
learn design share

56 November & December 2015 www.elektormagazine.com

ARM’ed T-Board
Here’s Cortex-M0+ 32-bit power

Idea/Development: Viacheslav Gromov (Germany)

Text/PCB design: Andrew Retallack (South Africa)

PCB design supervision: Luc Lemmens (Elektor Labs)

T-Boards have become something of an institution at Elektor,
with the original 8-bit AVR versions now a little over a year old.

Since then we’ve also seen wireless and audio T-Boards. Now we introduce the
youngest (and most powerful) member of the family — meet the 32-bit ARM T-Board.

While 8-bit microcontrollers remain the
bread and butter of the enthusiast and
maker communities, there is a growing
interest in 16- and 32-bit microcontrol-
lers. Without doubt, the most popular
emerging architecture is the ARM Cor-
tex-M — a core that nearly all the major
manufacturers include in their microcon-
troller line-ups. Unquestionably, the pop-
ularity is in part driven by declining prices
(you can now buy a small Cortex-M0+ for
less than $1), combined with a require-
ment for more processing power, features
and I/O pins as interest in IoT continues
to grow. Also, with Elektor Magazine run-
ning its “From 8 to 32 Bits” ARM pro-
gramming course, the educational aspect
is covered too.
While there are a range of ARM Cortex
development boards around, we believe
that the T-Board is a perfect platform for
an ARM Cortex-M0 microcontroller. ARM
chips come in small-pitch packages, and

need a range of supporting components,
making them not that “user-friendly”
straight off the shelf — they need to be
mounted on some kind of development
board to be at all useful to the enthusi-
ast, or for prototyping purposes. Sadly
the existing development boards are not
designed for use on breadboards, mak-
ing them sometimes clumsy and hard to
use in a prototyping environment. Enter
the T-Board: specifically designed to be
plugged directly into the breadboard with
all the pins brought out and unobscured.
If you’ve ever used another T-Board you’ll
know just how quick and easy it is to get
up and running with a prototype!

ARMing the T-Board
The ARM-equipped T-Board houses the
Atmel ATSAMD21E18A microcontroller, an
ARM Cortex-M0+. If you aren’t familiar
with the ATSAMD21E18A, take a quick
look over these specifications:

• 8/16/32-bit Timer/Counter
• 3 24-bit Timer/Counters
• 32-bit RTC with clock/calendar

functions
• USB 2.0 interface (host and device

functionality)
• 4 Serial interfaces (USART, I2C, SPI,

LIN)
• 12-bit DAC with 20 channels (differ-

ential and single-ended input; over-
sampling support in hardware)

• 10-bit DAC
• Inter-IC Sound (I2S) Interface
• 2 Analog Comparators
• 16 External Interrupts
• 26 GPIO pins
• Peripheral Touch Controller: 10 x 6

lines
• Maximum frequency: 48 MHz
• 1.62 V to 3.63 V supply

That’s quite a handful of features com-
pared to ye olde 8-bit micro. We felt that

learn design share labs project reader’s project

www.elektormagazine.com November & December 2015 57

that further on.
Continuing along the journey through the
schematic, you’ll note the micro-USB con-
nector at K5. The 5-V supply from the USB
connection is of course fed into the volt-
age regulator to be filtered and dropped
to 3.3 V. Electrostatic discharge (ESD) is
a threat when connecting peripherals, so
an ESD protection diode array (D2) has
been added to protect the USB D– and
D+ signal lines. We’ve chosen the NXP
PRTR5V0U2X for this purpose; it comes in
a tiny SMD package and is designed spe-
cifically to protect high-speed data lines.
Buckle up: its official name according to
NXP is: Ultra low capacitance double rail-
to-rail ESD protection diode.
The fifth pin on the USB connector, USB_

this microcontroller would be the perfect
one to add to the T-Board platform: in
addition to the specifications we’ve listed
above, the pin count is manageable for
a breadboard-based board; it has a very
decent 256 KB of flash memory and 32 KB
of SRAM; has USB support; and comes
in at a reasonable price point.
Now that we’ve established the “What”
and “Why” of the ARM’ed T-Board, let’s
delve into the details of the design.

The T-Board design
Figure 1 shows the schematic for the
ARM-style T-Board. In common with its
AVR-based siblings, primary power is sup-
plied through a standard 2.1-mm cen-
ter-positive jack (K1). A 1N4007 diode

(D1) protects the board against reverse
polarity, while a PTC resettable fuse
(F1) protects against overcurrent with a
0.5 amp trip-rating — more than enough
to power the board and a few peripherals
(given that each VDD pin can draw a max-
imum of 92 mA). Capacitors C1, C2 and
C3 smooth and filter the supply current
as it passes through a 3.3 V low-drop-
out voltage regulator (IC2). Unlike the
Atmel AVR microcontrollers, the ARM
Cortex MCUs can tolerate a maximum
supply of 3.8 V. Hence we settled on the
common 3.3 V for the supply. Parts R2
and LED1 combine to indicate that the
board is powered. The jumpers JP1 and
JP2 have been placed to help with reduc-
ing the power consumption — more on

ATSAMD21E18

VDDCORE VDDANAVDDIN
RESET

IC1

PA16

PA00
PA01
PA02
PA03
PA04
PA05
PA06
PA07

PA08
PA09
PA10
PA11
PA14
PA15

PA17
PA18
PA19
PA22
PA23
PA24
PA25

PA27
PA28
PA30
PA31

GND GND

17

10

30

11
12
13
14
15
16

18
19
20
21
22
23
24

28

25

26

27
31
32

29

1

9

2
3
4
5
6
7
8

C7

100n

C5

100n

C6

100n

C8

10u
25V

L1

BLM18PG471SN1D

VCC

S1

R1

10
k

C4

100n

JP3

1

VCC

K3

10
11
12
13
14

1
2
3
4
5
6
7
8
9

LHS Header

K2

10
11
12
13
14

1
2
3
4
5
6
7
8
9

RHS Header

PA16
PA17

PA24_USB_DM
PA25_USB_DP

PA18
PA19
PA22
PA23

PA27
PA28
PA30
PA31

K5
VCC

GND

D –
D +
ID

1
2
3

5
4

PA24_USB_DM
PA25_USB_DP

PA03_USB_ID

PA08
PA09
PA10
PA11
PA14
PA15
PA16
PA17
PA18
PA19
PA22
PA23
PA24_USB_DM
PA25_USB_DP

RESET

RESET

PA00
PA01
PA02
PA03_USB_ID
PA04
PA05
PA06
PA07

PA08
PA09
PA10
PA11
PA14
PA15

PA07
PA06
PA05
PA04
PA03_USB_ID
PA02
PA01
PA00
PA31
PA30
PA28
PA27

VCC

D1

1N4007

F1

500mA C1

100u

LD111733CTR
IC2

JP1
1

C2

10u
25V 25V

C3

100n

JP2
1

R2

33
0R

VCC

LED1

K4

10

12
34
56
78
9

PA31
PA30

RESET

VCC

PA08
PA09
PA10
PA11
PA14
PA15
PA16
PA17
PA18
PA19
PA22
PA23
PA24
PA25

PA07
PA06
PA05
PA04

PA02
PA01
PA00
PA31
PA30
PA28
PA27

PA24

VCC
GND

150059 - 11

RESET

USB

LED

RESET

PWR

3V3

SWD
(Debug)

K1

JP4

SJ_ID

PRTR5V0U2X

D2 4

1

2 3

Figure 1. Schematic of the ARM’ed T-Board.

learn design share

58 November & December 2015 www.elektormagazine.com

ID, is by default not connected to the
MCU (in order to free up available pins).
A solder jumper however allows you to
connect it to pin PA03. The ID pin is used
for USB On the Go (OTG); refer to Atmel’s
application note for more details [1].

An additional feature is a 2-pin header on
the Reset line: this enables remote reset-
ting of the microcontroller. Programming
and debugging are through a 10-pin 0.05-
inch pitch SWD header. SWD (Serial Wire
Debug) is a subset of the JTAG interface,
and only uses 6 wires. The 10-pin header
is there to maintain compatibility with
Atmel programmer/debuggers such as
the Atmel ICE.
The rest of the board essentially contains
the headers that break the microcontrol-
ler’s I/O pins out, and a collection of sup-
porting components: a healthy dose of
decoupling capacitors as specified in the
datasheet, as well as a ferrite bead (L1)
to prevent VDD noise interfering with the
analog supply VDDANA.
You’ll note that there is no quartz crystal
on the board. This was to give the user
flexibility to choose an external crystal
that suited their design best: either a
crystal oscillator in the range 0.4 MHz
to 32 MHz on PA14/PA15, or a 32.768-
kHz watch crystal on PA00/PA01 for RTC
functionality.

Reducing power consumption
You may recall from the T-Boards Lowest
Power Exercising article back in Decem-
ber 2014 that the author wrote an arti-
cle on ways to measure and then reduce

Physical Layout of Board

A. Power Connector: 2.1mm center-positive DC Jack (max. 9 V)
B. Micro USB Connector
C. LED Jumper: Connect/Disconnect the power LED
D. SWD Header: 10-pin programming header (Serial Wire Debug)
E. Current Measurement: Remove jumper to enable in-line current measurement
F. Reset Header: Enables remote reset of board
G. Reset switch

A

B

C
D

G

E F

Component List
Resistors
SMD 1206, 1%, 0.125W
R1 = 10kΩ
R2 = 330Ω

Capacitors
C1 = 100µF 25V 20%, radial
C2,C8 = 10µF 25V 20%, radial
C3,C4,C5,C6,C7 = 100nF 50V, X7R, 1206

Inductor
L1 = BLM18PG471SN1D ferrite bead, 0.2Ω/1A,

470Ω @100MHz

Semiconductors
D1 = 1N4007 (1000V, 1A)
LED1 = LED, red, SMD 1206
IC1 = ATSAMD21E18A-AU
IC2 = LD1117S33CTR (3.3V LDO voltage

regulator)
IC3 = PRTR5V0U2X (ESD protection diode)

Miscellaneous
S1 = switch, tactile, 24V, 50mA, 6x6 mm
JP1,JP2,JP3 = jumper, 1x2, vertical, 0.1’’ pitch
F1 = 500mA PTC resettable fuse
K1 = DC barrel jack 2.1mm pin
K2,K3 = 14-way pinheader, SIL, 0.1’’ pitch
K4 = 10-way (2x5) pinheader, 0.05’’ pitch
K5 = micro USB receptacle, 2.0 type B, SMD
jumper socket 0.1’’ pitch
PCB, Elektor Store # 150059-1
Alternatively: ready-assembled board, Elektor

Store # 150059-91

Figure 2. Component layout of the ARM’ed
T-Board. Don’t worry, the board is available
ready manufactured from the Elektor Store.

This T-Board is a perfect platform for an ARM
Cortex-M0+ microcontroller

learn design share labs project reader’s project

www.elektormagazine.com November & December 2015 59

the same breadboard row as the cath-
ode, and the other leg inserted into the
negative power rail.

Figure 3 shows the board plugged onto
a breadboard and all connected up – I’m
sure you’ll agree that it’s impressive to
see only one jumper on the entire board!

Step 2: Create the Project
Next up is the creation of the project.
We’ll work in Atmel Studio 6.2 for this

spent reading up on their systems and
architecture. Our purpose here is to intro-
duce you to the T-Board, not to dive into
the intricacies of ARM microcontrollers —
we don’t have nearly enough space in this
article, and the “From 8 to 32 bits” series
covers it comprehensively. Moreover, Via-
cheslav Gromov who kicked off this proj-
ect will be covering software specifically
on this ARM T-Board in a future edition.
With these caveats, let’s get cracking.

Step 1: Layout the Breadboard
The first step is to place the T-Board onto
a breadboard. Position it so that the sec-
tion containing all the power components
projects over the edge of the breadboard
and the header pins are located on either
side of the breadboard’s central chan-
nel. Then:
1. Connect a jumper between the GND

pin and the negative power rail of the
board.

2. Connect the anode of an LED to pin
A07, placing the cathode in an empty
row on the breadboard.

3. Place a resistor so that one leg is in

the power consumption of the T-Board-28
(housing an ATmega328 microcontroller).
The ability to achieve this kind of flexibil-
ity and control was one of the key moti-
vations behind the design of the T-Board
— and this has not been lost in the design
of the T-Board ARM.
Jumper JP1 enables you to connect cur-
rent-sensing circuitry to measure the
consumption of the board, and there-
fore to assess the impact of any code
changes and optimizations introduced to
reduce the current draw. The original AVR
T-Boards allowed you to do this; however
we have improved on this in the T-Board
ARM by including JP2. That jumper allows
you to disconnect the power LED, so that
the draw from the LED doesn’t skew your
measurements.

The physical board design
If you’ve already used a T-Board you’ll
see the same heritage running through
this board’s blood-lines. You will recall
that the horizontal cross-bar of the “T” is
designed to keep the bulk of the compo-
nents out of the way of your breadboard-
ing, while the vertical stem breaks the
microcontroller’s pins out in a way that
makes it straightforward to plug into the
breadboard and access them.

The T-board is of course open source in
the spirit of sharing, and the design files
are downloadable for you if you have the
equipment and wherewithal to make your
own board [3] using the parts list and the
board layout in Figure 2. If you aren’t
feeling quite brave enough to tackle the
0.8-mm pitch of the ARM microcontrol-
ler TQFP package, or the invisible pins
of the USB connector, then the board is
available through the Elektor store, fully
assembled and tested, and ready to be
plugged into your breadboard.

ARMed-‘n-ready
I’m sure you’ve heard enough about
the design and want to see the board in
action! Let’s keep this project straight-
forward to illustrate the use of the board.
To explore more complex projects, turn
back to the series From 8 to 32 bits: ARM
Microcontrollers for Beginners that made
its debut in the January & February 2015
edition of Elektor Magazine.
Working with ARM microcontrollers is
definitely more complex than with AVR
microcontrollers. If you’re new to them
they require perseverance and some time

Figure 3. This ARMed-T-Board-on-a-breadboard
is all ready to go.

Alternative IDEs

When you start working with ARM microcontrollers, you’re playing in the “big
league” when it comes to Integrated Development Environments. There are a
range of developers who provide what seem to be fairly solid tools — but it’s out of
the scope of this article unfortunately to draw full comparisons between what are
complex pieces of software. To give you a taste of what’s out there, here are three
of the more popular ones.

Atmel Studio 6.2
This in my mind is the first choice for those not professionally developing on ARM
microcontrollers. It is free, is not code-limited, and is written and supported by
Atmel themselves, hence is guaranteed to support not only the microcontrollers
but also the Atmel programmers and debuggers. www.atmel.com/atmelstudio

IAR Embedded Workbench for ARM
IAR have a wide range of professional-level IDE’s – and of course at professional
prices! They support Atmel’s AVR and ARM microcontrollers, as well as a range
of ARM and non-ARM MCUs from other manufacturers. If you work with a range
of microcontrollers from different manufacturers, then this may be a good bet if
you can afford it. There are code-limited versions, but so limited that they are
more useful for assessing the tool than for any practical projects. www.iar.com/
iar-embedded-workbench/arm

Keil
Keil MDK-ARM is an IDE that is owned by ARM itself, and is a respected tool for
development of ARM projects – primarily aimed at professionals. However, Keil do
offer a “lite” edition of their MDK-ARM tool that is code-limited to 32 KB – probably
enough for most enthusiasts and hobbyists. If you have the time to spend, and
want to explore ARM micros from other manufacturers, then it’s well worth looking
at. www.keil.com

learn design share

60 November & December 2015 www.elektormagazine.com

(see inset: Alternative IDEs), and using
the Atmel Software Framework (ASF),
which we found the quickest way to get
up and running given the complexity of
an ARM micro. In the “From 8 to 32 bits”
series ASF is also used, although with an
Atmel SAMD20 XPlained Pro board. We
have to do things slightly differently to
set the project up here, but from there
on it’s fairly straightforward.

Follow these steps:

1. Open Atmel Studio, and create a new
project — choose the GCC ASF Board
Project, name it and choose where to
save it (Figure 4).

2. Select the device: The T-Board ARM
uses an ATSAMD21E18A, so choose
that. As there aren’t any Atmel devel-
opment boards for this microcontroller,
you must select User Board Template
and click OK (Figure 5).

3. An empty project has been created,
with main.c under the src folder in the
Solution Explorer.

4. Next we need to add the ASF PORT
driver to the project. This provides a
series of functions to allow us to access
the pins more easily. Choose ASF Wiz-
ard from the ASF menu.

5. On the popup dialog (Figure 6) you’ll
see available modules on the left, and
selected modules on the right. Scroll
down the left and highlight PORT –
GPIO Pin Control (driver), then click
Add and Apply. You’ve now added the
PORT driver to your project.

6. Now add the code from Listing 1 into
the main.c module.

Step 3: Flash the T-Board
Your project is now ready to be compiled
and uploaded to the T-Board:

1. Compile the project (F7), ensuring that
there are no errors of course.

2. Connect power to the board through
the DC jack (assuming your program-
mer doesn’t provide power to the proj-
ect). The Atmel ICE that I use is one of
these that doesn’t power the target. If
you use a JTAGICE3 programmer then
be sure to have relevant information
on using it.

3. Attach the programmer to the SWD
header on the board, and then connect
to the USB port on the PC.

4. Select the programmer from the Tools
menu, under Device Programming.

Figure 4. Initial dealings with the GCC ASF Board Project.

Figure 5. Selecting a non-AVR micro.

Figure 6. Here you add the PORT driver.

learn design share labs project reader’s project

www.elektormagazine.com November & December 2015 61

ing A and the inset: My/Your/The/A First
Project on the next two pages.
We hope that you enjoy using the ARMed
T-Board both as a learning tool and a way
to get your next project prototyped and
running more quickly!

(150059)

challenge you to take one of the previ-
ous projects in the “From 8 to 32 bits”
series and use the T-board in place of the
Xplained Pro board. You’ll cut down the
number of jumpers, making the projects
easier to design and troubleshoot.
Meanwhile, co-designer Viacheslav here
presents another kick-off program spe-
cially written on the occasion of this
“hardware” dominated article: see List-

5. Finally upload the program: choose
Start without Debugging from the
Debug menu.

6. You should now see a blinking LED!

The next steps
Now that you’ve seen the T-Board in
action, you’re probably chomping at the
bit to start additional projects. If you’re
new to ARM Cortex microcontrollers, I’d

Listing 1. Blink-a-LED (in ARM T-Board Style)

#include <asf.h>

#define LED_PIN PIN_PA07 //LED is connected to PA07

//Function Prototypes
void configure_port_pins(void);

int main (void)
{
 system_init(); //ASF Routine to initialise the system, clocks, etc.

 configure_port_pins(); //Configure GPIO pins

 SysTick_Config(system_gclk_gen_get_hz(GCLK_GENERATOR_0)); //Enable SysTick interrupt:
 //reads frequency to sets interrupt at 1 Sec

 while (1)
 {
 //Nothing needed here as we are using interrupts to toggle the LED
 }
}

//Function to configure the port pins
void configure_port_pins(void)
{
 struct port_config config_port_pin; //Structure used to store parameters
 port_get_config_defaults(&config_port_pin); //Read the current configuration of the pins into the Struct
 config_port_pin.direction = PORT_PIN_DIR_OUTPUT; //Set Struct to indicate pin is an Output
 port_pin_set_config(LED_PIN, &config_port_pin); //Use the struct to set the direction for the LED’s pin
}

//Interrupt Handled for SysTick Interrupts
void SysTick_Handler(void)
{
 port_pin_toggle_output_level(LED_PIN); //Toggle the LED’s Pin
}

Web Links

[1] Atmel USB 2 GO:
www.atmel.com/Images/Atmel_11201_USB-OTG-Like-Connector-Implementation_SAM9G-SAM9X-SAMA5D3_Application-Note.pdf

[2] T-Boards low power article: www.elektormagazine.com/140413

[3] Project resources page: www.elektormagazine.com/150059

[4] Atmel Studio: www.atmel.com/tools/atmelstudio.aspx

[5] www.der-hammer.info/terminal/

Mind U! ...continued overleaf

learn design share

62 November & December 2015 www.elektormagazine.com

My/Your/The/A First Project

Next, open it in Atmel Studio 6, which
you can download under [4] after a minor
registration or as a guest, if you haven’t
installed it yet. If you are not familiar
with the Atmel SAM D family and/or At-
mel Studio look in our ARM Microcontrol-
lers for Beginners course.

The program starts with the declarations
of the variables and arrays, function pro-
totypes and configuration-functions for
the peripherals. After that, in the main
function, the system, the interrupts and
the delay-functions get initialized and all
the configuration-functions get called.
Listing A shows the endless loop with
the main part of code. The whole code is
in a switch statement which receives
one ASCII-character with udi_cdc_
getc()on the USB and chooses the cor-
rect branching to follow. In Table A you
can see all characters (combinations) you

can send later to the board with the ter-
minal program. For each of the three let-
ters there is a case. The number of the
case isn’t the letter, it’s the ASCII-num-
ber for the letters: 76 stands for “L”, 66
for “B” and 84 for “T”. Please note that
these are all capital letters.
In the first case, 76, there is an else-
if statement which turns the LED on,
when variable number is 1, and off, when
number equals 0. The variable number
gets the (second) character from the USB
with number = udi_cdc_getc(); be-
fore this. Also, “LED is on” and “LED is
off” will be sent with udi_cdc_write_
buf(&buffer, x) over the USB. For
arguments it needs only a pointer to a
string with the data (buffer) it has to
send, and the number of characters due
sending (x). But here, we don’t use a
pointer to a buffer — to keep things sim-
ple, we embed a text like “LED is on”

By Viacheslav Gromov

Let´s make a simple project! Let’s switch
one LED on and off, sample one pushbut-
ton, and measure the temperature with
an LM335 and ADC. We want to control
everything from the PC through USB with
a no-frills terminal emulator program.

1. The Hardware
Figure A shows how the external parts
connections to the ARM’ed T-Board, Fig-
ure C, the practical realization. With all
parts connected up, you can use a USB-A
connector to USB Micro-B connector cable
to connect the T-Board to your PC. This
type of cable is often used for charging
smartphones or tablets, so you should
have one ready to hand. You also need to
connect a debugger like Atmel ICE to the
T-Board on the SWD (Debug) connector
and of course also to your PC (Figure B).

2. The Software
First, download the Atmel Studio project
named “First_T-Board_project” from [3].

Table A. Mini Command Set

L
1 Sending ‘L1’ (for: LED) causes the LED to be switched on and you receive a

message “LED is on”. Sending ‘L0’ switches the LED off and you get “LED is
off”. Sending ‘L’ with a number other than 0 or 1 returns: “Error”.0

B
Sending “B” (for: Button) causes the T-Board to respond with “Button is
pressed” or “Button is not pressed”.

T
Sending ‘T’ (for: Temperature), causes the T-Board to emit a string with the
currently measured temperature x, like: “Temperature: x C”.

LM335

1k

1%

22
0R

GND
VCC

PA00
PA01

PA08

PA03

A

B

C

D

E

G

F

H

learn design share labs project reader’s project

www.elektormagazine.com November & December 2015 63

Listing A. The endless loop of our get-u-going program looks like this.

while(1){
switch (udi_cdc_getc())
{
 case 76: //if received "L"
 number = udi_cdc_getc(); //get the second character (a number)
 if (number == 49) //if received a one
 {
 port_pin_set_output_level(PIN_PA00, 1); //put the LED on
 //send "LED is on" with a "new line" on USB
 udi_cdc_write_buf("LED is on\n", 10);
 }
 else if(number == 48) //if received a zero
 {
 port_pin_set_output_level(PIN_PA00, 0); //put the LED off
 //send "LED is off" with a "new line" on USB
 udi_cdc_write_buf("LED is off\n", 11);
 }
 else //if received a wrong number (not 1 or 0)
 {
 udi_cdc_write_buf("Error\n", 6); //send "Error" and a "new line" on USB
 }
 break;
 case 66: //if received "B"
 if(!port_pin_get_input_level(PIN_PA01)) //get the level on PA01 (button)
 {
 //if pressed, send "Button is pressed" and a "new line" on USB
 udi_cdc_write_buf("Button is pressed\n", 18);
 }
 else
 {
 //if not pressed, send "Button is not pressed" and a "new line" on USB
 udi_cdc_write_buf("Button is not pressed\n", 22);
 }
 break;
 case 84: //if received "T"
 adc_start_conversion(&adc_instance); //start ADC-conversion
 //read and save the conversion result
 while(adc_read(&adc_instance, &data) == STATUS_BUSY){}
 //calculate the temperature
 temperature = (25 + (data * 0.000805 - 2.945) / 0.01) * 100;
 //reformat the result in a buffer
 sprintf(temperature_string, "%i", temperature);
 //send "Temperature:" with USB
 udi_cdc_write_buf("Temperature: ", 13);
 //send the temperature on USB
 for(i = 0; i < 4; i++){
 if((temperature >= 1000) && (i == 2)) udi_cdc_putc(44); //make a comma
 if((temperature < 1000) && (i == 1)) udi_cdc_putc(44); //make a comma
 udi_cdc_putc(temperature_string[i]); //send a digit on USB
 //send "C" and"new line" on USB at the end of transmission
 if(i == 3) udi_cdc_write_buf(" C\n", 3);
 }
 break;
 }
}

D21E18A) by Device like in Figure H.
After you pressed “OK” once more the
c project is generated. Now you can im-
port the ASF libraries you need in the ASF
Wizard and write your code!

direct into the command like this: udi_
cdc_write_buf(“LED is on\n “,
10);. The \n stands for new line. If this
variable is found to contain another value
than one or zero, “Error” will be sent to
the computer.
In the next case, 66, an if statement
processes the state of the button pin,
PA01, with: port_pin_get_input_
level(PIN_PA01) and sends either
a “Button is pressed” or “Button is not
pressed” message over the USB.
The last case, 84, measures the voltage
on ADC channel 16 (PA08) supplied by
the LM335, and calculates the tempera-
ture from this voltage. A string like “Tem-
perature: x C” gets sent over USB in a
more circumstantial way due to the spe-
cific requirements of the float-tempera-
ture-value described in the ARM Course.

3. The First Test
Let’s try it out! Please select your debug-
ger above on the right and start com-
piling and transfer the program with a
click on the green “Start Without Debug-
ging”-button (Figure D). After the MCU
is programmed, the T-Board will register
on your computer as a “Communication
Device Class ASF example” – yep, a vir-
tual serial interface. Maybe your comput-
er needs some time to install the right
drivers. After it’s done, you can open
the device manager on the PC to see
which COM port number’s been assigned
to your T-Board under “Ports (COM &
LPT)”. Now open a terminal program like
HTerm [5], and set up the comms like in
Figure E:

• COM port number (see Device
Manager)

• 9600 baud
• 8 data bits
• 1 stop bit
• no parity
• new line on LF

With all settings adjusted and DTR On,
connect with the board and test it with
our command-capital letters like in Fig-
ure F. Congratulations, your first project
with the ARM’ed T-Board is running now!
That was all copycat though – now on
with building a new project.

4. Create a new project with the
ARM’ed T-Board & Atmel Studio
The project generation is nearly the same

as described in the first part of the ARM
course. You also need to select a “GCC C
ASF Board Project” under File/New/Proj-
ect… (Figure G), but in the next step,
after you pressed “OK”, it’s different —
you now need to select our MCU (ATSAM-

