

24 Supporting the DCT Filters in PostScript Level 2 (24 Nov 92)

For values of QFactor that approach 0.0, multiplication of a QuantTables
element by QFactor will have a result less than 1.0 and then be raised up to 1.
When all quantizers become 1, DCTEncode and DCTDecode achieve little
compression but restore the original image almost exactly. As the quantizers
increase, compression and image degradation increase together.

For large values of QFactor , the quantizers will overßow and be lowered to
the maximum value of 255. At this value, little of the original image will be
retained in the compressed representation. For the default QuantTables , the
useful range of QFactor will be about 0.1 to 2.5.

The more complex knob on image quality versus compression is the
QuantTables array of Colors quantization tables. If QuantTables is omitted,
default arrays are used instead. Extra elements in QuantTables are ignored
and do not cause an error.

Each of the Colors quantization tables can be a string of one-byte integers or
an array or packed array of numbers (that is, integers or reals). The order of
elements in each quantization table supplied to the Level 2 interpreter is the
zigzag or snake order deÞned in the JPEG speciÞcation; the length of the
table is 64. Study the JPEG speciÞcation to understand how to choose the
quantizers, although a few comments are offered below.

To decide the number of quantization tables to include in the compressed
image, the DCTEncode Þlter compares pointers to the Colors quantization
tables; only unique arrays are transmitted with the image. Two different
strings or arrays will be found to be unequal, even if all of their elements are
identical. Only when a quantization table is the same string or the same array
as an earlier element is the equality discovered.

The default quantization tables are not constants of Level 2 interpreters.
Adobe expects to change and/or supplement these as more is learned about
color spaces and image compression. The results are sensitive to resolution,
viewing distance, and QFactor ; image orientation and scaling after decom-
pression; and to many other factors. For uniform results across Level 2
interpreters, applications using the DCTEncode Þlter must supply their own
quantization tables because the Adobe defaults will vary.

16 Default Quantization Tables and QFactor 25

16.1 Using Quantizers

The following is a brief description of how the quantizers are used. For more
details, see the JPEG speciÞcation. The DCT transform converts an 8x8
block of 8-bit samples into an 8x8 block of 11-bit transform coefÞcients. The
transform tends to concentrate the ÔenergyÕ of an image in a few of the
transform coefÞcients, so most of the 64 coefÞcients will be small.

If these coefÞcients were coded as-is, the reverse transformation would
restore the original samples almost perfectly: less than 10% of the reconsti-
tuted samples would differ from the originals and about 2-to-1 compression
would typically be possible. However, before compressing, JPEG divides
each coefÞcient by a quantizer in the range [1..255]. These divisors are taken
from the QuantTables table corresponding to the color being compressed.
After quantization, typically all but about 14 of the transform coefÞcients
will become 0; 4 or 5 will become 1; and the rest will have larger values. This
sparse matrix is then coded compactly. Decoding restores the sparse matrix
and then multiplies each element by the quantizer to restore an approxima-
tion to the original transform coefÞcient. Finally, it performs the reverse
transformation to restore an approximation to the original 8x8 block of 8-bit
samples.

JPEG quantizes and codes the 8x8 coefÞcient block in a zigzag order starting
with the upper-left DC term and ending at the lower-right term. The Þrst
(upper-left corner) term of the 8x8 coefÞcient block is the DC term, which
measures the average value of the samples in the 8x8 block. The next few ele-
ments are visually important low-frequency AC terms, followed by
successively higher-frequency terms with less visual signiÞcance.

The quantizers should be chosen to weigh each coefÞcient in accordance with
its importance to the human visual system. This varies with the color space,
the resolution of the image, the downsampling being used, and the desired
quality versus compression trade-off. For good quality, the DC and low fre-
quency AC quantizers are usually chosen to have values of about 13, with
high frequency AC terms increasing to 80 to 100; for very good quality, the
quantizers are halved; and for fair quality, the quantizers are doubled.

Carefully chosen quantizers take other factors into account. The original
image might have excess resolution/quality, or it might be already of mar-
ginal quality. Then the DCT transform does not uniformly emphasize the
coefÞcients, so the quantizers must be adjusted for this. Also, the human
visual system is more sensitive to horizontal and vertical features than
to those at odd angles, and slightly more sensitive to horizontal resolution
than to vertical. Finally, the spatial sensitivity and color sensitivity of
the human eye varies with the color coordinates.

26 Supporting the DCT Filters in PostScript Level 2 (24 Nov 92)

17 HuffTables SpeciÞcation

As with quantization tables, DCTDecode is driven solely by parameters
included in the compressed image, so it will operate correctly regardless of
the encoderÕs default values for HuffTables .

The DCTEncode Þlter uses Huffman tables supplied to it by the optional
HuffTables entry in the Þlter dictionary. This entry consists of 2 x Colors
arrays, packed arrays, or strings. DCTEncode is only affected by the Þrst
2 x Colors tables in the HuffTables array; extra tables are ignored and do not
cause an error. A DC table longer than 12 elements or an AC table longer than
162 elements will be rejected; these are the maximum useful lengths for these
tables.

The order of the DC and AC table elements is the same as that in the JPEG
speciÞcationÕs DHT marker segment. The Þrst 16 one-byte elements of
each array specify the number of code words of length 1 to 16, respectively.
These are followed by the one-byte values in sequence. The values for DC
codewords each specify the number of magnitude bits which follow; the
values for AC codewords each specify a 4-bit run length of zeroes between
non-zero values and 4-bit magnitude. To determine more about the format,
consult the JPEG speciÞcation.

As with QuantTables , the encoder transmits only unique tables in the
compressed image. Two code tables are found to be identical only if the
pointers to them are the same. This means that a different string or array
whose elements are identical to another coding table will not be found to
be identical. Only when the same string or same array is used is the identity
discovered.

The use of more than two different AC or DC HuffTables violates a JPEG
Baseline limit and causes an error unless Relax=1 in the DCTEncode argu-
ment dictionary. If Relax=1, then the encoded image with more than two
different tables will begin with an SOF1 marker indicating that it is non-
Baseline. Such a compressed image will be less interchangeable than a
Baseline image, although it might compress slightly better.

If the optional HuffTables entry does not exist in the ÞlterÕs dictionary, then
default arrays will be used. As with QuantTables , the defaults are not
constants of Level 2 PostScript and will change as more is learned about
image compression. In PostScript version 2010, the default tables are not
very good. The defaults are better in 2011, but applications can achieve
somewhat better compression with custom tables.

The DCTEncode Þlter will assume that HuffTables have been setup for
statistics determined at QFactor = 1.0. When QFactor is some different
value, it might (in some future PostScript interpreter version) modify the
HuffTables in some (unspeciÞed) way to increase compression. For this rea-

18 Adobe Application-Specific JPEG Marker 27

son, to achieve consistent encoder operation across all Level 2 products,
applications should provide custom arrays for both QuantTables and
HuffTables and should specify QFactor = 1.0 to neutralize any scaling by the
DCTEncode Þlter.

The DC table elements are magnitude categories; any value outside the range
[0..11] will be rejected. Within each table, two special codes are allowed:
0 (denoting end-of-block) and 0xF (denoting a zero-run of length 16).
Excepting these special codes, each AC entry consists of a 4-bit zero-run
length and a 4-bit magnitude category. Any entry with magnitude category
outside the range [1..10] will be rejected.

18 Adobe Application-SpeciÞc JPEG Marker

Adobe uses the JPEG XÕFFEE marker (or APPE marker) to record informa-
tion at the time of compression such as whether or not the sample values
were blended and which color transform was performed upon the data. The
format of the marker is as follows.

¥ Two-byte length Þeld (speciÞes 14 byte marker length)

¥ The text ÔAdobeÕ as a Þve-character ASCII big-endian string

¥ Two-byte DCTEncode /DCTDecode version number
(presently XÕ65)

¥ Two-byte ßags0 0x8000 bit: Encoder used Blend =1 downsampling

¥ Two-byte ßags1

¥ One-byte color transform code

DCTDecode ignores and skips any APPE marker segment that does not begin
with the ÔAdobeÕ 5-character string. The convention for ßags0 and ßags1 is
that 0 bits are benign. 1 bits in ßags0 pass information that is possibly useful
but not essential for decoding. 1 bits in ßags1 pass information essential for
decoding. DCTDecode could reject a compressed image,
if there are 1 bits in ßags1 or color transform codes that it cannot interpret.
The current implementation will reject only if the Picky option is non-zero.

The existing form of the APPE marker can be extended by deÞning new
Ôßags0Õ and Ôßags1Õ ßags or new color transform codes. Also, more bytes can
be added to the marker. The current plan is to provide, through options in
the DCTDecode dictionary, any parameter or option that can be specified in
the application-speciÞc marker, so applications should not have to mimic
AdobeÕs marker. Any application trying to mimic should arrange to cooperate
with Adobe.

28 Supporting the DCT Filters in PostScript Level 2 (24 Nov 92)

19 DCTEncode Markers String

The Markers string in DCTEncode Õs dictionary allows arbitrary data to
be inserted immediately after the JPEG SOI (Start of Image) marker that
commences a compressed JPEG Interchange Format image. It is intended to
be used only to insert COM (comment) and APPn (application) markers
in accordance with the JPEG speciÞcation. There is no error checking.

COM and APPn markers have the following syntax:

COM XÕFF XÕFE <2-byte length field> <arbitrary string>
APPn XÕFF XÕEn <2-byte length field> <arbitrary string>

where XÕEn is XÕE0 for an APP0 marker to XÕEF for an APPF marker.

20 JFIF Marker

An important application of the DCTEncode Markers string is to include a
JFIF marker in a DCT encoded image; a JFIF marker is a JPEG APP0 marker
specially interpreted by many applications to specify size and color space
parameters of a compressed image and, optionally, a Thumbnail. At this writ-
ing, the most recent version of the emerging JFIF standard was 1.02.

A JFIF version 1.02 marker (which is an APP0 marker) can be inserted with
the following deÞnition in the DCTEncode Þlter's argument dictionary:

/Markers <FF E0 00 10 4A 46 49 46 00 01 02 01 00 96 00 96 00 00> def

In this string, the bytes are interpreted as follows:

FF E0 == APP0 marker
00 10 == the marker length field (16, including the length field but
 not including the APP0 marker itself)
4A 46 49 46 00 == zero-terminated `JFIF' string
01 02 == JFIF version number
01 == units (0=aspect ratio only; 1=dots/inch; 2=dots/cm)
00 96 == Xdensity (150 dots/inch)
00 96 == Ydensity (150 dots/inch)
00 == Xthumbnail (horizontal pixel count)
00 == Ythumbnail (vertical pixel count)

Excluding the JFIF version number, the JFIF versions 1.00 and 1.01 markers
also have this format. Included in the marker (but not shown above) are
3*Xthumbnail*Ythumbnail bytes of the RGB thumbnail. JFIF follows a
common convention for application markers in which the marker purpose is
identiÞed by a string at the beginning of the marker. When it is used, JFIF
must occur immediately after the JPEG SOI marker, before any other APP0
markers; and the extension markers must occur immediately after the JFIF
marker.

21 Speed in DCT Filters 29

JFIF version 1.02 sets the JFIF version number to `01 02' and may then
optionally specify the Thumbnail in a separate extension marker. To specify
the Thumbnail separately, set Xthumbnail and Ythumbnail to 0 in the exam-
ple above and use an extension JFXX marker immediately after the JFIF
marker to specify the Thumbnail in one of three different representations.
The possible formats for the JFXX extension marker are discussed in the
JPEG File Interchange Format Version 1.02 speciÞcation, 27 August 1992.

21 Speed in DCT Filters

This section attempts to relate the speed of the DCT Þlters to particular
parameters of the image and the controller or CPU.

The software DCTDecode Þlter on an image compressed to about 5% of
its original size using QFactor = 1.0, HSamples = [2 1 1], and
VSamples = [2 1 1] executes at about 1.5 to 2.0 seconds per megabyte of
source image on a 25 MHz MIPs CPU workstation using the MIPS compiler
with -O2 optimization. The DCTEncode Þlter takes 2.0 to 2.5 seconds per
megabyte of source on the same image. These times can be used as a refer-
ence point for the discussion below.

Floating point arithmetic is used only to scale quantizers, so speed is not
degraded much by the lack of ßoating point hardware in a controller. Many
integer multiplications and divisions are performed; the speed of these opera-
tions is important. The current implementation is tuned for 32-bit word size
CPUs, so there is some performance penalty on low-end 16-bit controllers.

Often, the DCTDecode ÞlterÕs execution time will be swamped by a larger
downstream execution time for halftoning. This depends on the relative reso-
lutions of the source image and the device, so it is more often true on high-
resolution output devices such as typesetters. Hence, DCTDecode perfor-
mance is not of primary interest except when the output device is of lower
resolution, requires no halftoning, or has hardware support for it.

On interesting images, the non-inner-loop execution time of the Þlter is
insigniÞcant because it can be amortized over many samples, and the ÞlterÕs
overall performance is determined by the inner loops. So in discussing
execution speed, it sufÞces to discuss the following inner loops:

30 Supporting the DCT Filters in PostScript Level 2 (24 Nov 92)

Table 3 Inner loops

Encoder Decoder

color transform decoding (7 code words/block typical)

strip handling dequantization

DCT reverse DCT

quantization (64/block) strip handling

coding color transform

As quantization is reduced to produce a more accurate image, time coding
or decoding and dequantizing increases signiÞcantly. Downsampling directly
reduces the time spent in DCT, quantization, and coding or in decoding,
dequantization, or reverse DCT. Hence, applications should consider aggres-
sively downsampling, while using smaller quantizers to recover some lost
image quality.

At normal quantization, where the image is visibly just barely degraded from
the original, the 8x8 blocks are compressed about 20-to-1, and 10 Huffman
code words/block is typical. In this situation, software DCTDecode is about
twice as fast as software DCTEncode . In an image with no quantization (that
is, the quantization tables consist of elements with the value 1), DCTEncode
will slow to about 50% of its normal speed and DCTDecode to about 25%
of its normal speed. This slowdown is due to the huge increase in Huffman
code processing from 10 code words/block to 64 code words/block.

22 Accuracy of JPEG Implementation 31

22 Accuracy of JPEG Implementation

In testing the fast DCT used in the implementation against an accurate DCT
computed slowly with double precision ßoating point, the following results
were obtained on a small image:

99% of transform coefficients were identical to the accurate ones.
No transform coefficients were in error by more than +/-1.

In this experiment, both the accurate and fast DCTs were rounded to nearest
before comparison. In the complete fast implementation, rounding does not
occur at the end of the transform. Instead, extra precision is carried into the
quantization step and rounding occurs after quantization.

Similarly, comparison of the implementationÕs reverse DCT against an accu-
rate reverse DCT computed with double precision ßoating arithmetic yielded
the following results on a small test image:

99% of regenerated characters were identical to the accurate ones.
No regenerated characters were in error by more than +/-1.

All tests described above apply only to the transform and reverse transform
components of the system. Color transform, downsampling, and quantization
cause additional losses.

Excellent results can be obtained with relatively inaccurate JPEG implemen-
tations at normal quantizations, where quantizers are all greater than 7,
and coefÞcient errors of +/Ð3 have little effect. However, because the Level 2
software implementation is very accurate, the DCT Þlters can be used in a
near-lossless mode impossible for inaccurate implementations.

23 Accuracy of Image Reproduction

To determine accuracy limits, the following experiment was performed.
The quantization table was set to all 1Õs (that is, no loss due to quantization)
by choosing QFactor = 0.0, ColorTransform was turned off, and a 1.2 mega-
byte image was run through the encoder and the decoder. Then color samples
in the decoded image were compared against the original with the following
results:

91.4% of color samples were unchanged.
No color samples had errors exceeding +/-1.

Although no errors larger than +/Ð1 were observed on this image, larger
errors would occur in a larger study. (A crude limit on the maximum error in
any sample can be estimated as follows: If every transform coefÞcient for a
particular 8x8 block was off by 0.5 in such a way that all rounding errors
added for a particular sample, then the error in that sample would be about
0.5*(1/8)*64 or +/Ð 4.)

32 Supporting the DCT Filters in PostScript Level 2 (24 Nov 92)

The same experiment was performed on a large RGB image using the RGB-
to-YCC color transform. In this case the error, larger because of the color
transform, was as follows:

R max. err +4/-3 avg. err 0.478
G max. err +3/-3 avg. err 0.317
B max. err +4/-4 avg. err 0.587

A loss of dynamic range during the color transformations and two extra 8-bit
rounding steps causes the increased error. The loss of dynamic range is
evidenced by the sum of coefÞcient magnitudes for Y, Cb, and Cr in the R, G,
and B equations earlier (2.402, 2.059, and 2.772, respectively) being greater
than 1.

At the above accuracy levels, little compression is achieved by the JPEG
method. A more interesting question is the reproduction error at larger quan-
tization where signiÞcant compression is achieved. The empirical result
of comparing reconstituted against original image samples in a large image
using version 2010 to 2012 default quantizers is as follows. In rapidly
changing image areas, about 8% of sample errors exceed Qmax/8 and
about 1% exceed Qmax/4, where Qmax is the largest quantizer in the quanti-
zation table. In slowly changing areas, errors are determined by quantization
in the upper left quadrant of the 8x8 block because coefÞcients elsewhere are
quantized to 0 from initial magnitudes much smaller than Q[i,j]/2. The maxi-
mum sample error in a large image is typically between 0.4*Qmax and
0.8*Qmax, where Qmax is about 100 for QFactor = 1.0.

Total error would include an additional highly-variable component due to
downsampling and a fairly predictable component due to the color transform.
The color transform typically increases the maximum and average errors by
20% at normal values of QFactor . However, the compressed Þle size is also
reduced by the color transform. When all things are considered, the empirical
result is that, for QFactor greater than about 0.1 or 0.2, the color transform
seems to improve compressibility, even when there is no downsampling, for
any particular level of image quality.

24 Reproduction Cyclic Stability After Initial Loss 33

24 Reproduction Cyclic Stability After Initial Loss

For some image editing applications, there is a worry that JPEG will intro-
duce not only initial losses the Þrst time an image is compressed but
also additional losses each time an image under construction is expanded,
modiÞed, and recompressed. This is a legitimate concern, although it does
not matter on a printer, which throws away the image after expanding
and printing it. This section discusses the issue of progressive losses across
repeated compress-expand cycles.

For JPEG, cyclic stability is only achievable when the same quantizers
are used on each compression cycle. Further losses will normally be intro-
duced if quantization is changed. The desired behavior is as follows. The
original compress-expand cycle introduces loss proportional to quantization.
On the second cycle, nearly all 8x8 blocks reproduce exactly; these will
then be stable regardless of how many compress/expand cycles occur. Of
those blocks which change on the second cycle, most will stabilize on the
third cycle.

This behavior repeats for several cycles until all blocks stabilize. The addi-
tional loss before stabilization should be small. Alternatively, an oscillatory
stability would be acceptable in which repeated compress-expand cycles
reproduce an earlier state, but not the previous state.

A particular 8x8 sample block will become stable and suffer no further
increase in error when the quantized transform from which it was generated
is reproduced during recompression. When a color transform is used, an 8x8
block of pixels will stabilize when all of its component color blocks stabilize.
If some components are downsampled, a larger area must stabilize before
the interactions stop.

To see what would happen with the DCTEncode and DCTDecode Þlters, we
performed repeated compress-expand cycles on several images. On each
cycle, the image was compressed with the default QuantTables . We cycled
with QFactor = 1.0 and 0.1, with and without the RGB-to-YCC color
transform. There was no downsampling. Total stability was eventually
reached in each case.

At QFactor = 1.0 with no ColorTransform , when the Þrst reconstructed
image is compared against the 15th, about 100 sample errors exceed 20, and
2 exceed 30. The maximum error was unchanged and the average error was
less than 10% greater than the one-time error. Total stability was achieved by
the 10th cycle.

For QFactor = 0.1 without any ColorTransform , the maximum error magni-
tude of any sample in the Þfteenth reproduction with respect to the original
image was 12. 12 sample error magnitudes were greater than 10, and 166
error magnitudes were greater than +/Ð8. Crudely, it looks as though the

34 Supporting the DCT Filters in PostScript Level 2 (24 Nov 92)

maximum and average errors at stabilization are about 25% larger than the
one-time errors. Total stability was reached at the Þfteenth cycle without
the color transform and at the twenty-third cycle with the color transform.
(The QFactor = 0.1 color transform case stabilized down to several unstable
8x8 blocks, which it then massaged for another 8 cycles before Þnally
reaching complete stability.)

These empirical results, which were obtained with the version 2011 imple-
mentation, might not be obtained on other images. Also, other JPEG
implementations might not have as good stability properties, even though
their one-time accuracy was acceptable.

The version 2010 implementation did not stabilize along the bottom and
right edges of the image, where incomplete 8x8 blocks are Þlled out by
DCTEncode before compressing. Adobe incorporated a superior block
extension for version 2011 and later products, which has the effect of stabil-
izing the right and bottom edges of images. This change has no effect on one-
time Þlter accuracy, where the version 2010 implementation is equivalent;
it affects only cyclic stability.

These small experiments suggest that JPEG might be usable by applications
that repeatedly compress and expand an image, if a cumulative loss 10% to
25% larger than the one-time loss is acceptable. However, a major problem
will be that when an expanded image is modiÞed and recompressed, then
further losses will be introduced in all of the 8x8 sample blocks affected by
the modiÞcation.

35

Appendix A:
PostScript Version 2011
Default Quantizers

Default quantization tables are currently as shown below. The tables are
shown both in normal un-zigzagged order and in the zigzag, or snake, order
deÞned in the JPEG speciÞcation and required for DCTEncode . If no colors
are downsampled, then quantization Table A is used for all; if any are down-
sampled, then Table A is used for colors with the maximum sampling value
both horizontally and vertically, while Table B is used for downsampled col-
ors.

Table A Luminance Table

Zigzag = PostScript language order

0x12 0x0C 0x0D 0x0D 0x0E 0x0C 0x11 0x11

0x11 0x12 0x1B 0x13 0x14 0x15 0x1B 0x22

0x1D 0x1B 0x1B 0x19 0x24 0x34 0x33 0x29

0x20 0x29 0x30 0x32 0x3F 0x40 0x3C 0x3D

0x3D 0x3C 0x43 0x45 0x50 0x51 0x49 0x47

0x49 0x4A 0x41 0x4E 0x56 0x57 0x57 0x59

0x5D 0x67 0x67 0x67 0x65 0x5B 0x67 0x67

0x67 0x67 0x67 0x67 0x67 0x67 0x67 0x67

Non-zigzag order

0x12 0x0C 0x0C 0x11 0x1B 0x22 0x32 0x3F

0x0D 0x0E 0x11 0x15 0x1D 0x30 0x40 0x41

0x0D 0x11 0x14 0x1B 0x29 0x3C 0x4A 0x4E

0x12 0x13 0x1B 0x20 0x3D 0x49 0x56 0x5B

0x1B 0x19 0x29 0x3D 0x47 0x57 0x65 0x67

0x24 0x33 0x3C 0x49 0x57 0x67 0x67 0x67

0x34 0x43 0x51 0x59 0x67 0x67 0x67 0x67

0x45 0x50 0x5D 0x67 0x67 0x67 0x67 0x67

36 Appendix A: PostScript Version 2011 Default Quantizers (24 Nov 92)

Table B Chrominance Table

Zigzag = PostScript language order; no downsampled components

0x13 0x14 0x14 0x1A 0x17 0x1A 0x32 0x1D

0x1D 0x32 0x45 0x45 0x3B 0x45 0x45 0x67

0x67 0x57 0x57 0x67 0x67 0x67 0x67 0x67

0x67 0x67 0x67 0x67 0x67 0x67 0x67 0x67

0x67 0x67 0x67 0x67 0x67 0x67 0x67 0x67

0x67 0x67 0x67 0x67 0x67 0x67 0x67 0x67

0x67 0x67 0x67 0x67 0x67 0x67 0x67 0x67

0x67 0x67 0x67 0x67 0x67 0x67 0x67 0x67

Non-zigzag order

0x13 0x14 0x1A 0x32 0x45 0x67 0x67 0x67

0x14 0x17 0x1D 0x45 0x67 0x67 0x67 0x67

0x1A 0x1D 0x3B 0x57 0x67 0x67 0x67 0x67

0x32 0x45 0x57 0x67 0x67 0x67 0x67 0x67

0x45 0x67 0x67 0x67 0x67 0x67 0x67 0x67

0x67 0x67 0x67 0x67 0x67 0x67 0x67 0x67

0x67 0x67 0x67 0x67 0x67 0x67 0x67 0x67

0x67 0x67 0x67 0x67 0x67 0x67 0x67 0x67

Some colors downsampled; zigzag = PostScript language order

0x13 0x14 0x14 0x17 0x16 0x17 0x1A 0x1A

0x1A 0x1B 0x27 0x24 0x20 0x24 0x25 0x30

0x33 0x3B 0x3B 0x33 0x33 0x3F 0x45 0x49

0x50 0x49 0x45 0x3A 0x41 0x53 0x55 0x60

0x60 0x57 0x56 0x49 0x67 0x67 0x67 0x67

0x67 0x67 0x67 0x67 0x67 0x67 0x67 0x67

0x67 0x67 0x67 0x67 0x67 0x67 0x67 0x67

0x67 0x67 0x67 0x67 0x67 0x67 0x67 0x67

Some colors downsampled; non-zigzag order

0x13 0x14 0x17 0x1A 0x25 0x30 0x3A 0x41

0x14 0x16 0x1A 0x24 0x33 0x45 0x53 0x67

0x17 0x1A 0x20 0x3B 0x49 0x55 0x67 0x67

0x1B 0x24 0x3B 0x50 0x60 0x67 0x67 0x67

0x27 0x33 0x49 0x60 0x67 0x67 0x67 0x67

0x33 0x45 0x57 0x67 0x67 0x67 0x67 0x67

0x3F 0x56 0x67 0x67 0x67 0x67 0x67 0x67

0x49 0x67 0x67 0x67 0x67 0x67 0x67 0x67

 37

The quantization tables are defaulted as follows when a QuantTables parame-
ter is not passed in the ÞlterÕs parameter dictionary: If a color transform is
used, the quantization tables are assigned correctly to the luminance and
chrominance components; the two chrominance tables are similar except that
the one used with quantized coefÞcients for downsampled images quantizes
high frequencies infrequently.

The particular quantization tables are not constants of Level 2 interpreters.
Adobe expects to change and/or supplement these as more is learned about
color spaces and image compression. An earlier version of the JPEG speciÞ-
cation suggested Table A as a good choice for compression of the Y compo-
nent and Table B as a good choice for the Cb and Cr components of the YCC
color space.

38 Appendix A: PostScript Version 2011 Default Quantizers (24 Nov 92)

39

Appendix B:
PostScript Version 2011
Default Huffman Tables

If the optional HuffTables entry does not exist in the ÞlterÕs dictionary, then
the default arrays appear as shown in Table A. Like the quantization tables, if
no colors are downsampled, then Table A is used for all colors; if any color is
downsampled, then Table A is used for those colors which have the maxi-
mum sampling value both horizontally and vertically, while Table B is used
for downsampled components.

Table A (DC luminance, QFactor >= 0.25)

0x00 0x01 0x05 0x01 0x01 0x01 0x01 0x01

0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x03 0x00 0x01 0x02 0x04 0x05 0x06 0x07

0x08 0x09 0x0A 0x0B

Table B (DC chrominance, QFactor >= 0.25)

0x00 0x01 0x05 0x01 0x01 0x01 0x01 0x01

0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x01 0x00 0x02 0x03 0x04 0x05 0x06 0x07

0x08 0x09 0x0A 0x0B

40 Appendix B: PostScript Version 2011 Default Huffman Tables (24 Nov 92)

Table A (AC luminance, QFactor >= 0.25)

0x00 0x01 0x04 0x02 0x00 0x04 0x04 0x03

0x02 0x06 0x0A 0x06 0x0B 0x04 0x0F 0x59

0x01 0x00 0x02 0x11 0x03 0x04 0x21 0x12

0x31 0x41 0x05 0x51 0x61 0x13 0x22 0x71

0x81 0x32 0x06 0x14 0x91 0xA1 0xB1 0x42

0x23 0x52 0xC1 0xD1 0x33 0x15 0x62 0x72

0x82 0x24 0x34 0x92 0x43 0x53 0xA2 0xB2

0x25 0x07 0x44 0x54 0x35 0x63 0xE1 0xF0

0xF1 0xC2 0x16 0x73 0x26 0x08 0x09 0xD2

0x0A 0x17 0x18 0x45 0x36 0x55 0x83 0x46

0x19 0x1A 0x27 0x64 0x93 0x74 0x65 0xE2

0xF2 0xA3 0xB3 0x75 0x84 0xC3 0xD3 0x56

0xE3 0xF3 0x37 0x94 0xA4 0xB4 0xC4 0xD4

0xE4 0xF4 0x85 0x95 0xA5 0xB5 0xC5 0xD5

0xE5 0xF5 0x66 0x76 0x86 0x28 0x47 0x96

0xA6 0xB6 0xC6 0xD6 0xE6 0xF6 0x29 0x57

0x67 0x38 0x39 0x2A 0x77 0x87 0x97 0xA7

0xB7 0xC7 0xD7 0xE7 0xF7 0x48 0x58 0x68

0x78 0x88 0x98 0xA8 0xB8 0xC8 0xD8 0xE8

0xF8 0x49 0x59 0x69 0x79 0x89 0x99 0xA9

0xB9 0xC9 0xD9 0xE9 0xF9 0x3A 0x4A 0x5A

0x6A 0x7A 0x8A 0x9A 0xAA 0xBA 0xCA 0xDA

0xEA 0xFA

 41

Table B (AC chrominance, QFactor >= 0.25)

0x00 0x01 0x04 0x00 0x05 0x01 0x05 0x03

0x06 0x07 0x0A 0x03 0x03 0x13 0x0C 0x53

0x01 0x00 0x11 0x02 0x03 0x21 0x31 0x12

0x04 0x41 0x51 0x05 0x61 0x13 0x71 0x22

0x81 0x32 0x91 0x42 0x52 0x23 0x14 0xA1

0xB1 0x33 0xC1 0xD1 0xF0 0xE1 0x62 0x72

0x82 0x92 0xF1 0x24 0x43 0x53 0x34 0x15

0xA2 0x63 0xB2 0x06 0x73 0x07 0x44 0x54

0x25 0x35 0x16 0xC2 0x26 0x08 0x09 0xD2

0x0A 0x17 0x83 0x18 0x45 0x36 0x55 0x46

0x19 0x1A 0x27 0x64 0x93 0x74 0x65 0xE2

0xF2 0xA3 0xB3 0x75 0x84 0xC3 0xD3 0x56

0xE3 0xF3 0x37 0x94 0xA4 0xB4 0xC4 0xD4

0xE4 0xF4 0x85 0x95 0xA5 0xB5 0xC5 0xD5

0xE5 0xF5 0x66 0x76 0x86 0x28 0x47 0x96

0xA6 0xB6 0xC6 0xD6 0xE6 0xF6 0x29 0x57

0x67 0x38 0x39 0x2A 0x77 0x87 0x97 0xA7

0xB7 0xC7 0xD7 0xE7 0xF7 0x48 0x58 0x68

0x78 0x88 0x98 0xA8 0xB8 0xC8 0xD8 0xE8

0xF8 0x49 0x59 0x69 0x79 0x89 0x99 0xA9

0xB9 0xC9 0xD9 0xE9 0xF9 0x3A 0x4A 0x5A

0x6A 0x7A 0x8A 0x9A 0xAA 0xBA 0xCA 0xDA

0xEA 0xFA

Table A (DC luminance, QFactor < 0.25)

0x00 0x00 0x06 0x03 0x01 0x01 0x01 0x00

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x04 0x05 0x06 0x07 0x03 0x02 0x01 0x00

0x08 0x09 0x0A 0x0B

42 Appendix B: PostScript Version 2011 Default Huffman Tables (24 Nov 92)

Table B (DC chrominance, QFactor < 0.25)

0x00 0x00 0x06 0x03 0x01 0x01 0x01 0x00

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x05 0x04 0x06 0x07 0x03 0x02 0x01 0x08

0x00 0x09 0x0A 0x0B

Table A (AC luminance, QFactor < 0.25)

0x00 0x01 0x03 0x02 0x04 0x03 0x05 0x04

0x04 0x0A 0x01 0x0D 0x00 0x08 0x07 0x61

0x01 0x11 0x02 0x03 0x04 0x05 0x00 0x21

0x31 0x12 0x06 0x07 0x41 0x08 0x13 0x51

0x22 0x61 0x71 0x81 0x14 0x09 0x91 0xA1

0x32 0x15 0xF0 0xB1 0x42 0x23 0xC1 0xD1

0x16 0xE1 0xF1 0x52 0x0A 0x62 0x33 0x24

0x17 0x72 0x43 0x34 0x18 0x82 0x92 0x19

0x25 0x44 0xA2 0x53 0x63 0x54 0x64 0x26

0x27 0x73 0xB2 0x83 0x93 0xA3 0x74 0x84

0x35 0x94 0xC2 0xD2 0x36 0x45 0xB3 0x46

0xA4 0xB4 0x56 0xC3 0xD3 0x55 0x28 0x1A

0xE2 0xF2 0xE3 0xF3 0xC4 0xD4 0xE4 0xF4

0x65 0x75 0x85 0x95 0xA5 0xB5 0xC5 0xD5

0xE5 0xF5 0x66 0x76 0x86 0x96 0xA6 0xB6

0xC6 0xD6 0xE6 0xF6 0x37 0x47 0x57 0x67

0x77 0x87 0x97 0xA7 0xB7 0xC7 0xD7 0xE7

0xF7 0x38 0x48 0x58 0x68 0x78 0x88 0x98

0xA8 0xB8 0xC8 0xD8 0xE8 0xF8 0x29 0x39

0x49 0x59 0x69 0x79 0x89 0x99 0xA9 0xB9

0xC9 0xD9 0xE9 0xF9 0x2A 0x3A 0x4A 0x5A

0x6A 0x7A 0x8A 0x9A 0xAA 0xBA 0xCA 0xDA

0xEA 0xFA

 43

Table B (AC luminance, QFactor < 0.25)

0x00 0x01 0x02 0x03 0x05 0x04 0x04 0x07

0x0B 0x07 0x04 0x07 0x0B 0x06 0x05 0x55

0x01 0x02 0x03 0x11 0x04 0x00 0x21 0x31

0x05 0x12 0x06 0x41 0x51 0x61 0x07 0x71

0x81 0x22 0x13 0x91 0x14 0x32 0xA1 0xB1

0x08 0xC1 0x42 0x52 0x23 0x15 0xD1 0x62

0x72 0x82 0x92 0xF0 0xE1 0x33 0x43 0x53

0x24 0x09 0x16 0x17 0x34 0xF1 0x25 0xA2

0x63 0x44 0xB2 0x18 0x73 0x19 0x0A 0x35

0x26 0x36 0x54 0xC2 0xD2 0x83 0x93 0x27

0x1A 0x45 0x64 0x74 0x55 0x37 0xE2 0xF2

0xA3 0xB3 0xC3 0x28 0x29 0xD3 0xE3 0xF3

0x84 0x94 0xA4 0xB4 0xC4 0xD4 0xE4 0xF4

0x65 0x75 0x85 0x95 0xA5 0xB5 0xC5 0xD5

0xE5 0xF5 0x46 0x56 0x66 0x76 0x86 0x96

0xA6 0xB6 0xC6 0xD6 0xE6 0xF6 0x47 0x57

0x67 0x77 0x87 0x97 0xA7 0xB7 0xC7 0xD7

0xE7 0xF7 0x38 0x48 0x58 0x68 0x78 0x88

0x98 0xA8 0xB8 0xC8 0xD8 0xE8 0xF8 0x39

0x49 0x59 0x69 0x79 0x89 0x99 0xA9 0xB9

0xC9 0xD9 0xE9 0xF9 0x2A 0x3A 0x4A 0x5A

0x6A 0x7A 0x8A 0x9A 0xAA 0xBA 0xCA 0xDA

0xEA 0xFA

These tables work well with the default quantization tables. The luminance
and chrominance tables are used for the indicated components when either
the YCC or YCCK color space is used via a ColorTransform. The luminance
table is the default for other color coordinates that have maximum sampling
both horizontally and vertically. The chrominance tables are the defaults for
downsampled color components.

As with quantization defaults, these defaults are not constants of Level 2
interpreters and might change over Level 2 products as more is learned about
color spaces and image compression. Applications can achieve somewhat
better compression for a particular level of image quality with custom tables.

44 Appendix B: PostScript Version 2011 Default Huffman Tables (24 Nov 92)

45

Appendix C: Image
Reproduction Study Results

The default quantizers in Appendix A: PostScript Version 2011 Default
Quantizers are also used by Adobe Photoshopª , which scales the default
matrices by a QFactor to achieve different quality settings. The default quan-
tizers were chosen to have about the right relative magnitudes and to have
absolute sizes that achieve ÔfairÕ to ÔgoodÕ quality at QFactor = 1.0.

A choice of quantizers depends heavily on excess resolution in the original
image. With some excess resolution, throwing away high frequencies through
downsampling or quantization wins; but if the original image has minimum
resolution, then this is ineffective. There is no single choice that covers all
cases effectively.

Error studies on three images using scaled default quantizers are reported
below. The three images used were:

¥ Japan Store Front (small objects and signs seen through a glass display
window in front of a store).

¥ Musicians (three women of different skin tones, nicely dressed with musi-
cal instruments).

¥ Balloons (two colorful hot air balloons against a sky background).

Japan Store Front is busy with many high frequencies (edges, text, lines,
etc.). Its ßaws, small ringing patterns around high frequency details, were
always more visible than other ßaws. To reduce these, the relative importance
of luminance high frequencies was raised relative to low frequencies and to
chrominance. Here are the results of mathematical error studies with Adobe
Photoshop quantizer settings:

46 Appendix C: Image Reproduction Study Results (24 Nov 92)

Table C.1 For RGB (CMYK is the same):

1) 1:1 RGB-to-YCC QFactor = 0.00

2) 1:1 RGB-to-YCC QFactor = 0.05

3) 1:1 RGB-to-YCC QFactor = 0.10

4) 1:1 RGB-to-YCC QFactor = 0.20

5) 2:1 RGB-to-YCC QFactor = 0.25 Blend=1

6) 2:1 RGB-to-YCC QFactor = 0.50 Blend=1 Default

7) 2:1 RGB-to-YCC QFactor = 1.00 Blend=1

8) 2:1 RGB-to-YCC QFactor = 1.60 Blend=1

9) 2:1 RGB-to-YCC QFactor = 2.50 Blend=1

The exact compression results and approximate error results are as shown
below. To estimate the RMS error, multiply the average error by 1.4:

Table C.2 Japan Store Front; busy RGB image (598,752 bytes):

Bytes Max. Err. Avg. Err.

1) 452,741 (1.32:1) 3 0.6

2) 302,371 (1.98:1) 7 1.6

3) 216,978 (2.76:1) 14 2.4

4) 145,870 (4.10:1) 28 3.8

5) 91,914 (6.51:1) 34 4.1 (ignores downsampling)

6) 61,245 (9.78:1) 46 5.8 (ignores downsampling)

7) 40,857 (14.7:1) 75 7.0 (ignores downsampling)

8) 30,456 (19.7:1) 83 9.2 (ignores downsampling)

9) 22,696 (26.4:1) 108 10.2 (ignores downsampling)

 47

Table C.3 Musicians; average RGB image (1,997,850 bytes):

Bytes Max. Err. Avg. Err.

1) 977,339 (2.04:1) 3 0.6.

2) 520,553 (3.84:1) 7 1.3.

3) 334,520 (5.97:1) 11 1.7.

4) 221,032 (9.04:1) 23 2.3.

5) 148,951 (13.4:1) 26 2.4 (ignores downsampling)

6) 94,272 (21.2:1) 41 3.1 (ignores downsampling)

7) 61,087 (32.7:1) 61 3.5 (ignores downsampling)

8) 45,194 (44.2:1) 70 4.6 (ignores downsampling)

9) 34,092 (58.6:1) 95 5.5 (ignores downsampling)

Table C.4 Balloons; simple RGB image (1,244,160 bytes):

Bytes Max. Err. Avg. Err.

1) 450,909 (2.76:1) 3 0.5

2) 228,660 (5.44:1) 7 1.1

3) 144,400 (8.62:1) 11 1.4

4) 94,873 (13.1:1) 17 1.7

5) 56,976 (21.8:1) 21 1.8 (ignores downsampling)

6) 35,683 (34.9:1) 34 2.1 (ignores downsampling

7) 23,769 (52.3:1) 44 2.5 (ignores downsampling)

8) 18,334 (67.9:1) 46 3.2 (ignores downsampling)

9) 14,536 (85.6:1) 54 4.0 (ignores downsampling)

48 Appendix C: Image Reproduction Study Results (24 Nov 92)

Table C.5 Balloons; simple CMYK image (1,658,880 bytes):

Bytes Max. Err. Avg. Err.

1) 650,659 (2.55:1) 3 0.5

2) 364,548 (4.55:1) 7 1.1

3) 241,071 (6.88:1) 11 1.4

4) 158,435 (10.5:1) 16 1.7

5) 110,728 (15.0:1) 20 2.1 (ignores downsampling)

6) 67,019 (24.8:1) 23 2.5 (ignores downsampling)

7) 41,425 (40.0:1) 44 2.9 (ignores downsampling)

8) 31,086 (53.4:1) 60 3.5 (ignores downsampling)

9) 24,369 (68.1:1) 75 4.3 (ignores downsampling)

In the above study, where downsampling is involved, the average error com-
pares the original blended value to the reconstructed value after compression
and expansion; in other words, it omits the error due to downsampling.

Adobe Photoshop uses the RGB-to-YCC color transform on RGB images.
Most other applications use this; and our experiments have suggested that it
improves the quality vs. compression tradeoff down to about QFactor = 0.1.
Adobe Photoshop also uses the CMYK-to-YCCK color transform on CMYK
images. (Color transforms increase the error at QFactor = 0.00 and 0.05;
abandoning it would result in essentially no error at QFactor = 0.00 and very
small error at QFactor = 0.05; but it seemed better to uniformly use the trans-
form than to complicate compatibility for other applications.)

Adobe Photoshop uses the Blend option on all downsampled colors. This
slows compression slightly while reducing the average error 15% on down-
sampled colors.

Adobe Photoshop switches from 2:1 sampling of chrominance to 1:1 sam-
pling at QFactor = 0.2. This is probably about the right place to switch. The
default quantization and Huffman coding tables also switch at this point.

49

Appendix D: Changes Since
Earlier Versions

Changes since October 14, 1992 version

¥ Added the appendix, ÒImage Reproduction Study Results.Ó

Changes since August 20, 1992 version

¥ Several references to PostScript version numbers 2010 and 2011 were
changed to refer to 2010 to 2012.

¥ In section 13.2, ÒRGB-to-YCC Color Transform,Ó the equations were
modiÞed.

¥ The JFIF section was broken out of section 19, ÒDCTEncode Markers
String,Ó and made into its own section (section 20, ÒJFIF MarkerÓ).

Changes since May 12, 1992 version

¥ The technical changes and bugs Þxed in version 2012 are discussed in sec-
tion 12, ÒBugs and Incompatibilities.Ó

Changes since March 31, 1992 version

¥ The technical changes and bugs Þxed between PostScript versions 2010,
2011, and 2012 are discussed in section 12, ÒBugs and Incompatibilities.Ó

Changes since April 5, 1991 version

¥ This document has been completely rewritten.

50 Appendix D: Changes Since Earlier Versions (24 Nov 92)

51

Index

A

Adobe Photoshop 45

B

Baseline standard
extensions 9

Blend 11

C

CCITTFaxDecode 6
CCITTFaxEncode 6
Chop 11
chrominance 18, 20
chrominance table 36
CIEBasedABC 20
CIELAB 22

D

DCT filters
bugs and incompatibilities 16
color transforms 18Ð20

CMYK-to-YCCK 18
compatibility with JPEG 6
compression 6
error handling 14
image reproduction 31
JPEG Implementation 31
PostScript Language Reference

Manual, Second Edition
errata 9

RAM requirement 15
reproduction cyclic stability after

initial loss 33
speed 29

inner loops 29

YCC 19
YCCK 19
zero-size images 11

DCTDecode 5Ð34
APPE marker 27
ASCII85Encoded 12
ASCII85Encoding 12
color transform

alternative to 19
program example 12Ð13
summary 8
upsampling 23

DCTEncode 5Ð34
color transforms

RGB-to-YCC 19
downsampling 20Ð22

Blend 20Ð22
Chop 21Ð22
HSamples 20
VSamples 20, 21

errata 10
marker strings 28
program example 14
summary 10

H

Huffman tables 39Ð43
HuffTables 14, 26Ð27

I

Image Reproduction Study 45Ð48

J

JPEG Interchange Format 7
JPEG XÕFFEE marker 27

52 Index (24 Nov 92)

L

lossy compressor 5
Luminance 20
luminance 18, 19, 20, 35
LZWDecode 6
LZWEncode 6

M

magnitude categories 27

N

NoMarker 10

P

Picky 9, 11, 27

Q

QFactor 23, 33
quantization tables 23Ð25
quantizers

default 35
using 25

QuantTables 18, 24, 25

R

Relax 9, 11
Resync 10

	Supporting the DCT Filters in PostScript Level 2
	1 Introduction
	2 Purpose of the DCTEncode and DCTDecode Filters
	3 Alternative Compression Possibilities
	4 Compatibility with JPEG Specifications
	5 JPEG Interchange Format
	6 DCTDecode Filter Summary
	7 DCTEncode Filter Summary
	8 DCTDecode Program Example
	9 DCTEncode Program Example
	10 Error Handling
	11 RAM Requirements
	12 Bugs and Incompatibilities
	13 Color Transforms
	13.1 CMYK-to-YCCK Color Transform
	13.2 RGB-to-YCC Color Transform
	13.3 An Alternative to the DCTDecode Color Transform

	14 DCTEncode HSamples, VSamples, and Blend �Downsampling
	15 DCTDecode Upsampling
	16 Default Quantization Tables and QFactor
	16.1 Using Quantizers

	17 HuffTables Specification
	18 Adobe Application-Specific JPEG Marker
	19 DCTEncode Markers String
	20 JFIF Marker
	21 Speed in DCT Filters
	22 Accuracy of JPEG Implementation
	23 Accuracy of Image Reproduction
	24 Reproduction Cyclic Stability After Initial Loss
	Appendix A: PostScript�Version 2011 Default Quantizers
	Appendix B: PostScript�Version 2011 Default Huffman Tables
	Appendix C: Image Reproduction Study Results
	Appendix D: Changes Since Earlier Versions
	Index

