
Introduction to PDF
Programming

Leonard Rosenthol
Lazerware

Overview
What might you want to do with PDF?
Review of available libraries
Review of the PDF file format
Developing with the Acrobat API
Developing with PDFlib

You are here because…
You’re a programmer looking to expand in
doing stuff with PDF.
You’re already programming PDF using some
library and wanted to hear about other
libraries.
There wasn’t anything else interesting to do.
You’re a friend of mine and wanted to heckle

How I do things
You should all have copies of the presentation
that you received when you walked in.
There is also an electronic copy of this
presentation (PDF format, of course!) on my
website at http://www.lazerware.com/
I’ve left time at the end for Q&A, but please
feel free to ask questions at any time!

http://www.lazerware.com/
http://www.lazerware.com/

What to do with PDF?
Creation

Report generation
Content repurposing
Document Conversion

Manipulation
Adding text or images
Form filling
Append or removing pages
Imposition
Adding structural elements

• Bookmarks, hyperlinks, etc.

Securing and signing

What else can you do?

Imaging
Printing
Rasterization (conversion to bitmap)

Content extraction/conversion
Text, HTML, XML
Postscript

Review of Libraries

Creation Only
PDFlib
ClibPDF (FastIO)
Panda (StillHQ)
PDF File Creator (FyTek)
PDF in a Box (Synactis)
PDFever (Perl Script Studio)
SanFace PDFLibrary (SanFace)
ReportLab

Libraries (cont)
Creation Only

retepPDF (Peter Mount)
Root River Delta (Root River Systems)
The Big Faceless PDF Library (Big Faceless)
iText (Lowagie)

Creation & Manipulation
PDFLibrary (Glance)
Life*JOVE (Corena)
PJ (Etymon)
activePDF Toolkit (ActivePDF)

Libraries (cont)

Imaging
5D PDFLibrary (Global Graphics)
Ghostscript (Artifex)

Everything
Acrobat SDK
Adobe PDFLibrary
DocuCom PDF Core Library (Zeon)
SPDF (Appligent)

What’s in a PDF?

Peeling the layers of PDF

PDF file
physical container in a file system containing
the PDF document and other data

PDF document (aka page description)
Contains one or more pages, where each page
consists of text, graphics and/or images as
well as hyperlinks, sounds, etc.

“other data”
PDF version, object catalog, etc.

PDF Document Layout

Header
Specifies PDF version

Body
Sequence of objects

XREF
Where to find each object

Trailer
Tells where to find XREF

Structure of a PDF
document

Catalog

Pages tree

Page 1 Imagable
Content Thumbnail Annotations

...

Page n

Outline tree Outline entry
1 ... Outline entry

n

Article
threads

Thread 1 Bead 1 ... Bead n

...

Thread n

Named
destinations

AcroForm

Smallest PDF
xref

0 5

0000000000 65535 f

0000000015 00000 n

0000000085 00000 n

0000000136 00000 n

0000000227 00000 n

trailer

<<

/Size 5

/Root 1 0 R

/ID[<5181383ede94727bcb32ac27ded71c68><5181383ede94727bcb32ac27ded71c68>]

>>

startxref

277

%%EOF

%PDF-1.1

1 0 obj

<<

/Pages 3 0 R

/Type /Catalog

>>

endobj

2 0 obj

<<

/Type /Page

/Parent 3 0 R

>>

endobj

3 0 obj

<<

/Kids [2 0 R]

/Count 1

/Type /Pages

/MediaBox [0 0 612 792]

>>

endobj

A look at the SDK

Where to find the “SDK”?
Acrobat Plugins

Mac OS & Windows

Adobe PDFLibrary
Mac OS, Windows, Linux x86, Solaris

SPDF (Appligent)
Mac OS, Windows, Linux (x86 & PPC), Solaris,
AIX, HP/UX, Digital Unix, IBM System 390

DocuCom PDF Core (Zeon)??
Windows

What’s in there?
Not every implementation of the “SDK”
has 100% of the same features (even
between Acrobat and PDFLibrary).

Access to everything in a PDF file
Read, Add, Modify

Content extraction
PDF rendering

to bitmap or platform window

Printing

Everything is an “object”
CosObj

CosString, CosInteger, CosArray, CosDict

PDDoc
PDPage, PDBookmark, PDAnnot

AVDoc
AVWindow, AVPageView, AVTool

PDEObject
PDEText, PDEImage, PDEPath

PDF Objects
Acrobat treats the objects as opaque,
while SPDF lets you view their contents in
the debugger (incl. objectID!)
All objects are NOT
created equal!

PDDoc != AVDoc != CosObj

Although Acrobat allows you to use them
interchangeably, SPDF does not and in
fact will generate compile time errors

PDDoc == CPDDoc, CosObj == CCosObj
But there are API calls to go between them

• PDDocGetCosObj()

ASAtoms
Rather than working with literal strings all
the time, many SDK calls take ASAtoms.
Think of them as a list of name/values
pairs which are keyed by strings.

improved memory management & ease of use
As such, many developers use a single set of
global ASAtom variables.

• SPDF even includes macros for doing this

ASAtomFromString()
ASAtomGetString()
ASAtomExistsForString()

Fun with File Systems
ASFileSys

A base “class” the represents a way for the
SDK to read & write the data of a PDF file. (a
fancy Stream)
Acrobat provides only file-based ones
SPDF also provides memory, FTP & HTTP

ASPathName
ASFileSysCreatePathName (const ASFileSys
fileSys, ASAtom pathSpecType, const void*
pathSpec, const void* mustBeZero);
ASPathFromPlatformPath(void* platformPath)

Error Handling

DURING/HANDLER/ENDHANDLER
In Acrobat itself, these map to
something akin to setjmp/longjmp

• Trying to mix them with C++ exceptions
can be a problem.

• You can’t nest them!

SPDF actually defines them as try/catch
blocks
ERRORCODE

More on Error Handling

Unfortunately, Acrobat does NOT
always “throw”. Sometimes you
have to use other methods

foo == NULL, PDxxxIsValid(), etc.
CosNull != NULL

If want a null CosObject, you can call
CosNewNull() to get one. BUT that
should be treated as a valid object and
NOT as NULL.

Error Handling Sample
DURING

theASPathName = ASPathFromPlatformPath(inPDF) ; // Create the ASPathName

thePDDoc = PDDocOpen(theASPathName, NULL, NULL, true) ; // Open the PDDoc

if (thePDDoc == (PDDoc)NULL) {

fprintf(gOutputFile, "# Unable to open PDF file - %s\n", inPDF) ;

ASRaise (ASFileError(fileErrOpenFailed)) ;

}

HANDLER

theError = ERRORCODE ;

if (theASPathName != NULL) {

ASFileSysReleasePath(NULL, theASPathName) ;

theASPathName = (ASPathName)NULL ;

}

ASGetErrorString(theError, theAcrobatMessage, sizeof(theAcrobatMessage)) ;

fprintf(stderr, "# Error: %s\n", theAcrobatMessage) ;

return ;

END_HANDLER

Thread Safety?
Acrobat, nor the Adobe PDFLibrary, are
thread safe! As such, you should not try
to use them in a threaded environment
OR make your own threads outside the
SDK.

There are some exceptions to this rule if you
are VERY careful, but you’re playing with fire.

SPDF comes in both thread safe and non-
thread safe versions.

If you know you don’t need threads, then why
take the performance overhead!

SPDF Memory Tracker
SPDF object usage table:

created freed leaked high water mark

Array 17 17 0 16

HashTable 4 4 0 4

HashtableEntriesTable 5 5 0 4

ASAtom 145 145 0 124

ASFile 1 1 0 1

CosArray 4 4 0 4

CosBoolean 0 0 0 0

CosDict 5 5 0 5

CosDoc 0 0 0 0

CosDocRevision 1 1 0 1

CosName 23 23 0 23

CosNull 1 1 0 1

CosNumber 6 6 0 6

LZWFilter 0 0 0 0

FlateFilter 0 0 0 0

PDBookmark 1 1 0 1

PDBead 0 0 0 0

PDDoc 1 1 0 1

PDPage 2 2 0 1

PDPath 0 0 0 0

PDFileSpec 0 0 0 0

PDFont 0 0 0 0

Splitter Example (SDK)

PDFlib

What’s in there?
PDF Creation/Generation

Text, images, vectors, bookmarks, links, etc.
Allows importing of pages from other PDF’s
as “XObjects” with accompanying PDI library

Accessible from C/C++, Java, Perl, PHP, etc.
Available as an ActiveX/COM component
Available as platform-neutral C source

Everything is a PDF?
You initialize PDFlib and get back a reference
to an opaque “PDF” structure.

PDF *p = PDF_new();
Each “PDF” can have only a single PDF open
at any one time for generation, BUT you can
have as many “PDF”’s around as you want
(eg. One per thread).

Error Handling
Each language binding uses it’s native error handling
mechanism

Eg. C++ & Java == exceptions
For C, you can specify a function to be called

Provides you with the type/class of error and a string
describing it.
You decide whether a given error is fatal or can be ignore
(more of a “warning”)

You can also specify globally how you want to deal
with warnings (treat as errors or not).

Hello (PDFlib)

Q & A

	Introduction to PDF Programming
	Overview
	You are here because…
	How I do things
	What to do with PDF?
	What else can you do?
	Review of Libraries
	Libraries (cont)
	Libraries (cont)
	What’s in a PDF?
	Peeling the layers of PDF
	PDF Document Layout
	Structure of a PDF document
	Smallest PDF
	A look at the SDK
	Where to find the “SDK”?
	What’s in there?
	Everything is an “object”
	PDF Objects
	ASAtoms
	Fun with File Systems
	Error Handling
	More on Error Handling
	Error Handling Sample
	Thread Safety?
	SPDF Memory Tracker
	Splitter Example (SDK)
	PDFlib
	What’s in there?
	Everything is a PDF?
	Error Handling
	Hello (PDFlib)
	Q & A

