality.

5.9 Theorem. (Generation theorem, complete case, part 2) Let K =C, leta: VxV — C
be bounded and coercive and let j € L(V, H) have dense range. Let A be the operator
associated with (a,j). Then the form a is sectorial, and the operator A is m-sectorial, i.e.,
— A generates a holomorphic Cy-semigroup on H which is contractive on a sector.

Proof. By assumption there exist M > 0, o > 0 such that
ja(u, v)| < Mlully[lvlly,  Rea(v) > allvlly

for all u,v € V. Thus
2
[Im a(v)| o M||vll;, o M

Rea(v) ~ afofy ~ @

for all v € V'\ {0}. This implies that there exists ¢ € [0, 7/2) such that |Arga(v)| < 0 for
all v € V'\ {0}. Thus a is sectorial. The remaining assertions are immediate consequences
of Proposition 5.5(c), Theorem 5.7 and Theorem 3.22. O
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We give a first example as an illustration.

5.10 Example. Multiplication operators.

Let (2, 1) be a o-finite measure space and let m: @ — C be measurable such that
w(x) :=Rem(x) > d > 0forall z € Q. Let V := Ly(Q, wu). Assume that there exists
¢ > 0 such that

Imm(z)| < cRem(z) (x € ).

Then a(u,v) := [uvmdu defines a bounded coercive form a: V x V — C. Let H =
Lo(Q, i), j(u) = ufor allw € V. Then j € L(V, H), and j has dense range. Let A ~ (a, j).
Then one easily sees that

dom(A) ={ueV;mue Ly(Q,p)},
Au = mu.

From Section 2.2 we recall the concept of rescaling. If —A is the generator of a Cy-
semigroup T and w € R, then —(A + w) generates the semigroup (e “'T'(t))=0. One
frequently uses the word “quasi” as prefix if something is true after rescaling. (The
notation ‘A 4 w’ is an abbreviation of ‘A + wI’; the w stands for multiplication by the
scalar w, which is just the operator wl.)

Let H be a Hilbert space. An operator A in H is quasi-sectorial if there exists w € R
such that A + w is sectorial. The operator A is quasi-m-sectorial if A+ w is m-sectorial
for some w € R. A quasi-contractive holomorphic semigroup is a holomorphic
semigroup 7T such that |[e™*T(z)|| < 1 for all z € ¥y, for some 0 € (0,7/2] and some
w e R.

Thus A is quasi-m-sectorial if and only if —A generates a quasi-contractive holomorphic
Co-semigroup.

Let a: VxV — C be a bounded form and let 7 € £L(V, H) have dense range. In analogy
to the previous notation we could say that a is quasi-coercive (with respect to j) if there
exist w € R, @ > 0 such that

Rea(v) +wlj(v)lly > allvlly,  (veV), (55)

but — for simplicity of notation — we prefer to call a j-elliptic in this case. It is obvious that
(5.5) implies (5.4). Thus the operator A associated with (a, ) is defined by Proposition 5.5.
Consider the form b: V x V' — C given by

b(u,v) = alu,v) +w (j(u) | (V) -

Then b is bounded and coercive. Thus the operator B associated with (b, j) is m-sectorial.
Remark 5.6 implies that B = A + wl, so we have proved the following more general
generation theorem.

5.11 Corollary. Let j € L(V, H) have dense range, and let a: V x V — C be bounded
and j-elliptic. Then the operator associated with (a, j) is quasi-m-sectorial.
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Later we will meet interesting situations where j is not injective. In most applications,
however, j is an embedding; then we will usually suppress the letter j. The situation

is described as follows. Let H and V be Hilbert spaces such that V' SiNy~3 This is an
abbreviation for saying that V' is continuously embedded into H (abbreviated by V' — H)
and that V' is dense in H. Of course, that V' < H means that V' C H and that for some
constant ¢ > 0 one has

llly < cllully — (we V).

We call such a constant an embedding constant.
Now let a: V x V — K be a bounded form. We say that a is H-elliptic if

Re a(v) + w|v|%, > o]

for all v € V and some o > 0, w € R. In that case the definition of the operator A
associated with a (not mentioning the given embedding of V' into H) reads as follows. For
x,y € H one has

redom(A), Av=y < z €V, a(z,v) = (y|v)y (veV).

In the case K = C, this operator is quasi-m-sectorial by Corollary 5.11.

5.4 The classical Dirichlet form and other examples

Let © be an open set in R™. The classical Dirichlet form is defined on H}(Q) x Hg ()
and given by

a(u,v) = /QVU-de = Z/gzaju@]_ovdx.
j=1

It is clear that a is bounded; in fact
|a(u, v)| < [Vull oIVl 1,0 < llullroyllvll o)

n 1/2
Here Vu = (dyu, ..., 0,u) and |Vull,,q = (X0, [y 185ul de)*. Thus [lu)}q =

2 2
[l ) + [IVUllL, @)
We will prove that the Dirichlet form is coercive if 2 is bounded, or more generally,
if (2 lies in a strip, i.e., there exist § > 0 and jo € {1,...,n} such that |z, | < ¢ for all
x €.

5.12 Theorem. (Poincaré’s inequality) Assume that Q2 lies in a strip. Then there exists
a constant cp > 0 such that

/Q lu dz < cp /Q |Vu|® dz (w € HY(Q)).

Proof. Theorem 4.12 implies that it suffices to prove the inequality for all u € C'°(Q2). We
may assume that j, = 1; otherwise we permute the coordinates. Let ¢ > 0 be such that



57

|z < 0 for all @ = (2y,...,2,) € Q. Let h € CY—=6, 4], h(—d) = 0. Then by Holder’s
inequality we estimate
/ 5h’(y) dy

/_i |h(z))? de = /_i
< [L([oran) ([ a) o

)
< (267 / )y

2

dz

Let u € C°(Q2). Applying the above estimate to h(r) = u(r, za, ..., x,) we obtain

5
/|u|2dx<4<52/...// |Oyu(ay, ..., xn)Pday .. dxn<4(52/ |Vu|dz. O
Q R RJ-5 )

In fact, we saw that the constant cp can be chosen as d? where d := 2§ is an upper
estimate for the width of Q. (For bounded domains the best constant can be determined
as cp = 1/AP, where AP is the first eigenvalue of —Ap; we will come back to this later.)
At first we revisit the Dirichlet Laplacian.

5.13 Example. The Dirichlet Laplacian.
Let © C R™ be open. Let H := Ly(Q), V := H}(Q) and define a: V x V — C by

a(u,v)—/VU-de.
0

Then a is bounded and H-elliplic. Observe that V' <4 H. Let A be the operator in H
associated with a. Then

dom(A) = {u € Hy(2); Au € Ly()},
Au = —Au.

Thus —A = Ap, the Dirichlet Laplacian as defined in Subsection 4.2.2.
If © lies in a strip, then a is coercive.

Proof. The inequality a(u) + 1 ||ull% = ||ul|? (u € V) — in fact an equality — shows that a
is H-elliptic. Let A ~ a. Then for u, f € Ly(2) one has u € dom(A), Au = f if and only
it w e H(Q) and

/Vu~%dx:/f17dx (ve Hy(Q)).
0 Q

By Lemma 4.17 the latter is equivalent to —Au = f in the distributional sense (i.e.,
— [qulAvdz = [, foda for all v € C=(2)).

Now assume that Q lies in a strip. Let v € Hj(2). Then a(u) > & [, lu|” dz by
Poincaré’s inequality. Thus a(u) > % [, |Vul* dz + ser Jo lu> dz > a”“”i]l(ﬂ) where

a = min{3, s=-}. Thus a is coercive. O
27 2ep
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The semigroup T generated by Ap governs the heat equation. In fact, let ug € La(9),
u(t) = T(t)up for t > 0. Then u € C([0,00); La(2)) N C*°(0, 00; La(R2)), u(t) € dom(Ap)
for all £ > 0, and

u'(t) = Au(t), u(t)ag=0  (£>0),
u(0) = up.

(In which sense ‘u(t) € H}(Q) can be expressed as ‘u(t)|yq = 0’ will be explained in
Lecture 7.) If we consider a body 2 (a bounded open subset of R™) and ug(x) as the
temperature at x € Q at time 0, then u(t)(x) is the temperature at time ¢ > 0 at x. The
boundary condition means that the temperature is kept at 0 at the boundary. One expects
that lim; , u(t) = 0. This is the case as we can see in Exercise 5.2.

Finally we give an example where 5 is not the identity.

5.14 Example. Multiplicative perturbation of Ap.
Let 2 C R™ be an open set which lies in a strip. Let m: €2 — C be measurable such
that |m(z)| = > 0 for all x € Q. Define the operator A in Ly(Q2) by

dom(A) = {u € Ly(Q); mu € dom(Ap), MA(mu) € Ly(Q)},
Au = —mA(mu).

Then A is m-sectorial of angle 0.

Proof. Let H = Ly(Q), V = H}(Q), a(u,v) = [, Vu-Vudz, and let j € L(V, H) be given
by j(v) = sv. Then j(V) is dense in Ly(). In fact, let g € j(V)*. Then [,vmgdz =0
for all v € C*(Q). Thus g = 0 by Lemma 4.5. Consequently, g = 0. We have shown
that j(V)* = {0}, ie., j(V) = j(V)** = Ln(Q).

Let A be the operator in Ly(£2) associated with (a, j). Then for u, f € Ly(£2) one has
u € dom(A) and Au = f if and only if there exists w € HZ () such that £ = u and

Jo Vw-Vudaz = [, f(;%)dz for all v € H(Q). This is equivalent to mu € dom(Ap) and
—A(mu) = % O

Notes

The approach to forms presented here is the “French approach” following Lions [DL92].
However, we have introduced this little j following the article [AE11] (see also [AE12]). It
will carry its fruits when we consider the non-complete case and also when we consider
the Dirichlet-to-Neumann operator.

The Lax-Milgram lemma was proved in 1954 and is a daily tool for establishing weak
solutions since then. It is an interesting part of the history of ideas that Hilbert considered
bilinear forms to treat integral equations in his famous papers in the beginning of the 20th
century. His ideas led his students to develop the notion of operators in Hilbert spaces.
Since then we consider operators as the central objects and formulate physical and other
problems with the help of operators. In the 1950’s, form methods were developed to solve
equations defined by operators. Forms are most appropriate for numerical treatments.
The reason is that a form a: V' x V' — C can easily be operators there might be only few
invariant subspaces. The method of finite elements is based on such restrictions.
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Exercises

5.1 Let V be a Hilbert space, and let a: V' x V' — K be a sesquilinear form. Show that
a is bounded if and only if a is continuous.

5.2 (a) Let V, i be Hilbert spaces over C, j € L(V, H) with dense range, a: VxV — C
bounded and coercive. Let A ~ (a,j) and let T' be the semigroup generated by —A.
Show that there exists ¢ > 0 such that || T(¢)|| < e * for all ¢ > 0. (Hint: Show that
b(u,v) = a(u,v) — e (j(u)|j(v))y defines a coercive form if ¢ > 0 is small enough.)

(b) Let Q C R™ be an open set which lies in a strip. Show that

tAp

e <e ™™ (t20)

HK(Lz(Q))
for some ¢ > 0. Express € > 0 in terms of the width of €.

5.3 Let —00 < a < b < oo. In the following we will always use the continuous
representative for a function in H'(a, b); recall Theorem 4.9 for the inclusion H*(a,b) C
Cla, b|.

{(a) ]Show that each v € H'(a,b) is Holder continuous of index 1/2, i.e., |u(t) — u(s)| <
c|t = s|"? for some ¢ > 0.

(b) Show that the embedding H'(a,b) — C|[a,b] is compact, i.e., if (uy)nen in H'(a,b),
[tnllgr1(apy < ¢ for all n € N, then (un)nen has a uniformly convergent subsequence.

(c) Let H*(a,b) == {u € H'(a,b); ' € H'(a,b)}. Then u” = (u') is defined for
all u € H?*(a,b). Show that H?*(a,b) — C'[a,b] if C'[a,b] carries the norm |jull,, =
[ll g + 1l o,y

5.4 Let —oco < a<b<ooand a,f > 0. Define the operator A in Ly(a,b) by
dom(A) = {u € H*(a,b); —u'(a) + au(a) = 0, u'(b) + Bu(b) = 0},

Au = —u".

(See Exercise 5.3(c) for the definition of H?(a,b) and the existence of «'(a) and u'(b).)
(a) Show that A is m-sectorial. (Hint: Consider the form given by

a(u,v) = / w'v' dz 4 au(a)v(a) + Su(b)u(b) (u,v € H(a,b)).)

(b) Show that ||e~ < e (t > 0) for some ¢ > 0.

tAHE (L2(a,b))
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