Docs » Deep Learning - The Straight Dope

Deep Learning - The Straight Dope

This repo contains an incremental sequence of notebooks designed to teach deep learning,
Apache MXNet (incubating), and the gluon interface. Our goal is to leverage the strengths of
Jupyter notebooks to present prose, graphics, equations, and code together in one place. If we're
successful, the result will be a resource that could be simultaneously a book, course material, a
prop for live tutorials, and a resource for plagiarising (with our blessing) useful code. To our
knowledge there’s no source out there that teaches either (1) the full breadth of concepts in
modern deep learning or (2) interleaves an engaging textbook with runnable code. We'll find out
by the end of this venture whether or not that void exists for a good reason.

Another unique aspect of this book is its authorship process. We are developing this resource
fully in the public view and are making it available for free in its entirety. While the book has a
few primary authors to set the tone and shape the content, we welcome contributions from the
community and hope to coauthor chapters and entire sections with experts and community
members. Already we've received contributions spanning typo corrections through full working
examples.

How to contribute

To clone or contribute, visit Deep Learning - The Straight Dope on Github.

Dependencies

To run these notebooks, a recent version of MXNet is required. The easiest way is to install the
nightly build MXNet through pip . E.g.:

$ pip install mxnet --pre --user

More detailed instructions are available here

Part 1: Deep Learning Fundamentals

Crash course

https://github.com/apache/incubator-mxnet
http://github.com/zackchase/mxnet-the-straight-dope
http://gluon.mxnet.io/docs/C01-install.html

e Preface
e [ntroduction
e Manipulate data the MXNet way with ndarray

e Linear algebra

e Intermediate linear algebra

e Probability and statistics

e Automatic differentiation with = autograd

Introduction to supervised learning

e Linear regression from scratch
e Linear regression with gluon

e The Perceptron
e Multiclass logistic regression from scratch
e Multiclass logistic regression with giuon

e Overfitting and regularization
e Overfitting and regularization (with gluon)

e Environment

Deep neural networks

e Multilayer perceptrons from scratch
e Multilayer perceptrons in gluon

e Dropout regularization from scratch
e Dropout regularization with giuon

e Plumbing: A look under the hood of gluon
e Designing a custom layer with giuon

e Serialization - saving, loading and checkpointing

Convolutional neural networks

e Convolutional neural networks from scratch
e Convolutional Neural Networks in gluon

e Deep convolutional neural networks

e Very deep networks with repeating elements
e Batch Normalization from scratch

e Batch Normalization in gluon

Recurrent neural networks

e Recurrent Neural Networks (RNNs) for Language Modeling

http://gluon.mxnet.io/chapter01_crashcourse/preface.html
http://gluon.mxnet.io/chapter01_crashcourse/introduction.html
http://gluon.mxnet.io/chapter01_crashcourse/ndarray.html
http://gluon.mxnet.io/chapter01_crashcourse/linear-algebra.html
http://gluon.mxnet.io/chapter01_crashcourse/linear-algebra.html#Intermediate-linear-algebra
http://gluon.mxnet.io/chapter01_crashcourse/probability.html
http://gluon.mxnet.io/chapter01_crashcourse/autograd.html
http://gluon.mxnet.io/chapter02_supervised-learning/linear-regression-scratch.html
http://gluon.mxnet.io/chapter02_supervised-learning/linear-regression-gluon.html
http://gluon.mxnet.io/chapter02_supervised-learning/perceptron.html
http://gluon.mxnet.io/chapter02_supervised-learning/softmax-regression-scratch.html
http://gluon.mxnet.io/chapter02_supervised-learning/softmax-regression-gluon.html
http://gluon.mxnet.io/chapter02_supervised-learning/regularization-scratch.html
http://gluon.mxnet.io/chapter02_supervised-learning/regularization-gluon.html
http://gluon.mxnet.io/chapter02_supervised-learning/environment.html
http://gluon.mxnet.io/chapter03_deep-neural-networks/mlp-scratch.html
http://gluon.mxnet.io/chapter03_deep-neural-networks/mlp-gluon.html
http://gluon.mxnet.io/chapter03_deep-neural-networks/mlp-dropout-scratch.html
http://gluon.mxnet.io/chapter03_deep-neural-networks/mlp-dropout-gluon.html
http://gluon.mxnet.io/chapter03_deep-neural-networks/plumbing.html
http://gluon.mxnet.io/chapter03_deep-neural-networks/custom-layer.html
http://gluon.mxnet.io/chapter03_deep-neural-networks/serialization.html
http://gluon.mxnet.io/chapter04_convolutional-neural-networks/cnn-scratch.html
http://gluon.mxnet.io/chapter04_convolutional-neural-networks/cnn-gluon.html
http://gluon.mxnet.io/chapter04_convolutional-neural-networks/deep-cnns-alexnet.html
http://gluon.mxnet.io/chapter04_convolutional-neural-networks/very-deep-nets-vgg.html
http://gluon.mxnet.io/chapter04_convolutional-neural-networks/cnn-batch-norm-scratch.html
http://gluon.mxnet.io/chapter04_convolutional-neural-networks/cnn-batch-norm-gluon.html
http://gluon.mxnet.io/chapter05_recurrent-neural-networks/simple-rnn.html

e Long short-term memory (LSTM) RNNs
e Gated recurrent unit (GRU) RNNs
e Recurrent Neural Networks with gluon

Optimization

e Introduction
e Optimization by gradient descent
e Stochastic gradient descent with momentum

High-performance and distributed training

Fast, portable neural networks with Gluon HybridBlocks

Training with multiple GPUs from scratch

Training on multiple GPUs with gluon

Distributed training with multiple machines

Part 2: Applications

Computer vision

e Object Detection Using Convolutional Neural Networks
e Transfering knowledge through finetuning
e Visual Question Answering in gluon

Natural language processing

e Tree LSTM modeling for semantic relatedness

Recommender systems

e [ntroduction to recommender systems

Time series

e Linear Dynamical Systems with MXNet

e Filtering

e Generating Synthetic Dataset

e Exponential Smoothing and Innovation State Space Model (ISSM)
e Filtering

http://gluon.mxnet.io/chapter05_recurrent-neural-networks/lstm-scratch.html
http://gluon.mxnet.io/chapter05_recurrent-neural-networks/gru-scratch.html
http://gluon.mxnet.io/chapter05_recurrent-neural-networks/rnns-gluon.html
http://gluon.mxnet.io/chapter06_optimization/optimization-intro.html
http://gluon.mxnet.io/chapter06_optimization/gd-sgd.html
http://gluon.mxnet.io/chapter06_optimization/sgd-momentum.html
http://gluon.mxnet.io/chapter07_distributed-learning/hybridize.html
http://gluon.mxnet.io/chapter07_distributed-learning/multiple-gpus-scratch.html
http://gluon.mxnet.io/chapter07_distributed-learning/multiple-gpus-gluon.html
http://gluon.mxnet.io/chapter07_distributed-learning/training-with-multiple-machines.html
http://gluon.mxnet.io/chapter08_computer-vision/object-detection.html
http://gluon.mxnet.io/chapter08_computer-vision/fine-tuning.html
http://gluon.mxnet.io/chapter08_computer-vision/visual-question-answer.html
http://gluon.mxnet.io/chapter09_natural-language-processing/tree-lstm.html
http://gluon.mxnet.io/chapter11_recommender-systems/intro-recommender-systems.html
http://gluon.mxnet.io/chapter12_time-series/lds-scratch.html
http://gluon.mxnet.io/chapter12_time-series/lds-scratch.html#Filtering
http://gluon.mxnet.io/chapter12_time-series/lds-scratch.html#Generating-Synthetic-Dataset
http://gluon.mxnet.io/chapter12_time-series/issm-scratch.html
http://gluon.mxnet.io/chapter12_time-series/issm-scratch.html#Filtering

Part 3: Advanced Topics

Generative adversarial networks

e Generative Adversarial Networks
e Deep Convolutional Generative Adversarial Networks
o Pixel to Pixel Generative Adversarial Networks

Variational methods

e Bayes by Backprop from scratch (NN, classification)
e Bayes by Backprop with giuon (NN, classification)

Cheat sheets

e Kaggle house price prediction with Giuon and k-fold cross-validation

Developer documents

e Run these tutorials
e How to contribute

http://gluon.mxnet.io/chapter14_generative-adversarial-networks/gan-intro.html
http://gluon.mxnet.io/chapter14_generative-adversarial-networks/dcgan.html
http://gluon.mxnet.io/chapter14_generative-adversarial-networks/pixel2pixel.html
http://gluon.mxnet.io/chapter18_variational-methods-and-uncertainty/bayes-by-backprop.html
http://gluon.mxnet.io/chapter18_variational-methods-and-uncertainty/bayes-by-backprop-gluon.html
http://gluon.mxnet.io/cheatsheets/kaggle-gluon-kfold.html
http://gluon.mxnet.io/docs/C01-install.html
http://gluon.mxnet.io/docs/C02-contribute.html

Docs » Preface

Preface

If you're a reasonable person, you might ask, “what is mxnet-the-straight-dope?” You might also
ask, “why does it have such an ostentatious name?” Speaking to the former question, mxnet-the-
straight-dope is an attempt to create a new kind of educational resource for deep learning. Our
goal is to leverage the strengths of Jupyter notebooks to present prose, graphics, equations, and
(importantly) code together in one place. If we're successful, the result will be a resource that
could be simultaneously a book, course material, a prop for live tutorials, and a resource for
plagiarising (with our blessing) useful code. To our knowledge, few available resources aim to
teach either (1) the full breadth of concepts in modern machine learning or (2) interleave an
engaging textbook with runnable code. We'll find out by the end of this venture whether or not
that void exists for a good reason.

Regarding the name, we are cognizant that the machine learning community and the ecosystem
in which we operate have lurched into an absurd place. In the early 2000s, comparatively few
tasks in machine learning had been conquered, but we felt that we understood how and why
those models worked (with some caveats). By contrast, today’s machine learning systems are
extremely powerful and actually work for a growing list of tasks, but huge open questions
remain as to precisely why they are so effective.

This new world offers enormous opportunity, but has also given rise to considerable buffoonery.
Research preprints like the arXiv are flooded by clickbait, Al startups have sometimes received
overly optimistic valuations, and the blogosphere is flooded with thought leadership pieces
written by marketers bereft of any technical knowledge. Amid the chaos, easy money, and lax
standards, we believe it's important not to take our models or the environment in which they are
worshipped too seriously. Also, in order to both explain, visualize, and code the full breadth of
models that we aim to address, it's important that the authors do not get bored while writing.

Organization

At present, we're aiming for the following format: aside from a few (optional) notebooks
providing a crash course in the basic mathematical background, each subsequent notebook will
both:

1. Introduce a reasonable number (perhaps one) of new concepts
2. Provide a single self-contained working example, using a real dataset

http://gluon.mxnet.io/index.html
http://arxiv.org/

This presents an organizational challenge. Some models might logically be grouped together in a
single notebook. And some ideas might be best taught by executing several models in
succession. On the other hand, there’s a big advantage to adhering to a policy of 1 working
example, 1 notebook: This makes it as easy as possible for you to start your own research
projects by plagiarising our code. Just copy a single notebook and start modifying it.

We will interleave the runnable code with background material as needed. In general, we will
often err on the side of making tools available before explaining them fully (and we will follow up
by explaining the background later). For instance, we might use stochastic gradient descent
before fully explaining why it is useful or why it works. This helps to give practitioners the
necessary ammunition to solve problems quickly, at the expense of requiring the reader to trust
us with some decisions, at least in the short term. Throughout, we'll be working with the MXNet
library, which has the rare property of being flexible enough for research while being fast
enough for production. Our more advanced chapters will mostly rely on MXNet’s new high-level
imperative interface gluon . Note that this is not the same as mxnet.module , an older, symbolic

interface supported by MXNet.

This book will teach deep learning concepts from scratch. Sometimes, we'll want to delve into
fine details about the models that are hidden from the user by giuon ’s advanced features. This

comes up especially in the basic tutorials, where we'll want you to understand everything that
happens in a given layer. In these cases, we'll generally present two versions of the example: one
where we implement everything from scratch, relying only on NDArray and automatic
differentiation, and another where we show how to do things succinctly with giuon . Once we've

taught you how a layer works, we can just use the giluon version in subsequent tutorials.

Learning by doing

Many textbooks teach a series of topics, each in exhaustive detail. For example, Chris Bishop’s
excellent textbook, Pattern Recognition and Machine Learning, teaches each topic so thoroughly,
that getting to the chapter on linear regression requires a non-trivial amount of work. When |
(Zack) was first learning machine learning, this actually limited the book’s usefulness as an
introductory text. When | rediscovered it a couple years later, | loved it precisely for its
thoroughness, and | hope you check it out after working through this material! But perhaps the
traditional textbook aproach is not the easiest way to get started in the first place.

Instead, in this book, we'll teach most concepts just in time. F or the fundamental preliminaries
like linear algebra and probability, we'll provide a brief crash course from the outset, but we want
you to taste the satisfaction of training your first model before worrying about exotic probability
distributions.

Next steps

https://www.amazon.com/Pattern-Recognition-Learning-Information-Statistics/dp/0387310738

If you're ready to get started, head over to the introduction or go straight to our basic primer on
NDArray, MXNet's workhorse data structure.

For whinges or inquiries, open an issue on GitHub.

http://gluon.mxnet.io/chapter01_crashcourse/introduction.html
http://gluon.mxnet.io/chapter01_crashcourse/ndarray.html
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Introduction

Introduction

Before we could begin writing, the authors of this book, like much of the work force, had to
become caffeinated. We hopped in the car and started driving. Having an Android, Alex called
out “Okay Google”, awakening the phone’s voice recognition system. Then Mu commanded
“directions to Blue Bottle coffee shop”. The phone quickly displayed the transcription of his
command. It also recognized that we were asking for directions and launched the Maps
application to fulfill our request. Once launched, the Maps app identified a number of routes.
Next to each route, the phone displayed a predicted transit time. While we fabricated this story
for pedagogical convenience, it demonstrates that in the span of just a few seconds, our
everyday interactions with a smartphone can engage several machine learning models.

If you’ve never worked with machine learning before, you might be wondering what the hell
we're talking about. You might ask, “isn’t that just programming?” or “what does machine
learning even mean?” First, to be clear, we implement all machine learning algorithms by writing
computer programs. Indeed, we use the same languages and hardware as other fields of
computer science, but not all computer programs involve machine learning. In response to the
second question, precisely defining a field of study as vast as machine learning is hard. It's a bit
like answering, “what is math?”. But we'll try to give you enough intuition to get started.

A motivating example

Most of the computer programs we interact with every day can be coded up from first
principles. When you add an item to your shopping cart, you trigger an e-commerce application
to store an entry in a shopping cart database table, associating your user ID with the product’s
ID. We can write such a program from first principles, launch without ever having seen a real
customer. When it’s this easy to write an application you should not be using machine learning.

Fortunately (for the community of ML scientists), however, for many problems, solutions aren’t
so easy. Returning to our fake story about going to get coffee, imagine just writing a program to
respond to a wake word like “Alexa”, “Okay, Google” or “Siri”. Try coding it up in a room by
yourself with nothing but a computer and a code editor. How would you write such a program
from first principles? Think about it... the problem is hard. Every second, the microphone wiill
collect roughly 44,000 samples. What rule could map reliably from a snippet of raw audio to
confident predictions {yes, no} on whether the snippet contains the wake word? If you're

stuck, don't worry. We don’t know how to write such a program from scratch either. That's why
we use machine learning.

http://gluon.mxnet.io/index.html

WELGCR o] (e
{yes, no}

model

Here’s the trick. Often, even when we don’t know how to tell a computer explicitly how to map
from inputs to outputs, we ourselves are nonetheless capable of performing the cognitive feat
ourselves. In other words, even if you don’t know how to program a computer to recognize the
word “Alexa”, you yourself are able to recognize the word “Alexa”. Armed with this ability, we can
collect a huge data set containing examples of audio and label those that do and that do not
contain the wake word. In the machine learning approach, we do not design a system explicitly
to recognize wake words right away. Instead, we define a flexible program with a number of
parameters. These are knobs that we can tune to change the behavior of the program. We call
this program a model. Generally, our model is just a machine that transforms its input into some
output. In this case, the model receives as input a snippet of audio, and it generates as output an
answer {yes, no} , which we hope reflects whether (or not) the snippet contains the wake word.

If we choose the right kind of model, then there should exist one setting of the knobs such that
the model fires yes every time it hears the word “Alexa”. There should also be another setting of

the knobs that might fire yes on the word “Apricot”. We expect that the same model should

apply to “Alexa” recognition and “Apricot” recognition because these are similar tasks. However,
we might need a different model to deal with fundamentally different inputs or outputs. For
example, we might choose a different sort of machine to map from images to captions, or from
English sentences to Chinese sentences.

As you might guess, if we just set the knobs randomly, the model will probably recognize neither
“Alexa”, “Apricot”, nor any other word in the English language. In most deep learning, the learning
refers precisely to updating the model’s behavior (by twisting the knobs) over the course of a
training period.

The training process usually looks like this:

1. Start off with a randomly initialized model that can’t do anything useful

2. Grab some of your labeled data (e.g. audio snippets and corresponding {yes,no} labels)
3. Tweak the knobs so the model sucks less with respect to those examples

4. Repeat until the model is dope

grab new

data

check
termination
condition

To summarize, rather than code up a wake word recognizer, we code up a program that can /earn
to recognize wake words, if we present it with a large labeled dataset. You can think of this act of
determining a program'’s behavior by presenting it with a dataset as programming with data.

We can ‘program’ a cat detector by providing our machine learning system with many examples
of cats and dogs, such as the images below:

cat cat dog dog

This way the detector will eventually learn to emit a very large positive number if it’s a cat, a
very large negative number if it's a dog, and something closer to zero if it isn’t sure, but this is
just barely scratching the surface of what machine learning can do.

The dizzying versatility of machine learning

This is the core idea behind machine learning: Rather than code programs with fixed behavior,
we design programs with the ability to improve as they acquire more experience. This basic idea
can take many forms. Machine learning can address many different application domains, involve

many different types of models, and update them according to many different learning
algorithms. In this particular case, we described an instance of supervised learning applied to a
problem in automated speech recognition.

Machine Learning is a versatile set of tools that lets you work with data in many different
situations where simple rule-based systems would fail or might be very difficult to build. Due to
its versatility, machine learning can be quite confusing to newcomers. For example, machine
learning techniques are already widely used in applications as diverse as search engines, self
driving cars, machine translation, medical diagnosis, spam filtering, game playing (chess, go), face
recognition, data matching, calculating insurance premiums, and adding filters to photos.

Despite the superficial differences between these problems many of them share a common
structure and are addressable with deep learning tools. They’re mostly similar because they are
problems where we wouldn’t be able to program their behavior directly in code, but we can
program them with data. Often times the most direct language for communicating these kinds of
programs is math. In this book, we'll introduce a minimal amount of mathematical notation, but
unlike other books on machine learning and neural networks, we'll always keep the conversation
grounded in real examples and real code.

Basics of machine learning

When we considered the task of recognizing wake-words, we put together a dataset consisting
of snippets and labels. We then described (albeit abstractly) how you might train a machine
learning model to predict the label given a snippet. This set-up, predicting labels from examples,
is just one flavor of ML and it’s called supervised learning. Even within deep learning, there are
many other approaches, and we'll discuss each in subsequent sections. To get going with
machine learning, we need four things:

1. Data

2. A model of how to transform the data

3. A loss function to measure how well we're doing

4. An algorithm to tweak the model parameters such that the loss function is minimized

Data

Generally, the more data we have, the easier our job as modelers. When we have more data, we
can train more powerful models. Data is at the heart of the resurgence of deep learning and
many of most exciting models in deep learning don’t work without large data sets. Here are
some examples of the kinds of data machine learning practitioners often engage with:

e Images: Pictures taken by smartphones or harvested from the web, satellite images,
photographs of medical conditions, ultrasounds, and radiologic images like CT scans and

MRIs, etc.

e Text: Emails, high school essays, tweets, news articles, doctor’s notes, books, and corpora of
translated sentences, etc.

e Audio: Voice commands sent to smart devices like Amazon Echo, or iPhone or Android
phones, audio books, phone calls, music recordings, etc.

e Video: Television programs and movies, YouTube videos, cell phone footage, home
surveillance, multi-camera tracking, etc.

e Structured data: This Jupyter notebook (it contains text, images, code), webpages, electronic
medical records, car rental records, electricity bills, etc.

Models

Usually the data looks quite different from what we want to accomplish with it. For example, we
might have photos of people and want to know whether they appear to be happy. We might
desire a model capable of ingesting a high-resolution image and outputting a happiness score.
While some simple problems might be addressable with simple models, we're asking a lot in this
case. To do its job, our happiness detector needs to transform hundreds of thousands of low-
level features (pixel values) into something quite abstract on the other end (happiness scores).
Choosing the right model is hard, and different models are better suited to different datasets. In
this book, we'll be focusing mostly on deep neural networks. These models consist of many
successive transformations of the data that are chained together top to bottom, thus the name
deep learning. On our way to discussing deep nets, we'll also discuss some simpler, shallower
models.

Loss functions

To assess how well we're doing we need to compare the output from the model with the truth.
Loss functions give us a way of measuring how bad our output is. For example, say we trained a
model to infer a patient’s heart rate from images. If the model predicted that a patient’s heart
rate was 100bpm, when the ground truth was actually 60bpm, we need a way to communicate
to the model that it's doing a lousy job.

Similarly if the model was assigning scores to emails indicating the probability that they are
spam, we'd need a way of telling the model when its predictions are bad. Typically the learning
part of machine learning consists of minimizing this loss function. Usually, models have many
parameters. These are the ones that we need to ‘learn’, by minimizing the loss incurred on
training data. Unfortunately, doing well on the latter doesn’t guarantee that we will do well on
(unseen) test data, so we'll want to keep track of two quantities.

e Training Error: This is the error on the dataset used to find f by minimizing the loss on the
training set. This is equivalent to doing well on all the practice exams that a student might
use to prepare for the real exam. The results are encouraging, but by no means a guarantee.

e Test Error: This is the error incurred on an unseen test set. This can be off by quite a bit
(statisticians call this overfitting). In real-life terms, this is the equivalent of screwing up the
real exam despite doing well on the practice exams.

Optimization algorithms

Finally, to minimize the loss, we'll need some way of taking the model and its loss functions, and
searching for a set of parameters that minimizes the loss. The most popular optimization
algorithms for work on neural networks follow an approach called gradient descent. In short,
they look to see, for each parameter which way the training set loss would move if you jiggled
the parameter a little bit. They then update the parameter in the direction that reduces the loss.

In the following sections, we will discuss a few types of machine learning in some more detail.
This helps to understand what exactly one aims to do. We begin with a list of objectives, i.e. a
list of things that machine learning can do. Note that the objectives are complemented with a set
of techniques of how to accomplish them, i.e. training, types of data, etc. The list below is really
only sufficient to whet the readers’ appetite and to give us a common language when we talk
about problems. We will introduce a larger number of such problems as we go along.

Supervised learning

Supervised learning describes the task of predicting targets y given inputs x by training on
labeled examples. In probabilistic terms, supervised learning is concerned with estimating the
conditional probability P(y|x). While it’s just one among several approaches to machine learning,
supervised learning accounts for the majority of machine learning in practice. Partly, that’s
because many important tasks can be described crisply as predicting something unknown from
something known: * Predict cancer vs not cancer, given a CT image * Predict the correct
translation in French, given a sentence in English * Predict the price of a stock next month based
on this month’s financial reporting data

Even with the simple description “predict targets from inputs” supervised learning can take a
great many forms and require a great many modeling decisions, depending on the type, size, and
the number of inputs and outputs. For example, we use different models to process sequences
(like strings of text or time series data) and for processing fixed-length vector representations.
WEe'll visit many of these problems in depth throughout the first 9 parts of this book.

Put plainly, the learning process looks something like this. Grab a big pile of example inputs,
selecting them randomly. Acquire the ground truth labels for each. Together, these inputs and
corresponding labels (the desired outputs) comprise the training set. We feed the training
dataset into a supervised learning algorithm. So here the supervised learning algorithm is a

function that takes as input a dataset, and outputs another function, the learned model. Then,
given a learned model, we can take a new previously unseen input, and predict the
corresponding label.

Supervised
Learning
Algorithm

Regression

Perhaps the simplest supervised learning task to wrap your head around is Regression. Consider,
for example a set of data harvested from a database of home sales. We might construct a table,
where each row corresponds to a different house, and each column corresponds to some relvant
attribute, such as the square footage of a house, the number of bedrooms, the number of

bathrooms, and the number of minutes (walking) to the center of town. Formally, we call one
row in this dataset a feature vector, and the object (e.g. a house) it’s associated with an example.

If you live in New York or San Francisco, and you are not the CEO of Amazon, Google, Microsoft,
or Facebook, the (sqg. footage, no. of bedrooms, no. of bathrooms, walking distance) feature
vector for your home might look something like: [100, O, .5, 60]. However, if you live in
Pittsburgh, it might look more like [3000, 4, 3, 10]. Feature vectors like this are essential for all
the classic machine learning problems. We'll typically denote the feature vector for any one
example X; and the set of feature vectors for all our examples X.

What makes a problem regression is actually the outputs. Say that you're in the market for a
new home, you might want to estimate the fair market value of a house, given some features
like these. The target value, the price of sale, is a real number. We denote any individual
target y; (corresponding to example X;) and the set of all targets y (corresponding to all

examples X). When our targets take on arbitrary real values in some range, we call this a

regression problem. The goal of our model is to produce predictions (guesses of the price, in
our example) that closely approximate the actual target values.
We denote these predictions j;l- and if the notation seems whacky, then just ignore it for

now. We'll unpack it more thoroughly in the subsequent chapters.
Lots of practical problems are well-described regression problems. Predicting the rating that a

user will assign to a movie is a regression problem, and if you designed a great algorithm to
accomplish this feat in 2009, you might have won the $1 million Netflix prize. Predicting the
length of stay for patients in the hospital is also a regression problem. A good rule of thumb is
that any How much? or How many? problem should suggest regression. * “How many hours will
this surgery take?"... regression * “How many dogs are in this photo?” ... regression. However, if
you can easily pose your problem as “Is thisa ___?" then it's likely, classification, a different
fundamental problem type that we'll cover next.

Even if you've never worked with machine learning before, you've probably worked through a
regression problem informally. Imagine, for example, that you had your drains repaired and that
your contractor, spent x; = 3 hours removing gunk from your sewage pipes. Then she sent you
a bill of y; = $350. Now imagine that your friend hired the same contractor for x, = 2 hours
and that she received a bill of y» = $250. If someone then asked you how much to expect on
their upcoming gunk-removal invoice you might make some reasonable assumptions, such as
more hours worked costs more dollars. You might also assume that there’s some base charge and
that the contractor then charges per hour. If these assumptions held, then given these two data
points, you could already identify the contractor’s pricing structure: $100 per hour plus $50 to
show up at your house. If you followed that much then you already understand the high-level
idea behind linear regression.

In this case, we could produce the parameters that exactly matched the contractor’s prices.
Sometimes that’s not possible, e.g., if some of the variance owes to some factors besides your
two features. In these cases, we'll try to learn models that minimize the distance between our
predictions and the observed values. In most of our chapters, we'll focus on one of two very
common losses, the L1 loss where I(y,y") = Y ; |yvi — y/|and the L2 loss where

I(y,y") = Zi(y,- — y;)z. As we will see later, the L, loss corresponds to the assumption that our
data was corrupted by Gaussian noise, whereas the L; loss corresponds to an assumption of
noise from a Laplace distribution.

Classification

While regression models are great for addressing how many? questions, lots of problems don’t
bend comfortably to this template. For example, a bank wants to add check scanning to their
mobile app. This would involve the customer snapping a photo of a check with their
smartphone’s camera and the machine learning model would need to be able to automatically
understand text seen in the image. It would also need to understand hand-written text to be

https://en.wikipedia.org/wiki/Netflix_Prize
http://mxnet.io/api/python/gluon.html#mxnet.gluon.loss.L1Loss
http://mxnet.io/api/python/gluon.html#mxnet.gluon.loss.L2Loss

even more robust. This kind of system is referred to as optical character recognition (OCR), and
the kind of problem it solves is called a classification. It's treated with a distinct set of algorithms
than those that are used for regression.

In classification, we want to look at a feature vector, like the pixel values in an image, and then
predict which category (formally called classes), among some set of options, an example belongs.
For hand-written digits, we might have 10 classes, corresponding to the digits O through 9. The
simplest form of classification is when there are only two classes, a problem which we call binary
classification. For example, our dataset X could consist of images of animals and our /abels Y
might be the classes {cat, dog}. While in regression, we sought a regressor to output a real
value , in classification, we seek a classifier, whose output y is the predicted class assignment.

For reasons that we'll get into as the book gets more technical, it’s pretty hard to optimize a
model that can only output a hard categorical assignment, e.g. either cat or dog. It’s a lot easier
instead to express the model in the language of probabilities. Given an example x, the model
assigns a probability jik to each label k. Because these are probabilities, they need to be positive
numbers and add up to 1. This means that we only need K — 1 numbers to give the probabilities
of K categories. This is easy to see for binary classification. If there’s a 0.6 (60%) probability that
an unfair coin comes up heads, then there’s a 0.4 (40%) probability that it comes up tails.
Returning to our animal classification example, a classifier might see an image and output the
probability that the image is a cat Pr(y = cat | x) = 0.9 We can interpret this number by saying
that the classifier is 90% sure that the image depicts a cat. The magnitude of the probability for
the predicted class is one notion of confidence. It's not the only notion of confidence and we'll
discuss different notions of uncertainty in more advanced chapters.

When we have more than two possible classes, we call the problem multiclass classification.
Common examples include hand-written character recognition [e, 1, 2, 3 ... 9, a, b, ¢, ...].

While we attacked regression problems by trying to minimize the L1 or L2 loss functions, the
common loss function for classification problems is called cross-entropy. In mxnet Giluon , the

corresponding loss function can be found here.

Note that the most likely class is not necessarily the one that you're going to use for your
decision. Assume that you find this beautiful mushroom in your backyard:

http://mxnet.io/api/python/gluon.html#mxnet.gluon.loss.SoftmaxCrossEntropyLoss

Death cap - do not eat!

Now, assume that you built a classifier and trained it to predict if a mushroom is poisonous
based on a photograph. Say our poison-detection classifier outputs

Pr(y = deathcap | image) = 0.2 In other words, the classifier is 80% confident that our
mushroom /s not a death cap. Still, you'd have to be a fool to eat it. That’s because the certain
benefit of a delicious dinner isn’t worth a 20% chance of dying from it. In other words, the effect
of the uncertain risk by far outweighs the benefit. Let’s look at this in math. Basically, we need to
compute the expected risk that we incur, i.e. we need to multiply the probability of the outcome
with the benefit (or harm) associated with it:

L(action | x) = Ey . [loss(action, y)]

Hence, the loss L incurred by eating the mushroomis L(a =eat | x) =0.2% 00 + 0.8 x 0 = o0
whereas the cost of discarding itis L(a = discard | x) =0.2%x0+ 0.8 %1 =10.8

We got lucky: as any mycologist would tell us, the above actually /s a death cap. Classification
can get much more complicated than just binary, multiclass, of even multi-label classification. For
instance, there are some variants of classification for addressing hierarchies. Hierarchies assume
that there exist some relationships among the many classes. So not all errors are equal - we
prefer to misclassify to a related class than to a distant class. Usually, this is referred to as
hierarchical classification. One early example is due to Linnaeus, who organized the animals in a
hierarchy..

https://en.wikipedia.org/wiki/Carl_Linnaeus

In the case of animal classification, it might not be so bad to mistake a poodle for a schnauzer,
but our model would pay a huge penalty if it confused a poodle for a dinosaur. What hierarchy is

relevant might depend on how you plan to use the model. For example, rattle snakes and garter
snakes might be close on the phylogenetic tree, but mistaking a rattler for a garter could be
deadly.

Tagging

Some classification problems don’t fit neatly into the binary or multiclass classification setups.
For example, we could train a normal binary classifier to distinguish cats from dogs. Given the
current state of computer vision, we can do this easily, with off-the-shelf tools. Nonetheless, no
matter how accurate our model gets, we might find ourselves in trouble when the classifier
encounters an image like this:

As you can see, there’s a cat in the picture. There is also a dog, a tire, some grass, a door,

concrete, rust, individual grass leaves, etc. Depending on what we want to do with our model
ultimately, treating this as a binary classification problem might not make a lot of sense. Instead,
we might want to give the model the option of saying the image depicts a cat and a dog, or
neither a cat nor a dog.

The problem of learning to predict classes that are not mutually exclusive is called multi-label
classification. Auto-tagging problems are typically best described as multi-label classification
problems. Think of the tags people might apply to posts on a tech blog, e.g., “machine learning’,
“technology”, “gadgets”, “programming languages”, “linux”, “cloud computing”, “AWS”. A typical
article might have 5-10 tags applied because these concepts are correlated. Posts about “cloud
computing” are likely to mention “AWS” and posts about “machine learning” could also deal with

“programming languages”.

This problem also emerges in the biomedical literature, where correctly tagging articles is
important because it allows researchers to do exhaustive reviews of the literature. At the
National Library of Medicine, a number of professional annotators go over each article that gets
indexed in PubMed to associate each with the relevant terms from MeSH, a collection of roughly
28k tags. This is a time-consuming process and the annotators typically have a one year lag

between archiving and tagging. Machine learning can be used here to provide provisional tags
until each article can have a proper manual review. Indeed, for several years, the BioASQ
organization has hosted a competition to do precisely this.

Search and ranking

Sometimes we don't just want to assign each example to a bucket or to a real value. In the field
of information retrieval, we want to impose a ranking on a set of items. Take web search for
example, the goal is less to determine whether a particular page is relevant for a query, but
rather, which one of the plethora of search results should be displayed for the user. We really
care about the ordering of the relevant search results and our learning algorithm needs to
produce ordered subsets of elements from a larger set. In other words, if we are asked to
produce the first 5 letters from the alphabet, there is a difference between returning A8 cp E

and c a B £ b . Even if the result set is the same, the ordering within the set matters

nonetheless.

A possible solution to this problem is to score every element in the set of possible sets with a
relevance score and then retrieve the top-rated elements. PageRank is an early example of such
a relevance score. One of the peculiarities is that it didn’t depend on the actual query. Instead, it
simply helped to order the results that contained the query terms. Nowadays search engines use
machine learning and behavioral models to obtain query-dependent relevance scores. There are
entire conferences devoted to this subject.

Recommender systems

Recommender systems are another problem setting that is related to search and ranking. The
problems are similar insofar as the goal is to display a set of relevant items to the user. The main
difference is the emphasis on personalization to specific users in the context of recommender
systems. For instance, for movie recommendations, the results page for a SciFi fan and the
results page for a connoisseur of Woody Allen comedies might differ significantly.

Such problems occur, e.g. for movie, product or music recommendation. In some cases,
customers will provide explicit details about how much they liked the product (e.g. Amazon
product reviews). In some other cases, they might simply provide feedback if they are
dissatisfied with the result (skipping titles on a playlist). Generally, such systems strive to
estimate some score y;; as a function of user u; and object 0;. The objects 0; with the largest
scores y;; are then used as a recommendation. Production systems are considerably more
advanced and take detailed user activity and item characteristics into account when computing
such scores. The following image is an example of deep learning books recommended by
Amazon based on personalization algorithms tuned to the author’s preferences.

http://bioasq.org/
https://en.wikipedia.org/wiki/PageRank

@oeep LEAkNINGl mt e | =N DEEP

Sequence Learning

So far we've looked at problems where we have some fixed number of inputs and produce a
fixed number of outputs. Before we considered predicting home prices from a fixed set of
features: square footage, number of bedrooms, number of bathrooms, walking time to
downtown. We also discussed mapping from an image (of fixed dimension), to the predicted
probabilities that it belongs to each of a fixed number of classes, or taking a user ID and a
product ID, and predicting a star rating. In these cases, once we feed our fixed-length input into
the model to generate an output, the model immediately forgets what it just saw.

This might be fine if our inputs truly all have the same dimensions and if successive inputs truly
have nothing to do with each other. But how would we deal with video snippets? In this case,
each snippet might consist of a different number of frames. And our guess of what’s going on in
each frame might be much stronger if we take into account the previous or succeeding frames.
Same goes for language. One popular deep learning problem is machine translation: the task of
ingesting sentences in some source language and predicting their translation in another
language.

These problems also occur in medicine. We might want a model to monitor patients in the
intensive care unit and to fire off alerts if their risk of death in the next 24 hours exceeds some
threshold. We definitely wouldn’t want this model to throw away everything it knows about the
patient history each hour, and just make its predictions based on the most recent measurements.

These problems are among the more exciting applications of machine learning and they are

instances of sequence learning. They require a model to either ingest sequences of inputs or to

emit sequences of outputs (or both!). These latter problems are sometimes referred to as
seq2seq problems. Language translation is a seq2seq problem. Transcribing text from spoken

speech is also a seq2seq problem. While it is impossible to consider all types of sequence

transformations, a number of special cases are worth mentioning:
Tagging and Parsing

This involves annotating a text sequence with attributes. In other words, the number of inputs
and outputs is essentially the same. For instance, we might want to know where the verbs and
subjects are. Alternatively, we might want to know which words are the named entities. In
general, the goal is to decompose and annotate text based on structural and grammatical
assumptions to get some annotation. This sounds more complex than it actually is. Below is a
very simple example of annotating a sentence with tags indicating which words refer to named
entities.

Tom

Ent

Automatic Speech Recognition

With speech recognition, the input sequence x is the sound of a speaker, and the output y is the
textual transcript of what the speaker said. The challenge is that there are many more audio
frames (sound is typically sampled at 8kHz or 16kHz) than text, i.e. there is no 1:1
correspondence between audio and text, since thousands of samples correspond to a single
spoken word. These are seq2seq problems where the output is much shorter than the input.

Text to Speech

Text to Speech (TTS) is the inverse of speech recognition. In other words, the input x is text and
the output y is an audio file. In this case, the output is much longer than the input. While it is
easy for humans to recognize a bad audio file, this isn’t quite so trivial for computers.

Machine Translation

Unlike the previous cases where the order of the inputs was preserved, in machine translation,
order inversion can be vital. In other words, while we are still converting one sequence into
another, neither the number of inputs and outputs nor the order of corresponding data points
are assumed to be the same. Consider the following illustrative example of the obnoxious
tendency of Germans (Alex writing here) to place the verbs at the end of sentences.

German Haben Sie sich schon dieses grossartige Lehrwerk angeschaut?
English Did you already check out this excellent tutorial?
Wrong alignmen t Did you yourself already this excellent tutorial looked-at?

A number of related problems exist. For instance, determining the order in which a user reads a
webpage is a two-dimensional layout analysis problem. Likewise, for dialogue problems, we need
to take world-knowledge and prior state into account. This is an active area of research.

Unsupervised learning

All the examples so far were related to Supervised Learning, i.e. situations where we feed the
model a bunch of examples and a bunch of corresponding target values. You could think of
supervised learning as having an extremely specialized job and an extremely anal boss. The boss
stands over your shoulder and tells you exactly what to do in every situation until you learn to
map from situations to actions. Working for such a boss sounds pretty lame. On the other hand,
it's easy to please this boss. You just recognize the pattern as quickly as possible and imitate
their actions.

In a completely opposite way, it could be frustrating to work for a boss who has no idea what
they want you to do. However, if you plan to be a data scientist, you had better get used to it.
The boss might just hand you a giant dump of data and tell you to do some data science with it!
This sounds vague because it is. We call this class of problems unsupervised learning, and the
type and number of questions we could ask is limited only by our creativity. We will address a
number of unsupervised learning techniques in later chapters. To whet your appetite for now,
we describe a few of the questions you might ask:

e Can we find a small number of prototypes that accurately summarize the data? Given a set of
photos, can we group them into landscape photos, pictures of dogs, babies, cats, mountain
peaks, etc.? Likewise, given a collection of users’ browsing activity, can we group them into
users with similar behavior? This problem is typically known as clustering.

e Can we find a small number of parameters that accurately capture the relevant properties of
the data? The trajectories of a ball are quite well described by velocity, diameter, and mass of

the ball. Tailors have developed a small number of parameters that describe human body
shape fairly accurately for the purpose of fitting clothes. These problems are referred to as
subspace estimation problems. If the dependence is linear, it is called principal component
analysis.

e |s there a representation of (arbitrarily structured) objects in Euclidean space (i.e. the space of
vectors in R") such that symbolic properties can be well matched? This is called
representation learning and it is used to describe entities and their relations, such as Rome -
Italy + France = Paris.

e |s there a description of the root causes of much of the data that we observe? For instance, if
we have demographic data about house prices, pollution, crime, location, education, salaries,
etc., can we discover how they are related simply based on empirical data? The field of
directed graphical models and causality deals with this.

e An important and exciting recent development is generative adversarial networks. They are
basically a procedural way of synthesizing data. The underlying statistical mechanisms are
tests to check whether real and fake data are the same. We will devote a few notebooks to
them.

Interacting with an environment

So far, we haven'’t discussed where data actually comes from, or what actually happens when a
machine learning model generates an output. That’s because supervised learning and
unsupervised learning do not address these issues in a very sophisticated way. In either case, we
grab a big pile of data up front, then do our pattern recognition without ever interacting with the
environment again. Because all of the learning takes place after the algorithm is disconnected
from the environment, this is called offline learning. For supervised learning, the process looks
like this:

Environment

Data
Collection

Supervised
Learning
Algorithm

This simplicity of offline learning has its charms. The upside is we can worry about pattern
recognition in isolation without these other problems to deal with, but the downside is that the
problem formulation is quite limiting. If you are more ambitious, or if you grew up reading
AsimoV’s Robot Series, then you might imagine artificially intelligent bots capable not only of
making predictions, but of taking actions in the world. We want to think about intelligent agents,
not just predictive models. That means we need to think about choosing actions, not just making
predictions. Moreover, unlike predictions, actions actualy impact the environment. If we want to
train an intelligent agent, we must account for the way its actions might impact the future
observations of the agent.

Considering the interaction with an environment that opens a whole set of new modeling
qguestions. Does the environment:

e remember what we did previously?

e want to help us, e.g. a user reading text into a speech recognizer?

e want to beat us, i.e. an adversarial setting like spam filtering (against spammers) or playing a
game (vs an opponent)?

e not care (as in most cases)?

e have shifting dynamics (steady vs shifting over time)?

This last question raises the problem of covariate shift, (when training and test data are
different). It's a problem that most of us have experienced when taking exams written by a
lecturer, while the homeworks were composed by his TAs. We'll describe briefly describe
reinforcement learning, and adversarial learning, two settings that explicitly consider interaction
with an environment.

Reinforcement learning

If you're interested in using machine learning to develop an agent that interacts with an
environment and takes actions, the you're probably going to wind up focusing on reinforcement
learning (RL). This might include applications to robotics, to dialogue systems, and even to
developing Al for video games. Deep reinforcement learning (DRL), which applies deep neural
networks to RL problems, has surged in popularity. The breakthrough deep Q-network that beat
humans at Atari games using only the visual input , and the AlphaGo program that dethroned the
world champion at the board game Go are two prominent examples.

Reinforcment learning gives a very general statement of a problem, in which an agent interacts
with an environment over a series of time steps. At each time step ¢, the agent receives some
observation o, from the environment, and must choose an action a; which is then transmitted
back to the environment. Finally, the agent receives a reward r; from the environment. The
agent then receives a subseqeunt observation, and chooses a subsequent action, and so on. The
behavior of an RL agent is governed by a policy. In short, a policy is just a function that maps
from observations (of the environment) to actions. The goal of reinforcement learning is to
produce a good policy.

Reinforcement

Learning Environment
Agent

https://www.wired.com/2015/02/google-ai-plays-atari-like-pros/
https://www.wired.com/2017/05/googles-alphago-trounces-humans-also-gives-boost/

It's hard to overstate the generality of the RL framework. For example, we can cast any
supervised learning problem as an RL problem. Say we had a classification problem. We could
create an RL agent with one action corresponding to each class. We could then create an
environment which gave a reward that was exactly equal to the loss function from the original
supervised problem.

That being said, RL can also address many problems that supervised learning cannot. For
example, in supervised learning we always expect that the training input comes associated with
the correct label. But in RL, we don’t assume that for each observation, the environment tells us
the optimal action. In general, we just get some reward. Moreover, the environment may not
even tell us which actions led to the reward.

Consider for example the game of chess. The only real reward signal comes at the end of the
game when we either win, which we might assign a reward of 1, or when we lose, which we
could assign a reward of -1. So reinforcement learners must deal with the credit assignment
problem. The same goes for an employee who gets a promotion on October 11. That promotion
likely reflects a large number of well-chosen actions over the previous year. Getting more
promotions in the future requires figuring out what actions along the way led to the promotion.

Reinforcement learners may also have to deal with the problem of partial observability. That is,
the current observation might not tell you everything about your current state. Say a cleaning
robot found itself trapped in one of many identical closets in a house. Inferring the precise
location (and thus state) of the robot might require considering its previous observerations
before entering the closet.

Finally, at any given point, reinforcement learners might know of one good policy, but there
might be many other better policies that the agent has never tried. The reinforcement learner
must constantly choose whether to exploit the best currently-known strategy as a policy, or to
explore the space of strategies, potentially giving up some short-run reward in exchange for
knowledge.

MDPs, bandits, and friends

The general reinforcement learning problem is a very general setting. Actions affect subsequent
observations. Rewards are only observed corresponding to the chosen actions. The environment
may be either fully or partially observed. Accounting for all this complexity at once may ask too
much of researchers. Moreover not every practical problem exhibits all this complexity. As a
result, researchers have studied a number of special cases of reinforcement learning problems.

When the environment is fully observed, we call the RL problem a Markov Decision Process
(MDP). When the state does not depend on the previous actions, we call the problem a
contextual bandit problem. When there is no state, just a set of available actions with initially

unknown rewards, this problem is the classic multi-armed bandit problem.

When not to use machine learning

Let’s take a closer look at the idea of programming data by considering an interaction that Joel

Grus reported experiencing in a job interview. The interviewer asked him to code up Fizz Buzz.

This is a children’s game where the players count from 1 to 100 and will say fizz’whenever the

number is divisible by 3, ‘buzz’whenever it is divisible by 5, and ‘fizzbuzz’ whenever it satisfies
both criteria. Otherwise, they will just state the number. It looks like this:

1 2 fizz 4 buzz fizz 7 8 fizz buzz 11 fizz 13 14 fizzbuzz 16 ...

The conventional way to solve such a task is quite simple.

In [1]:

res = []
for i in range(1, 101):
if i % 15 ==
res.append('fizzbuzz")
elif i % 3 == 0:
res.append('fizz")
elif i % 5 == 0O:
res.append('buzz")
else:
res.append(str(i))
print(' '.join(res))

1 2 fizz 4 buzz fizz 7 8 fizz buzz 11 fizz 13 14 fizzbuzz 16 17 fizz 19 buzz fizz 22 23
fizz buzz 26 fizz 28 29 fizzbuzz 31 32 fizz 34 buzz fizz 37 38 fizz buzz 41 fizz 43 44
fizzbuzz 46 47 fizz 49 buzz fizz 52 53 fizz buzz 56 fizz 58 59 fizzbuzz 61 62 fizz 64 buzz
fizz 67 68 fizz buzz 71 fizz 73 74 fizzbuzz 76 77 fizz 79 buzz fizz 82 83 fizz buzz 86
fizz 88 89 fizzbuzz 91 92 fizz 94 buzz fizz 97 98 fizz buzz

Needless to say, this isn’t very exciting if you're a good programmer. Joel proceeded to
‘implement’ this problem in Machine Learning instead. For that to succeed, he needed a number

of pieces:

e Data X [1, 2, 3, 4, ...] and labels Y ['fizz', 'buzz', 'fizzbuzz', identity]

e Training data, i.e. examples of what the system is supposed to do. Such as [(2, 2), (6, fizz),

(15, fizzbuzz), (23, 23), (40, buzz)]

e Features that map the data into something that the computer can handle more easily, e.g.
x -> [(x % 3), (x%5), (x% 15)] . This is optional but helps a lot if you have it.

Armed with this, Joel wrote a classifier in TensorFlow (code). The interviewer was nonplussed ...

and the classifier didn’t have perfect accuracy.

http://joelgrus.com/
http://joelgrus.com/2016/05/23/fizz-buzz-in-tensorflow/
https://github.com/joelgrus/fizz-buzz-tensorflow

Quite obviously, this is silly. Why would you go through the trouble of replacing a few lines of
Python with something much more complicated and error prone? However, there are many
cases where a simple Python script simply does not exist, yet a 3-year-old child will solve the
problem perfectly. Fortunately, this is precisely where machine learning comes to the rescue.

Conclusion

Machine Learning is vast. We cannot possibly cover it all. On the other hand, neural networks
are simple and only require elementary mathematics. So let’s get started.

Next

Manipulate data the MXNet way with NDArray

For whinges or inquiries, open an issue on GitHub.

http://gluon.mxnet.io/chapter01_crashcourse/ndarray.html
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Manipulate data the MXNet way with ndarray

Manipulate data the MXNet way with ndarray

It's impossible to get anything done if we can’'t manipulate data. Generally, there are two
important things we need to do with: (i) acquire it! and (ii) process it once it’s inside the
computer. There’s no point in trying to acquire data if we don’t even know how to store it, so
let’s get our hands dirty first by playing with synthetic data.

WEe'll start by introducing NDArrays, MXNet’s primary tool for storing and transforming data. If
you've worked with NumPy before, you'll notice that NDArrays are, by design, similar to
NumPy’s multi-dimensional array. However, they confer a few key advantages. First, NDArrays
support asynchronous computation on CPU, GPU, and distributed cloud architectures. Second,
they provide support for automatic differentiation. These properties make NDArray an ideal
library for machine learning, both for researchers and engineers launching production systems.

Getting started

In this chapter, we'll get you going with the basic functionality. Don’t worry if you don’t
understand any of the basic math, like element-wise operations or normal distributions. In the
next two chapters we'll take another pass at NDArray, teaching you both the math you'll need
and how to realize it in code.

To get started, let’s import mxnet . We'll also import ndarray from mxnet for convenience. We'll

make a habit of setting a random seed so that you always get the same results that we do.

In [2]: import mxnet as mx
from mxnet import nd
mx.random.seed(1)

Next, let's see how to create an NDArray, without any values initialized. Specifically, we'll create
a 2D array (also called a matrix) with 3 rows and 4 columns.

In [3]: x = nd.empty((3, 4))
print(x)

[[©.00000000e+00 0.00000000e+00 3.23540399%e+21 4.58070455e-41]
[1.38654559e-38 0.00000000e+00 5.56431345e+19 4.58070455e-41]
[2.00971939e-37 0.00000000e+00 6.34710382e+23 4.58070455e-41]]

<NDArray 3x4 @cpu(0)>

http://gluon.mxnet.io/index.html

The empty method just grabs some memory and hands us back a matrix without setting the

values of any of its entries. This means that the entries can have any form of values, including
very big ones! But typically, we'll want our matrices initialized. Commonly, we want a matrix of
all zeros.

In [4]: x = nd.zeros((3, 5))
X

Out[4]:

Similarly, ndarray has a function to create a matrix of all ones.

In [5]: x = nd.ones((3, 4))
X
Out[5]:
[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]
<NDArray 3x4 @cpu(0)>

Often, we'll want to create arrays whose values are sampled randomly. This is especially
common when we intend to use the array as a parameter in a neural network. In this snippet, we
initialize with values drawn from a standard normal distribution with zero mean and unit
variance.

In [6]: y = nd.random_normal(@, 1, shape=(3, 4))
y

Out[6]:
[[-0.67765152 ©.03629481 ©0.10073948 -0.49024421]
[©.57595438 -0.95017916 -0.3469252 0.03751944]
[-0.22134334 -0.72984636 -1.80471897 -2.04010558]]
<NDArray 3x4 @cpu(0)>

As in NumPy, the dimensions of each NDArray are accessible via the .shape attribute.

In [7]: y.shape

out[7]: (3, 4)
We can also query its size, which is equal to the product of the components of the shape.
Together with the precision of the stored values, this tells us how much memory the array

occupies.

In [8]: y.size

Out[8]: 12

Operations

NDArray supports a large number of standard mathematical operations. Such as element-wise
addition:

In [9]: x +y

out[9]:
[[©.32234848 1.03629482 1.10073948 ©0.50975579]
[1.57595444 ©0.04982084 0.6530748 1.03751945]
[©.77865666 ©0.27015364 -0.80471897 -1.04010558]]
<NDArray 3x4 @cpu(0)>
Multiplication:

In [10]: x *y

Out[10]:
[[-0.67765152 ©.03629481 ©.10073948 -0.49024421]
[©.57595438 -0.95017916 -0.3469252 0.03751944]
[-0.22134334 -0.72984636 -1.80471897 -2.04010558]]
<NDArray 3x4 @cpu(0)>

And exponentiation:

In [11]: nd.exp(y)

out[11]:

[0.50780815 1.03696156 1.1059885 0.61247683]
[1.77882743 ©0.38667175 0.70685822 1.03823221]
[©0.80144149 ©0.48198304 0.16452068 ©0.13001499]]
<NDArray 3x4 @cpu(0)>

[

We can also grab a matrix’s transpose to compute a proper matrix-matrix product.

In [12]: nd.dot(x, y.T)

Out[12]:

[[-1.03086138 -0.68363053 -4.79601431]
[-1.03086138 -0.68363053 -4.79601431]
[-1.03086138 -0.68363053 -4.79601431]]

<NDArray 3x3 @cpu(0)>

WEe'll explain these operations and present even more operators in the linear algebra chapter.
But for now, we'll stick with the mechanics of working with NDArrays.

In-place operations

http://gluon.mxnet.io/chapter01_crashcourse/P01-C03-linear-algebra.ipynb

In the previous example, every time we ran an operation, we allocated new memory to host its
results. For example, if we write y = x + y , we will dereference the matrix that y used to point

to and instead point it at the newly allocated memory. We can show this using Python’s id()

function, which tells us precisely which object a variable refers to.

In [13]: print('id(y):", id(y))
y =y + X
print('id(y):"', id(y))

id(y): 140399741227416
id(y): 140395721280760

We can assign the result to a previously allocated array with slice notation, e.g., result[:] =

In [14]: 2z = nd.zeros_like(x)
print('id(z):', id(z))
z[:] = x +y
print('id(z):"', id(z))

id(z): 140395721281488
id(z): 140395721281488

However, x+y here will still allocate a temporary buffer to store the result before copying it to z.

To make better use of memory, we can perform operations in place, avoiding temporary buffers.
To do this we specify the out keyword argument every operator supports:

In [15]: nd.elemwise_add(x, y, out=z)

Out[15]:
[[1.32234848 2.03629494 2.10073948 1.50975585]
[2.57595444 1.0498209 1.65307474 2.03751945]
[1.77865672 1.27015364 ©.19528103 -0.04010558]]
<NDArray 3x4 @cpu(0)>

If we're not planning to re-use x , then we can assign the result to x itself. There are two ways

to do this in MXNet. 1. By using slice notation x[:] = x op y 2. By using the op-equals operators
like +=

In [16]: print('id(x):', id(x))
X 4=y
X
print('id(x):"', id(x))

id(x): 140395721278072
id(x): 140395721278072

Slicing

MXNet NDArrays support slicing in all the ridiculous ways you might imagine accessing your
data. Here’s an example of reading the second and third rows from x .

In [17]: x[1:3]

out[17]:
[[2.57595444 1.0498209 1.65307474 2.03751945]
[1.77865672 1.27015364 ©.19528103 -0.04010558]]
<NDArray 2x4 @cpu(0)>

Now let’s try writing to a specific element.

In [18]: x[1,2] = 9.0
X

Out[18]:
[[1.32234848 2.03629494 2.10073948 1.50975585]
[2.57595444 1.0498209 9. 2.03751945]
[1.77865672 1.27015364 ©.19528103 -0.04010558]]
<NDArray 3x4 @cpu(0)>

Multi-dimensional slicing is also supported.

In [19]: x[1:2,1:3]

out[19]:
[[1.0498209 9. 11
<NDArray 1x2 @cpu(0)>

In [20]: x[1:2,1:3] = 5.0
X

Out[20]:
[[1.32234848 2.03629494 2.10073948 1.50975585]
[2.57595444 5. 5. 2.03751945]
[1.77865672 1.27015364 ©.19528103 -0.04010558]]
<NDArray 3x4 @cpu(0)>
Broadcasting

You might wonder, what happens if you add a vector y to a matrix x ? These operations, where
we compose a low dimensional array y with a high-dimensional array x invoke a functionality

called broadcasting. Here, the low-dimensional array is duplicated along any axis with dimension
1 to match the shape of the high dimensional array. Consider the following example.

In [21]: x = nd.ones(shape=(3,3))

print('x = ', Xx)
y = nd.arange(3)
print('y = ', y)
print('x +y ="', X +y)
X =

[[1. 1. 1.]

[1. 1. 1.]

[1. 1. 1.]]
<NDArray 3x3 @cpu(0)>
y =
[0. 1. 2.]
<NDArray 3 @cpu(@)>
X +y =
[[1. 2. 3.

2. 3.

[1. 2. 3.

<NDArray 3

3Xx

While y is initially of shape (3), MXNet infers its shape to be (1,3), and then broadcasts along

the rows to form a (3,3) matrix). You might wonder, why did MXNet choose to interpret y asa

(1,3) matrix and not (3,1). That’s because broadcasting prefers to duplicate along the left most

axis. We can alter this behavior by explicitly giving y a 2D shape.

In [22]:

y = y.reshape((3,1))
print('y = ', y)
print('x +y = ', Xx+y)

Converting from MXNet NDArray to NumPy

Converting MXNet NDArrays to and from NumPy is easy. The converted arrays do not share

memory.

In [23]:

out[23]:

In [24]:

out[24]:

a = x.asnumpy()
type(a)

numpy .ndarray

y = nd.array(a)
y

[[1.

1.
1.
1.
3

(S Yy

[1. 1.
[1. 1.
[1. 1.]
<NDArray 3x3 @cpu(0)>

Managing context

You might have noticed that MXNet NDArray looks almost identical to NumPy. But there are a

few crucial differences. One of the key features that differentiates MXNet from NumPy is its

support for diverse hardware devices.

In MXNet, every array has a context. One context could be the CPU. Other contexts might be
various GPUs. Things can get even hairier when we deploy jobs across multiple servers. By
assigning arrays to contexts intelligently, we can minimize the time spent transferring data
between devices. For example, when training neural networks on a server with a GPU, we
typically prefer for the model’s parameters to live on the GPU. To start, let’s try initializing an
array on the first GPU.

In [25]: from mxnet import gpu
z = nd.ones(shape=(3,3), ctx=gpu(0))
z

Out[25]:
[[1.

1.
1.
1.
3

(Y

[[1. 1.
[1. 1.
[1. 1.]

NDArray gpu(0)>

< 3x

Given an NDArray on a given context, we can copy it to another context by using the copyto()
method.

In [26]: x_gpu = x.copyto(gpu(9))
print(x_gpu)

1
gpu(@)>
The result of an operator will have the same context as the inputs.

In [29]: x_gpu + z

out[29]:
[

2.
2.
2.
3

(S Yy

[2. 2.
[2. 2.
[2. 2.]

NDArray gpu(0)>

< 3x

If we ever want to check the context of an NDArray programmaticaly, we can just call its
.context attribute.

In [30]: print(x_gpu.context)
print(z.context)

gpu(0)
gpu(0)

In order to perform an operation on two ndarrays x1 and x2 , we need them both to live on the

same context. And if they don'’t already, we may need to explicitly copy data from one context to
another. You might think that's annoying. After all, we just demonstrated that MXNet knows

where each NDArray lives. So why can't MXNet just automatically copy x1 to x2.context and
then add them?

In short, people use MXNet to do machine learning because they expect it to be fast. But
transferring variables between different contexts is slow. So we want you to be 100% certian
that you want to do something slow before we let you do it. If MXNet just did the copy
automatically without crashing then you might not realize that you had written some slow code.
We don'’t want you to spend your entire life on StackOverflow, so we make some mistakes

impossible.

Watch out!

Imagine that your variable z already lives on your second GPU (gpu(e)). What happens if we call
z.copyto(gpu(@)) ? It will make a copy and allocate new memory, even though that variable

already lives on the desired device!

There are times where depending on the environment our code is running in, two variables may
already live on the same device. So we only want to make a copy if the variables currently lives
on different contexts. In these cases, we can call as_in context() . If the variable is already the

specified context then this is a no-op.

In [32]: print('id(z):', id(z))
z = z.copyto(gpu(®@))
print('id(z):"', id(z))
z = z.as_in_context(gpu(0))
print('id(z):"', id(z))
print(z)

id(z): 140395721279640
id(z): 140395639123472
id(z): 140395639123472

[[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]
NDArray 3x3 @

< rra

Next

Linear algebra

For whinges or inquiries, open an issue on GitHub.

http://gluon.mxnet.io/chapter01_crashcourse/linear-algebra.html
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Linear algebra

Linear algebra

Now that you can store and manipulate data, let’s briefly review the subset of basic linear
algebra that you'll need to understand most of the models. We'll introduce all the basic concepts,
the corresponding mathematical notation, and their realization in code all in one place. If you're
already confident in your basic linear algebra, feel free to skim or skip this chapter.

In [2]: from mxnet import nd

Scalars

If you never studied linear algebra or machine learning, you're probably used to working with
one number at a time. And know how to do basic things like add them together or multiply
them. For example, in Palo Alto, the temperature is 52 degrees Fahrenheit. Formally, we call
these values scalars. If you wanted to convert this value to the more sensible metric system,
you'd evaluate the expression ¢ = (52 — 32) * 5/9 setting f to 52. In this equation, each of the
terms 32,5, and9 is a scalar value. The placeholders ¢ and f that we use are called variables and
they stand in for unknown scalar values.

In mathematical notation, we represent scalars with ordinary lower cased letters (x, y, z). We
also denote the space of all scalars as R. For expedience, we're going to punt a bit on what
precisely a space is, but for now, remember that if you want to say that x is a scalar, you can
simply say x € R. The symbol € can be pronounced “in” and just denotes membership in a set.

In MXNet, we work with scalars by creating NDArrays with just one element. In this snippet, we
instantiate two scalars and perform some familiar arithmetic operations with them.

In [3]: | #####BHHHBIHHIHHH B
Instantiate two scalars
B
x = nd.array([3.0])

y = nd.array([2.0])

B e e e
Add them
e e e e
print('x +y ="', x +y)

FAH T R T
Multiply them

s e e
print('x *y = ', x *y)

http://gluon.mxnet.io/index.html

FHH T R T
Divide x by y
s e e

print('x / y =", x/y)

e e e e

Raise x to the power y.

B e e e
print('x ** y = ', nd.power(x,y))

X +y =
[5.]

<NDArray 1 @cpu(@)>
x *y-=

[6.]

<NDArray 1 @cpu(@)>
X/y =

[1.5]

<NDArray 1 @cpu(@)>
X K y =

[9.]

<NDArray 1 @cpu(@)>

We can convert any NDArray to a Python float by calling its asscaiar method

In [4]: x.asscalar()

out[4]: 3.0

Vectors

You can think of a vector as simply a list of numbers, for example [1.0,3.0,4.0,2.0] . Each of the

numbers in the vector consists of a single scalar value. We call these values the entries or
components of the vector. Often, we're interested in vectors whose values hold some real-world
significance. For example, if we're studying the risk that loans default, we might associate each
applicant with a vector whose components correspond to their income, length of employment,
number of previous defaults, etc. If we were studying the risk of heart attack in hospital patients,
we might represent each patient with a vector whose components capture their most recent
vital signs, cholesterol levels, minutes of exercise per day, etc. In math notation, we'll usually
denote vectors as bold-faced, lower-cased letters (u, v, w). In MXNet, we work with vectors via
1D NDArrays with an arbitrary number of components.

In [5]: wu = nd.arange(4)

print('u = ', u)

u =
[. 1. 2. 3.]
<NDArray 4 @cpu(0)>

We can refer to any element of a vector by using a subscript. For example, we can refer to the
4th element of u by u4. Note that the element uy4 is a scalar, so we don't bold-face the font
when referring to it. In code, we access any element i by indexing into the wparray .

In [6]: wu[3]
Out[6]:

[3.]
<NDArray 1 @cpu(@)>

Length, dimensionality, and, shape

A vector is just an array of numbers. And just as every array has a length, so does every vector.
In math notation, if we want to say that a vector x consists of n real-valued scalars, we can

express this as X € R". The length of a vector is commonly called its dimension. As with an

ordinary Python array, we can access the length of an NDArray by calling Python'’s in-built
len() function.

In [7]: 1len(u)

out[7]: 4

We can also access a vector’s length via its .shape attribute. The shape is a tuple that lists the

dimensionality of the NDArray along each of its axes. Because a vector can only be indexed
along one axis, its shape has just one element.

In [8]: wu.shape

out[8]: (4,)

Note that the word dimension is overloaded and this tends to confuse people. Some use the
dimensionality of a vector to refer to its length (the number of components). However some use
the word dimensionality to refer to the number of axes that an array has. In this sense, a scalar
would have O dimensions and a vector would have 1 dimension. To avoid confusion, when we
say *2D* array or *3D* array, we mean an array with 2 or 3 axes repespectively. But if we say
:math:" n"-dimensional vector, we mean a vector of length :math:'n".

In[]: a=2

x = nd.array([1,2,3])

y = nd.array([16,20,30])
print(a * x)

print(a * x +vy)

Matrices

Just as vectors generalize scalars from order O to order 1, matrices generalize vectors from
1D to 2D. Matrices, which we'll denote with capital letters (A, B, C), are represented in code
as arrays with 2 axes.

Visually, we can draw a matrix as a table, where each entry a;; belongs to the i-th row and j-

th column.

aip a2 o dim

dap; dpp -t Aoy

anl ano ot Apm

We can create a matrix with n rows and m columns in MXNet by specifying a shape with two
components (n,m) when calling any of our favorite functions for instantiating an ndarray such

asS ones , O zeros .

In [10]: A = nd.zeros((5,4))
A

Out[10]:

We can also reshape any 1D array into a 2D ndarray by calling ndarray 's reshape method and
passing in the desired shape. Note that the product of shape components n * m must be equal
to the length of the original vector.

In [12]: nd.arange(29)

x.reshape((5, 4))

x

out[12]:

[. 1. 2. 3.]

[4. 5. 6. 7.]

[8. 9. 10. 11.]

[12. 13. 14. 15.]

[16. 17. 18. 19.]]
<NDArray 5x4 @cpu(0)>

[

Matrices are useful data structures: they allow us to organize data that has different modalities
of variation. For example, returning to the example of medical data, rows in our matrix might
correspond to different patients, while columns might correspond to different attributes.

We can access the scalar elements a;; of a matrix A by specifying the indices for the row (i) and
column (j) respectively. Let’s grab the element a5 3 from the random matrix we initialized above.

In [13]: print('A[2, 3] = ', A[2, 3])
A[2, 3] =

[11.]
<NDArray 1 @cpu(@)>

We can also grab the vectors corresponding to an entire row a; . or a column a. ;.

In [14]: print('row 2', A[2, :])
print('column 3", A[:, 3])

row 2

[8. 9. 10. 11.]
<NDArray 4 @cpu(0)>

column 3

[3. 7. 11. 15. 19.]
<NDArray 5 @cpu(@)>

We can transpose the matrix through 7. Thatis, if B = AT, then b;; = aj; for any i and j.

In [15]: A.T

Out[15]:
[[0. 4. 8. 12. 16.]
[1. 5. 9. 13. 17.]
[2. 6. 1lo0. 14. 18.]
[3. 7. 11. 15. 19.]]
<NDArray 4x5 @cpu(0)>
Tensors

Just as vectors generalize scalars, and matrices generalize vectors, we can actually build data
structures with even more axes. Tensors give us a generic way of discussing arrays with an
arbitrary number of axes. Vectors, for example, are first-order tensors, and matrices are second-
order tensors.

Using tensors will become more important when we start working with images, which arrive as
3D data structures, with axes corresponding to the height, width, and the three (RGB) color
channels. But in this chapter, we're going to skip past and make sure you know the basics.

In [16]: X = nd.arange(24).reshape((2, 3, 4))
print('X.shape =", X.shape)
print('X =", X)

X.shape = (2, 3, 4)
X =
[[[o. 2.

[4. 6.
[8. 9. 10. 1

=y

1]
PN w

—_—

]

[[12. 13. 14. 15.]
[16. 17. 18. 19.]
[20. 21. 22. 23.]1]
<NDArray 2x3x4 @cpu(0)>

Element-wise operations

Oftentimes, we want to apply functions to arrays. Some of the simplest and most useful
functions are the element-wise functions. These operate by performing a single scalar operation
on the corresponding elements of two arrays. We can create an element-wise function from any

function that maps from the scalars to the scalars. In math notations we would denote such a
functionas f : R — R. Given any two vectors u and v of the same shape, and the function f,
we can produce a vector ¢ = F(u, v) by setting ¢; < f(u;, v;) for all i. Here, we produced the
vector-valued F : R4 — R4 by lifting the scalar function to an element-wise vector operation.
In MXNet, the common standard arithmetic operators (+,-,/,*,**) have all been lifted to element-
wise operations for identically-shaped tensors of arbitrary shape.

In [17]: wu = nd.array([1, 2, 4, 8])
v = nd.ones_like(u) * 2
print(‘'v =', v)
print('u + v', u + v)
print(‘'u - v', u - v)
print('u * v', u * v)
print('u / v', u / v)
VvV =
[2. 2. 2. 2.]
<NDArray 4 @cpu(0)>
u+ v
[3. 4. 6. 10.]
<NDArray 4 @cpu(®@)>

u-v
[-1. ©. 2. 6.]
<NDArray 4 @cpu(@)>
u* v

[2. 4. 8. 16.]
<NDArray 4 @cpu(0)>
u/ v

[0.5 1. 2. 4.]
<NDArray 4 @cpu(@)>

We can call element-wise operations on any two tensors of the same shape, including matrices.

In [18]: B = nd.ones_like(A) * 3
print('B ="', B)

3. 6. 9.]
15. 18. 21.]
[24. 27. 30. 33.]
[36. 39. 42. 45.]
[48. 51. 54. 57.]]
<NDArray 5x4 @cpu(0)>

print('A + B =', A + B)
print('A * B =', A * B)
B =

[[3. 3. 3. 3.]

[3. 3. 3. 3.]

[3. 3. 3. 3.]

[3. 3. 3. 3.]

[3. 3. 3. 3.1]
<NDArray 5x4 @cpu(0)>
A+ B =
[[3. 4. 5. 6.]

[7. 8. 9. 10.]

[11. 12. 13. 14.]

[15. 16. 17. 18.]

[19. 20. 21. 22.]]

NDArray 5x4 @cpu(0)>

* B
(4]
2

Basic properties of tensor arithmetic

Scalars, vectors, matrices, and tensors of any order have some nice properties that we’'ll often
rely on. For example, as you might have noticed from the definition of an element-wise
operation, given operands with the same shape, the result of any element-wise operation is a
tensor of that same shape. Another convenient property is that for all tensors, multiplication by
a scalar produces a tensor of the same shape. In math, given two tensors X and Y with the same
shape, aX + Y has the same shape. (numerical mathematicians call this the AXPY operation).

In [19]: a =2

X = nd.ones(3)

y = nd.zeros(3)
print(x.shape)
print(y.shape)

print((a * x).shape)
print((a * x + y).shape)

(3,)
(35)
(35)
(3,)

Shape is not the the only property preserved under addition and multiplication by a scalar. These
operations also preserve membership in a vector space. But we'll postpone this discussion for
the second half of this chapter because it’s not critical to getting your first models up and
running.

Sums and means

The next more sophisticated thing we can do with arbitrary tensors is to calculate the sum of
their elements. In mathematical notation, we express sums using the Z symbol. To express the

. . d .
sum of the elements in a vector u of length d, we can write 21’:1 u;. In code, we can just call

nd.sum() .
In []: nd.sum(u)

We can similarly express sums over the elements of tensors of arbitrary shape. For example, the
sum of the elements of an m X 1 matrix A could be written Y | 2721 ajj.

In []: nd.sum(A)

A related quantity is the mean, which is also called the average. We calculate the mean by
dividing the sum by the total number of elements. With mathematical notation, we could write

d ,
the average over a vector u as é Y. u; and the average over a matrix A as

1 m n . . .
— Zi:l ijl ajj. In code, we could just call nd.mean() on tensors of arbitrary shape:

In []: print(nd.mean(A))
print(nd.sum(A) / A.size)

Dot products

One of the most fundamental operations is the dot product. Given two vectors u and v, the dot

product u’'vis a sum over the products of the corresponding elements: u'v = Zflzl Ui - vj.
In []: nd.dot(u, v)

Note that we can express the dot product of two vectors nd.dot(u, v) equivalently by

performing an element-wise multiplication and then a sum:
In []: nd.sum(u * v)

Dot products are useful in a wide range of contexts. For example, given a set of weights w, the
weighted sum of some values u could be expressed as the dot product u’ w. When the weights
are non-negative and sum to one (Z?zl w; = 1), the dot product expresses a weighted average.
When two vectors each have length one (we'll discuss what /ength means below in the section
on norms), dot products can also capture the cosine of the angle between them.

Matrix-vector products

Now that we know how to calculate dot products we can begin to understand matrix-vector
products. Let’s start off by visualizing a matrix A and a column vector X.

(ayy ap -+ dim x|
ang ann azm X2

A= , X =
ani ann Anm Xm

We can visualize the matrix in terms of its row vectors

where each al.T € R is a row vector representing the i-th row of the matrix A.

Then the matrix vector product y = AX is simply a column vector y € R" where each entry y;
is the dot product al.TX.

T T
al |l x alx
AX = =
al . J\x, al'x

So you can think of multiplication by a matrix A € R™*" as a transformation that projects
vectors from R to R”.

These transformations turn out to be quite useful. For example, we can represent rotations as
multiplications by a square matrix. As we'll see in subsequent chapters, we can also use matrix-
vector products to describe the calculations of each layer in a neural network.

Expressing matrix-vector products in code with ndarray , we use the same nd.dot() function as
for dot products. When we call nd.dot(a, x) with a matrix a and a vector x, mxnet knows to
perform a matrix-vector product. Note that the column dimension of A must be the same as the

dimension of x .

In []: nd.dot(A, u)

Matrix-matrix multiplication

If you've gotten the hang of dot products and matrix-vector multiplication, then matrix-matrix
multiplications should be pretty straightforward.

Say we have two matrices, A € R™* and B € R,

ap; ap aik by bp bim

ap axn Ak by by bom
A == B =

anl A2 Ank by bro Dim

To produce the matrix product C = AB, it’s easiest to think of A in terms of its row vectors and
B in terms of its column vectors:

e CB=|b, B, - b,

Note here that each row vector al.T lies in R¥ and that each column vector bj also lies in RX.

Then to produce the matrix product C € R™ " we simply compute each entry c;j as the dot
product al.Tbj.

al ... alb, alb, ... alb,
T : : : T T T
al ... ayb; ab, - alb,
C = AB = 2 b1 b2 bm =
\ ves aZ; ces : ’ ’ agbl a%bz ves agbm

You can think of the matrix-matrix multiplication AB as simply performing m matrix-vector
products and stitching the results together to form an n X m matrix. Just as with ordinary dot
products and matrix-vector products, we can compute matrix-matrix products in mxnet by using

nd.dot() .

In [20]: A = nd.ones(shape=(3, 4))
B = nd.ones(shape=(4, 5))
nd.dot(A, B)

Out[20]:

Norms

Before we can start implementing models, there’s one last concept we're going to introduce.
Some of the most useful operators in linear algebra are norms. Informally, they tell us how big a
vector or matrix is. We represent norms with the notation || - ||. The - in this expression is just a
placeholder. For example, we would represent the norm of a vector X or matrix A as ||x|| or
||A||, respectively.

All norms must satisfy a handful of properties: 1. ||aA|| = |a|||A]| 2. ||A + B|| < ||A|| + ||B]|
3. J|A]l > 04.1fVi,j,a; = 0, then [|A]| =0

To put it in words, the first rule says that if we scale all the components of a matrix or vector by
a constant factor a, its norm also scales by the absolute value of the same constant factor. The
second rule is the familiar triangle inequality. The third rule simple says that the norm must be

non-negative. That makes sense, in most contexts the smallest size for anything is 0. The final
rule basically says that the smallest norm is achieved by a matrix or vector consisting of all zeros.
It's possible to define a norm that gives zero norm to nonzero matrices, but you can't give
nonzero norm to zero matrices. That's a mouthful, but if you digest it then you probably have
grepped the important concepts here.

If you remember Euclidean distances (think Pythagoras’ theorem) from grade school, then non-
negativity and the triangle inequality might ring a bell. You might notice that norms sound a lot
like measures of distance.

In fact, the Euclidean distance \/x12 + -+ x,% is a norm. Specifically it's the £5-norm. An

analogous computation, performed over the entries of a matrix, e.g. ij Qi is called the

Frobenius norm. More often, in machine learning we work with with the squared > norm
(notated f%). We also commonly work with the 1 norm. The £ norm is simply the sum of the
absolute values. It has the convenient property of placing less emphasis on outliers.

To calculate the £ norm, we can just call nd.norm() .

In []: nd.norm(u)

To calculate the L1-norm we can simply perform the absolute value and then sum over the
elements.

In []: nd.sum(nd.abs(u))

Norms and objectives

While we don’t want to get too far ahead of ourselves, we do want you to anticipate why these
concepts are useful. In machine learning we'’re often trying to solve optimization problems:
Maximize the probability assigned to observed data. Minimize the distance between predictions
and the ground-truth observations. Assign vector representations to items (like words, products,
or news articles) such that the distance between similar items is minimized, and the distance
between dissimilar items is maximized. Oftentimes, these objectives, perhaps the most
important component of a machine learning algorithm (besides the data itself), are expressed as
norms.

Intermediate linear algebra

If you’ve made it this far, and understand everything that we've covered, then honestly, you are
ready to begin modeling. If you're feeling antsy, this is a perfectly reasonable place to move on.
You already know nearly all of the linear algebra required to implement a number of many
practically useful models and you can always circle back when you want to learn more.

But there’s a lot more to linear algebra, even as concerns machine learning. At some point, if you
plan to make a career of machine learning, you'll need to know more than we've covered so far.
In the rest of this chapter, we introduce some useful, more advanced concepts.

Basic vector properties

Vectors are useful beyond being data structures to carry numbers. In addition to reading and
writing values to the components of a vector, and performing some useful mathematical
operations, we can analyze vectors in some interesting ways.

One important concept is the notion of a vector space. Here are the conditions that make a
vector space:

o Additive axioms (we assume that x,y,z are all vectors): x +y = y + xand
x+y+z=x+@+2and0+x=x+0=xand (—x)+x =x+(—x) =0

e Multiplicative axioms (we assume that x is a vector and a, b are scalars): 0 - x = Oand
1 -x = xand (ab)x = a(bx).

e Distributive axioms (we assume that x and y are vectors and a, b are scalars):
a(x+y) = ax+ ayand (a + b)x = ax + bx.

Special matrices

There are a number of special matrices that we will use throughout this tutorial. Let’s look at
them in a bit of detail:

e Symmetric Matrix These are matrices where the entries below and above the diagonal are
the same. In other words, we have that M = M. An example of such matrices are those
that describe pairwise distances, i.e. M;; = ||x; — x;|. Likewise, the Facebook friendship
graph can be written as a symmetric matrix where M;; = 1 if i and j are friends and M;; = 0
if they are not. Note that the Twitter graph is asymmetric - Mij = 1, i.e. i following j does not
imply that M;; = 1, i.e. j following i.

e Antisymmetric Matrix These matrices satisfy M T = —M. Note that any arbitrary matrix can
always be decomposed into a symmetric and into an antisymmetric matrix by using
M=iM+M")+3(M-M")

o Diagonally Dominant Matrix These are matrices where the off-diagonal elements are small
relative to the main diagonal elements. In particular we have that M;; > ot M;; and

M; > ot Mji. If a matrix has this property, we can often approximate M by its diagonal.

This is often expressed as diag(M).

e Positive Definite Matrix These are matrices that have the nice property where x"Mx >0
whenever x # 0. Intuitively, they are a generalization of the squared norm of a vector
|lx||?> = xTx. It is easy to check that whenever M = AT A, this holds since there
x"Mx = xTATAx = ||Ax]||?. There is a somewhat more profound theorem which states
that all positive definite matrices can be written in this form.

Conclusions

In just a few pages (or one Jupyter notebook) we've taught you all the linear algebra you'll need
to understand a good chunk of neural networks. Of course there’s a /ot more to linear algebra.
And a lot of that math /s useful for machine learning. For example, matrices can be decomposed
into factors, and these decompositions can reveal low-dimensional structure in real-world
datasets. There are entire subfields of machine learning that focus on using matrix
decompositions and their generalizations to high-order tensors to discover structure in datasets
and solve prediction problems. But this book focuses on deep learning. And we believe you'll be
much more inclined to learn more mathematics once you’ve gotten your hands dirty deploying
useful machine learning models on real datasets. So while we reserve the right to introduce more
math much later on, we'll wrap up this chapter here.

If you're eager to learn more about linear algebra, here are some of our favorite resources on the

topic * For a solid primer on basics, check out Gilbert Strang’s book Introduction to Linear
Algebra * Zico Kolter's Linear Algebra Reivew and Reference

Next

Probability and statistics

For whinges or inquiries, open an issue on GitHub.

http://math.mit.edu/~gs/linearalgebra/
http://cs229.stanford.edu/section/cs229-linalg.pdf
http://gluon.mxnet.io/chapter01_crashcourse/probability.html
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Probability and statistics

Probability and statistics

In some form or another, machine learning is all about making predictions. We might want to
predict the probability of a patient suffering a heart attack in the next year, given their clinical
history. In anomaly detection, we might want to assess how likely a set of readings from an
airplane’s jet engine would be, were it operating normally. In reinforcement learning, we want an
agent to act intelligently in an environment. This means we need to think about the probability of
getting a high reward under each of the available action. And when we build recommender systems
we also need to think about probability. For example, if we hypothetically worked for a large online
bookseller, we might want to estimate the probability that a particular user would buy a particular
book, if prompted. For this we need to use the language of probability and statistics. Entire courses,
majors, theses, careers, and even departments, are devoted to probability. So our goal here isn’t to
teach the whole subject. Instead we hope to get you off the ground, to teach you just enough that
you know everything necessary to start building your first machine learning models and to have
enough of a flavor for the subject that you can begin to explore it on your own if you wish.

We've talked a lot about probabilities so far without articulating what precisely they are or giving a
concrete example. Let's get more serious by considering the problem of distinguishing cats and

dogs based on photographs. This might sound simpler but it’s actually a formidable challenge. To
start with, the difficulty of the problem may depend on the resolution of the image.

20px 40px

320px

While it's easy for humans to recognize cats and dogs at 320 pixel resolution, it becomes
challenging at 40 pixels and next to impossible at 20 pixels. In other words, our ability to tell cats
and dogs apart at a large distance (and thus low resolution) might approach uninformed guessing.
Probability gives us a formal way of reasoning about our level of certainty. If we are completely sure
that the image depicts a cat, we say that the probability that the corresponding label [is cat,
denoted P(I = cat) equals 1.0. If we had no evidence to suggest that [= cat or that [= dog, then
we might say that the two possibilities were equally likely expressing this as P(I = cat) = 0.5. If
we were reasonably confident, but not sure that the image depicted a cat, we might assign a
probability .5 < P(/ = cat) < 1.0

Now consider a second case: given some weather monitoring data, we want to predict the
probability that it will rain in Taipei tomorrow. If it's summertime, the rain might come with
probability .5 In both cases, we have some value of interest. And in both cases we are uncertain
about the outcome. But There’s a key difference between the two cases. In this first case, the image
is in fact either a dog or a cat, we just don’t know which. In the second case, the outcome may

http://gluon.mxnet.io/index.html

actually be a random event, if you believe in such things (and most physicists do). So probability is a
flexible language for reasoning about our level of certainty, and it can be applied effectively in a
broad set of contexts.

Basic probability theory

Say that we cast a die and want to know what the chance is of seeing a 1 rather than another digit.
If the die is fair, all six outcomes X = {1, ..., 6} are equally likely to occur, hence we would see a 1
in 1 out of 6 cases. Formally we state that 1 occurs with probability %.

For a real die that we receive from a factory, we might not know those proportions and we would
need to check whether it is tainted. The only way to investigate the die is by casting it many times
and recording the outcomes. For each cast of the die, we'll observe a value {1,2,...,6}. Given
these outcomes, we want to investigate the probability of observing each outcome.

One natural approach for each value is to take the individual count for that value and to divide it by
the total number of tosses. This gives us an estimate of the probability of a given event. The law of
large numbers tell us that as the number of tosses grows this estimate will draw closer and closer to
the true underlying probability. Before going into the details of what’s going here, let’s try it out.

To start, let’s import the necessary packages:

In [66]: import mxnet as mx
from mxnet import nd

Next, we'll want to be able to cast the die. In statistics we call this process of drawing examples
from probability distributions sampling. The distribution which assigns probabilities to a number of
discrete choices is called the multinomial distribution. We'll give a more formal definition of
distribution later, but at a high level, think of it as just an assignment of probabilities to events. In
MXNet, we can sample from the multinomial distribution via the aptly named nd.sample multinomial
function. The function can be called in many ways, but we’'ll focus on the simplest. To draw a single
sample, we simply give pass in a vector of probabilities.

In [67]: probabilities = nd.ones(6) / 6
nd.sample_multinomial(probabilities)

Oout[67]:

[1]
<NDArray 1 @cpu(0)>

If you run this line (nd.sample multinomial(probabilities)) a bunch of times, you'll find that you get

out random values each time. As with estimating the fairness of a die, we often want to generate
many samples from the same distribution. It would be really slow to do this with a Python for

loop, SO sample multinomial supports drawing multiple samples at once, returning an array of

independent samples in any shape we might desire.

In [68]: print(nd.sample _multinomial(probabilities, shape=(10)))
print(nd.sample_multinomial(probabilities, shape=(5,10)))

[442111540 4]
<NDArray 10 @cpu(0)>

[

uvtwwnN
PO WW
[SIORESN)
[CIORGREE
NV R
R UoON
O UV A
ko
Wk ww
wERLuUuoe
— e

[
[
[
[

[4312242015]]
<NDArray 5x10 @cpu(0)>

Now that we know how to sample rolls of a die, we can simulate 1000 rolls.

In [69]: rolls = nd.sample_multinomial(probabilities, shape=(1000))

We can then go through and count, after each of the 1000 rolls, how many times each number was
rolled.

In [70]: counts = nd.zeros((6,1000))
totals = nd.zeros(6)
for i, roll in enumerate(rolls):
totals[int(roll.asscalar())] += 1
counts[:, i] = totals

To start, we can inspect the final tally at the end of 1000 rolls.

In [71]: totals / 1000
Out[71]:

[0.168 0.15800001 ©.15099999 0.155 0.18799999 0.18000001]
<NDArray 6 @cpu(0)>

As you can see, the lowest estimated probability for any of the numbers is about .15 and the
highest estimated probability is 0.188. Because we generated the data from a fair die, we know
that each number actually has probability of 1/6, roughly .167, so these estimates are pretty good.
We can also visualize how these probabilities converge over time towards reasonable estimates.

To start let’s take a look at the counts array which has shape (s, 1000) . For each time step (out of

1000), counts, says how many times each of the numbers has shown up. So we can normalize each j
-th column of the counts vector by the number of tosses to give the current estimated

probabilities at that time. The counts object looks like this:

In [72]: counts

Out[72]:

[[e. o. 0. , 168. 168. 168.]
[e. o. 0. , 157. 158. 158.]
[eo. eo. o. , 151. 151. 151.]
[e. o. @. ..., 155. 155. 155.]
[o. oe. 1. ..., 183. 188. 188.]
[1. 2 2. , 179. 179. 180.]]
N >

<NDArray 6x1000 @cpu(0)

Normalizing by the number of tosses, we get:

In [73]: x = nd.arange(1000).reshape((1,1000)) + 1
estimates = counts / x
print(estimates[:,0])
print(estimates[:,1])
print(estimates[:,100])

[6. ©. 0. 0. 0. 1.]
<NDArray 6 @cpu(0)>

[e. @. 0. 0. 0. 1.]
<NDArray 6 @cpu(0)>

[©.17821783 ©.15841584 ©0.13861386 ©.12871288 0.15841584 ©0.23762377]
<NDArray 6 @cpu(0)>

As you can see, after the first toss of the die, we get the extreme estimate that one of the numbers
will be rolled with probability 1.0 and that the others have probability 0. After 100 rolls, things
already look a bit more reasonable. We can visualize this convergence by using the plotting package
matplotlib . If you don't have it installed, now would be a good time to install it.

In [74]: | from matplotlib import pyplot as plt

plt.plot(estimates[©, :].asnumpy(), label="Estimated P(die=1)"
plt.plot(estimates[1, :].asnumpy(), label="Estimated P(die=2)"
plt.plot(estimates[2, :].asnumpy(), label="Estimated P(die=3)"
plt.plot(estimates[3, :].asnumpy(), label="Estimated P(die=4)"
plt.plot(estimates[4, :].asnumpy(), label="Estimated P(die=5)"
plt.plot(estimates[5, :].asnumpy(), label="Estimated P(die=6)"
plt.axhline(y=0.16666, color='black', linestyle='dashed')
plt.legend()

—

plt.show()
101 —— Estimated P(die=1)
Estimated Pidie=2)
08 | —— Estimated P{die=3)
—— Estimated P{die=4)
—— Estimated P{die=5)
0.6 1 —— Estimated P{die=6)

0 200 400 EO0 B0 1000

Each solid curve corresponds to one of the six values of the die and gives our estimated probability
that the die turns up that value as assessed after each of the 1000 turns. The dashed black line
gives the true underlying probability. As we get more data, the solid curves converge towards the
true answer.

In our example of casting a die, we introduced the notion of a random variable. A random variable,
which we denote here as X can be pretty much any quantity is not determistic. Random variables
could take one value among a set of possibilites. We denote sets with brackets, e.g.,

{cat, dog, rabbit}. The items contained in the set are called elements, and we can say that an
element x is in the set S, by writing x € S. The symbol € is read as “in” and denotes membership.
For instance, we could truthfully say dog € {cat, dog, rabbit}. When dealing with the rolls of die,
we are concerned with a variable X € {1,2,3,4,5,6}.

Note that there is a subtle difference between discrete random variables, like the sides of a dice,
and continuous ones, like the weight and the height of a person. There’s little point in asking
whether two people have exactly the same height. If we take precise enough measurements you'll
find that no two people on the planet have the exact same height. In fact, if we take a fine enough
measurement, you will not have the same height when you wake up and when you go to sleep. So
there’s no purpose in asking about the probability that some one is
2.00139278291028719210196740527486202 meters tall. The probability is O. It makes more
sense in this case to ask whether someone’s height falls into a given interval, say between 1.99 and
2.01 meters. In these cases we quantify the likelihood that we see a value as a density. The height
of exactly 2.0 meters has no probability, but nonzero density. Between any two different heights
we have nonzero probability.

There are a few important axioms of probability that you'll want to remember:

e For any event z, the probability is never negative, i.e. Pr(Z = z) > 0.

https://matplotlib.org/

e For any two events Z = zand X = x the union is no more likely than the sum of the individual
events,i.e. Pr(Z=zUX=x)<Pr(Z=2+Pr(X =x)

e For any random variable, the probabilities of all the values it can take must sum to 1

" PZ=z)=1

Y PZ=w)=1

e For any two mutually exclusive events Z = zand X = x, the probability that either happens is
equal to the sum of their individual probabilities that
PriZ=zUuX=x)=Pr(Z=2+Pr(X =2)

Dealing with multiple random variables

Very often, we'll want consider more than one random variable at a time. For instance, we may
want to model the relationship between diseases and symptoms. Given a disease and symptom, say
‘flu’ and ‘cough’, either may or may not occur in a patient with some probability. While we hope that
the probability of both would be close to zero, we may want to estimate these probabilities and
their relationships to each other so that we may apply our inferences to effect better medical care.

As a more complicated example, images contain millions of pixels, thus millions of random variables.
And in many cases images will come with a label, identifying objects in the image. We can also think
of the label as a random variable. We can even get crazy and think of all the metadata as random
variables such as location, time, aperture, focal length, ISO, focus distance, camera type, etc. All of
these are random variables that occur jointly. When we deal with multiple random variables, there
are several quantities of interest. The first is called the joint distribution Pr(A, B). Given any
elements a and b, the joint distribution lets us answer, what is the probability that A = aand B=5b
simulataneously? It might be clear that for any values a and b, Pr(A, B) < Pr(A = a).

This has to be the case, since for A and B to happen, A has to happen and B also has to happen
(and vice versa). Thus A, B cannot be more likely than A or B individually. This brings us to an

P;(r/?:;) < 1. We call this a conditional probability and denote it by Pr(B|A),

the probability that B happens, provided that A has happened.

interesting ratio: 0 <

Using the definition of conditional probabilities, we can derive one of the most useful and
celebrated equations in statistics - Bayes’ theorem. It goes as follows: By construction, we have
that Pr(A, B) = Pr(B|A) Pr(A). By symmetry, this also holds for Pr(A, B) = Pr(A|B) Pr(B). Solving
for one of the conditional variables we get:

Pr(B|A) Pr(A)

Pr(A|B) = o)

This is very useful if we want to infer one thing from another, say cause and effect but we only
know the properties in the reverse direction. One important operation that we need to make this
work is marginalization, i.e., the operation of determining Pr(A) and Pr(B) from Pr(A, B). We can
see that the probability of seeing A amounts to accounting for all possible choices of B and
aggregating the joint probabilities over all of them, i.e.

Pr(A) = Z Pr(A, B') and Pr(B) = Z Pr(A’, B)
B’ Al

A really useful property to check is for dependence and independence. Independence is when the
occurrence of one event does not influence the occurrence of the other. In this case

Pr(B|A) = Pr(B). Statisticians typically use A 1L B to express this. From Bayes Theorem it follows
immediately that also Pr(A|B) = Pr(A). In all other cases we call A and B dependent. For instance,

two successive rolls of a dice are independent. On the other hand, the position of a light switch and
the brightness in the room are not (they are not perfectly deterministic, though, since we could
always have a broken lightbulb, power failure, or a broken switch).

Let’s put our skills to the test. Assume that a doctor administers an AIDS test to a patient. This test
is fairly accurate and fails only with 1% probability if the patient is healthy by reporting him as
diseased, and that it never fails to detect HIV if the patient actually has it. We use D to indicate the
diagnosis and H to denote the HIV status. Written as a table the outcome Pr(D|H) looks as
follows:

Patient is HIV positive Patient is HIV negative
Test positive 1 0.01
Test negative 0 0.99

Note that the column sums are all one (but the row sums aren’t), since the conditional probability
needs to sum up to 1, just like the probability. Let us work out the probability of the patient having
AIDS if the test comes back positive. Obviously this is going to depend on how common the
disease is, since it affects the number of false alarms. Assume that the population is quite healthy,
e.g. Pr(HIV positive) = 0.0015. To apply Bayes Theorem we need to determine

Pr(Test positive) = Pr(D = 1|H = 0)Pr(H = 0) + Pr(D = 1|H = 1) Pr(H = 1) = 0.01 - 0.9985 + 1 - 0.0015 =

Pr(D=1|H=1) Pr(H=1) _ 1.0.0015 __ :)
PrD=1) = 00il4ss = 0.131, in other words, there’s
only a 13.1% chance that the patient actually has AIDS, despite using a test that is 99% accurate!

As we can see, statistics can be quite counterintuitive.

Henceweget Pr(H=1|D=1)=

Conditional independence

What should a patient do upon receiving such terrifying news? Likely, he/she would ask the
physician to administer another test to get clarity. The second test has different characteristics (it
isn't as good as the first one).

Patient is HIV positive Patient is HIV negative
Test positive 0.98 0.03
Test negative 0.02 0.97

Unfortunately, the second test comes back positive, too. Let us work out the requisite probabilities
to invoke Bayes’' Theorem.

e Pr(D;=1and D, =1|H =0)=0.01-0.03 =0.0001

e Pr(Dy;=1land D, =1|H=1)=1-0.98 =0.98

e Pr(D; =1and D, =1)=0.0001-0.9985 4+ 0.98 - 0.0015 = 0.00156985

_ _ _ 1y _ 0.98:0.0015 _

° PI'(H— 1|D1 =1 andD2 = 1) = 000156985 — 0.936
That is, the second test allowed us to gain much higher confidence that not all is well. Despite the
second test being considerably less accurate than the first one, it still improved our estimate quite a
bit. Why couldn’t we just run the first test a second time? After all, the first test was more accurate.
The reason is that we needed a second test that confirmed independently of the first test that

things were dire, indeed. In other words, we made the tacit assumption that
Pr(Dy, D, |H) = Pr(D; |H) Pr(D,|H). Statisticians call such random variables conditionally
independent. This is expressed as D 1L D, |H.

Naive Bayes classification

Conditional independence is useful when dealing with data, since it simplifies a lot of equations. A
popular algorithm is the Naive Bayes Classifier. The key assumption in it is that the attributes are all
independent of each other, given the labels. In other words, we have:

p&ly) = [] peily)

I pGily)p(y)
px)
intractable, since we don’t know p(x). Fortunately, we don’t need it, since we know that

Using Bayes Theorem this leads to the classifier p(y|x) = . Unfortunately, this is still

Zy p(y|x) = 1, hence we can always recover the normalization from p(y|x) o [, p(xi[y)p().

After all that math, it’s time for some code to show how to use a Naive Bayes classifier for
distinguishing digits on the MNIST classification dataset.

The problem is that we don't actually know p(y) and p(x;|y). So we need to estimate it given some
training data first. This is what is called training the model. In the case of 10 possible classes we
simply compute ny, i.e. the number of occurrences of class y and then divide it by the total number

of occurrences. E.g. if we have a total of 60,000 pictures of digits and digit 4 occurs 5800 times, we
5800

estimate its probability as 50000 Likewise, to get an idea of p(x;|y) we count how many times pixel

i is set for digit y and then divide it by the number of occurrences of digit y. This is the probability
that that very pixel will be switched on.

In [76]: | import numpy as np

we go over one observation at a time (speed doesn't matter here)
def transform(data, label):

return data.astype(np.float32)/255, label.astype(np.float32)
mnist_train = mx.gluon.data.vision.MNIST(train=True, transform=transform)
mnist_test = mx.gluon.data.vision.MNIST(train=False, transform=transform)

Initialize the count statistics for p(y) and p(x_ily)

We initialize all numbers with a count of 1 to ensure that we don't get a
division by zero. Statisticians call this Laplace smoothing.

ycount = nd.ones(shape=(10))

xcount = nd.ones(shape=(784, 10))

Aggregate count statistics of how frequently a pixel is on (or off) for
zeros and ones.
for data, label in mnist_train:

x = data.reshape((784,))

y = int(label)

ycount[y] += 1

xcount[:, y] += x

normalize the probabilities p(x_ily) (divide per pixel counts by total
count)
for i in range(10):

xcount[:, i] = xcount[:, i]/ycount[i]

Likewise, compute the probability p(y)
py = ycount / nd.sum(ycount)

Now that we computed per-pixel counts of occurrence for all pixels, it's time to see how our model
behaves. Time to plot it. We show the estimated probabilities of observing a switched-on pixel.
These are some mean looking digits.

In [77]: | import matplotlib.pyplot as plt
fig, figarr = plt.subplots(l, 10, figsize=(15, 15))
for i in range(10):

figarr[i].imshow(xcount[:, i].reshape((28, 28)).asnumpy(), cmap='hot")
figarr[i].axes.get_xaxis().set_visible()
figarr[i].axes.get_yaxis().set_visible()

plt.show()
print(py)

ol/]a]|3l4ls]e]7]#2]a

[0.09871688 ©0.11236461 ©.09930012 0.10218297 0.09736711 ©0.09035161
0.09863356 0.10441593 0.09751708 ©.09915014]
<NDArray 10 @cpu(0)>

Now we can compute the likelihoods of an image, given the model. This is statistican speak for
p(x]y), i.e. how likely it is to see a particular image under certain conditions (such as the label).
Since this is computationally awkward (we might have to multiply many small numbers if many
pixels have a small probability of occurring), we are better off computing its logarithm instead. That

is, instead of p(x|y) = Hip(xily) we compute log p(x|y) = Zi log p(x;|y).

Iy Zlogp(xAy) = Zx, logp(x; = 1]y) + (1 = x;) log(1 = p(x; = 1]y))

To avoid recomputing logarithms all the time, we precompute them for all pixels.

In [78]: logxcount = nd.log(xcount)
logxcountneg = nd.log(1-xcount)
logpy = nd.log(py)

fig, figarr = plt.subplots(2, 10, figsize=(15, 3))

ctr = 0
for data label in mnist_test:
= data.reshape((784,))
y = int(label)

logpx = logpy.copy()
for i in range(10):

logpx[i] = nd.dot(logxcount[:, i], x) + nd.dot(logxcountneg[:, i], 1-x)

logpx -= nd.max(logpx)

px = nd.exp(logpx).asnumpy()
px /= np.sum(px)

figarr[1, ctr].bar(range(10), px)
figarr[1, ctr].axes.get_yaxis().set_visible()
figarr[0, ctr].imshow(x.reshape((28, 28)). asnumpy(), cmap="hot")
figarr[0, ctr].axes.get_xaxis().set_visible(
figarr[0, ctr].axes.get_yaxis().set_visible()
ctr += 1
if ctr == 10:
break

plt.show()

z]z]/]oldlr]]alel?

As we can see, this classifier is both incompetent and overly confident of its incorrect estimates.
That is, even if it is horribly wrong, it generates probabilities close to 1 or O. Not a classifier we
should use very much nowadays any longer. While Naive Bayes classifiers used to be popular in the
80s and 90s, e.g. for spam filtering, their heydays are over. The poor performance is due to the
incorrect statistical assumptions that we made in our model: we assumed that each and every pixel
are independently generated, depending only on the label. This is clearly not how humans write
digits, and this wrong assumption led to the downfall of our overly naive (Bayes) classifier.

Sampling

Random numbers are just one form of random variables, and since computers are particularly good
with numbers, pretty much everything else in code ultimately gets converted to numbers anyway.
One of the basic tools needed to generate random numbers is to sample from a distribution. Let’s
start with what happens when we use a random number generator.

In [79]: import random
for i in range(10):
print(random.random())

.36555613019852196
.4723632667363914
.11762827222278505
.28997926538432717
26585562005905383
03264057741193649
.9300030175944551
.7837865124001734
.10177959804227388
.7111418651090528

OO0

Uniform Distribution

These are some pretty random numbers. As we can see, their range is between O and 1, and they
are evenly distributed. That is, there is (actually, should be, since this is not a rea/ random number
generator) no interval in which numbers are more likely than in any other. In other words, the
chances of any of these numbers to fall into the interval, say [0.2,0.3) are as high as in the interval
[.593264, .693264). The way they are generated internally is to produce a random integer first,
and then divide it by its maximum range. If we want to have integers directly, try the following
instead. It generates random numbers between 0 and 100.

In [80]: | for i in range(10):
print(random.randint(1, 100))

What if we wanted to check that randint is actually really uniform. Intuitively the best strategy

would be to run it, say 1 million times, count how many times it generates each one of the values
and to ensure that the result is uniform.

In [81]: | import math

counts = np.zeros(100)
fig, axes = plt.subplots(2, 3, figsize=(15, 8), sharex=True)
axes = axes.reshape(6)

mangle subplots such that we can index them in a Llinear fashion rather than
a 2d grid

for i in range(1l, 1000001):
counts[random.randint (@, 99)] += 1
if i in [10, 100, 1000, 10000, 100000, 1000000]:
axes[int(math.logle(i))-1].bar(np.arange(1, 101), counts)

plt.show()

200 40 20,0
175 35 175
150 30

125 25

20
15
10
05
00

10000 4

B000

What we can see from the above figures is that the initial number of counts looks very uneven. If
we sample fewer than 100 draws from a distribution over 100 outcomes this is pretty much
expected. But even for 1000 samples there is a significant variability between the draws. What we
are really aiming for is a situation where the probability of drawing a number x is given by p(x).

The categorical distribution

Quite obviously, drawing from a uniform distribution over a set of 100 outcomes is quite simple.
But what if we have nonuniform probabilities? Let’s start with a simple case, a biased coin which
comes up heads with probability 0.35 and tails with probability 0.65. A simple way to sample from
that is to generate a uniform random variable over [0, 1] and if the number is less than 0.35, we
output heads and otherwise we generate tails. Let’s try this out.

In [82]: | # number of samples

n 1000000

y = np.random.uniform(@, 1, n)

X = np.arange(1l, n+l)

count number of occurrences and divide by the number of total draws
po

pl

= np.cumsum(y < 0.35) / X
= np.cumsum(y >= 0.35) / x

plt.figure(figsize=(15, 8))
plt.semilogx(x, p®@)
plt.semilogx(x, pl)
plt.show()

10

08 \

0.6

04

0z

0.0

T T T T T T T
hlg 10t 10¢ 100 0 10 10

As we can see, on average this sampler will generate 35% zeros and 65% ones. Now what if we
have more than two possible outcomes? We can simply generalize this idea as follows. Given any
probability distribution, e.g. p = [0.1,0.2,0.05,0.3,0.25, 0.1]we can compute its cumulative
distribution (python’s cumsum will do this for you) F = [0.1,0.3,0.35,0.65, 0.9, 1]. Once we have

this we draw a random variable x from the uniform distribution U[0, 1] and then find the interval
where F[i — 1] < x < F[i]. We then return i as the sample. By construction, the chances of hitting
interval [F[i — 1], F[i]) has probability p(i).

Note that there are many more efficient algorithms for sampling than the one above. For instance,
binary search over F will run in O(log n) time for n random variables. There are even more clever
algorithms, such as the Alias Method to sample in constant time, after O(n) preprocessing.

The normal distribution

L

725 CXP (- %xz) Let's

The normal distribution (aka the Gaussian distribution) is given by p(x) =

plot it to get a feel for it.

In [83]: x = np.arange(-10, 10, 0.01)

(1/math.sqrt(2 * math.pi)) * np.exp(-0.5 * x**2)
plt.figure(figsize=(10, 5))

plt.plot(x, p)

plt.show()

https://en.wikipedia.org/wiki/Alias_method

Sampling from this distribution is a lot less trivial. First off, the support is infinite, that is, for any x
the density p(x) is positive. Secondly, the density is nonuniform. There are many tricks for sampling
from it - the key idea in all algorithms is to stratify p(x) in such a way as to map it to the uniform
distribution U[0, 1]. One way to do this is with the probability integral transform.

Denote by F(x) = /_xoo p(z2)dz the cumulative distribution function (CDF) of p. This is in a way the

continuous version of the cumulative sum that we used previously. In the same way we can now
define the inverse map F~! (&), where & is drawn uniformly. Unlike previously where we needed to
find the correct interval for the vector F (i.e. for the piecewise constant function), we now invert
the function F(x).

In practice, this is slightly more tricky since inverting the CDF is hard in the case of a Gaussian. It
turns out that the twodimensional integral is much easier to deal with, thus yielding two normal
random variables than one, albeit at the price of two uniformly distributed ones. For now, suffice it
to say that there are built-in algorithms to address this.

The normal distribution has yet another desirable property. In a way all distributions converge to it,
if we only average over a sufficiently large number of draws from any other distribution. To
understand this in a bit more detail, we need to introduce three important things: expected values,
means and variances.

» The expected value E.~p(x) [f(x)] of a function f under a distribution p is given by the integral
/xp(x)f(x)dx. That is, we average over all possible outcomes, as given by p.

e A particularly important expected value is that for the funtion f(x) = x, i.e. p 1= Eyopey[x]. It
provides us with some idea about the typical values of x.

e Another important quantity is the variance, i.e. the typical deviation from the mean
62 = Eyepy[(x — p)?] Simple math shows (check it as an exercise) that
0% = Exopn [¥°] — L 2]

The above allows us to change both mean and variance of random variables. Quite obviously for
some random variable x with mean p, the random variable x + ¢ has mean i + c. Moreover, yx has
the variance }/202. Applying this to the normal distribution we see that one with mean y and

variance 62 has the form p(x) = \/zlri—zﬂexp(—riz(x —n)?) Note the scaling factor % - it arises

from the fact that if we stretch the distribution by o, we need to lower it by % to retain the same
probability mass (i.e. the weight under the distribution always needs to integrate out to 1).

Now we are ready to state one of the most fundamental theorems in statistics, the Central Limit
Theorem. It states that for sufficiently well-behaved random variables, in particular random
variables with well-defined mean and variance, the sum tends toward a normal distribution. To get
some idea, let’s repeat the experiment described in the beginning, but now using random variables
with integer values of {0,1,2}.

In [84]: | # generate 10 random sequences of 10,000 random normal variables N(©,1)
tmp = np.random.uniform(size=(10000,10))
X = 1.0 * (tmp > 0.3) + 1.0 * (tmp > 0.8)
mean = 1 * 0.5 + 2 * 0.2
variance = 1 * 0.5 + 4 * 0.2 - mean**2
print('mean {}, variance {}'.format(mean, variance))
cumulative sum and normalization
y = np.arange(1,10001).reshape(10000,1)
z = np.cumsum(x,axis=0) / y

plt.figure(figsize=(10,5))
for i in range(10):
plt.semilogx(y,z[:,1i])

plt.semilogx(y, (variance**@8.5) * np.power(y,-0.5) + mean,'r")

https://en.wikipedia.org/wiki/Central_limit_theorem

plt.semilogx(y,-(variance**0.5) * np.power(y,-0.5) + mean,'r")
plt.show()

mean 0.9, variance 0.49

175 1

150 1

125 1

100 1

0.75

050 4

This looks very similar to the initial example, at least in the limit of averages of large numbers of
variables. This is confirmed by theory. Denote by mean and variance of a random variable the
quantities

plp] == Exopeolx] and 6°[p] := Exmpio [(x — ulp])’]

n Xi—H

Then we have that lim,,_, % Yt —— — N0, 1). In other words, regardless of what we

started out with, we will always converge to a Gaussian. This is one of the reasons why Gaussians
are so popular in statistics.

More distributions

Many more useful distributions exist. We recommend consulting a statistics book or looking some
of them up on Wikipedia for further detail.

e Multinomial Distribution It is used to describe the distribution over multiple draws from the
same distribution, e.g. the number of heads when tossing a biased coin (i.e. a coin with
probability 7 of returning heads) 10 times. The probability is given by p(x) = (Z)E"(l —)"

e Multivariate Obviously we can have more than two outcomes, e.g. when rolling a dice multiple

n.

| k X;
IIle” IIi:] i

e Poisson Distribution It is used to model the occurrence of point events that happen with a

times. In this case the distribution is given by p(x) =

given rate, e.g. the number of raindrops arriving within a given amount of time in an area (weird
fact - the number of Prussian soldiers being killed by horses kicking them followed that
distribution). Given a rate 4, the number of occurrences is given by p(x) = %ﬂxe_’l.

¢ Beta, Dirichlet, Gamma, and Wishart Distributions They are what statisticians call conjugate to
the Binomial, Multinomial, Poisson and Gaussian respectively. Without going into detail, these
distributions are often used as priors for coefficients of the latter set of distributions, e.g. a Beta
distribution as a prior for modeling the probability for binomial outcomes.

Next

Autograd

For whinges or inquiries, open an issue on GitHub.

http://gluon.mxnet.io/chapter01_crashcourse/autograd.html
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Automatic differentiation with autograd

Automatic differentiation with autograd

In machine learning, we train models to get better and better as a function of experience.
Usually, getting better means minimizing a /oss function, i.e. a score that answers “how bad is our
model?” With neural networks, we choose loss functions to be differentiable with respect to our
parameters. Put simply, this means that for each of the model's parameters, we can determine
how much increasing or decreasing it might affect the loss. While the calculations are
straightforward, for complex models, working it out by hand can be a pain.

MXNet's autograd package expedites this work by automatically calculating derivatives. And
while most other libraries require that we compile a symbolic graph to take automatic
derivatives, mxnet.autograd , like PyTorch, allows you to take derivatives while writing ordinary

imperative code. Every time you make pass through your model, autograd builds a graph on the

fly, through which it can immediately backpropagate gradients.

Let’s go through it step by step. For this tutorial, we'll only need to import mxnet.ndarray , and

mxnet.autograd .

In [1]: import mxnet as mx
from mxnet import nd, autograd
mx.random.seed(1)

Attaching gradients

As a toy example, Let’s say that we are interested in differentiating a function £ = 2 * (x ** 2)

with respect to parameter x. We can start by assigning an initial value of «x .
In [2]: x = nd.array([[1, 2], [3, 4]])

Once we compute the gradient of ¢ with respect to x , we'll need a place to store it. In MXNet,

we can tell an NDArray that we plan to store a gradient by invoking its attach grad() method.

In [3]: x.attach_grad()

http://gluon.mxnet.io/index.html

Now we're going to define the function + and MXNet will generate a computation graph on the

fly. It's as if MXNet turned on a recording device and captured the exact path by which each
variable was generated.

Note that building the computation graph requires a nontrivial amount of computation. So
MXNet will only build the graph when explicitly told to do so. We can instruct MXNet to start
recording by placing code inside a with autograd.record(): block.

In [4]: with autograd.record():
y =x *2
z =y *Xx

Let's backprop by calling z.backward() . When z has more than one entry, z.backward() is

equivalent to mx.nd.sum(z).backward().
In [5]: z.backward()

Now, let’s see if this is the expected output. Rememberthat y = x * 2 ,and z = x * y ,s0 =z
should be equal to 2 * x * x . After, doing backprop with z.backward() , we expect to get back
gradient dz/dx as follows: dy/dx = 2 ,dz/dx = 4 = x . So, if everything went according to plan,

x.grad should consist of an NDArray with the values [[4, 8],[12, 16]] .

In [6]: print(x.grad)

[[4. 8.]
[12. 16.]]

<NDArray 2x2 @cpu(0)>

Head gradients and the chain rule

Warning: This part is tricky, but not necessary to understanding subsequent sections.

Sometimes when we call the backward method on an NDArray, e.g. y.backward() , where y isa

function of x we are just interested in the derivative of y with respect to x . Mathematicians

write this as %. At other times, we may be interested in the gradient of 2 with respectto x,

where :z is a function of y , which in turn, is a function of x . That is, we are interested in

dz(y) dy(x)
dy dx

. dz . . .d .
function z,and we want x.grad to store d—i, we can pass in the head gradient d—; as an input

to backward() . The default argument is nd.ones_like(y) . See Wikipedia for more details.

%z(y(x)). Recall that by the chain rule j—xz(y(x)) = So, when y is part of a larger

https://en.wikipedia.org/wiki/Chain_rule

In [7]: with autograd.record():
y =x *2
z =y *x

head_gradient = nd.array([[10, 1.], [.1, .01]])
z.backward(head_gradient)

print(x.grad)
[[4e. 8. 1
[1.20000005 ©.16 1]

<NDArray 2x2 @cpu(0)>

Now that we know the basics, we can do some wild things with autograd, including building
differentiable functions using Pythonic control flow.

In [8]: a = nd.random_normal(shape=3)
a.attach_grad()

with autograd.record():

b=a*2
while (nd.norm(b) < 1000).asscalar():
b=>b%*2

if (mx.nd.sum(b) > ©).asscalar():
c=b

else:
c =100 * b

In [9]: head_gradient = nd.array([0.01, 1.0, .1])
c.backward(head_gradient)

In [10]: print(a.grad)

[2048. 204800. 20480.]
<NDArray 3 @cpu(@)>

Next

Linear regression from scratch

For whinges or inquiries, open an issue on GitHub.

In []:

http://gluon.mxnet.io/chapter02_supervised-learning/linear-regression-scratch.html
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Linear regression from scratch

Linear regression from scratch

Powerful ML libraries can eliminate repetitive work, but if you rely too much on abstractions,
you might never learn how neural networks really work under the hood. So for this first example,
let’s get our hands dirty and build everything from scratch, relying only on autograd and
NDArray. First, we'll import the same dependencies as in the autograd chapter:

In [1]: dimport mxnet as mx
from mxnet import nd, autograd
mx.random.seed(1)

Linear regression

WEe'll focus on the problem of linear regression. Given a collection of data points x , and
corresponding target values y , we'll try to find the line, parameterized by a vector « and
intercept b that approximately best associates data points x[i] with their corresponding labels

y[i] . Using some proper math notation, we want to learn a prediction

y=X-w+b

that minimizes the squared error across all examples

Z@i -)’i)z-
i=1

You might notice that linear regression is an ancient model and wonder why we would present a
linear model as the first example in a tutorial series on neural networks. Well it turns out that we
can express linear regression as the simplest possible (useful) neural network. A neural network
is just a collection of nodes (aka neurons) connected by directed edges. In most networks, we
arrange the nodes into layers with each taking input from the nodes below. To calculate the
value of any node, we first perform a weighted sum of the inputs (according to weights w) and

then apply an activation function. For linear regression, we have two layers, the input (depicted
in orange) and a single output node (depicted in green) and the activation function is just the
identity function.

In this picture, we visualize all of the components of each input as orange circles.

http://gluon.mxnet.io/index.html
http://gluon.mxnet.io/chapter01_crashcourse/autograd.html

TN

To make things easy, we're going to work with synthetic data where we know the solution, by

£

generating random data points x[i] and labels y[i] = 2 * x[i][@]- 3.4 * X[i][1] + 4.2 + noise

where the noise is drawn from a random gaussian with mean e and variance .1 .

In mathematical notation we'd say that the true labeling function is

y=X-w4+b+n, forn~ N(Q,0c?)

In [2]: num_inputs = 2
num_outputs = 1
num_examples = 10000

def real_fn(X):
return 2 * X[:, 0] - 3.4 * X[:, 1] + 4.2

X = nd.random_normal(shape=(num_examples, num_inputs))

noise = .01 * nd.random_normal(shape=(num_examples,))
y = real_fn(X) + noise

Notice that each row in x consists of a 2-dimensional data point and that each row in v

consists of a 1-dimensional target value.

In [3]: print(X[Q])
print(y[e])

[-0.67765152 ©.03629481]
<NDArray 2 @cpu(0)>

[2.74159384]
<NDArray 1 @cpu(0)>

We can confirm that for any randomly chosen point, a linear combination with the (known)
optimal parameters produces a prediction that is indeed close to the target value

In [4]: print(2 * X[, @] - 3.4 * X[0, 1] + 4.2)

[2.7212944]
<NDArray 1 @cpu(@)>

We can visualize the correspondence between our second feature (x[:, 1]) and the target

values v by generating a scatter plot with the Python plotting package matplotlib .

Make sure that matplotlib is installed. Otherwise, you may install it by running
pip2 install matplotlib (for Python 2) or pip3 install matplotlib (for Python 3) on your

command line.

In [5]: import matplotlib.pyplot as plt
plt.scatter(X[:, 1].asnumpy(),y.asnumpy())
plt.show()

25

w{ _*

Data iterators

Once we start working with neural networks, we're going to need to iterate through our data
points quickly. We'll also want to be able to grab batches of k data points at a time, to shuffle

our data. In MXNet, data iterators give us a nice set of utilities for fetching and manipulating
data. In particular, we'll work with the simple pataLoader class, that provides an intuitive way to

use an Arraybataset for training models.

In [6]: batch_size
train_data

4
mx.gluon.data.DataLoader(mx.gluon.data.ArrayDataset(X, y),
batch_size=batch_size, shuffle=True)

Once we've initialized our DatalLoader (train_data), we can easily fetch batches by calling
train_data.next() . batch.data gives us a list of inputs. Because our model has only one input

(x), we'll just be grabbing batch.data[e] .

In [7]: for data, label in train_data:
print(data, label)
break

[[-1.00448346 ©.40962201]

[-1

[©.25873452 -0.89008772]

[©.85362488 -0.77108061]

[-2.29745603 2.35324502]]

<NDArray 4x2 @cpu(0)>

[©.77388477 7.72972631 8.53470325 -8.38178253]
<NDArray 4 @cpu(0)>

Finally, we can iterate over train_data just as though it were an ordinary Python list:

In [8]: counter = 0
for data, label in train_data:
counter += 1
print(counter)

2500
Model parameters
Now let’s allocate some memory for our parameters and set their initial values.

In [9]: w = nd.random_normal(shape=(num_inputs, num_outputs))
b = nd.random_normal(shape=num_outputs)
params = [w, b]

In the succeeding cells, we're going to update these parameters to better fit our data. This will
involve taking the gradient (a multi-dimensional derivative) of some /oss function with respect to
the parameters. We'll update each parameter in the direction that reduces the loss. But first, let’s
just allocate some memory for each gradient.

In [10]: for param in params:
param.attach_grad()

Neural networks

Next we'll want to define our model. In this case, we'll be working with linear models, the
simplest possible useful neural network. To calculate the output of the linear model, we simply
multiply a given input with the model’s weights (w), and add the offset b .

In [11]: | def net(X):
return mx.nd.dot(X, w) + b

Ok, that was easy.

Loss function

Train a model means making it better and better over the course of a period of training. But in
order for this goal to make any sense at all, we first need to define what better means in the first
place. In this case, we'll use the squared distance between our prediction and the true value.

In [12]: def square_loss(yhat, y):
return nd.mean((yhat - y) ** 2)

Optimizer

It turns out that linear regression actually has a closed-form solution. However, most interesting
models that we'll care about cannot be solved analytically. So we'll solve this problem by
stochastic gradient descent. At each step, we'll estimate the gradient of the loss with respect to
our weights, using one batch randomly drawn from our dataset. Then, we'll update our
parameters a small amount in the direction that reduces the loss. The size of the step is
determined by the learning rate 1r .

In [13]: def SGD(params, 1r):
for param in params:
param[:] = param - lr * param.grad

Execute training loop

Now that we have all the pieces all we have to do is wire them together by writing a training
loop. First we'll define epochs , the number of passes to make over the dataset. Then for each

pass, we'll iterate through train_data , grabbing batches of examples and their corresponding

labels.

For each batch, we'll go through the following ritual: * Generate predictions (yhat) and the loss
(10ss) by executing a forward pass through the network. * Calculate gradients by making a
backwards pass through the network (1oss.backward()). * Update the model parameters by

invoking our SGD optimizer.

In [14]: def plot(losses, X, sample_size=100):
xs = list(range(len(losses)))
f, (fgl, fg2) = plt.subplots(1, 2)
fgl.set_title('Loss during training')
fgl.plot(xs, losses, '-r')
fg2.set_title('Estimated vs real function')
fg2.plot(X[:sample_size, 1].asnumpy(),
net(X[:sample_size, :]).asnumpy(), 'or', label='Estimated')
fg2.plot(X[:sample_size, 1].asnumpy(),
real_fn(X[:sample_size, :]).asnumpy(), '*g', label='Real')
fg2.legend()
plt.show()

In [15]: epochs = 2
ctx = mx.cpu()

learning_rate = .001
smoothing_constant = .01
moving_loss = ©

niter = 0

losses = []

plot(losses, X)

for e in range(epochs):
for i, (data, label) in enumerate(train_data):
data = data.as_in_context(ctx)
label = label.as_in_context(ctx).reshape((-1, 1))
with autograd.record():
output = net(data)
loss = square_loss(output, label)
loss.backward()
SGD(params, learning_rate)

sl s s

Keep a moving average of the Losses

S e e e e

niter +=1

curr_loss = nd.mean(loss).asscalar()

moving_loss = (1 - smoothing_constant) * moving_loss + (smoothing_ constant) *
curr_loss

correct the bias from the moving averages
est_loss = moving_loss/(1-(1-smoothing_constant)**niter)

if (i + 1) % 500 == 0:
print("Epoch %s, batch %s. Moving avg of loss: %s" % (e, i, est_loss))
losses.append(est_loss)

plot(losses, X)

Loss during training Estimated vs real function
0.04 1 1000 1
7.5 1
0.02 - 50 4
2.5 1
000 1
0.0 1
-0.02 4 2.5 4
5.0
—0.04 L] ® FEstimated
7.5 * Real .
T T T T T T T T
—0.050-0.025 0000 0025 0050 -2 o 2

Epoch @, batch 499. Moving avg of loss: 8.31916862514
Epoch @, batch 999. Moving avg of loss: 1.23927701496
Epoch @, batch 1499. Moving avg of loss: 0.183482519856
Epoch 0, batch 1999. Moving avg of loss: 0.0238096606951
Epoch @, batch 2499. Moving avg of loss: 0.00301649309496

Loss during training

Estimated vs real function

| L)
8 0] * "‘ .
75{%@ &‘ A
6 o
50 .
.| Key
4 L]
0.0 .’ H
[]
2 g L] .
2 o
5.0 %,
® Estimated
o] 151 % Real .
T T T T T T T T
0 1 2 3 4 -2 0 2

Epoch 1, batch 499. Moving avg of loss: 0.000478033840371
Epoch 1, batch 999. Moving avg of loss: 0.000149816343283
Epoch 1, batch 1499. Moving avg of loss: 0.000108049033043
Epoch 1, batch 1999. Moving avg of loss: 9.81455696598e-05
Epoch 1, batch 2499. Moving avg of loss: 9.96083186262e-05
Loss during training Estimated vs real function
i %
8 wo{ e *e
‘i

75 {%e & od
6_

5.0 1 .
4 .

] L
0.0 s 5
L]

2.5 4 oy
2 -

=R

® Estimated
o] 751 = peal
T T T T T T
o 2 4 & 8 -2 o
Conclusion

You've seen that using just mxnet.ndarray and mxnet.autograd, we can build statistical models
from scratch. In the following tutorials, we'll build on this foundation, introducing the basic ideas
between modern neural networks and powerful abstractions in MXNet for building complex
models with little code.

Next

Linear regression with gluon

For whinges or inquiries, open an issue on GitHub.

http://gluon.mxnet.io/chapter02_supervised-learning/linear-regression-gluon.html
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Linear regression with gluon

Linear regression with giuon

Now that we've implemented a whole neural network from scratch, using nothing but mx.ndarray

and nxnet.autograd , let's see how we can make the same model while doing a lot less work.

Again, let's import some packages, this time adding mxnet.gluon to the list of dependencies.

In [1]: from _ future__ import print_function
import mxnet as mx
import mxnet.ndarray as nd
from mxnet import autograd
from mxnet import gluon

Set the context

We'll also want to set a context to tell gluon where to do most of the computation.

In [2]: ctx = mx.cpu()

Build the dataset

Again we'll look at the problem of linear regression and stick with the same synthetic data.

In [3]: num_inputs = 2
num_outputs = 1
num_examples = 10000

def real_fn(X):
return 2 * X[:, 0] - 3.4 * X[:, 1] + 4.2

X = nd.random_normal(shape=(num_examples, num_inputs))
noise = ©.01 * nd.random_normal(shape=(num_examples,))
y = real_fn(X) + noise

Load the data iterator

We'll stick with the patatoader for handling out data batching.

In [4]: batch_size
train_data

4
gluon.data.DataLoader(gluon.data.ArrayDataset(X, y),
batch_size=batch_size, shuffle=True)

Define the model

When we implemented things from scratch, we had to individually allocate parameters and then
compose them together as a model. While it's good to know how to do things from scratch, with
gluon , We can just compose a network from predefined layers. For a linear model, the appropriate

layer is called pense . It's called a dense layer because every node in the input is connected to every

node in the subsequent layer. That description seems excessive because we only have one output
here. But in most subsequent chapters we'll work with networks that have multiple outputs.

Unless we're planning to make some wild decisions (and at some point, we will!), the easiest way to
throw together a neural network is to rely on the giuon.nn.sequential . Once instantiated, a

Sequential just stores a chain of layers. Presented with data, the sequential executes each layer in

turn, using the output of one layer as the input for the next. We'll delve deeper into these details
later when we actually have more than one layer to work with (we could have multiple parallel
branches, long chains, etc.). For now let's just instantiate the sequential .

In [5]: net = gluon.nn.Sequential()

http://gluon.mxnet.io/index.html

Recall that in our linear regression example, the number of inputs is 2 and the number of outputs is
1. We can then add on a single pense layer. The most direct way to do this is to specify the number

of inputs and the number of outputs.

In [6]: with net.name_scope():
net.add(gluon.nn.Dense(1, in_units=2))

This tells giuvon all that it needs in order to allocate memory for the weights. The net.name_scope
tells giuon that it should name all parameters in a consistent way within net , such that we could

reference individual weights explicitly at a later stage. Now all we need to do is initialize the
weights, instantiate a loss and an optimizer, and we can start training.

Shape inference

One slick feature that we can take advantage of in giuon is shape inference on parameters. Instead

of explicitly declaring the number of inputs to a layer, we can simply state the number of outputs.

In [7]: net = gluon.nn.Sequential()
with net.name_scope():
net.add(gluon.nn.Dense(1))

You might wonder, how can gluon allocate our parameters if it doesn’t know what shape they
should take? We'll elaborate on this and more of giuon 's internal workings in our chapter on

plumbing, but here’s the short version: In fact, gluon doesn’t allocate our parameters at that very

moment. Instead it defers allocation to the first time we actually make a forward pass through the
model with real data. Then, when giuon sees the shape of our data, it can infer the shapes of all of

the parameters.

Initialize parameters

This all we need to do to define our network. However, we're not ready to pass it data just yet. If
you try calling net(nd.array([[0,1]])) , you'll find the following hideous error message:

RuntimeError: Parameter densel_weight has not been initialized. Note that you should initialize parameters and create Trainer with Block.cc

That's because we haven't yet told giuon what the initial values for our parameters should be. Also

note that we need not tell our network about the input dimensionality and it still works. This is
because the dimensions are bound the first time net(x) is called. This is a common theme in

MxNet - stuff is evaluated only when needed (called lazy evaluation), using all the information
available at the time when the results is needed.

Before we can do anything with this model, we must initialize its parameters. MXNet provides a
variety of common initializers in mxnet.init . To keep things consistent with the model we built by

hand, we'll choose to initialize each parameter by sampling from a standard normal distribution.
Note that we pass the initializer a context. This is how we tell giuon model where to store our

parameters. Once we start training deep nets, we'll generally want to keep parameters on one or
more GPUs (and on more than one computer).

In [8]: net.collect_params().initialize(mx.init.Normal(sigma=1.), ctx=ctx)

Deferred Initialization

Since gluon doesn’t know the shape of our net’s parameters, and we haven't even allocated
memory for them yet, it might seem bizarre that we can initialize them. This is where giuvon does a
little more magic to make our lives easier. When we call initialize , gluon associates each

parameter with an initializer. However, the actual initialization is deferred until the shapes have
been inferred.

Define loss

Instead of writing our own loss function we're just going to call down to gluon.loss.L2Loss

http://gluon.mxnet.io/chapter02_supervised-learning/P03.5-C01-plumbing.ipynb

In [9]: square_loss = gluon.loss.L2Loss()

Optimizer

Instead of writing stochastic gradient descent from scratch every time, we can instantiate a
gluon.Trainer , passing it a dictionary of parameters. Note that the sgd optimizer in giuon actually

uses SGD with momentum and clipping (both can be switched off if needed), since these
modifications make it converge rather much better. We will discuss this later when we go over a
range of optimization algorithms in detail.

In [10]: trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.1})

Execute training loop

You might have noticed that it was a bit more concise to express our model in gluon . For example,

we didn’t have to individually allocate parameters, define our loss function, or implement stochastic
gradient descent. The benefits of relying on giuon 's abstractions will grow substantially once we

start working with much more complex models. But once we have all the basic pieces in place, the
training loop itself is quite similar to what we would do if implementing everything from scratch.

To refresh your memory. For some number of epochs , we'll make a complete pass over the dataset
(train_data), grabbing one mini-batch of inputs and the corresponding ground-truth labels at a

time.

Then, for each batch, we'll go through the following ritual. So that this process becomes maximally
ritualistic, we'll repeat it verbatim: * Generate predictions (yhat) and the loss (10ss) by executing a
forward pass through the network. * Calculate gradients by making a backwards pass through the
network via 1oss.backward() . * Update the model parameters by invoking our SGD optimizer (note

that we need not tell trainer.step about which parameters but rather just the amount of data,

since we already performed that in the initialization of trainer).

In [11]: epochs = 1

smoothing_constant = .01
moving_loss = ©
niter = @

loss_seq = []

for e in range(epochs):
for i, (data, label) in enumerate(train_data):
data = data.as_in_context(ctx)
label = label.as_in_context(ctx)
with autograd.record():
output = net(data)
loss = square_loss(output, label)
loss.backward()
trainer.step(batch_size)

Keep a moving average of the losses

niter +=1

curr_loss = nd.mean(loss).asscalar()

moving_loss = (1 - smoothing_constant) * moving_loss + (smoothing_constant) *
curr_loss

correct the bias from the moving averages

est_loss = moving_loss/(1-(1-smoothing_constant)**niter)

loss_seq.append(est_loss)

print("Epoch %s. Moving avg of MSE: %s" % (e, est_loss))

Epoch ©. Moving avg of MSE: 4.94698964984e-05

Visualizing the learning curve

Now let’s check how quickly SGD learns the linear regression model by plotting the learning curve.

In [12]: | # plot the convergence of the estimated Loss function
%matplotlib inline

import matplotlib
import matplotlib.pyplot as plt

plt.figure(num=None,figsize=(8, 6),dpi=80, facecolor='w', edgecolor='k')
plt.semilogy(range(niter),loss_seq,

adding some additional bells and whistles to the plot

plt.grid(True,which="both")
plt.xlabel('iteration’,fontsize=14)
plt.ylabel('est loss',fontsize=14)

Out[12]: Text(0,0.5,'est loss')

10!

10

est loss

1072

1073

1074

:
T
500 1000 1500 2000 2500
iteration

As we can see, the loss function converges linearly (exponentially) to the optimal solution.

Getting the learned model parameters

As an additional sanity check, since we generated the data from a Gaussian linear regression model,
we want to make sure that the learner managed to recover the model parameters, which were set
to weight 2, —3.4 with an offset of 4.2.

In [13]: params = net.collect_params() # this returns a ParameterDict
print('The type of "params" is a ',type(params))

A ParameterDict is a dictionary of Parameter class objects
therefore, here is how we can read off the parameters from it.

for param in params.values():
print(param.name,param.data())
The type of "params" is a <class 'mxnet.gluon.parameter.ParameterDict'>
sequentiall_dense@_weight
[[1.99977756 -3.40003276]]
<NDArray 1x2 @cpu(0)>
sequentiall_dense@_bias
[4.19792223]
<NDArray 1 @cpu(@)>

Conclusion

As you can see, even for a simple example like linear regression, giuon can help you to write quick,
clean, code. Next, we'll repeat this exercise for multi-layer perceptrons, extending these lessons to
deep neural networks and (comparatively) real datasets.

Next
The perceptron algorithm

For whinges or inquiries, open an issue on GitHub.

http://gluon.mxnet.io/chapter02_supervised-learning/perceptron.html
https://github.com/zackchase/mxnet-the-straight-dope

Docs » The Perceptron

The Perceptron

We just employed an optimization method - stochastic gradient descent, without really thinking
twice about why it should work at all. It's probably worth while to pause and see whether we
can gain some intuition about why this should actually work at all. We start with considering the
E. Coli of machine learning algorithms - the Perceptron. After that, we'll give a simple
convergence proof for SGD. This chapter is not really needed for practitioners but will help to
understand why the algorithms that we use are working at all.

In [1]: dimport mxnet as mx
from mxnet import nd, autograd
import matplotlib.pyplot as plt
import numpy as np
mx.random.seed(1)

A Separable Classification Problem

The Perceptron algorithm aims to solve the following problem: given some classification problem
of data x € R? and labels y € {+1}, can we find a linear function f(x) = w' x + b such that
f(x) > Owhenevery = 1 and f(x) < O for y = —1. Obviously not all classification problems
fall into this category but it's a very good baseline for what can be solved easily. It’s also the kind
of problems computers could solve in the 1960s. The easiest way to ensure that we have such a
problem is to fake it by generating such data. We are going to make the problem a bit more
interesting by specifying how well the data is separated.

In [2]: | # generate fake data that is Llinearly separable with a margin epsilon given the data
def getfake(samples, dimensions, epsilon):

wfake = nd.random_normal(shape=(dimensions)) # fake weight vector for separation
bfake = nd.random_normal(shape=(1)) # fake bias

wfake = wfake / nd.norm(wfake) # rescale to unit Llength

making some Linearly separable data, simply by chosing the labels accordingly

X = nd.zeros(shape=(samples, dimensions))

Y = nd.zeros(shape=(samples))

i=o0
while (i < samples):
tmp = nd.random_normal(shape=(1,dimensions))
margin = nd.dot(tmp, wfake) + bfake
if (nd.norm(tmp).asscalar() < 3) & (abs(margin.asscalar()) > epsilon):
X[i,:] = tmp
Y[i] = 1 if margin > 0 else -1
i+=1
return X, Y

plot the data with colors chosen according to the Llabels
def plotdata(X,Y):

http://gluon.mxnet.io/index.html

for (x,y) in zip(X,Y):
if (y.asscalar() == 1):
plt.scatter(x[@].asscalar(), x[1].asscalar(), color='r")
else:
plt.scatter(x[0].asscalar(), x[1].asscalar(), color='b")

plot contour plots on a [-3,3] x [-3,3] grid
def plotscore(w,d):
xgrid = np.arange(-3, 3, 0.02)
ygrid = np.arange(-3, 3, 0.02)
XX, Yy = np.meshgrid(xgrid, ygrid)
zz = nd.zeros(shape=(xgrid.size, ygrid.size, 2))
zz[:,:,0] = nd.array(xx)
zz[:,:,1] = nd.array(yy)
vv = nd.dot(zz,w) + b
CS = plt.contour(xgrid,ygrid,vv.asnumpy())
plt.clabel(CS, inline=1, fontsize=10)

X, Y = getfake(50, 2, 0.3)

plotdata(X,Y)
plt.show()
L
21 » ®
L
L]
J L
1 - *
L] L] L]
s * H
] . % . . .
01 o .. ® e o *
.“. ..‘ ..‘ L
L
-1 A " L
L]
. .
-21 ®
T T T T T T
-2 -1 o 1 2 3

Now we are going to use the simplest possible algorithm to learn parameters. It’s inspired by the
Hebbian Learning Rule which suggests that positive events should be reinforced and negative
ones diminished. The analysis of the algorithm is due to Rosenblatt and we will give a detailed
proof of it after illustrating how it works. In a nutshell, after initializing parameters w = 0 and

b = 0 it updates them by yx and y respectively to ensure that they are properly aligned with the
data. Let’s see how well it works:

In [3]: def perceptron(w,b,x,y):
if (y * (nd.dot(w,x) + b)).asscalar() <= 0:
w+=y * x

b+=y
return 1
else:
return 0
w = nd.zeros(shape=(2))
b = nd.zeros(shape=(1))

for (x,y) in zip(X,Y):
res = perceptron(w,b,x,y)
if (res == 1):
print('Encountered an error and updated parameters')
print('data {}, label {}'.format(x.asnumpy(),y.asscalar(
print('weight {}, bias {}'.format(w.asnumpy(),b.asscalar(
plotscore(w,b)

)))
)))

https://en.wikipedia.org/wiki/Hebbian_theory

plotdata(X,Y)
plt.scatter(x[@].asscalar(), x[1].asscalar(), color="'g")
plt.show()

Encountered an error and updated parameters
data [©.57595438 -0.95017916], label -1.0
weight [-0.57595438 0.95017916], bias -1.0

Encountered an error and updated parameters
data [-0.3469252 ©0.03751944], label 1.0
weight [-0.92287958 ©0.98769861], bias 0.0

Encountered an error and updated parameters
data [-1.80471897 -2.04010558], label 1.0
weight [-2.72759867 -1.05240703], bias 1.0

Encountered an error and updated parameters
data [©.60334933 -1.08074296], label -1.0
weight [-3.33094788 ©0.02833593], bias 0.0

21 t
L]
1
[¢ .
ee! 8 °8
& ! L
0 . Se.® 3 e o
2% o, T C e%e .
L] m
-1 .‘. L]
s® -
-2 »
[
(=]
S
_3 T T T T T o
-3 -2 -1 0 1 2

As we can see, the model has learned something - all the red dots are positive and all the blue
dots correspond to a negative value. Moreover, we saw that the values for wTx + b became
more extreme as values over the grid. Did we just get lucky in terms of classification or is there
any math behind it? Obviously there is, and there’s actually a nice theorem to go with this. It's
the perceptron convergence theorem.

The Perceptron Convergence Theorem

Theorem Given data x; with |[x;|| < R and labels y; € {+1} for which there exists some pair
of parameters (w*, b*) such that y;((Ww*)Tx; + b) > € for all data, and for which ||[w*|| < 1
and b> < 1, then the perceptron algorithm converges after at most 2(R? + 1)/e? iterations.

The cool thing is that this theorem is independent of the dimensionality of the data. Moreover, it
is independent of the number of observations. Lastly, looking at the algorithm itself, we see that
we only need to store the mistakes that the algorithm made - for the data that was classified

correctly no update on (w, b) happened. As a first step, let’s check how accurate the theorem is.

In [4]: Eps
Elriy

np.arange(0.025, 0.45, 0.025)
np.zeros(shape=(Eps.size))

for j in range(10):
for (i,epsilon) in enumerate(Eps):
X, Y = getfake(1000, 2, epsilon)

for (x,y) in zip(X,Y):
Err[i] += perceptron(w,b,x,y)

Err = Err / 10.0

plt.plot(Eps, Err, label='average number of updates for training')
plt.legend()

plt.show()

30 - —— average number of updates for training

25 1

20 4

As we can see, the number of errors (and with it, updates) decreases inversely with the width of
the margin. Let’s see whether we can put this into equations. The first thing to consider is the
size of the inner product between (w, b) and (W*, b*), the parameter that solves the
classification problem with margin €. Note that we do not need explicit knowledge of (w*, b*)
for this, just know about its existence. For convenience, we will index w and b by t, the number
of updates on the parameters. Moreover, whenever convenient we will treat (w, b) as a new
vector with an extra dimension and with the appropriate terms such as norms ||(w, b)|| and
inner products.

First off, wgw* + byb* = 0 by construction. Second, by the update rule we have that

Wert, bee) T (W, %) = (wi, b) T (W, ") + v (] w* + b*)
(Wi,)T (W*,b*) + €
(t+ e

vV IV

Here the first equality follows from the definition of the weight updates. The next inequality
follows from the fact that (w*, b™) separate the problem with margin at least ¢, and the last
inequality is simply a consequence of iterating this inequality 7 + 1 times. Growing alighment
between the ‘ideal’ and the actual weight vectors is great, but only if the actual weight vectors
don'’t grow too rapidly. So we need a bound on their length:

IWert, bt 1P 2 1we, BN + 2yexT wi + 2yibe + (|G, DI
= [[we, BOII* + 231 (xTwie + be) + |G, DI
> 10w, OII” + R + 1
> (t+ D(R* + 1)
Now let’s combine both inequalities. By Cauchy-Schwartz, i.e. ||a|| - ||b]| > a' b and the first

inequality we have that te < (wy, b,)T (W*, b*) < ||(w;, b,)||v/2. Using the second inequality
we furthermore get ||(wy, b;)|| < 4/1(R? + 1). Combined this yields

te < \/26(R* + 1)

This is a strange equation - we have a linear term on the left and a sublinear term on the right.
So this inequality clearly cannot hold indefinitely for large ¢. The only logical conclusion is that
there must never be updates beyond when the inequality is no longer satisfied. We have

t < 2(R? + 1)/€?, which proves our claim.

Note - sometimes the perceptron convergence theorem is written without bias b. In this case a
lot of things get simplified both in the proof and in the bound, since we can do away with the
constant terms. Without going through details, the theorem becomes ¢ < R?/€?.

Note - the perceptron convergence proof crucially relied on the fact that the data is actually
separable. If this is not the case, the perceptron algorithm will diverge. It will simply keep on
trying to get things right by updating (w, b). And since it has no safeguard to keep the
parameters bounded, the solution will get worse. This sounds like an ‘academic’ concern, alas it
is not. The avatar in the computer game [Black and White]
(https:/en.wikipedia.org/wiki/Black_%26_White_(video_game%29) used the perceptron to
adjust the avatar. Due to the poorly implemented update rule the game quickly became
unplayable after a few hours (as one of the authors can confirm).

Stochastic Gradient Descent

The perceptron algorithm also can be viewed as a stochastic gradient descent algorithm, albeit
with a rather strange loss function: max(0, —yf(x)). This is commonly called the hinge loss. As
can be checked quite easily, its gradient is O whenever yf(x) > 0, i.e. whenever x is classified
correctly, and gradient —y for incorrect classification. For a linear function, this leads exactly to
the updates that we have (with the minor difference that we consider f(x) = 0 as an example of
incorrect classification). To get some intuition, let’s plot the loss function.

In [5]: f = np.arange(-5,5,0.1)
zero = np.zeros(shape=(f.size))
1plus = np.max(np.array([f,zero]), axis=0)
Iminus = np.max(np.array([-f,zero]), axis=0)
plt.plot(f,1lplus, label="max(0,f(x))")
plt.plot(f,1lminus, label="max(@,-f(x))")
plt.legend()
plt.show()

https://en.wikipedia.org/wiki/Black_%26_White_(video_game%29

51 — max{0.fix))
miax(0,-fix))

More generally, a stochastic gradient descent algorithm uses the following template:

initialize w

loop over data and labels (x,y):
compute f(x)
compute loss gradient g = partial_w 1(y, f(x))
w=w-etag

Here the learning rate 77 may well change as we iterate over the data. Moreover, we may traverse
the data in nonlinear order (e.g. we might reshuffle the data), depending on the specific choices
of the algorithm. The issue is that as we go over the data, sometimes the gradient might point us
into the right direction and sometimes it might not. Intuitively, on average things should get
better. But to be really sure, there's only one way to find out - we need to prove it. We pick a
simple and elegant (albeit a bit restrictive) proof of Nesterov and Vial.

The situation we consider are convex losses. This is a bit restrictive in the age of deep networks
but still quite instructive (in addition to that, nonconvex convergence proofs are a lot messier).
For recap - a convex function f(x) satisfies f(Ax + (1 — A)x") < Af(x) + (1 — A)f (x) that is,
the linear interpolant between function values is /arger than the function values in between.
Likewise, a convex set S is a set where for any points x, x’ € S the line [x, x"] is in the set, i.e.
Ax+ (1 —x" € Sforall 4 € [0, 1]. Now assume that w* is the minimizer of the expected
loss that we are trying to minimize, e.g.

1 m
w* = argmin R(w) where R(w) = — Z [(yi, f(xi,w))
m:3

Let’s assume that we actually know that w* is contained in some set convex set S, e.g. a ball of
radius R around the origin. This is convenient since we want to make sure that during
optimization our parameter w doesn’t accidentally diverge. We can ensure that, e.g. by shrinking
it back to such a ball whenever needed.

http://dl.acm.org/citation.cfm?id=1377347

Secondly, assume that we have an upper bound on the magnitude of the gradient

gi = 0,1(y;,f(x;,w))for all i by some constant L (it’s called so since this is often referred to as
the Lipschitz constant). Again, this is super useful since we don’t want w to diverge while we're
optimizing. In practice, many algorithms employ e.g. gradient clipping to force our gradients to
be well behaved, by shrinking the gradients back to something tractable.

Third, to get rid of variance in the parameter w;, that is obtained during the optimization, we use
the weighted average over the entire optimization process as our solution, i.e. we use

W= Z[ﬂtwt/ 2[nt-

Let’s look at the distance r; := ||w, — w*||, i.e. the distance between the optimal solution
vector w* and what we currently have. It is bounded as follows:

Iweer = w12 = llwe = w* 1> + 72 llg. I = 2megf w, — w*)
< lwy = W*“2 + ’7t2L2 - 277tg;r(wt - W*)

Next we use convexity of R(w). We know that R(w*) > R(w,) + 0,,R(w,)T (w* — w,) and
moreover that the average of function values is larger than the function value of the average, i.e.

Zthl n:Rwo)! Y, n: > R(W). The first inequality allows us to bound the expected decrease in
distance to optimality via

Elri+1 — 1] < n2L* = 2n:Elg] (we —w*)] < n2L* = 23 E[R[w,] — R[w*]]

Summing over t and using the facts that 7 > 0 and that w is contained inside a ball of radius R
yields:

T
~R* < L2 Y707 =2) nEIRIw] = RIw']]
=1 t

Rearranging terms, using convexity of R the second time, and dividing by Zt 1, yields a bound
on how far we are likely to stray from the best possible solution:

RP+12Y"
2 ZzT=1 i

Depending on how we choose 77; we will get different bounds. For instance, if we make 7

E[R[w]] — R[w"] <

constant, i.e. if we use a constant learning rate, we get the bounds (R + L2n2 T)/(2nyT). This is
minimized for n = RILA/T, yielding a bound of RL/A/T. A few things are interesting in this
context:

e If we are potentially far away from the optimal solution, we should use a large learning rate
(the O(R) dependency).

« If the gradients are potentially large, we should use a smaller learning rate (the O(1/L)
dependency).

e If we have a long time to converge, we should use a smaller learning rate, but not too small.

e Large gradients and a large degree of uncertainty as to how far we are away from the optimal
solution lead to poor convergence.

e More optimization steps make things better.

None of these insights are terribly surprising, albeit useful to keep in mind when we use SGD in
the wild. And this was the very point of going through this somewhat tedious proof.
Furthermore, if we use a decreasing learning rate, e.g. 1, = 0(1/\/;), then our bounds are
somewhat less tight, and we get a bound of O(log T/+/T) bound on how far away from
optimality we might be. The key difference is that for the decreasing learning rate we need not
know when to stop. In other words, we get an anytime algorithm that provides a good result at
any time, albeit not as good as what we could expect if we knew how much time to optimize we
have right from the beginning.

Next

Softmax regression from scratch

For whinges or inquiries, open an issue on GitHub.

http://gluon.mxnet.io/chapter02_supervised-learning/softmax-regression-scratch.html
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Multiclass logistic regression from scratch

Multiclass logistic regression from scratch

If you've made it through our tutorial on linear regression from scratch, then you're past the
hardest part. You already know how to load and manipulate data, build computation graphs on
the fly, and take derivatives. You also know how to define a loss function, construct a model, and
write your own optimizer.

Nearly all neural networks that we'll build in the real world consist of these same fundamental
parts. The main differences will be the type and scale of the data, and the complexity of the
models. And every year or two, a new hipster optimizer comes around, but at their core they're
all subtle variations of stochastic gradient descent.

So let’s work on a more interesting problem now. We're going to classify images of handwritten

- EHEEIAGAEDNEIN .-

going to implement a model called multiclass logistic regression. Other common names for this
model include softmax regression and multinomial regression. To start, let’s import our bag of
libraries.

In [1]: from _ future__ import print_function
import mxnet as mx
from mxnet import nd, autograd
import numpy as np

WEe'll also want to set the compute context for our modeling. Feel free to go ahead and change
this to mx.gpu(0) if you're running on an appropriately endowed machine.

In [2]: ctx = mx.cpu()

The MNIST dataset

This time we're going to work with real data, each a 28 by 28 centrally cropped black & white
photograph of a handwritten digit. Our task will be come up with a model that can associate
each image with the digit (0-9) that it depicts.

http://gluon.mxnet.io/index.html

To start, we'll use MXNet'’s utility for grabbing a copy of this dataset. The datasets accept a
transform callback that can preprocess each item. Here we cast data and label to floats and
normalize data to range [0, 1]:

In [3]: def transform(data, label):
return data.astype(np.float32)/255, label.astype(np.float32)
mnist_train = mx.gluon.data.vision.MNIST(train=True, transform=transform)
mnist_test = mx.gluon.data.vision.MNIST(train=False, transform=transform)

There are two parts of the dataset for training and testing. Each part has N items and each item
is a tuple of an image and a label:

In [4]: image, label = mnist_train[@]
print(image.shape, label)

(28, 28, 1) 5.0

Note that each image has been formatted as a 3-tuple (height, width, channel). For color images,
the channel would have 3 dimensions (red, green and blue).

Record the data and label shapes

Generally, we don’t want our model code to care too much about the exact shape of our input
data. This way we could switch in a different dataset without changing the code that follows.
Let’s define variables to hold the number of inputs and outputs.

In [5]: num_inputs = 784
num_outputs = 10

Machine learning libraries generally expect to find images in (batch, channel, height, width)
format. However, most libraries for visualization prefer (height, width, channel). Let’s transpose
our image into the expected shape. In this case, matplotlib expects either (height, width) or
(height, width, channel) with RGB channels, so let’s broadcast our single channel to 3.

In [6]: im = mx.nd.tile(image, (1,1,3))
print(im.shape)

(28, 28, 3)
Now we can visualize our image and make sure that our data and labels line up.

In [7]: import matplotlib.pyplot as plt
plt.imshow(im.asnumpy())
plt.show()

Ok, that'’s a beautiful five.

Load the data iterator

Now let’s load these images into a data iterator so we don’t have to do the heavy lifting.

In [8]: batch_size
train_data

64
mx.gluon.data.DataLoader(mnist_train, batch_size, shuffle=)

We’'re also going to want to load up an iterator with test data. After we train on the training
dataset we're going to want to test our model on the test data. Otherwise, for all we know, our
model could be doing something stupid (or treacherous?) like memorizing the training examples
and regurgitating the labels on command.

In [9]: test data = mx.gluon.data.Dataloader(mnist_test, batch_size, shuffle=)

Allocate model parameters

Now we're going to define our model. For this example, we're going to ignore the multimodal
structure of our data and just flatten each image into a single 1D vector with 28x28 = 784
components.

Because our task is multiclass classification, we want to assign a probability to each of the
classes P(Y=c|X) given the input X. In order to do this we're going to need one vector of 784
weights for each class, connecting each feature to the corresponding output. Because there are
10 classes, we can collect these weights together in a 784 by 10 matrix.

WEe'll also want to allocate one offset for each of the outputs. We call these offsets the bias term
and collect them in the 10-dimensional array b .

In [10]: W
b

nd.random_normal(shape=(num_inputs, num_outputs))
nd.random_normal(shape=num_outputs)

params = [W, b]

As before, we need to let MXNet know that we'll be expecting gradients corresponding to each
of these parameters during training.

In [11]: for param in params:
param.attach_grad()

Multiclass logistic regression

In the linear regression tutorial, we performed regression, so we had just one output yhat and
tried to push this value as close as possible to the true target y. Here, instead of regression, we
are performing classification, where we want to assign each input X'to one of L classes.

The basic modeling idea is that we're going to linearly map our input X onto 10 different real
valued outputs y 1linear . Then before, outputting these values, we'll want to normalize them so

that they are non-negative and sum to 1. This normalization allows us to interpret the output
yhat as a valid probability distribution.

In [12]: def softmax(y_linear):
exp = nd.exp(y_linear-nd.max(y_linear))
norms = nd.sum(exp, axis=0, exclude=True).reshape((-1,1))
return exp / norms

In [13]: sample_y linear = nd.random_normal(shape=(2,10))
sample_yhat = softmax(sample_y_linear)
print(sample_yhat)

[[0.01466005 ©0.03104205 ©.09487285 ©0.11615293 0.07316667 ©.01516553
0.44094777 ©.08199082 0.0917872 0.04021411]

[©.0309542 0.07588483 0.37230074 0.03313261 0.0499984 0.13276106
0.14566724 ©.02354518 ©.08515968 0.05059606]]

<NDArray 2x10 @cpu(@)>

Let’s confirm that indeed all of our rows sum to 1.

In [14]: print(nd.sum(sample_yhat, axis=1))

[1. 1.]
<NDArray 2 @cpu(0)>

But for small rounding errors, the function works as expected.

Define the model

Now we're ready to define our model

In [15]: def net(X):
y_linear = nd.dot(X, W) + b
yhat = softmax(y_linear)
return yhat

The cross-entropy loss function

Before we can start training, we're going to need to define a loss function that makes sense
when our prediction is a probability distribution.

The relevant loss function here is called cross-entropy and it may be the most common loss
function you'll find in all of deep learning. That’s because at the moment, classification problems
tend to be far more abundant than regression problems.

The basic idea is that we're going to take a target Y that has been formatted as a one-hot vector,
meaning one value corresponding to the correct label is set to 1 and the others are set to 0, e.g.

[0, 1, 6, 0, 0, 0, 0, 0, 0, O] .

The basic idea of cross-entropy loss is that we only care about how much probability the
prediction assigned to the correct label. In other words, for true label 2, we only care about the
component of yhat corresponding to 2. Cross-entropy attempts to maximize the log-likelihood
given to the correct labels.

In [16]: def cross_entropy(yhat, y):
return - nd.sum(y * nd.log(yhat), axis=0, exclude=True)

Optimizer

For this example we'll be using the same stochastic gradient descent (SGD) optimizer as last
time.

In [17]: def SGD(params, 1r):
for param in params:
param[:] = param - lr * param.grad

Write evaluation loop to calculate accuracy

While cross-entropy is nice, differentiable loss function, it’s not the way humans usually evaluate
performance on multiple choice tasks. More commonly we look at accuracy, the number of
correct answers divided by the total number of questions. Let’s write an evaluation loop that will

take a data iterator and a network, returning the model’s accuracy averaged over the entire
dataset.

In [18]: def evaluate_accuracy(data_iterator, net):

numerator = 0.

denominator = ©.

for i, (data, label) in enumerate(data_iterator):
data = data.as_in_context(ctx).reshape((-1,784))
label = label.as_in_context(ctx)
label _one_hot = nd.one_hot(label, 10)
output = net(data)
predictions = nd.argmax(output, axis=1)
numerator += nd.sum(predictions == label)
denominator += data.shape[0]

return (numerator / denominator).asscalar()

Because we initialized our model randomly, and because roughly one tenth of all examples
belong to each of the ten classes, we should have an accuracy in the ball park of .10.

In [19]: evaluate_accuracy(test_data, net)

Out[19]: ©.079499997

Execute training loop

In [20]: epochs = 10
moving_loss = 0.
learning_rate = .001
smoothing_constant = .01
niter=0

for e in range(epochs):
for i, (data, label) in enumerate(train_data):
data = data.as_in_context(ctx).reshape((-1,784))
label = label.as_in_context(ctx)
label_one_hot = nd.one_hot(label, 10)
with autograd.record():
output = net(data)
loss = cross_entropy(output, label one_hot)
loss.backward()
SGD(params, learning_rate)

S e e e e

Keep a moving average of the losses

S e R

niter +=1

moving_loss = (1 - smoothing_constant) * moving_loss + (smoothing_ constant) *
nd.mean(loss).asscalar()

est_loss = moving_loss/(1-(1-smoothing constant)**niter)

test_accuracy = evaluate_accuracy(test_data, net)

train_accuracy = evaluate_accuracy(train_data, net)

print("Epoch %s. Loss: %s, Train_acc %s, Test_acc %s" % (e, est_loss, train_accuracy,
test_accuracy))

Epoch @. Loss: 1.33693315503, Train_acc 0.755217, Test_acc 0.7644
Epoch 1. Loss: 0.974225272841, Train_acc 0.81185, Test_acc 0.8202
Epoch 2. Loss: 0.832080314418, Train_acc 0.8358, Test_acc 0.8438
Epoch 3. Loss: ©.719344859828, Train_acc 0.850433, Test_acc 0.8566
Epoch 4. Loss: 0.684221684508, Train_acc 0.8584, Test_acc 0.8655
Epoch 5. Loss: 0.613997728956, Train_acc 0.864667, Test_acc 0.8698

Epoch 6. Loss: 0.585307060391, Train_acc 0.8701, Test_acc 0.8753
Epoch 7. Loss: ©.586430716543, Train_acc 0.874333, Test_acc 0.8786
Epoch 8. Loss: ©.559677588725, Train_acc 0.877017, Test_acc 0.8807
Epoch 9. Loss: 0.50624773834, Train_acc 0.880817, Test_acc 0.884

Using the model for prediction

Let’'s make it more intuitive by picking 10 random data points from the test set and use the

trained model for predictions.

In [21]:

Define the function to do prediction
def model_predict(net,data):

output = net(data)

return nd.argmax(output, axis=1)

let's sample 10 random data points from the test set
sample_data = mx.gluon.data.DatalLoader(mnist_test, 10, shuffle=True)
for i, (data, label) in enumerate(sample_data):

data = data.as_in_context(ctx)

print(data.shape)

im = nd.transpose(data, (1,0,2,3))

im = nd.reshape(im, (28,10%28,1))

imtiles = nd.tile(im, (1,1,3))

plt.imshow(imtiles.asnumpy())

plt.show()
pred=model_predict(net,data.reshape((-1,784)))
print('model predictions are:', pred)

break

(10, 28, 28, 1)

W</ sL68SELA Y

model predictions are:
[9. 5. 6. 6. 8. 5. 6. 6. 7. 3.]
<NDArray 10 @cpu(0@)>

Conclusion

Jeepers. We can get nearly 90% accuracy at this task just by training a linear model for a few

seconds! You might reasonably conclude that this problem is too easy to be taken seriously by

experts.

But until recently, many papers (Google Scholar says 13,800) were published using results

obtained on this data. Even this year, | reviewed a paper whose primary achievement was an

(imagined) improvement in performance. While MNIST can be a nice toy dataset for testing new

ideas, we don't recommend writing papers with it.

Next

Softmax regression with gluon

For whinges or inquiries, open an issue on GitHub.

In [22]:

http://gluon.mxnet.io/chapter02_supervised-learning/softmax-regression-gluon.html
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Multiclass logistic regression with gluon

Multiclass logistic regression with giuon

Now that we've built a logistic regression model from scratch, let’s make this more efficient with
gluon . If you completed the corresponding chapters on linear regression, you might be tempted

rest your eyes a little in this one. We'll be using giuon in a rather similar way and since the

interface is reasonably well designed, you won't have to do much work. To keep you awake we'll
introduce a few subtle tricks.

Let’s start by importing the standard packages.

In [1]: from _ future__ import print_function
import mxnet as mx
from mxnet import nd, autograd
from mxnet import gluon
import numpy as np

Set the context

Now, let’s set the context. In the linear regression tutorial we did all of our computation on the
cpu (mx.cpu()) just to keep things simple. When you've got 2-dimensional data and scalar labels,

a smartwatch can probably handle the job. Already, in this tutorial we'll be working with a
considerably larger dataset. If you happen to be running this code on a server with a GPU and
installed the GPU-enabled version of MXNet (or remembered to build MXNet with cuba=1), you

might want to substitute the following line for its commented-out counterpart.

In [2]: | # Set the context to CPU
ctx = mx.cpu()

To set the context to GPU use this
ctx = mx.gpu()

The MNIST Dataset

We won't suck up too much wind describing the MNIST dataset for a second time. If you're
unfamiliar with the dataset and are reading these chapters out of sequence, take a look at the
data section in the previous chapter on softmax regression from scratch.

WEe'll load up data iterators corresponding to the training and test splits of MNIST dataset.

http://gluon.mxnet.io/index.html
http://gluon.mxnet.io/chapter02_supervised-learning/softmax-regression-scratch.html
http://gluon.mxnet.io/chapter02_supervised-learning/P02-C03-softmax-regression-scratch.ipynb

In [3]: batch_size = 64
num_inputs 784
num_outputs = 10
def transform(data, label):
return data.astype(np.float32)/255, label.astype(np.float32)
train_data = mx.gluon.data.DatalLoader(mx.gluon.data.vision.MNIST(train=True,
transform=transform),

batch_size, shuffle=True)
test_data = mx.gluon.data.DatalLoader(mx.gluon.data.vision.MNIST(train=False,
transform=transform),
batch_size, shuffle=False)

We’'re also going to want to load up an iterator with test data. After we train on the training
dataset we're going to want to test our model on the test data. Otherwise, for all we know, our
model could be doing something stupid (or treacherous?) like memorizing the training examples
and regurgitating the labels on command.

Multiclass Logistic Regression

Now we're going to define our model. Remember from our tutorial on linear regression with
“'gluon’ <./P02-C02-linear-regression-gluon>"__ that we add pense layers by calling

net.add(gluon.nn.Dense(num_outputs)) . This leaves the parameter shapes under-specified, but

gluon Will infer the desired shapes the first time we pass real data through the network.

In [4]: net = gluon.nn.Sequential()
with net.name_scope():
net.add(gluon.nn.Dense(num_outputs))

Parameter initialization

As before, we're going to register an initializer for our parameters. Remember that giuon doesn’t

even know what shape the parameters have because we never specified the input dimension.
The parameters will get initialized during the first call to the forward method.

In [5]: net.collect _params().initialize(mx.init.Normal(sigma=1.), ctx=ctx)

Softmax Cross Entropy Loss

Note, we didn’t have to include the softmax layer because MXNet'’s has an efficient function that
simultaneously computes the softmax activation and cross-entropy loss. However, if ever need
to get the output probabilities,

In [6]: softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss()

Optimizer

And let’s instantiate an optimizer to make our updates

In [7]:

= gluon.Trainer(net.collect_params(), ‘'sgd', {'learning_rate': 0.1})

Evaluation Metric

This time, let’s simplify the evaluation code by relying on MXNet’s built-in metric package.

In [8]:

def evaluate_accuracy(data_iterator, net):

= mx.metric.Accuracy()

for i, (data, label) in enumerate(data_iterator):

data = data.as_in_context(ctx).reshape((-1,784))
label = label.as_in_context(ctx)

output = net(data)

predictions = nd.argmax(output, axis=1)
acc.update(preds=predictions, labels=label)

return acc.get()[1]

Because we initialized our model randomly, and because roughly one tenth of all examples

belong to each of the ten classes, we should have an accuracy in the ball park of .10.

In [9]:

Out[9]:

evaluate_accuracy(test_data, net)

Execute training loop

In [10]:

=4

moving loss = 0.
smoothing_constant = .01
=0

for e in range(epochs):
for i, (data, label) in enumerate(train_data):

data = data.as_in_context(ctx).reshape((-1,784))
label = label.as_in_context(ctx)
with autograd.record():

output = net(data)

loss = softmax_cross_entropy(output, label)
loss.backward()
trainer.step(batch_size)

e e e e e e

Keep a moving average of the Losses

L e e

niter +=1

moving_loss = (1 - smoothing_constant) * moving_loss + (smoothing_constant) *

nd.mean(loss).asscalar()

est_loss = moving loss/(1-(1-smoothing_constant)**niter)

test_accuracy = evaluate_accuracy(test_data, net)
train_accuracy = evaluate_accuracy(train_data, net)

print("Epoch %s. Loss: %s, Train_acc %s, Test_acc %s" % (e, est_loss, train_accuracy,
test_accuracy))

Epoch ©. Loss: 1.09775956875, Train_acc 0.792066666667, Test_acc 0.8023
Epoch 1. Loss: 0.836000709358, Train_acc 0.837816666667, Test _acc 0.8452
Epoch 2. Loss: 0.672541667936, Train_acc 0.856316666667, Test_acc 0.8616
Epoch 3. Loss: 0.630035108029, Train_acc 0.866616666667, Test_acc 0.8731

In [11]: import matplotlib.pyplot as plt

def model_predict(net,data):
output = net(data)
return nd.argmax(output, axis=1)

let's sample 10 random data points from the test set
sample_data = mx.gluon.data.DatalLoader(mx.gluon.data.vision.MNIST(train= 9
transform=transform),
10, shuffle=)

for i, (data, label) in enumerate(sample_data):

data = data.as_in_context(ctx)

print(data.shape)

im = nd.transpose(data, (1,90,2,3))

im = nd.reshape(im, (28,10%28,1))

imtiles = nd.tile(im, (1,1,3))

plt.imshow(imtiles.asnumpy())
plt.show()
pred=model_predict(net,data.reshape((-1,784)))
print('model predictions are:', pred)
break

(10, 28, 28, 1)

D | 4063 |

M 719 R

o 50 100 150 200

250

model predictions are:
[3. 9. 1. 9. 2. @. 5. 3. 1. 4.]
<NDArray 10 @cpu(0)>

Next

Overfitting and regularization from scratch

For whinges or inquiries, open an issue on GitHub.

http://gluon.mxnet.io/chapter02_supervised-learning/regularization-scratch.html
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Overfitting and regularization

Overfitting and regularization

In the last tutorial, we introduced the task of multiclass classification. We showed how you can
tackle this problem with a linear model called logistic regression. Owing to some amount of
randomness, you might get slightly different results, but when | ran the notebook, the model
achieved 88.1% accuracy on the training data and actually did slightly (but not significantly)
better on the test data than on the training data.

Not every algorithm that performs well on training data will also perform well on test data. Take,
for example, a trivial algorithm that memorizes its inputs and stores the associated labels. This
model would have 100% accuracy on training data but would have no way of making any
prediction at all on previously unseen data.

The goal of supervised learning is to produce models that generalize to previously unseen data.
When a model achieves low error on training data but performs much worse on test data, we
say that the model has overfit. This means that the model has caught on to idiosyncratic features
of the training data (e.g. one “2” happened to have a white pixel in the top-right corner), but
hasn't really picked up on general patterns.

We can express this more formally. The quantity we really care about is the test error e. Because
this quantity reflects the error of our model when generalized to previously unseen data, we
commonly call it the generalization error. When we have simple models and abundant data, we
expect the generalization error to resemble the training error. When we work with more
complex models and fewer examples, we expect the training error to go down but the
generalization gap to grow. Fixing the size of the dataset, the following graph should give you
some intuition about what we generally expect to see.

http://gluon.mxnet.io/index.html
http://gluon.mxnet.io/chapter02_supervised-learning/P02-C03-softmax-regression-scratch.ipynb

Test data
s

Prediction error

Training data

Model complexity

What precisely constitutes model complexity is a complex matter. Many factors govern whether
a model will generalize well. For example a model with more parameters might be considered
more complex. A model whose parameters can take a wider range of values might be more
complex. Often with neural networks, we think of a model that takes more training steps as
more complex, and one subject to early stopping as less complex.

It can be difficult to compare the complexity among members of very different model classes
(say decision trees versus neural networks). Researchers in the field of statistical learning theory
have developed a large body of mathematical analysis that formulizes the notion of model
complexity and provides guarantees on the generalization error for simple classes of models. We
won't get into this theory but may delve deeper in a future chapter. For now a simple rule of
thumb is quite useful: A model that can readily explain arbitrary facts is what statisticians view
as complex, whereas one that has only a limited expressive power but still manages to explain
the data well is probably closer to the truth. In philosophy this is closely related to Popper’s
criterion of falsifiability of a scientific theory: a theory is good if it fits data and if there are
specific tests which can be used to disprove it. This is important since all statistical estimation is
post hoc, i.e. we estimate after we observe the facts, hence vulnerable to the associated fallacy.
Ok, enough of philosophy, let’s get to more tangible issues.

To give you some intuition in this chapter, we'll focus on a few factors that tend to influence the
generalizability of a model class:

1. The number of tunable parameters. When the number of tunable parameters, sometimes
denoted as the number of degrees of freedom, is large, models tend to be more susceptible
to overfitting.

2. The values taken by the parameters. When weights can take a wider range of values, models
can be more susceptible to over fitting.

3. The number of training examples. It's trivially easy to overfit a dataset containing only one or
two examples even if your model is simple. But overfitting a dataset with millions of

https://en.wikipedia.org/wiki/Falsifiability
https://en.wikipedia.org/wiki/Post_hoc

examples requires an extremely flexible model.

When classifying handwritten digits before, we didn't overfit because our 60,000 training
examples far out numbered the 784 X 10 = 7, 840 weights plus 10 bias terms, which gave us
far fewer parameters than training examples. Let’s see how things can go wrong. We begin with
our import ritual.

In [1]: from _ future__ import print_function
import mxnet as mx
import mxnet.ndarray as nd
from mxnet import autograd
import numpy as np
ctx = mx.cpu()
mx.random.seed(1)

for plotting purposes
%matplotlib inline

import matplotlib

import matplotlib.pyplot as plt

Load the MNIST dataset

In [2]: mnist = mx.test utils.get mnist()
num_examples = 1000
batch_size = 64
train_data = mx.gluon.data.DatalLoader(
mx.gluon.data.ArrayDataset(mnist["train_data"][:num_examples],
mnist["train_label"][:num_examples].astype(np.float32)),
batch_size, shuffle=True)
test_data = mx.gluon.data.DatalLoader(
mx.gluon.data.ArrayDataset(mnist["test_data"][:num_examples],
mnist["test_label"][:num_examples].astype(np.float32)),
batch_size, shuffle=False)

Allocate model parameters and define model

We pick a simple linear model f(x) = Wx + b with subsequent softmax, i.e.
p(y|x) o exp(f(x),). This is about as simple as it gets.

nd.random_normal(shape=(784,10))

In [3]: W
b = nd.random_normal(shape=10)

params = [W, b]

for param in params:
param.attach_grad()

def net(X):
y_linear = nd.dot(X, W) + b
yhat = nd.softmax(y_linear, axis=1)
return yhat

Define loss function and optimizer

A sensible thing to do is to minimize the negative log-likelihood of the data, i.e. —log p(y|x).
Statisticians have proven that this is actually the most efficient estimator, i.e. the one that makes
the most use of the data provided. This is why it is so popular.

In [4]: def cross_entropy(yhat, y):
return - nd.sum(y * nd.log(yhat), axis=0, exclude=True)

def SGD(params, 1lr):
for param in params:
param[:] = param - lr * param.grad

Write evaluation loop to calculate accuracy

Ultimately we want to recognize digits. This is a bit different from knowing the probability of a
digit - when given an image we need to decide what digit we are seeing, regardless of how
uncertain we are. Hence we measure the number of actual misclassifications.

For diagnosis purposes, it is always a good idea to calculate the average loss function.

In [5]: def evaluate_accuracy(data_iterator, net):

numerator = 0.

denominator = 0.

loss_avg = 0.

for i, (data, label) in enumerate(data_iterator):
data = data.as_in_context(ctx).reshape((-1,784))
label = label.as_in_context(ctx)
label_one_hot = nd.one_hot(label, 10)
output = net(data)
loss = cross_entropy(output, label one_hot)
predictions = nd.argmax(output, axis=1)
numerator += nd.sum(predictions == label)
denominator += data.shape[0]
loss_avg = loss_avg*i/(i+1) + nd.mean(loss).asscalar()/(i+1)

return (numerator / denominator).asscalar(), loss_avg

Write a utility function to plot the learning curves

Just to visualize how loss functions and accuracy changes over the number of iterations.

In [6]: def plot_learningcurves(loss_tr,loss_ts, acc_tr,acc_ts):
xs = list(range(len(loss_tr)))

f = plt.figure(figsize=(12,6))
fgl = f.add_subplot(121)

fg2 = f.add_subplot(122)
fgl.set_xlabel('epoch',fontsize=14)
fgl.set_title('Comparing loss functions')
fgl.semilogy(xs, loss_tr)
fgl.semilogy(xs, loss_ts)
fgl.grid(True,which="both")

fgl.legend(['training loss', 'testing loss'],fontsize=14)

fg2.set_title('Comparing accuracy')
fgl.set_xlabel('epoch',fontsize=14)

fg2.plot(xs, acc_tr)

fg2.plot(xs, acc_ts)

fg2.grid(True,which="both")

fg2.legend(['training accuracy', 'testing accuracy'],fontsize=14)

Execute training loop

We now train the model until there is no further improvement. Our approach is actually a bit
naive since we will keep the learning rate unchanged but it fits the purpose (we want to keep the
code simple and avoid confusing anyone with further tricks for adjusting learning rate
schedules).

In [7]: epochs = 1000
moving_loss = 0.
niter=0

loss_seq_train =
loss_seq_test
acc_seq_train
acc_seq_test = [

]

[
[l
[]
]

for e in range(epochs):
for i, (data, label) in enumerate(train_data):
data = data.as_in_context(ctx).reshape((-1,784))
label = label.as_in_context(ctx)
label one_hot = nd.one_hot(label, 10)
with autograd.record():
output = net(data)
loss = cross_entropy(output, label one_hot)
loss.backward()
SGD(params, .001)

S s

Keep a moving average of the Losses

S e e e e

niter +=1

moving_loss = .99 * moving_loss + .01 * nd.mean(loss).asscalar()
est_loss = moving_loss/(1-0.99**niter)

test_accuracy, test_loss = evaluate_accuracy(test_data, net)
train_accuracy, train_loss = evaluate_accuracy(train_data, net)

save them for Later
loss_seq_train.append(train_loss)
loss_seq_test.append(test_loss)
acc_seq_train.append(train_accuracy)
acc_seq_test.append(test_accuracy)

if e % 100 == 99:
print("Completed epoch %s. Train Loss: %s, Test Loss %s, Train_acc %s, Test_acc
%s" %
(e+1, train_loss, test_loss, train_accuracy, test_accuracy))

Plotting the Llearning curves
plot_learningcurves(loss_seq_train,loss_seq_test,acc_seq_train,acc_seq_test)

Completed epoch 100. Train Loss: ©0.541354929097, Test Loss 1.4438945204, Train_acc 0.887,
Test_acc 0.69

Completed epoch 200. Train Loss: ©.259953523055, Test Loss 1.27532487363, Train_acc 0.935,
Test_acc 0.731

Completed epoch 300. Train Loss: 0.142286404734, Test Loss 1.26391389966, Train_acc 0.973,
Test_acc 0.728

Completed epoch 400. Train Loss: 0.0880716806278, Test Loss 1.27251135558, Train_acc
0.987, Test_acc 0.733

Completed epoch 500. Train Loss: 0.0578876060899, Test Loss 1.27707066014, Train_acc
0.995, Test_acc 0.734

Completed epoch 600. Train Loss: 0.0420041342732, Test Loss 1.27324004471, Train_acc
0.999, Test_acc 0.739

Completed epoch 700. Train Loss: ©.0328008912038, Test Loss 1.2654389888, Train_acc 1.9,
Test_acc 0.747

Completed epoch 800. Train Loss: 0.026653088571, Test Loss 1.25905798748, Train_acc 1.0,
Test_acc 0.746

Completed epoch 900. Train Loss: ©.0231189786573, Test Loss 1.25432690606, Train_acc 1.0,
Test_acc 0.747

Completed epoch 1000. Train Loss: 0.0200853450806, Test Loss 1.25094169378, Train_acc 1.0,
Test_acc 0.75

Comparing loss functions Comparing accuracy
1 1= -
1o —— training loss 1o
testing loss
0.8 -
107 1
0.6 -
0.4
107" A
0.2 — training accuracy
testing accuracy
0 200 400 600 800 1000 0 200 00 §00 800 1000

epoch

What Happened?

By the 700th epoch, our model achieves 100% accuracy on the training data. However, it only
classifies 75% of the test examples accurately. This is a clear case of overfitting. At a high level,
there’s a reason this went wrong. Because we have 7450 parameters and only 1000 data points,
there are actually many settings of the parameters that could produce 100% accuracy on
training data.

To get some intuition imagine that we wanted to fit a dataset with 2 dimensional data and 2 data
points. Our model has three degrees of freedom, and thus for any dataset can find an arbitrary
number of separators that will perfectly classify our training points. Note below that we can
produce completely orthogonal separators that both classify our training data perfectly. Even if it
seems preposterous that they could both describe our training data well.

Regularization

Now that we've characterized the problem of overfitting, we can begin talking about some
solutions. Broadly speaking the family of techniques geared towards mitigating overfitting are
referred to as regularization. The core idea is this: when a model is overfitting, its training error is
substantially lower than its test error. We're already doing as well as we possibly can on the
training data, but our test data performance leaves something to be desired. Typically,
regularization techniques attempt to trade off our training performance in exchange for lowering
our test error.

There are several straightforward techniques we might employ. Given the intuition from the

previous chart, we might attempt to make our model less complex. One way to do this would be
to lower the number of free parameters. For example, we could throw away some subset of our
input features (and thus the corresponding parameters) that we thought were least informative.

Test data
Ve

Prediction error

Training data

Model complexity

Another approach is to limit the values that our weights might take. One common approach is to
force the weights to take small values. [give more intuition with example of polynomial curve
fitting] We can accomplish this by changing our optimization objective to penalize the value of
our weights. The most popular regularizer is the f% norm. For linear models, f% regularization
has the additional benefit that it makes the solution unique, even when our model is
overparametrized.

DG =7 +Alwl3

Here, ||W|| is the f% norm and A is a hyper-parameter that determines how aggressively we
want to push the weights towards 0. In code, we can express the f% penalty succinctly:

In [8]: def 12_penalty(params):
penalty = nd.zeros(shape=1)
for param in params:
penalty = penalty + nd.sum(param ** 2)
return penalty

Re-initializing the parameters

Just for good measure to ensure that the results in the second training run don’t depend on the
first one.

In [9]: for param in params:
param[:] = nd.random_normal(shape=param.shape)

Training L2-reqularized logistic regression

In [10]: epochs = 1000
moving_loss = 0.
12_strength = .1
niter=0

loss_seq_train =
loss_seq test = [
acc_seq_train = [
acc_seq_test = []

[]
]
]

for e in range(epochs):
for i, (data, label) in enumerate(train_data):
data = data.as_in_context(ctx).reshape((-1,784))
label = label.as_in_context(ctx)
label _one_hot = nd.one_hot(label, 10)
with autograd.record():
output = net(data)
loss = nd.sum(cross_entropy(output, label one_hot)) + 12_strength *
12 _penalty(params)
loss.backward()
SGD(params, .001)

AT R i i e T

In [11]:

Keep a moving average of the losses

AR AT AT A A A T I T I

niter +=1
moving_loss = .99 * moving_loss + .01 * nd.mean(loss).asscalar()

est_loss =

test_accuracy, test_loss =
train_accuracy, train_loss

save them for Later
loss_seq_train.append(train_loss)

loss_seq_test.append(test_loss)

moving _loss/(1-0.99*%*niter)

evaluate_accuracy(test_data, net)

evaluate_accuracy(train_data, net)

acc_seq_train.append(train_accuracy)
acc_seq_test.append(test_accuracy)

if e % 100 == 99:
print("Completed epoch %s. Train Loss: %s, Test Loss %s, Train_acc %s, Test_acc

%s" %

(e+1, train_loss, test_loss, train_accuracy, test_accuracy))

Completed epoch
Test_acc 0.734
Completed epoch
0.965, Test_acc
Completed epoch
Test_acc 0.811
Completed epoch
0.988, Test_acc
Completed epoch
Test_acc 0.83

Completed epoch
0.991, Test_acc
Completed epoch
Test_acc 0.835
Completed epoch
0.991, Test_acc
Completed epoch
Test_acc 0.837
Completed epoch
0.991, Test_acc

Plotting the Learning curves

100. Train Loss:

200. Train Loss:
0.783
300. Train Loss:
400. Train Loss:
0.826
500. Train Loss:
600. Train Loss:
0.833
700. Train Loss:
800. Train Loss:
0.839

0.

0

.408492157236, Test Loss 1.02146248147, Train_acc 0.892,
.183608927764, Test Loss 0.689952459186, Train_acc

.13577057654, Test Loss ©.576444735751, Train_acc 0.982,

.126813526731, Test Loss ©.524908654392, Train_acc
.126559415367, Test Loss ©.503038179129, Train_acc 0.99,
.129612701479, Test Loss ©.494899718091, Train_acc
127363444306, Test Loss 0.49323198013, Train_acc 0.991,
.129239805974, Test Loss ©0.493483386934, Train_acc

900. Train Loss: 0.12854804704, Test Loss ©.493301877752, Train_acc 0.991,

1000. Train Loss: ©.128394702449, Test Loss 0.494407396764, Train_acc

0.838

plot_learningcurves(loss_seq_train,loss_seq_test,acc_seq_train,acc_seq_test)

Comparing loss functions

Comparing accuracy

10° —— training loss 101
testing loss
0.8 -
0.6 -
10" 4
0.4 -
02 4 —— training accuracy
testing accuracy
1072 T T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000

epoch

Analysis

By adding L, regularization we were able to increase the performance on test data from 75%
accuracy to 83% accuracy. That's a 32% reduction in error. In a lot of applications, this big an
improvement can make the difference between a viable product and useless system. Note that
L2 regularization is just one of many ways of controlling capacity. Basically we assumed that
small weight values are good. But there are many more ways to constrain the values of the
weights:

e We could require that the total sum of the weights is small. That is what L regularization
does via the penalty). [w;|.

e We could require that the largest weight is not too large. This is what L, regularization does
via the penalty max; |w;|.

e We could require that the number of nonzero weights is small, i.e. that the weight vectors are
sparse. This is what the Ly penalty does, i.e. Zi I{w; # 0}. This penalty is quite difficult to
deal with explicitly since it is nonsmooth. There is a lot of research that shows how to solve
this problem approximately using an L1 penalty.

\
A

"l\"\"'\

\

\

From left to right: L regularization, which constrains the parameters to a ball, L1 regularization,
which constrains the parameters to a diamond (for lack of a better name, this is often referred to
as an L1-ball), and L regularization, which constrains the parameters to a hypercube.

All of this raises the question of why regularization is any good. After all, choice is good and
giving our model more flexibility ought to be better (e.g. there are plenty of papers which show
improvements on ImageNet using deeper networks). What is happening is somewhat more
subtle. Allowing for many different parameter values allows our model to cherry pick a
combination that is just right for all the training data it sees, without really learning the
underlying mechanism. Since our observations are likely noisy, this means that we are trying to
approximate the errors at least as much as we’re learning what the relation between data and
labels actually is. There is an entire field of statistics devoted to this issue - Statistical Learning
Theory. For now, a few simple rules of thumb suffice:

e Fewer parameters tend to be better than more parameters.

o Better engineering for a specific problem that takes the actual problem into account will lead
to better models, due to the prior knowledge that data scientists have about the problem at
hand.

e [, is easier to optimize for than L;. In particular, many optimizers will not work well out of
the box for L;. Using the latter requires something called proximal operators.

e Dropout and other methods to make the model robust to perturbations in the data often
work better than off-the-shelf L, regularization.

We conclude with an XKCD Cartoon which captures the entire situation more succinctly than
the proceeding paragraph.

£1

JELLY BEANS WE FOUND NO THAT SETTLES THAT.
CAUSE ACNE! LINK BETWEEN :
T HEAR ITS
SCIENTISTS) JELLY' BEANS PND o CERTAN Coton
INVESTIGATE! ANNE (P> 0.05), TrHTCﬂUSES T
BUT ke |

e

H"HIHEMHFT'

WE FOUND NGO WE FOUD MO WE FoUND NO WE FOUND MO WE FOUND MO
LINK GETWEEM LINK BETWEEN LINK GETWEEN LINK GETWEEN LINK, GETWEEN
PURPLE TELLv BROWN JELLY Pini. JELLY BWE TELy TERAL JELY
EEPIEPNDFENE BEPH&FHDH:NE ﬁEPN&Fl'IDH:NE mﬁmmm mmm
p}ggg) P}GBS} P}GOE} P}DG’E) P}D‘:”F)
WE FOUND NGO WE FOUND MO WE FOUND MO WE FOUND MO WE FOUND MO
LK, BETWEEN LMK, BETWEEN LK, GETWEEN LMk, BETWEEN LMK, GETJEEN
SALMON JELLY RED JelLy TuRGoISE JELLY MAGEWTR JELLY YELLOW JELLY
BEANS AND ACNE BEANS AND ACNE BEANS AND ACNE. BEANS AND ACNE BEAMS PHD ACNE
(p>005) (P>0.05) (p>005) (p>0.05) (p>0.05)
/ ! / / !
WE FOUND MO WE FOUND MO WE FOUND N0 WE FOUND A WE FOUND MO
LINE BETWEEN LIk, BGETWEEN LMK, GETWEEN LINE BETWEEN LMK GETWEEN

https://xkcd.com/882/

GREY JELLY TAN JeLy O JELy GREEM JELLY MALVE JELLY
BEANS AHD AME BEANS AHD ANE BEANS AND ACNE BEANS AHD ACNE BEAMS AHD ACNE
(p>0.05) (P>0.05). (p>005), (p<0.05), (P>0.05)
! / / Lfﬁtl‘?-" | /!
WE FOUND MO WE FOUND NO WE FOUND NO WE FOUND MO WE FOUND MO
LitK, GETWEEM LIk, GETWEEN LINK, BETWEEN LIk, GETWEEM L'k, BETWEEN
BEIGE JELLY LiLAe JELy Blace, JELy FERCH JELLY ORANGE JELLY
BEANS PHD ANE BEANS FND ACNE BEANS AND ANE BEANS PHD ANE BEANS PHD ACNE
(p>0.05), (p>0.05), (p>0.05) (p>005) (P>0.05),
! / / ! /!

EA[QUS =

GREEN JELLY
REANS LINKED
T ACNE![@
95 ConfroEne .

W g g, B Y g
oy g S s
B g g Py, g

5% CHANCE b
%ﬂﬂﬂwl SCENTSTC .
-—-f'w i

—_— o TS
T AENRS . e
:’ e L

——— ‘ﬂ\ w""l""-ﬁ

Next
Overfitting and regularization with gluon

For whinges or inquiries, open an issue on GitHub.

http://gluon.mxnet.io/chapter02_supervised-learning/regularization-gluon.html
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Overfitting and regularization (with gluon)

Overfitting and regularization (with giuon)

Now that we've built a regularized logistic regression model from scratch, let’s make this more
efficient with giuon . We recommend that you read that section for a description as to why

regularization is a good idea. As always, we begin by loading libraries and some data.

[REFINED DRAFT - RELEASE STAGE: CATFOOD]

In [1]: from _ future__ import print_function
import mxnet as mx
from mxnet import autograd
from mxnet import gluon
import mxnet.ndarray as nd
import numpy as np
ctx = mx.cpu()

for plotting purposes
%matplotlib inline

import matplotlib

import matplotlib.pyplot as plt

The MNIST Dataset

In [2]: mnist = mx.test_utils.get mnist()
num_examples = 1000
batch_size = 64
train_data = mx.gluon.data.DatalLoader(
mx.gluon.data.ArrayDataset(mnist["train_data"][:num_examples],
mnist["train_label"][:num_examples].astype(np.float32)),
batch_size, shuffle=True)
test_data = mx.gluon.data.DatalLoader(
mx.gluon.data.ArrayDataset(mnist["test data"][:num_examples],
mnist["test_label"][:num_examples].astype(np.float32)),
batch_size, shuffle=False)

Multiclass Logistic Regression

In [3]: net = gluon.nn.Sequential()
with net.name_scope():
net.add(gluon.nn.Dense(10))

Parameter initialization

In [4]: net.collect_params().initialize(mx.init.Xavier(magnitude=2.24), ctx=ctx)

http://gluon.mxnet.io/index.html
http://gluon.mxnet.io/chapter02_supervised-learning/regularization-scratch.html

Softmax Cross Entropy Loss

In [5]: 1loss = gluon.loss.SoftmaxCrossEntropylLoss()

Optimizer

By default giuon tries to keep the coefficients from diverging by using a weight decay penalty.

So, to get the real overfitting experience we need to switch it off. We do this by passing
'wd': 6.6' when we instantiate the trainer.

In [6]: trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.01, 'wd': 0.0})

Evaluation Metric

In [7]: def evaluate_accuracy(data_iterator, net, loss_fun):

acc = mx.metric.Accuracy()

loss_avg = 0.

for i, (data, label) in enumerate(data_iterator):
data = data.as_in_context(ctx).reshape((-1,784))
label = label.as_in_context(ctx)
output = net(data)
loss = loss_fun(output, label)
predictions = nd.argmax(output, axis=1)
acc.update(preds=predictions, labels=label)
loss_avg = loss_avg*i/(i+1) + nd.mean(loss).asscalar()/(i+1)

return acc.get()[1], loss_avg

def plot_learningcurves(loss_tr,loss_ts, acc_tr,acc_ts):
xs = list(range(len(loss_tr)))

plt.figure(figsize=(12,6))
= f.add_subplot(121)
=2 e

'F:
fgl
fg2 add_subplot(122)
fgl.set_xlabel('epoch',fontsize=14)
fgl.set_title('Comparing loss functions')
fgl.semilogy(xs, loss_tr)
fgl.semilogy(xs, loss_ts)

fgl.grid(True,which="both")
fgl.legend(['training loss', 'testing loss'],fontsize=14)

fg2.set_title('Comparing accuracy')
fgl.set_xlabel('epoch',fontsize=14)

fg2.plot(xs, acc_tr)

fg2.plot(xs, acc_ts)

fg2.grid(True,which="both")

fg2.legend(['training accuracy', 'testing accuracy'],fontsize=14)

Execute training loop

In [8]: epochs = 700
moving_loss = 0.
niter=0

loss_seq_train

loss_seq_test =
acc_seq_train =

acc_seq_test =

[]
[]
[
]

for e in range(epochs):
for i, (data, label) in enumerate(train_data):
data = data.as_in_context(ctx).reshape((-1,784))

label =

label.as_in_context(ctx)

with autograd.record():

output =

net(data)

cross_entropy = loss(output, label)
cross_entropy.backward()
trainer.step(data.shape[0])

B e e e

Keep a moving average of the losses

e e e

niter +=1

moving_loss = .99 * moving_loss + .01 * nd.mean(cross_entropy).asscalar()

est_loss =

test_accuracy, test_loss =
train_accuracy, train_loss =

moving loss/(1-0.99*%*niter)

evaluate_accuracy(test_data, net, loss)
evaluate_accuracy(train_data, net, loss)

save them for Later
loss_seq_train.append(train_loss)
loss_seq_test.append(test_loss)
acc_seq_train.append(train_accuracy)
acc_seq_test.append(test_accuracy)

if e % 20 == 0O:
print("Completed epoch %s. Train Loss: %s, Test Loss %s, Train_acc %s, Test_acc

%s" %

(e+1, train_loss, test_loss, train_accuracy, test_accuracy))

Plotting the Llearning curves
plot_learningcurves(loss_seq_train,loss_seq_test,acc_seq_train,acc_seq_test)

Completed epoch
Test_acc 0.162
Completed epoch
Test_acc 0.737
Completed epoch
Test_acc 0.763
Completed epoch
Test_acc 0.778
Completed epoch
Test_acc 0.799
Completed epoch
0.902, Test_acc
Completed epoch
0.908, Test_acc
Completed epoch
0.915, Test_acc
Completed epoch
Test_acc 0.825
Completed epoch
0.925, Test_acc
Completed epoch
0.927, Test_acc
Completed epoch
Test_acc 0.831
Completed epoch
0.932, Test_acc
Completed epoch
Test_acc 0.835
Completed epoch
0.936, Test_acc
Completed epoch
Test_acc 0.836

1. Train Loss: 2.20206177235, Test Loss 2.22747650743, Train_acc 0.185,

21. Train Loss: 0.892146475613, Test Loss 1.10410450026, Train_acc 0.825,

41. Train Loss: 0.650202345103, Test Loss ©.872422374785, Train_acc 0.866,

61. Train Loss: 0.542248453945, Test Loss 0.76846794039, Train_acc 0.881,

81. Train Loss: 0.489410074428, Test Loss 0.705862168223, Train_acc 0.893,

101. Train Loss: Test Loss ©
0.813
121. Train
0.817
141. Train
0.818

161. Train

0.441433861852, .663885675371, Train_acc

Loss: ©.405532337725, Test Loss 0.633128682151, Train_acc

Loss: ©.383627502248, Test Loss 0.610212739557, Train_acc

Loss: 0.362067368813, Test Loss 0.591509068385, Train_acc 0.92,

181. Train Test Loss 0.
0.826
201. Train
0.826

221. Train

Loss: ©.339679084718, 576706366614, Train_acc

Loss: ©.325259311125, Test Loss 0.564017400146, Train_acc

Loss: ©.31234044861, Test Loss ©.553559621796, Train_acc 0.93,
241. Train
0.833

261. Train

Loss: 0.297074861825, Test Loss ©.545117178932, Train_acc

Loss: ©.2894834904, Test Loss ©.537920514122, Train_acc 0.935,
281. Train
0.836

301. Train

Loss: ©.277775473893, Test Loss ©0.531740020961, Train_acc

Loss: 0.267405152321, Test Loss ©.525510722771, Train_acc 0.94,

Completed epoch
Test_acc 0.836
Completed epoch
Test_acc 0.838
Completed epoch
0.949, Test_acc
Completed epoch
0.949, Test_acc
Completed epoch
Test_acc 0.842
Completed epoch
0.952, Test_acc
Completed epoch
Test_acc 0.847
Completed epoch
0.956, Test_acc
Completed epoch
Test_acc 0.849
Completed epoch
Test_acc 0.848
Completed epoch
0.961, Test_acc
Completed epoch
0.964, Test_acc
Completed epoch
0.965, Test_acc
Completed epoch
0.965, Test_acc
Completed epoch
0.965, Test_acc
Completed epoch
0.966, Test_acc
Completed epoch
0.967, Test_acc
Completed epoch
0.968, Test_acc
Completed epoch
0.969, Test_acc

Comparing loss functions

321. Train

341. Train

361. Train
0.838
381. Train
0.839
401. Train

421. Train
0.842
441. Train

461. Train
0.848
481. Train

501. Train

521. Train
0.85

541. Train
0.85

561. Train
0.849

581. Train
0.845

601. Train
0.845

621. Train
0.841

641. Train
0.841

661. Train
0.842

681. Train
0.842

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

.244502888992,
.239984786138,
.230127763934,

.222901177593,

.213474844582,
.209507481195,
.202280035242,
.198728222866,
.195377404802,
.188592088409,
.184347858187,
.181168745272,
.176521503832,
.174657453783,
.173845630139,

.167031467427,

.26191042643, Test Loss ©.521078709513, Train_acc 0.941,

.2508082157, Test Loss ©.517240958288, Train_acc 0.944,

Test Loss 0.513158256188, Train_acc
Test Loss 0.509872548282, Train_acc
Test Loss 0.50716057606, Train_acc 0.95,

Test Loss 0.504965415224, Train_acc

.21668790374, Test Loss ©.502555353567, Train_acc 0.953,

Test Loss 0.500988578424, Train_acc

Test Loss 0.49926232174, Train_acc 0.96,

Test Loss 0.497560294345, Train_acc 0.96,

Test Loss 0.496033722535, Train_acc

Test Loss 0.495215365663, Train_acc

Test Loss 0.494167156518, Train_acc

Test Loss 0.492983272299, Train_acc

Test Loss 0.492297751829, Train_acc

Test Loss 0.491771969944, Train_acc

Test Loss 0.491076562554, Train_acc

Test Loss 0.490820756182, Train_acc

Test Loss 0.490575453267, Train_acc

Comparing accuracy

= training loss
testing loss

10

0.9 1

0.8 A

0.7 A

0.6 -

05 -

04 -

03 A

—— training accuracy
testing accuracy

02 A

Regularization

0D 100 200 300 400 500 600 700

Now let’s see what this mysterious weight decay is all about. We begin with a bit of math. When

we add an L2 penalty to the weights we are effectively adding % |w||? to the loss. Hence, every

time we compute the gradient it gets an additional Aw term that is added to g, since this is the

very derivative of the L2 penalty. As a result we end up taking a descent step not in the direction

—ng; but rather in the direction —#(g; + Aw). This effectively shrinks w at each step by 7w,

thus the name weight decay. To make this work in practice we just need to set the weight decay

to something nonzero.

In [9]:

net.collect_params().initialize(mx.init.Xavier(magnitude=2.24), ctx=ctx,
force_reinit=True)
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': ©.01, 'wd': ©.001})

moving_loss = 0.
niter=0

loss_seq_train =
loss_seq_test [
acc_seq_train = [
acc_seq_test = []

]

[
]
]

for e in range(epochs):
for i, (data, label) in enumerate(train_data):
data = data.as_in_context(ctx).reshape((-1,784))
label = label.as_in_context(ctx)
with autograd.record():
output = net(data)
cross_entropy = loss(output, label)
cross_entropy.backward()
trainer.step(data.shape[@])

e e e e e e g

Keep a moving average of the Losses

L e e

niter +=1

moving_loss = .99 * moving_loss + .01 * nd.mean(cross_entropy).asscalar()
est_loss = moving_loss/(1-0.99**niter)

test_accuracy, test_loss = evaluate_accuracy(test_data, net,loss)
train_accuracy, train_loss = evaluate_accuracy(train_data, net, loss)

save them for Later
loss_seq_train.append(train_loss)
loss_seq_test.append(test_loss)
acc_seq_train.append(train_accuracy)
acc_seq_test.append(test_accuracy)

if e % 20 ==
print("Completed epoch %s. Train Loss: %s, Test Loss %s, Train_acc %s, Test acc
p p L -
%s" %
(e+1, train_loss, test_loss, train_accuracy, test_accuracy))

Plotting the Llearning curves
plot_learningcurves(loss_seq_train,loss_seq_test,acc_seq_train,acc_seq_test)

Completed epoch 1. Train Loss: 2.14882323146, Test Loss 2.20137365162, Train_acc 0.251,
Test_acc 0.206

Completed epoch 21. Train Loss: ©.90038299188, Test Loss 1.10326142609, Train_acc 0.828,
Test_acc 0.728

Completed epoch 41. Train Loss: 0.656786840409, Test Loss ©0.870345477015, Train_acc 0.861,
Test_acc 0.762

Completed epoch 61. Train Loss: 0.548336107284, Test Loss 0.767046701163, Train_acc 0.883,
Test_acc 0.782

Completed epoch 81. Train Loss: 0.496384473518, Test Loss 0.7064377442, Train_acc 0.892,
Test_acc 0.794

Completed epoch 101. Train Loss: 0.44359844178, Test Loss 0.664950948209, Train_acc 0.899,
Test_acc 0.804

Completed epoch 121. Train Loss: 0.414084114134, Test Loss ©0.635051801801, Train_acc

0.908, Test_acc
Completed epoch
0.915, Test_acc
Completed epoch
0.918, Test_acc
Completed epoch
0.922, Test_acc
Completed epoch
0.928, Test_acc
Completed epoch
0.929, Test_acc
Completed epoch
Test_acc 0.832
Completed epoch
0.935, Test_acc
Completed epoch
Test_acc 0.836
Completed epoch
0.941, Test_acc
Completed epoch
Test_acc 0.836
Completed epoch
0.944, Test_acc
Completed epoch
0.944, Test_acc
Completed epoch
0.953, Test_acc
Completed epoch
0.955, Test_acc
Completed epoch
0.956, Test_acc
Completed epoch
Test_acc 0.842
Completed epoch
0.957, Test_acc
Completed epoch
Test_acc 0.842
Completed epoch
Test_acc 0.841
Completed epoch
0.961, Test_acc
Completed epoch
0.962, Test_acc
Completed epoch
0.962, Test_acc
Completed epoch
Test_acc 0.845
Completed epoch
Test_acc 0.845
Completed epoch
0.966, Test_acc
Completed epoch
0.966, Test_acc
Completed epoch
0.966, Test_acc
Completed epoch
0.967, Test_acc

0.813
141. Train
0.822
161. Train
0.828
181. Train
0.829
201. Train
0.832
221. Train
0.831
241. Train

261. Train
0.832
281. Train

301. Train
0.835
321. Train

341. Train
0.836
361. Train
0.838
381. Train
0.841
401. Train
0.84
421. Train
0.841
441. Train

461. Train
0.842
481. Train

501. Train

521. Train
0.842
541. Train
0.843
561. Train
0.845
581. Train

601. Train

621. Train
0.845
641. Train
0.847
661. Train
0.848
681. Train
0.848

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

Loss:

.385088480078,
.367607819848,
.351749705151,
.331399998628,
.321220521815,
.305758283474,
.297194710933,
.285452499054,

.278049795888,

.258510973305,
.253523058258,
.248453027569,
.243487037718,

.235058872961,

.223737638444,
.220507668331,
.215138303582,
.211557823233,
.205731691793,
.202632978559,

.197685314342,

.192665177863,
.184659756254,
.184148575179,

.179120627698,

Test

Test

Test

Test

Test

Test

Test

Test

Test

Test

Test

Test

Test

Test

Test

Test

Test

Test

Test

Test

Test

Loss

Loss

Loss

Loss

Loss

Loss

Loss

Loss

Loss

Loss

Loss

Loss

Loss

Loss

Loss

Loss

Loss

Loss

Loss

Loss

Loss

0.

0.

0.

0.

0.

0.

0.

0.

0.

0

0.

.612390810624,
.594696460292,
.580225821584,
.568705741316,
.558648433536,
.550140928477,

.543482977897,

Train_acc
Train_acc
Train_acc
Train_acc
Train_acc
Train_acc

0.93,

Train_acc

53716141358, Train_acc 0.937,

531760372221,

522905476391,
519650578499,
516450336203,
513755075634,

511168016121,

507475787774,

505692290142,

.504200616851,
.502833517268,
.501563321799,

.500430552289,

Train_acc

.26735914126, Test Loss ©.527073308825, Train_acc 0.942,

Train_acc
Train_acc
Train_acc
Train_acc

Train_acc

.22945627477, Test Loss 0.509243799374, Train_acc 0.957,

Train_acc
Train_acc 0.96,
Train_acc 0.96,
Train_acc

Train_acc

Train_acc

49991202727, Train_acc 0.963,

.19489345653, Test Loss 0.498907541856, Train_acc 0.965,

Test Loss 0.498069874942, Train_acc

Test Loss ©.497514432296, Train_acc

Test Loss 0.496921436861, Train_acc

Test Loss ©.496557332575, Train_acc

Comparing loss functions Comparing accuracy
10

— training loss
testing loss 0.9 -

08 A

107 1
0.7 A

06 4

05 A

04 1

0.3 A

—— training accuracy
testing accuracy

02 A

0 100 200 300 400 500 600 700 D 100 200 300 400 500 600 700
epoch

As we can see, the test accuracy improves a bit. Note that the amount by which it improves
actually depends on the amount of weight decay. We recommend that you try and experiment
with different extents of weight decay. For instance, a larger weight decay (e.g. 0.01) will lead to
inferior performance, one that’s larger still (0.1) will lead to terrible results. This is one of the
reasons why tuning parameters is quite so important in getting good experimental results in
practice.

Next

Learning environments

For whinges or inquiries, open an issue on GitHub.

http://gluon.mxnet.io/chapter02_supervised-learning/environment.html
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Environment

Environment

So far we did not worry very much about where the data came from and how the models that
we build get deployed. Not caring about it can be problematic. Many failed machine learning
deployments can be traced back to this situation. This chapter is meant to help with detecting
such situations early and points out how to mitigate them. Depending on the case this might be
rather simple (ask for the ‘right’ data) or really difficult (implement a reinforcement learning
system).

Covariate Shift

At its heart is a problem that is easy to understand but also equally easy to miss. Consider being
given the challenge of distinguishing cats and dogs. Our training data consists of images of the
following kind:

cat cat dog dog

At test time we are asked to classify the following images:

cat cat dog dog

http://gluon.mxnet.io/index.html

Obviously this is unlikely to work well. The training set consists of photos, while the test set
contains only cartoons. The colors aren’t even accurate. Training on a dataset that looks
substantially different from the test set without some plan for how to adapt to the new domain
is a bad idea. Unfortunately, this is a very common pitfall. Statisticians call this Covariate Shift,
i.e. the situation where the distribution over the covariates (aka training data) is shifted on test
data relative to the training case. Mathematically speaking, we are referring the case where \
(p(x)\) changes but \(p(y|x)\) remains unchanged.

Concept Shift

A related problem is that of concept shift. This is the situation where the the labels change. This
sounds weird - after all, a cat is a cat is a cat. Well, cats maybe but not soft drinks. There is
considerable concept shift throughout the USA, even for such a simple term:

What is your generic term for a sweetened, carbonaled beverage?

Ml by Joribain Hal®, Daparvmisl of Slatsls NC Sule Univieiiy
sl on murvey dais from Bert Vaus, Deparimeni of Linguistics, Unversiy of Cambridgs

If we were to build a machine translation system, the distribution \(p(y|x)\) would be different,
e.g. depending on our location. This problem can be quite tricky to spot. A saving grace is that
quite often the \(p(y|x)\) only shifts gradually (e.g. the click-through rate for NOKIA phone ads).
Before we go into further details, let us discuss a number of situations where covariate and
concept shift are not quite as blatantly obvious.

Examples

Medical Diagnostics

Imagine you want to design some algorithm to detect cancer. You get data of healthy and sick
people; you train your algorithm; it works fine, giving you high accuracy and you conclude that
you're ready for a successful career in medical diagnostics. Not so fast ...

Many things could go wrong. In particular, the distributions that you work with for training and
those in the wild might differ considerably. This happened to an unfortunate startup | had the
opportunity to consult for many years ago. They were developing a blood test for a disease that
affects mainly older men and they’d managed to obtain a fair amount of blood samples from
patients. It is considerably more difficult, though, to obtain blood samples from healthy men
(mainly for ethical reasons). To compensate for that, they asked a large number of students on
campus to donate blood and they performed their test. Then they asked me whether | could
help them build a classifier to detect the disease. | told them that it would be very easy to
distinguish between both datasets with probably near perfect accuracy. After all, the test
subjects differed in age, hormone level, physical activity, diet, alcohol consumption, and many
more factors unrelated to the disease. This was unlikely to be the case with real patients: Their
sampling procedure had caused an extreme case of covariate shift that couldn’t be corrected by
conventional means. In other words, training and test data were so different that nothing useful
could be done and they had wasted significant amounts of money.

Self Driving Cars

A company wanted to build a machine learning system for self-driving cars. One of the key
components is a roadside detector. Since real annotated data is expensive to get, they had the
(smart and questionable) idea to use synthetic data from a game rendering engine as additional
training data. This worked really well on ‘test data’ drawn from the rendering engine. Alas, inside
a real car it was a disaster. As it turned out, the roadside had been rendered with a very
simplistic texture. More importantly, all the roadside had been rendered with the same texture
and the roadside detector learned about this ‘feature’ very quickly.

A similar thing happened to the US Army when they first tried to detect tanks in the forest. They
took aerial photographs of the forest without tanks, then drove the tanks into the forest and
took another set of pictures. The so-trained classifier worked ‘perfectly’. Unfortunately, all it had
learned was to distinguish trees with shadows from trees without shadows - the first set of
pictures was taken in the early morning, the second one at noon.

Nonstationary distributions

A much more subtle situation is where the distribution changes slowly and the model is not
updated adequately. Here are a number of typical cases:

e We train a computational advertising model and then fail to update it frequently (e.g. we
forget to incorporate that an obscure new device called an iPad was just launched).

e We build a spam filter. It works well at detecting all spam that we've seen so far. But then the
spammers wisen up and craft new messages that look quite unlike anything we've seen
before.

e We build a product recommendation system. It works well for the winter. But then it keeps
on recommending Santa hats after Christmas.

More Anecdotes

e We build a classifier for “Not suitable/safe for work” (NSFW) images. To make our life easy,
we scrape a few seedy Subreddits. Unfortunately the accuracy on real life data is lacking (the
pictures posted on Reddit are mostly ‘remarkable’ in some way, e.g. being taken by skilled
photographers, whereas most real NSFW images are fairly unremarkable ...). Quite
unsurprisingly the accuracy is not very high on real data.

e We build a face detector. It works well on all benchmarks. Unfortunately it fails on test data -
the offending examples are close-ups where the face fills the entire image (no such data was
in the training set).

e We build a web search engine for the USA market and want to deploy it in the UK.

In short, there are many cases where training and test distribution \(p(x)\) are different. In some
cases, we get lucky and the models work despite the covariate shift. We now discuss principled
solution strategies. Warning - this will require some math and statistics.

Covariate Shift Correction

Assume that we want to estimate some dependency \(p(y|x)\) for which we have labeled data \
((x_i,y_i)\). Alas, the observations \(x_i\) are drawn from some distribution \(q(x)\) rather than the
‘proper’ distribution \(p(x)\). To make progress, we need to reflect about what exactly is
happening during training: we iterate over training data and associated labels \(\{(x_1, y_1),
\Idots (y_m, y_m)\}\) and update the weight vectors of the model after every minibatch.
Depending on the situation we also apply some penalty to the parameters, e.g. \(L_2\)
regularization. In other words, we want to solve

\[\mathop{\mathrm{minimize}}_w \frac{1}{m} \sum_{i=1}"m I(x_i, y_i, f(x_i)) + \frac{\lambda}{2}
\|w\|_272\]
Statisticians call the first term an empirical average, that is an average computed over the data
drawn from \(p(x) p(y|x)\). If the data is drawn from the ‘wrong’ distribution \(q\), we can correct

for that by using the following simple identity:

\[\mathbf{E}_{x \sim p(x)} [f(x)] = \int f(x) p(x) dx = \int f(x) \frac{p(x)}{q(x)} q(x) dx = \mathbf{E} {x
\sim q(x)} \left[f(x) \frac{p(x)}{q(x)}\right]\]

In other words, we need to re-weight each instance by the ratio of probabilities that it would
have been drawn from the correct distribution \(\beta(x) := p(x)/q(x)\). Alas, we do not know that
ratio, so before we can do anything useful we need to estimate it. Many methods are available,
e.g. some rather fancy operator theoretic ones which try to recalibrate the expectation operator
directly using a minimum-norm or a maximum entropy principle. Note that for any such
approach, we need samples drawn from both distributions - the ‘true’ \(p\), e.g. by access to
training data, and the one used for generating the training set \(q\) (the latter is trivially
available).

In this case there exists a very effective approach that will give almost as good results: logistic
regression. This is all that is needed to compute estimate probability ratios. We learn a classifier
to distinguish between data drawn from \(p(x)\) and data drawn from \(q(x)\). If it is impossible
to distinguish between the two distributions then it means that the associated instances are
equally likely to come from either one of the two distributions. On the other hand, any instances
that can be well discriminated should be significantly over/underweighted accordingly. For
simplicity’s sake assume that we have an equal number of instances from both distributions,
denoted by \(x_i \sim p(x)\) and \(x_i’ \sim q(x)\) respectively. Now denote by \(z_i\) labels which
are 1 for data drawn from \(p\) and -1 for data drawn from \(g\). Then the probability in a mixed
dataset is given by

\[p(z=1|x) = \frac{p(x)}{{p(x)+q(x)} \text{ and hence } \frac{p(z=1|x)H{p(z=-1|x)} = \frac{p(x){a(x)}\]
Hence, if we use a logistic regression approach where \(p(z=1|x)=\frac{1}{1+\exp(-f(x)}\) it

follows (after some simple algebra) that \(\beta(x) = \exp(f(x))\). In summary, we need to solve
two problems: first one to distinguish between data drawn from both distributions, and then a
reweighted minimization problem where we weigh terms by \(\beta\), e.g. via the head
gradients. Here’s a prototypical algorithm for that purpose:

CovariateShiftCorrector(X, Z)
X: Training dataset (without labels)
Z: Test dataset (without labels)

generate training set with {(x_i, -1) ... (z_j, 1)}
train binary classifier using logistic regression to get function f
weigh data using beta_i = exp(f(x_i)) or
beta_i = min(exp(f(x_i)), c)
use weights beta_i for training on X with labels Y

Generative Adversarial Networks use the very idea described above to engineer a data
generator such that it cannot be distinguished from a reference dataset. For this, we use one
network, say \(f\) to distinguish real and fake data and a second network \(g\) that tries to fool
the discriminator \(f\) into accepting fake data as real. We will discuss this in much more detail
later.

Concept Shift Correction

Concept shift is much harder to fix in a principled manner. For instance, in a situation where
suddenly the problem changes from distinguishing cats from dogs to one of distinguishing white
from black animals, it will be unreasonable to assume that we can do much better than just
training from scratch using the new labels. Fortunately, in practice, such extreme shifts almost
never happen. Instead, what usually happens is that the task keeps on changing slowly. To make
things more concrete, here are some examples:

e In computational advertising, new products are launched, old products become less popular.
This means that the distribution over ads and their popularity changes gradually and any
click-through rate predictor needs to change gradually with it.

e Traffic cameras lenses degrade gradually due to environmental wear, affecting image quality
progressively.

e News content changes gradually (i.e. most of the news remains unchanged but new stories
appear).

In such cases, we can use the same approach that we used for training networks to make them
adapt to the change in the data. In other words, we use the existing network weights and simply
perform a few update steps with the new data rather than training from scratch.

A Taxonomy of Learning Problems

Armed with knowledge about how to deal with changes in \(p(x)\) and in \(p(y|x)\), let us
consider a number of problems that we can solve using machine learning.

e Batch Learning. Here we have access to training data and labels \(\{(x_1, y_1), \Idots (x_n,
y_n)\}\), which we use to train a network \(f(x,w)\). Later on, we deploy this network to score
new data \((x,y)\) drawn from the same distribution. This is the default assumption for any of
the problems that we discuss here. For instance, we might train a cat detector based on lots
of pictures of cats and dogs. Once we trained it, we ship it as part of a smart catdoor
computer vision system that lets only cats in. This is then installed in a customer’s home and
is never updated again (barring extreme circumstances).

e Online Learning. Now imagine that the data \((x_i, y_i)\) arrives one sample at a time. More
specifically, assume that we first observe \(x_i\), then we need to come up with an estimate \
(f(x_i,w)\) and only once we've done this, we observe \(y_i\) and with it, we receive a reward
(or incur a loss), given our decision. Many real problems fall into this category. E.g. we need to
predict tomorrow’s stock price, this allows us to trade based on that estimate and at the end
of the day we find out whether our estimate allowed us to make a profit. In other words, we
have the following cycle where we are continuously improving our model given new
observations.

\[\mathrm{model} ~ f_t \longrightarrow \mathrm{data} ~ x_t \longrightarrow \mathrm{estimate}
~ f_t(x_t) \longrightarrow \mathrm{observation} ~ y_t \longrightarrow \mathrm{loss} ~ I(y_t,

f_t(x_t)) \longrightarrow \mathrm{model} ~ f_{t+1}\]

e Bandits. They are a special case of the problem above. While in most learning problems we
have a continuously parametrized function \(f\) where we want to learn its parameters (e.g. a
deep network), in a bandit problem we only have a finite number of arms that we can pull (i.e.
a finite number of actions that we can take). It is not very surprising that for this simpler
problem stronger theoretical guarantees in terms of optimality can be obtained. We list it
mainly since this problem is often (confusingly) treated as if it were a distinct learning setting.

e Control (and nonadversarial Reinforcement Learning). In many cases the environment
remembers what we did. Not necessarily in an adversarial manner but it'll just remember and
the response will depend on what happened before. E.g. a coffee boiler controller will
observe different temperatures depending on whether it was heating the boiler previously.
PID (proportional integral derivative) controller algorithms are a popular choice there.
Likewise, a user’s behavior on a news site will depend on what we showed him previously
(e.g. he will read most news only once). Many such algorithms form a model of the
environment in which they act such as to make their decisions appear less random (i.e. to
reduce variance).

e Reinforcement Learning. In the more general case of an environment with memory, we may
encounter situations where the environment is trying to cooperate with us (cooperative
games, in particular for non-zero-sum games), or others where the environment will try to
win. Chess, Go, Backgammon or StarCraft are some of the cases. Likewise, we might want to
build a good controller for autonomous cars. The other cars are likely to respond to the
autonomous car’s driving style in nontrivial ways, e.g. trying to avoid it, trying to cause an
accident, trying to cooperate with it, etc.

One key distinction between the different situations above is that the same strategy that might
have worked throughout in the case of a stationary environment, might not work throughout
when the environment can adapt. For instance, an arbitrage opportunity discovered by a trader
is likely to disappear once he starts exploiting it. The speed and manner at which the
environment changes determines to a large extent the type of algorithms that we can bring to
bear. For instance, if we know that things may only change slowly, we can force any estimate to
change only slowly, too. If we know that the environment might change instantaneously, but
only very infrequently, we can make allowances for that. These types of knowledge are crucial
for the aspiring data scientist to deal with concept shift, i.e. when the problem that he is trying
to solve changes over time.

For whinges or inquiries, open an issue on GitHub.

http://pidkits.com/alexiakit.html
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Multilayer perceptrons from scratch

Multilayer perceptrons from scratch

Now that we've covered all the preliminaries, extending to deep neural networks is actually quite
easy.

In [1]: from _ future__ import print_function
import mxnet as mx
import numpy as np
from mxnet import nd, autograd
ctx = mx.cpu()

MNIST data (surprise!)

Let’s go ahead and grab our data.

In [2]: num_inputs = 784
num_outputs = 10
batch_size = 64
def transform(data, label):
return data.astype(np.float32)/255, label.astype(np.float32)
train_data = mx.gluon.data.DatalLoader(mx.gluon.data.vision.MNIST(train=True,
transform=transform),
batch_size, shuffle=True)
test_data = mx.gluon.data.DatalLoader(mx.gluon.data.vision.MNIST(train=False,
transform=transform),
batch_size, shuffle=False)

Multilayer perceptrons

Here's where things start to get interesting. Before, we mapped our inputs directly onto our
outputs through a single linear transformation.

http://gluon.mxnet.io/index.html

This model is perfectly adequate when the underlying relationship between our data points and
labels is approximately linear. When our data points and targets are characterized by a more
complex relationship, a linear model will produce results with insufficient accuracy. We can
model a more general class of functions by incorporating one or more hidden layers.

Here, each layer will require it's own set of parameters. To make things simple here, we'll assume
two hidden layers of computation.

In [3]: | ####HHHIHBHHH I
Set some constants so it's easy to modify the network Later
SR e e e
num_hidden = 256
weight scale = .01

SR e e e

Allocate parameters for the first hidden Layer

SR s e e

W1 = nd.random_normal(shape=(num_inputs, num_hidden), scale=weight_scale, ctx=ctx)
bl = nd.random_normal(shape=num_hidden, scale=weight_ scale, ctx=ctx)

SR s e e

Allocate parameters for the second hidden Layer

S e e s

W2 = nd.random_normal(shape=(num_hidden, num_hidden), scale=weight_scale, ctx=ctx)
b2 = nd.random_normal(shape=num_hidden, scale=weight_scale, ctx=ctx)

S e e s

Allocate parameters for the output Layer

SR s e e

W3 = nd.random_normal(shape=(num_hidden, num_outputs), scale=weight_scale, ctx=ctx)
b3 = nd.random_normal(shape=num_outputs, scale=weight_scale, ctx=ctx)

params = [W1, bl, W2, b2, W3, b3]

Again, let’s allocate space for each parameter’s gradients.

In [4]: for param in params:
param.attach_grad()

Activation functions

If we compose a multi-layer network but use only linear operations, then our entire network will
still be a linear function. That’s because $:raw-latex:hat{y} = X :raw-latex: \cdot "W_1 :raw-
latex: cdot W_2 :raw-latex:cdot W_2 = X :raw-latex:cdot W_4 $ for :math:'W_4 = W_1 cdot
W_2 cdot W3. To give our model the capacity to capture nonlinear functions, we'll need to
interleave our linear operations with activation functions. In this case, we'll use the rectified
linear unit (ReLU):

In [5]: def relu(X):
return nd.maximum(X, nd.zeros_like(X))

Softmax output

As with multiclass logistic regression, we'll want the outputs to constitute a valid probability
distribution. We'll use the same softmax activation function on our output to make sure that our
outputs sum to one and are non-negative.

In [6]: def softmax(y_linear):
exp = nd.exp(y_linear-nd.max(y_linear))
partition = nd.nansum(exp, axis=0, exclude=True).reshape((-1, 1))
return exp / partition

The softmax cross-entropy loss function

In the previous example, we calculated our model’s output and then ran this output through the
cross-entropy loss function:

In [7]: def cross_entropy(yhat, y):
return - nd.nansum(y * nd.log(yhat), axis=0, exclude=True)

Mathematically, that’s a perfectly reasonable thing to do. However, computationally, things can
get hairy. We'll revisit the issue at length in a chapter more dedicated to implementation and less
interested in statistical modeling. But we're going to make a change here so we want to give you
the gist of why.

When we calculate the softmax partition function, we take a sum of exponential functions:
2?:1 e“. When we also calculate our numerators as exponential functions, then this can give
rise to some big numbers in our intermediate calculations. The pairing of big numbers and low
precision mathematics tends to make things go crazy. As a result, if we use our naive softmax
implementation, we might get horrific not a number (nan) results printed to screen.

Our salvation is that even though we're computing these exponential functions, we ultimately
plan to take their log in the cross-entropy functions. It turns out that by combining these two
operators softmax and cross_entropy together, we can elude the numerical stability issues that

might otherwise plague us during backpropagation. We'll want to keep the conventional softmax
function handy in case we ever want to evaluate the probabilities output by our model.

But instead of passing softmax probabilities into our loss function - we'll just pass our
yhat_linear and compute the softmax and its log all at once inside the softmax_cross_entropy

loss function simultaneously, which does smart things like the log-sum-exp trick (see on
Wikipedia).

In [8]: def softmax_cross_entropy(yhat_linear, y):
return - nd.nansum(y * nd.log_softmax(yhat_linear), axis=0, exclude=True)

Define the model

Now we're ready to define our model

In [9]: def net(X):
SRR R s e
Compute the first hidden Layer
S s
hl linear = nd.dot(X, W1) + bl
hl = relu(hl_linear)

S s

Compute the second hidden Layer
SRR e s e

h2_linear = nd.dot(hl, W2) + b2

h2 = relu(h2_linear)

SRR e s e

Compute the output Layer.

We will omit the softmax function here
because it will be applied

1in the softmax_cross_entropy Lloss

B

yhat_linear = nd.dot(h2, W3) + b3

return yhat_linear

Optimizer

In [10]: def SGD(params, 1r):
for param in params:

https://en.wikipedia.org/wiki/LogSumExp

param[:] = param - lr * param.grad

Evaluation metric

In [11]: def evaluate_accuracy(data_iterator, net):

numerator = 0.

denominator = 0.

for i, (data, label) in enumerate(data_iterator):
data = data.as_in_context(ctx).reshape((-1, 784))
label = label.as_in_context(ctx)
output = net(data)
predictions = nd.argmax(output, axis=1)
numerator += nd.sum(predictions == label)
denominator += data.shape[0]

return (numerator / denominator).asscalar()

Execute the training loop

In [12]: epochs = 10
learning_rate = .001
smoothing_constant = .01

for e in range(epochs):
for i, (data, label) in enumerate(train_data):
data = data.as_in_context(ctx).reshape((-1, 784))
label = label.as_in_context(ctx)
label_one_hot = nd.one_hot(label, 10)
with autograd.record():
output = net(data)
loss = softmax_cross_entropy(output, label one_hot)
loss.backward()
SGD(params, learning_rate)

L e e
Keep a moving average of the losses
e e e e e e g
curr_loss = nd.mean(loss).asscalar()
moving loss = (curr_loss if ((i == @) and (e == 9))
else (1 - smoothing_constant) * moving_loss + (smoothing_constant)
* curr_loss)

test_accuracy = evaluate_accuracy(test_data, net)

train_accuracy = evaluate_accuracy(train_data, net)

print("Epoch %s. Loss: %s, Train_acc %s, Test_acc %s" %
(e, moving_loss, train_accuracy, test_accuracy))

Epoch @. Loss: 0.455451145229, Train_acc 0.885817, Test_acc 0.8897
Epoch 1. Loss: ©.297250172348, Train_acc 0.921383, Test_acc 0.9205
Epoch 2. Loss: 0.202016335186, Train_acc 0.946467, Test_acc 0.9451
Epoch 3. Loss: 0.151867129294, Train_acc 0.960667, Test_acc 0.9584
Epoch 4. Loss: 0.113816030109, Train_acc 0.9688, Test_acc 0.9637
Epoch 5. Loss: 0.100374131216, Train_acc 0.97185, Test_acc 0.9658
Epoch 6. Loss: ©.0873043180085, Train_acc 0.9779, Test_acc 0.9713
Epoch 7. Loss: 0.0730908748383, Train_acc 0.98085, Test_acc 0.972
Epoch 8. Loss: 0.068088298137, Train_acc 0.984883, Test_acc 0.9735
Epoch 9. Loss: ©.0573755351742, Train_acc ©0.986133, Test_acc 0.9731

Conclusion

Nice! With just two hidden layers containing 256 hidden nodes, respectively, we can achieve
over 95% accuracy on this task.

Next

Multilayer perceptrons with gluon

For whinges or inquiries, open an issue on GitHub.

http://gluon.mxnet.io/chapter03_deep-neural-networks/mlp-gluon.html
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Multilayer perceptrons in giuon

Multilayer perceptrons in giuon

Using gluon, we only need two additional lines of code to transform our logistic regression
model into a multilayer perceptron.

In [1]: from _ future__ import print_function
import mxnet as mx
import numpy as np
from mxnet import nd, autograd
from mxnet import gluon

WEe'll also want to set the compute context for our modeling. Feel free to go ahead and change
this to mx.gpu(0) if you're running on an appropriately endowed machine.

In [2]: ctx = mx.cpu()

The MNIST dataset

In [3]: batch_size = 64
num_inputs = 784
num_outputs = 10
def transform(data, label):
return data.astype(np.float32)/255, label.astype(np.float32)
train_data = mx.gluon.data.DatalLoader(mx.gluon.data.vision.MNIST(train=True,
transform=transform),

batch_size, shuffle=True)
test_data = mx.gluon.data.DatalLoader(mx.gluon.data.vision.MNIST(train=False,
transform=transform),

batch_size, shuffle=False)

Define the model

Here’s the only real difference. We add two lines!

In [4]: num_hidden = 256
net = gluon.nn.Sequential()
with net.name_scope():
net.add(gluon.nn.Dense(num_hidden, activation="relu"))
net.add(gluon.nn.Dense(num_hidden, activation="relu"))
net.add(gluon.nn.Dense(num_outputs))

Parameter initialization

http://gluon.mxnet.io/index.html

In [5]: net.collect params().initialize(mx.init.Xavier(magnitude=2.24), ctx=ctx)

Softmax cross-entropy loss

In [6]: softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss()

Optimizer

In [7]: trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': .1})

Evaluation metric

In [8]: def evaluate_accuracy(data_iterator, net):

acc = mx.metric.Accuracy()

for i, (data, label) in enumerate(data_iterator):
data = data.as_in_context(ctx).reshape((-1, 784))
label = label.as_in_context(ctx)
output = net(data)
predictions = nd.argmax(output, axis=1)
acc.update(preds=predictions, labels=label)

return acc.get()[1]

Training loop

In [9]: epochs = 10
smoothing_constant = .01

for e in range(epochs):
for i, (data, label) in enumerate(train_data):

data = data.as_in_context(ctx).reshape((-1, 784))

label = label.as_in_context(ctx)

with autograd.record():
output = net(data)
loss = softmax_cross_entropy(output, label)
loss.backward()

trainer.step(data.shape[@])

HAHABHBHABHBHAHHBHBRBRBRHHHH
Keep a moving average of the losses
B e e e
curr_loss = nd.mean(loss).asscalar()
moving_loss = (curr_loss if ((i == 0) and (e == 0))
else (1 - smoothing_constant) * moving loss + (smoothing_constant)
* curr_loss)

test_accuracy = evaluate_accuracy(test_data, net)

train_accuracy = evaluate_accuracy(train_data, net)

print("Epoch %s. Loss: %s, Train_acc %s, Test acc %s" %
(e, moving loss, train_accuracy, test_accuracy))

Epoch @. Loss: 0.208460539446, Train_acc 0.948683333333, Test_acc 0.9482
Epoch 1. Loss: 0.137320037022, Train_acc 0.958966666667, Test acc 0.9551
Epoch 2. Loss: 0.0958231976158, Train_acc 0.956716666667, Test_acc 0.9492
Epoch 3. Loss: 0.0725868264617, Train_acc ©.98395, Test_acc 0.9754

Epoch 4. Loss: 0.0646171670057, Train_acc ©.9836, Test_acc 0.9735

Epoch 5. Loss: 0.0469602448996, Train_acc 0.987683333333, Test_acc 0.9766
Epoch 6. Loss: 0.0403166358583, Train_acc 0.99195, Test_acc 0.9783

Epoch 7. Loss: 0.034311452392, Train_acc 0.991866666667, Test_acc 0.977
Epoch 8. Loss: 0.0319601120719, Train_acc 0.994733333333, Test_acc 0.9783
Epoch 9. Loss: 0.0243036117522, Train_acc 0.991466666667, Test_acc 0.977

Conclusion

We showed the much simpler way to define a multilayer perceptrons in giuon . Now let’s take a

look at how to build convolutional neural networks.

Next

Dropout regularization from scratch

For whinges or inquiries, open an issue on GitHub.

http://gluon.mxnet.io/chapter03_deep-neural-networks/mlp-dropout-scratch.html
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Dropout regularization from scratch

If you're reading the tutorials in sequence, then you might remember from Part 2 that machine
learning models can be susceptible to overfitting. To recap: in machine learning, our goal is to
discover general patterns. For example, we might want to learn an association between genetic
markers and the development of dementia in adulthood. Our hope would be to uncover a
pattern that could be applied successfully to assess risk for the entire population.

However, when we train models, we don’t have access to the entire population (or current or
potential humans). Instead, we can access only a small, finite sample. Even in a large hospital
system, we might get hundreds of thousands of medical records. Given such a finite sample size,
it's possible to uncover spurious associations that don’t hold up for unseen data.

Let’s consider an extreme pathological case. Imagine that you want to learn to predict which
people will repay their loans. A lender hires you as a data scientist to investigate the case and
gives you complete files on 100 applicants, of which 5 defaulted on their loans within 3 years.
The files might include hundreds of features including income, occupation, credit score, length of
employment etcetera. Imagine that they additionally give you video footage of their interview
with a lending agent. That might seem like a lot of data!

Now suppose that after generating an enormous set of features, you discover that of the 5
applicants who defaults, all 5 were wearing blue shirts during their interviews, while only 40% of
general population wore blue shirts. There’s a good chance that any model you train would pick
up on this signal and use it as an important part of its learned pattern.

Even if defaulters are no more likely to wear blue shirts, there's a 1% chance that we'll observe
all five defaulters wearing blue shirts. And keeping the sample size low while we have hundreds
or thousands of features, we may observe a large number of spurious correlations. Given trillions
of training examples, these false associations might disappear. But we seldom have that luxury.

The phenomena of fitting our training distribution more closely than the real distribution is
called overfitting, and the techniques used to combat overfitting are called regularization. In the
previous chapter, we introduced one classical approach to regularize statistical models. We
penalized the size (the £? norm) of the weights, coercing them to take smaller values. In
probabilistic terms we might say this imposes a Gaussian prior on the value of the weights. But

http://gluon.mxnet.io/index.html

in more intuitive, functional terms, we can say this encourages the model to speed out its
weights among many features and not to depend to much on a small number of potentially
spurious associations.

Given many more features than examples, linear models can overfit. But when there are many
more examples than features, linear models can usually be counted on not to overfit.
Unfortunately this propensity to generalize well comes at a cost. For every feature, a linear
model has to assign it either positive or negative weight. Linear models can’t take into account
nuanced interactions between features. In more formal texts, you'll see this phenomena
discussed as the bias-variance tradeoff. Linear models have high bias, (they can only represent a
small class of functions), but low variance (they give similar results across different random
samples of the data). [point to more formal discussion of generalization when chapter exists]

Deep neural networks, however, occupy the opposite end of the bias-variance spectrum. Neural
networks are so flexible because they aren’t confined to looking at each feature individually.
Instead, they can learn complex interactions among groups of features. For example, they might
infer that “Nigeria” and “Wester Union” appearing together in an email indicates spam but that
“Nigeria” without “Western Union” does not connote spam.

Even for a small number of features, deep neural networks are capable of overfitting. As one
demonstration of the incredible flexibility of neural networks, researchers showed that neural
networks perfectly classify randomly labeled data. Let’s think about what means. If the labels are
assigned uniformly at random, and there are 10 classes, then no classifier can get better than
10% accuracy on holdout data. Yet even in these situations, when there is no true pattern to be
learned, neural networks can perfectly fit the training labels.

In 2012, Professor Geoffrey Hinton and his students including Nitish Srivastava introduced a

new idea for how to regularize neural network models. The intuition goes something like this.
When a neural network overfits badly to training data, each layer depends too heavily on the
exact configuration of features in the previous layer.

To prevent the neural network from depending too much on any exact activation pathway,
Hinton and Srivastava proposed randomly dropping out (i.e. setting to 0) the hidden nodes in
every layer with probability .5. Given a network with n nodes we are sampling uniformly at
random from the 2" networks in which a subset of the nodes are turned off.

https://arxiv.org/abs/1611.03530

One intuition here is that because the nodes to drop out are chosen randomly on every pass, the
representations in each layer can’t depend on the exact values taken by nodes in the previous
layer.

However, when it comes time to make predictions, we want to use the full representational
power of our model. In other words, we don’t want to drop out activations at test time. One
principled way to justify the use of all nodes simultaneously, despite not training in this fashion,
is that it’'s a form of model averaging. At each layer we average the representations of all of the
2" dropout networks. Because each node has a .5 probability of being on during training, its
vote is scaled by .5 when we use all nodes at prediction time

In [1]: from _ future__ import print_function
import mxnet as mx
import numpy as np
from mxnet import nd, autograd
import numpy as np
mx.random.seed(1)
ctx = mx.cpu()

Let’s go ahead and grab our data.

[SWITCH TO CIFAR TO GET BETTER FEEL FOR REGULARIZATION]

In [2]:

In [3]:

mnist = mx.test_utils.get_mnist()
batch_size = 64
def transform(data, label):
return data.astype(np.float32)/255, label.astype(np.float32)
train_data = mx.gluon.data.DatalLoader(mx.gluon.data.vision.MNIST(train=True,
transform=transform),
batch_size, shuffle=True)
test_data = mx.gluon.data.DatalLoader(mx.gluon.data.vision.MNIST(train=False,
transform=transform),
batch_size, shuffle=False)

W1l = nd.random_normal(shape=(784,256), ctx=ctx) *.01
bl = nd.random_normal(shape=256, ctx=ctx) * .01

W2 = nd.random_normal(shape=(256,128), ctx=ctx) *.01
b2 = nd.random_normal(shape=128, ctx=ctx) * .01

W3 = nd.random_normal(shape=(128,10), ctx=ctx) *.01
b3 = nd.random_normal(shape=10, ctx=ctx) *.01

params = [W1, bl, W2, b2, W3, b3]

Again, let’s allocate space for gradients.

In [4]:

If we compose a multi-layer network but use only linear operations, then our entire network will
still be a linear function. That’s because $:raw-latex:hat{y} = X :raw-latex: \cdot "W_1 :raw-
latex:" cdot W_2 :raw-latex:cdot W_2 = X :raw-latex:cdot W_4 $ for :math:"W_4 = W _1 cdot
W_2 cdot W3. To give our model the capacity to capture nonlinear functions, we'll need to
interleave our linear operations with activation functions. In this case, we'll use the rectified

for param in params:
param.attach_grad()

linear unit (ReLU):

In [5]:

In [6]:

def relu(X):
return nd.maximum(X, ©)

def dropout(X, drop_probability):
keep_probability = 1 - drop_probability

mask = nd.random_uniform(9, 1.0, X.shape, ctx=X.context) < keep_probability

HAR T R T R T

Avoid division by © when scaling
Sl s e

if keep_probability > 0.0:

scale (1/keep_probability)
else:
scale = 0.0

return mask * X * scale

In [7]: A = nd.arange(20).reshape((5,4))
dropout (A, 0.0)

out[7]:
[[. 1. 2. 3.]
[4. 5. 6. 7.]
[8. 9. 10. 11.]

[12. 13. 14. 15.]
[16. 17. 18. 19.]]
<NDArray 5x4 @cpu(0)>

In [8]: dropout(A, 0.5)

Out[8]:

[0. ©. 4. 6.]
[8. 10. 12. 14.]
[o. 18. 20. 22.]
[24. o. ©. 30.]
[32. ©. 0. 38.]]
<NDArray 5x4 @cpu(0)>

In [9]: dropout(A, 1.0)

out[9]:
[[0. 0. 0. 0.]
[6. ©. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]
<NDArray 5x4 @cpu(@)>

In [10]: def softmax(y_linear):
exp = nd.exp(y_linear-nd.max(y_linear))
partition = nd.nansum(exp, axis=0, exclude=True).reshape((-1,1))
return exp / partition

In [11]: def softmax_cross_entropy(yhat_linear, y):
return - nd.nansum(y * nd.log_softmax(yhat_linear), axis=0, exclude=True)

Now we're ready to define our model

In [12]: def net(X, drop_prob=0.0):
S e e e
Compute the first hidden Layer
HAHHHBHBHBHBHBABABABAIH
hl_linear = nd.dot(X, W1) + bl
hl = relu(hl_linear)

hl = dropout(hl, drop_prob)

S s

Compute the second hidden Llayer
SRR R s e e

h2_linear = nd.dot(hl, W2) + b2

h2 = relu(h2_linear)

h2 = dropout(h2, drop_prob)

B

Compute the output Layer.

We will omit the softmax function here
because it will be applied

1in the softmax_cross_entropy Lloss

S s

yhat_linear = nd.dot(h2, W3) + b3

return yhat_linear

In [13]: def SGD(params, 1r):
for param in params:
param[:] = param - lr * param.grad

In [14]: def evaluate_accuracy(data_iterator, net):

numerator = 0.

denominator = 0.

for i, (data, label) in enumerate(data_iterator):
data = data.as_in_context(ctx).reshape((-1,784))
label = label.as_in_context(ctx)
output = net(data)
predictions = nd.argmax(output, axis=1)
numerator += nd.sum(predictions == label)
denominator += data.shape[0]

return (numerator / denominator).asscalar()

In [15]: epochs = 10
moving_loss = 0.
learning_rate = .001

for e in range(epochs):
for i, (data, label) in enumerate(train_data):

data = data.as_in_context(ctx).reshape((-1,784))

label = label.as_in_context(ctx)

label_one_hot = nd.one_hot(label, 10)

with autograd.record():
B e e
Drop out 50% of hidden activations on the forward pass
R e e e e e
output = net(data, drop_prob=.5)
loss = softmax_cross_entropy(output, label one_hot)

loss.backward()

SGD(params, learning_rate)

b e e

Keep a moving average of the Llosses
B e e

if i ==

moving_loss
else:
moving_loss

nd.mean(loss).asscalar()

.99 * moving_loss + .01 * nd.mean(loss).asscalar()

test_accuracy = evaluate_accuracy(test_data, net)

train_accuracy = evaluate_accuracy(train_data, net)

print("Epoch %s. Loss: %s, Train_acc %s, Test_acc %s" % (e, moving_loss,
train_accuracy, test_accuracy))

Epoch @. Loss: 0.737156236043, Train_acc 0.850967, Test_acc ©.8539
Epoch 1. Loss: ©.394209427167, Train_acc 0.92225, Test_acc 0.923
Epoch 2. Loss: 0.296510421107, Train_acc 0.946, Test_acc 0.9452
Epoch 3. Loss: 0.232048722573, Train_acc 0.9563, Test_acc 0.9531
Epoch 4. Loss: ©0.205553142149, Train_acc 0.962967, Test_acc ©.9591
Epoch 5. Loss: ©.178349442085, Train_acc 0.969233, Test_acc 0.9641
Epoch 6. Loss: ©0.175119599567, Train_acc 0.9735, Test_acc 0.967
Epoch 7. Loss: 0.157515936016, Train_acc 0.975067, Test_acc 0.9688
Epoch 8. Loss: 0.14164880119, Train_acc 0.977933, Test_acc 0.9705
Epoch 9. Loss: ©.129475182254, Train_acc 0.9798, Test_acc 0.9729

Nice. With just two hidden layers containing 256 and 128 hidden nodes, respectively, we can
achieve over 95% accuracy on this task.

Dropout regularization with gluon

For whinges or inquiries, open an issue on GitHub.

http://gluon.mxnet.io/chapter03_deep-neural-networks/mlp-dropout-gluon.html
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Dropout regularization with giuon

Dropout regularization with giuon

In the previous chapter, we introduced Dropout regularization, implementing the algorithm from
scratch. As a reminder, Dropout is a regularization technique that zeroes out some fraction of
the nodes during training. Then at test time, we use all of the nodes, but scale down their values,
essentially averaging the various dropped out nets. If you're approaching this chapter out of
sequence, and aren’t sure how Dropout works, it’s best to take a look at the implementation by

hand since giuon will manage the low-level details for us.

Dropout is a special kind of layer because it behaves differently when training and predicting.
We've already seen how gluon can keep track of when to record vs not record the computation

graph. Since this isa gluon implementation chapter, let’s get intro the thick of things by

importing our dependencies and some toy data.

In []:

from _ future__ import print_function
import mxnet as mx

import numpy as np

from mxnet import nd, autograd

from mxnet import gluon

ctx = mx.cpu()

The MNIST dataset

In []: batch_size = 64
num_inputs = 784
num_outputs = 10
def transform(data, label):
return data.astype(np.float32)/255, label.astype(np.float32)
train_data = mx.gluon.data.DatalLoader(mx.gluon.data.vision.MNIST(train=True,
transform=transform),
batch_size, shuffle=True)
test_data = mx.gluon.data.DatalLoader(mx.gluon.data.vision.MNIST(train=False,
transform=transform),
batch_size, shuffle=False)
Define the model

Now we can add Dropout following each of our hidden layers.

In []:

num_hidden = 256
net = gluon.nn.Sequential()
with net.name_scope():

http://gluon.mxnet.io/index.html
http://gluon.mxnet.io/chapter03_deep-neural-networks/mlp-dropout-scratch.html

S R e e e e ey

Adding first hidden Layer

S L s e e
net.add(gluon.nn.Dense(num_hidden, activation="relu"))
S R e e e e ey

Adding dropout with rate .5 to the first hidden Layer
S L s e e
net.add(gluon.nn.Dropout(.5))

HAHHHHHBHBHBHBHBHBHBHBHBHBH

Adding first hidden Layer

S e e ey
net.add(gluon.nn.Dense(num_hidden, activation="relu"))
HAHHHHHBHBHBHBHBHBHBHBHBHBH

Adding dropout with rate .5 to the second hidden Layer
S e e ey
net.add(gluon.nn.Dropout(.5))

S L s e e

Adding the output Layer

HHA A AR AR R AR
net.add(gluon.nn.Dense(num_outputs))

Parameter initialization

Now that we've got an MLP with dropout layers, let’s register an initializer so we can play with
some data.

In []: net.collect params().initialize(mx.init.Xavier(magnitude=2.24), ctx=ctx)

Train mode and predict mode

Let’s grab some data and pass it through the network. To see what effect dropout is having on
our predictions, it’s instructive to pass the same example through our net multiple times.

In []: for x, _ in train_data:
X = X.as_in_context(ctx)
break
print(net(x[0:1]))
print(net(x[0:1]))

Note that we got the exact same answer on both forward passes through the net! That's
because by, default, mxnet assumes that we are in predict mode. We can explicitly invoke this

scope by placing code within a with autograd.predict_mode(): block.

In []: with autograd.predict_mode():
print(net(x[0:1]))
print(net(x[0:1]))

Unless something’s gone horribly wrong, you should see the same result as before. We can also
run the code in train mode. This tells MXNet to run our Blocks as they would run during training.

In []: with autograd.train_mode():
print(net(x[0:1]))
print(net(x[0:1]))

Accessing is_training() status

You might wonder, how precisely do the Blocks determine whether they should run in train
mode or predict mode? Basically, autograd maintains a Boolean state that can be accessed via
autograd.is_training() . By default this falue is raise in the global scope. This way if someone

just wants to make predictions and doesn’t know anything about training models, everything will
just work. When we enter a train_mode() block, we create a scope in which is_training()

returns True .

In []: with autograd.predict_mode():
print(autograd.is_training())

with autograd.train_mode():
print(autograd.is_training())

Integration with autograd.record

When we train neural network models, we nearly always enter record() blocks. The purpose of

record() is to build the computational graph. And the purpose of train is to indicate that we
are training our model. These two are highly correlated but should not be confused. For
example, when we generate adversarial examples (a topic we'll investigate later) we may want to
record, but for the model to behave as in predict mode. On the other hand, sometimes, even
when we're not recording, we still want to evaluate the model’s training behavior.

A problem then arises. Since record() and train_mode() are distinct, how do we avoid having to

declare two scopes every time we train the model?

In []: | ####HHHHHEHEHEHEHEHEHE
Writing this every time could get cumbersome
s e s e
with autograd.record():
with autograd.train_mode():
yhat = net(x)

To make our lives a little easier, record() takes one argument, train_mode , which has a default

value of True. So when we turn on autograd, this by default turns on train_mode
(with autograd.record() is equivalent to with autograd.record(train _mode=True):). To change this

default behavior (as when generating adversarial examples), we can optionally call record via

(with autograd.record(train_mode=False): l

Softmax cross-entropy loss

In []: softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss()

Optimizer

In []: trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': .1})

Evaluation metric

In []: def evaluate_accuracy(data_iterator, net):

acc = mx.metric.Accuracy()

for i, (data, label) in enumerate(data_iterator):
data = data.as_in_context(ctx).reshape((-1, 784))
label = label.as_in_context(ctx)
output = net(data)
predictions = nd.argmax(output, axis=1)
acc.update(preds=predictions, labels=label)

return acc.get()[1]

Training loop

In [17]: epochs = 10
smoothing_constant = .01

for e in range(epochs):
for i, (data, label) in enumerate(train_data):

data = data.as_in_context(ctx).reshape((-1, 784))

label = label.as_in_context(ctx)

with autograd.record():
output = net(data)
loss = softmax_cross_entropy(output, label)
loss.backward()

trainer.step(data.shape[0])

S e e e e
Keep a moving average of the losses
S s s e e
curr_loss = nd.mean(loss).asscalar()
moving_loss = (curr_loss if ((i == @) and (e == 0))
else (1 - smoothing_constant) * moving_loss + (smoothing_constant)
* curr_loss)

test_accuracy = evaluate_accuracy(test_data, net)

train_accuracy = evaluate_accuracy(train_data, net)

print("Epoch %s. Loss: %s, Train_acc %s, Test acc %s" %
(e, moving loss, train_accuracy, test_accuracy))

Epoch 9. Loss: 0.121087726722, Train_acc ©.986133333333, Test_acc 0.9774

Conclusion

Now let’s take a look at how to build convolutional neural networks.

Next

Introduction to "“gluon.Block™ and gluon.nn.sequential <../chapterO3_deep-neural-

networks/plumbing.ipynb>"__

For whinges or inquiries, open an issue on GitHub.

https://github.com/zackchase/mxnet-the-straight-dope

Docs » Plumbing: A look under the hood of gluon

Plumbing: A look under the hood of giuon

In the previous tutorials, we taught you about linear regression and softmax regression. We
explained how these models work in principle, showed you how to implement them from
scratch, and presented a compact implementation using giuon . We explained how to do things

in gluon but didn’t really explain how they work. We relied on nn.sequential , syntactically
convenient shorthand for nn.slock but didn't peek under the hood. And while each notebook

presented a working, trained model, we didn’t show you how to inspect its parameters, save and
load models, etc. In this chapter, we'll take a break from modeling to explore the gory details of

mxnet.gluon .

Load up the data

First, let’s get the preliminaries out of the way.

In [1]:

from __ future__ import print_function
import mxnet as mx

import numpy as np

from mxnet import nd, autograd, gluon
from mxnet.gluon import nn, Block

B e e e

Speficy the context we'll be using
S e R e

ctx = mx.cpu()

SR s e e e ey
Load up our dataset
e e e e e e e e
batch_size = 64
def transform(data, label):
return data.astype(np.float32)/255, label.astype(np.float32)
train_data = mx.gluon.data.DatalLoader(mx.gluon.data.vision.MNIST(train=True,
transform=transform),
batch_size, shuffle=True)
test_data = mx.gluon.data.DatalLoader(mx.gluon.data.vision.MNIST(train=False,
transform=transform),
batch_size, shuffle=False)

Composing networks with giuon.Block

Now you might remember that up until now, we've defined neural networks (for, example a

multilayer perceptron) like this:

In [2]:

netl = gluon.nn.Sequential()

http://gluon.mxnet.io/index.html

with netl.name_scope():
netl.add(gluon.nn.Dense(128, activation="relu"))
netl.add(gluon.nn.Dense(64, activation="relu"))
netl.add(gluon.nn.Dense(10))

This is a convenient shorthand that allows us to express a neural network compactly. When we
want to build simple networks, this saves us a lot of time. But both (i) to understand how
nn.Sequential works, and (ii) to compose more complex architectures, you'll want to understand

gluon.Block .

Let’s take a look at the same model would be expressed with giuon.Block .

In [3]: class MLP(Block):
def __init_ (self, **kwargs):
super(MLP, self). init_ (**kwargs)
with self.name_scope():
self.dense® = nn.Dense(128)
self.densel = nn.Dense(64)
self.dense2 = nn.Dense(19)

def forward(self, x):
X = nd.relu(self.densed(x))
X = nd.relu(self.densel(x))
return self.dense2(x)

Now that we've defined a class for MLPs, we can go ahead and instantiate one:
In [4]: net2 = MLP()

And initialize its parameters:
In [5]: net2.initialize(ctx=ctx)

At this point we can pass data through the network by calling it like a function, just as we have in
the previous tutorials.

In [6]: for data, _ in train_data:
data = data.as_in_context(ctx)
break
net2(data[0:1])

out[6]:
[[©.065750329 ©0.00230681 -0.012871 0.0038013 -0.04263662 ©0.03849379
-0.04130694 ©0.03704495 -0.00853285 ©0.00490336]]
<NDArray 1x10 @cpu(0)>

Calling Biock as a function

Notice that mLp is a class and thus its instantiation, net2 , is an object. If you're a casual Python

user, you might be surprised to see that we can call an object as a function. This is a syntactic
convenience owing to Python’s _ cai1 method. Basically, gluon.Block. call (x) is defined so

that net(data) behaves identically to net.forward(data) . Since passing data through models is so

fundamental and common, you’ll be glad to save these 8 characters many times per day.

So what is a Block ?

In gluon ,a Block is a generic component in a neural network. The entire network is a Block ,
each layer is a Bilock , and we can even have repeating sequences of layers that form an

intermediate Block .

This might sounds confusing, so let’s make it simple. Each neural network has to do the following
things: 1. Store parameters 2. Accept inputs 3. Produce outputs (the forward pass) 4. Take
derivatives (the backward pass)

This can be said for the network as a whole, but it can also be said of each individual layer. A
single fully-connected layer is parameterized by weight matrix and bias vector, produces outputs
from inputs, and can given the derivative of some objective with respect to its outputs, can
calculate the derivative with respect to its inputs.

Fortunately, MXNet can take derivatives automatically. So we only have to define the forward
pass (forward(self, x)). Then, using mxnet.autograd , gluon can handle the backward pass. This is

quite a powerful interface. For example we could define the forward pass for some component
to take multiple inputs, and to combine them in arbitrary ways. We can even compose the
forward() function such that it throws together a different architecture on the fly depending on

some conditions that we could specify in Python. As long as the result is an NDArray, we're in
the clear.

What's the deal with name scope() ?

The next thing you might have noticed is that we added all of our layers inside a
with neti.name_scope(): block. This coerces giuon to give each parameter an appropriate name,

indicating which model it belongs to, e.g. sequentialg dense2 weight . Keeping these names

straight makes our lives much easier once we start writing more complex code where we might
be working with multiple models and saving and loading the parameters of each. It helps us to
make sure that we associate each weight with the right model.

Demystifying nn.sequential

So Sequential is basically a way of throwing together a Block on the fly. Let’s revisit the
sequential version of our multilayer perceptron.

In [7]: netl = gluon.nn.Sequential()
with netl.name_scope():
netl.add(gluon.nn.Dense (128, activation="relu"))
netl.add(gluon.nn.Dense(64, activation="relu"))
netl.add(gluon.nn.Dense(10))

In just 5 lines and 183 characters, we defined a multilayer perceptron with three fully-connected
layers, each parametrized by weight matrix and bias term. We also specified the ReLU activation
function for the hidden layers.

Sequential itself subclasses Bilock and maintains a list of children . Then, every time we call
netl.add(...) our net simply registers a new child. We can actually pass in an arbitrary Block ,

even layers that we write ourselves.

When we call forward ona sequential , it executes the following code:

def forward(self, x):
for block in self._children:
x = block(x)
return x

Basically, it calls each child on the output of the previous one, returning the final output at the
end of the chain.

Shape inference

One of the first things you might notice is that for each layer, we only specified the number of
nodes output, we never specified how many input nodes! You might wonder, how does giuon

know that the first weight matrix should be 784 x 128 and not 42 x 128. In fact it doesn’t. We can
see this by accessing the network’s parameters.

In [8]: print(netl.collect_params())

sequentiall_ (
Parameter sequentiall_dense® weight (shape=(128, 0), dtype=<class 'numpy.float32'>)
Parameter sequentiall_dense@ bias (shape=(128,), dtype=<class 'numpy.float32'>)
Parameter sequentiall_densel_weight (shape=(64, 0), dtype=<class 'numpy.float32'>)
Parameter sequentiall densel bias (shape=(64,), dtype=<class 'numpy.float32'>)
Parameter sequentiall_dense2_weight (shape=(10, ©), dtype=<class 'numpy.float32'>)
Parameter sequentiall_dense2_bias (shape=(10,), dtype=<class 'numpy.float32'>)

Take a look at the shapes of the weight matrices: (128,0), (64, 0), (10, 0). What does it mean to
have zero dimension in a matrix? This is gluon 's way of marking that the shape of these matrices

is not yet known. The shape will be inferred on the fly once the network is provided with some
input.

So when we initialize our parameters, you might wonder, what precisely is happening?
In [9]: netl.collect_params().initialize(mx.init.Xavier(magnitude=2.24), ctx=ctx)

In this situation, gluon is not actually initializing any parameters! Instead, it's making a note of

which initializer to associate with each parameter, even though its shape is not yet known. The
parameters are instantiated and the initializer is called once we provide the network with some
input.

In [10]: netl(data)
print(netl.collect params())

sequentiall_ (
Parameter sequentiall_dense@ weight (shape=(128, 784), dtype=<class 'numpy.float32'>)
Parameter sequentiall dense® bias (shape=(128,), dtype=<class 'numpy.float32'>)
Parameter sequentiall_densel _weight (shape=(64, 128), dtype=<class 'numpy.float32'>)
Parameter sequentiall_densel_bias (shape=(64,), dtype=<class 'numpy.float32'>)
Parameter sequentiall_dense2_weight (shape=(10, 64), dtype=<class 'numpy.float32'>)
Parameter sequentiall dense2 bias (shape=(10,), dtype=<class 'numpy.float32'>)

This shape inference can be extremely useful at times. For example, when working with
convnets, it can be quite a pain to calculate the shape of various hidden layers. It depends on
both the kernel size, the number of filters, the stride, and the precise padding scheme used
which can vary in subtle ways from library to library.

Specifying shape manually

If we want to specify the shape manually, that’s always an option. We accomplish this by using
the in_units argument when adding each layer.

In [11]: net2 = gluon.nn.Sequential()
with net2.name_scope():
net2.add(gluon.nn.Dense (128, in_units=784, activation="relu"))
net2.add(gluon.nn.Dense(64, in_units=128, activation="relu"))
net2.add(gluon.nn.Dense(10, in_units=64))

Note that the parameters from this network can be initialized before we see any real data.

In [12]: net2.collect params().initialize(mx.init.Xavier(magnitude=2.24), ctx=ctx)
print(net2.collect_params())

sequential2_

Parameter
Parameter
Parameter
Parameter
Parameter
Parameter

Next

(
sequential2_dense@_weight (shape=(128, 784), dtype=<class 'numpy.float32'>)
sequential2_dense@_bias (shape=(128,), dtype=<class 'numpy.float32'>)
sequential2_densel_weight (shape=(64, 128), dtype=<class 'numpy.float32'>)
sequential2_densel_bias (shape=(64,), dtype=<class 'numpy.float32'>)
sequential2_dense2_weight (shape=(10, 64), dtype=<class 'numpy.float32'>)
sequential2_dense2_bias (shape=(10,), dtype=<class 'numpy.float32'>)

Writing custom layers with "~ "gluon.Block™ <../chapterO3_deep-neural-networks/custom-

layer.ipynb>"__

For whinges or inquiries, open an issue on GitHub.

https://github.com/zackchase/mxnet-the-straight-dope

gluon

Designing a custom layer with giuon

gluon

In [1]:

gluon

gluon

from __ future__ import print_function
import mxnet as mx

import numpy as np

from mxnet import nd, autograd, gluon
from mxnet.gluon import nn, Block
mx.random.seed(1)

SR e s s

Speficy the context we'll be using
HARBHB AR AR AR AR AT

ctx = mx.cpu()

S e s ey
Load up our dataset
SR e e s s
batch_size = 64
def transform(data, label):
return data.astype(np.float32)/255, label.astype(np.float32)

nn.Sequential()

gluon

train_data = mx.gluon.data.DatalLoader(mx.gluon.data.vision.MNIST(train=True,

http://gluon.mxnet.io/index.html

transform=transform),

batch_size, shuffle=True)
test_data = mx.gluon.data.DatalLoader(mx.gluon.data.vision.MNIST(train=False,
transform=transform),

batch_size, shuffle=False)

Defining a (toy) custom layer

gluon

Block

gluon Block

In [2]: | class CenteredLayer(Block):
def __init_ (self, **kwargs):
super(CenteredLayer, self).__init__ (**kwargs)

def forward(self, x):
return x - nd.mean(x)

In [3]: net = CenteredLayer()
net(nd.array([1,2,3,4,5]))

Out[3]:
[-2. -1. 0. 1. 2.]
<NDArray 5 @cpu(0)>

nn.Sequential()

In [4]: net2 = nn.Sequential()
net2.add(nn.Dense(128))
net2.add(nn.Dense(10))
net2.add(CenteredLayer())

In [5]: net2.collect params().initialize(mx.init.Xavier(magnitude=2.24), ctx=ctx)

In [6]: | for data, _ in train_data:
data = data.as_in_context(ctx)
break
output = net2(data[0:1])
print(output)

[[-9.10226583 ©0.10347994 -0.74226749 ©.39843056 0.76840091 0.27723062
0.01949821 -0.54039323 0.20809576 -0.39020956]]

<NDArray 1x10 @cpu(@)>

In [7]: nd.mean(output)

out[7]:
[-1.49011612e-08]
<NDArray 1 @cpu(0)>
2.68220894e-08 .000000027

Custom layers with parameters

CenteredLayer

Block

Parameters

Parameter
Parameter

Block

CenteredLayer

Block

Parameter

NDArray

Block

gluon

Block

In [8]: | my_param = gluon.Parameter("exciting_parameter_yay", grad_req='write', shape=(5,5))
print(my_param)

Parameter exciting parameter_yay (shape=(5, 5), dtype=<class 'numpy.float32'>)

gluon .attach_grad()
.initialize()

.data()

In [9]: my_param.initialize(mx.init.Xavier(magnitude=2.24), ctx=ctx)
print(my_param.data())

[50735062 -0.65750605 -0.56013602 ©0.46934015 0.1596154]

.65080845 -0.11559016 ©0.31085443 -0.49285054 ©.57047993]
.35613006 ©.29938424 0.61431509 ©0.13020623 ©0.21408975]
.38888294 0.65209502 -0.08793807 -0.03835624 0.63372332]
.42945772 -0.36274379 -0.06317961 -0.58671117 0.2023437]]
<NDArray 5x5 @cpu(0)>

[o
[-o
[o
[-0
[-0
NDA

gluon.Trainer

In [1@]: | # my_param = gluon.Parameter("exciting_parameter_yay", grad_req='write', shape=(5,5))
my param.initialize(mx.init.Xavier(magnitude=2.24), ctx=[mx.gpu(0), mx.gpu(1)])
print(my_param.data(mx.gpu(@)), my_param.data(mx.gpu(1)))

Parameter dictionaries (introducing rarameterbict)

Parameters Block
ParameterDict ParameterDict

Block

In [11]: pd = gluon.ParameterDict(prefix="blockl ")

ParameterDict

pd.get()

In [12]: pd.get("exciting parameter_yay", grad_req='write', shape=(5,5))

Out[12]: Parameter blockl_exciting_parameter_yay (shape=(5, 5), dtype=<class 'numpy.float32'>)

Block

Block

.keys()

In [13]: pd["blockl_exciting_parameter_yay"]

Out[13]: Parameter blockl_exciting parameter_yay (shape=(5, 5), dtype=<class 'numpy.float32'>)

Craft a bespoke fully-connected giuon layer

In [14]: def relu(X):
return nd.maximum(X, ©)

Block

In [15]: class MyDense(Block):
B e
We add arguments to our constructor (__init__)
to indicate the number of input units (" in_units’ ")
and output units (" “units ")
B e
def __init_ (self, units, in_units=0, **kwargs):
super(MyDense, self).__init__ (**kwargs)
with self.name_scope():
self.units = units
self._in_units = in_units
HAI
We add the required parameters to the "~ “Block™ " 's ParameterDict ,
indicating the desired shape
R R
self.weight = self.params.get(
'weight', init=mx.init.Xavier(magnitude=2.24),
shape=(in_units, units))
self.bias = self.params.get('bias', shape=(units,))

HHBHABHABHABHABHH
Now we just have to write the forward pass.

We could rely upong the FullyConnected primitative in NDArray,
but it's better to get our hands dirty and write it out
so you'll know how to compose arbitrary functions
HABHABHABHARHARIH
def forward(self, x):
with x.context:
linear = nd.dot(x, self.weight.data()) + self.bias.data()
activation = relu(linear)
return activation

In [16]: dense = MyDense(20, in_units=10)
dense.collect_params().initialize(ctx=ctx)

In [17]: dense.params
Out[17]: mydense@_ (
Parameter mydense@ weight (shape=(10, 20), dtype=<class 'numpy.float32'>)

Parameter mydense@_bias (shape=(20,), dtype=<class 'numpy.float32'>)
)

In [18]: dense(nd.ones(shape=(2,10)))

Out[18]:

[[o. 0.59868848 0. 1.08994353 0. 0.
0.02280135 0.26122358 0.15244921 0. Q. 1.23705149
0.535007 0. 0. 0.61897928 0.09488954 0.
0.46094614]

[o. 0.59868848 0. 1.08994353 0. 0.

0.02280135 0.26122358 0.15244921 0. Q. 1.23705149
0.535007 0. 0. 0.61897928 0.09488954 0.
0.46094614]]

<NDArray 2x20 @cpu(0)>

Using our layer to build an MLP
MyDense

nn.Sequential()

In [19]: net = gluon.nn.Sequential()
with net.name_scope():
net.add(MyDense (128, in_units=784))
net.add(MyDense (64, in_units=128))
net.add(MyDense (10, in_units=64))

Initialize Parameters

In [20]: net.collect_params().initialize(ctx=ctx)

Instantiate a loss

In [21]: 1loss = gluon.loss.SoftmaxCrossEntropylLoss()

Optimizer

In [22]: trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': .1})

Evaluation Metric

In [23]: metric = mx.metric.Accuracy()

def evaluate_accuracy(data_iterator, net):
numerator = 0.
denominator = 0.

for i, (data, label) in enumerate(data_iterator):
with autograd.record():
data = data.as_in_context(ctx).reshape((-1,784))
label = label.as_in_context(ctx)
label_one_hot = nd.one_hot(label, 10)
output = net(data)

metric.update([label], [output])
return metric.get()[1]

Training loop

In [24]: | epochs = 2 # Low number for testing, set higher when you run!
moving loss = 0.

for e in range(epochs):
for i, (data, label) in enumerate(train_data):

data = data.as_in_context(ctx).reshape((-1,784))

label = label.as_in_context(ctx)

with autograd.record():
output = net(data)
cross_entropy = loss(output, label)
cross_entropy.backward()

trainer.step(data.shape[0])

test_accuracy = evaluate_accuracy(test_data, net)
train_accuracy = evaluate_accuracy(train_data, net)
print("Epoch %s. Train_acc %s, Test_acc %s" % (e, train_accuracy, test_accuracy))

Epoch ©. Train_acc 0.750714285714, Test_acc 0.7489
Epoch 1. Train_acc 0.759571428571, Test_acc ©0.75255

Conclusion

Next

In [25]:

http://gluon.mxnet.io/chapter03_deep-neural-networks/serialization.html
https://github.com/zackchase/mxnet-the-straight-dope

Serialization - saving, loading and checkpointing

gluon

gluon

In [1]: from _ future__ import print_function
import mxnet as mx
from mxnet import nd, autograd
from mxnet import gluon
ctx = mx.gpu()

Saving and loading NDArrays

Pickle

ndarray.save

ndarray.load

In [2]: X = nd.ones((100, 100))
Y = nd.zeros((100, 100))
import os
os.makedirs('checkpoints', exist_ok=True)
filename = "checkpoints/testl.params"
nd.save(filename, [X, Y])

In [3]: A, B = nd.load(filename)
print(A)

http://gluon.mxnet.io/index.html

print(B)

[[1. 1. 1. ..., 1. 1. 1.]
[1. 1. 1. ..., 1. 1. 1.]
[1. 1. 1. ..., 1. 1. 1.]
cees
[1. 1. 1. ..., 1. 1. 1.]
[1. 1. 1. ..., 1. 1. 1.]
[1. 1. 1. ..., 1. 1. 1.]]

<NDArray 100x100 @cpu(0)>

[[0. ©. 0. , 0. 0. 0.]
[0. ©. 0. , 0. 0. 0.]
[0. 0. o. , 0. 0. 0.]
cees
[0. ©. 0. ..., 0. 0. 0.]
[0. 0. ©. ..., 0. 0. 0.]
[0. 0. ©. ..., 0. 0. 0.]1]

<NDArray 100x100 @cpu(0)>

In [4]: wmydict = {"X": X, "Y": Y}
filename = "checkpoints/test2.params"
nd.save(filename, mydict)

In [5]: C = nd.load(filename)

print(C)

{'Y":

[[0. 0. © , 0. 0. 0.]
[0. 0. © , 0. 0. 0.]
[0. 0. © , 0. 0. 0.]
cees
[0. o. o. , 0. 0. 0.]
[0. o. o. , 0. 0. 0.]
[0. ©. 0. ..., 0. 0. 0.]]

<NDArray 100x100 @cpu(0)>, 'X':

([1. 1. 1. , 1. 1. 1.]
[1. 1. 1. , 1. 1. 1.]
[1. 1. 1. , 1. 1. 1.]
cees
[1. 1. 1. ..., 1. 1. 1.]
[1. 1. 1. , 1. 1. 1.]
[1. 1. 1. ..., 1. 1. 1.]1]

<NDArray 100x100 @cpu(0)>}

Saving and loading the parameters of g1uon models

gluon

Parameter

gluon .save_params()

.load_params()

In [6]: num_hidden = 256
num_outputs = 1
net = gluon.nn.Sequential()
with net.name_scope():
net.add(gluon.nn.Dense(num_hidden, activation="relu"))
net.add(gluon.nn.Dense(num_hidden, activation="relu"))
net.add(gluon.nn.Dense(num_outputs))

In [7]: net.collect _params().initialize(mx.init.Normal(sigma=1.), ctx=ctx)
net(nd.ones((1, 100), ctx=ctx))

out[7]:
[[381.35409546]]
<NDArray 1x1 @gpu(0)>

In [8]: | filename = "checkpoints/testnet.params"

net.save_params(filename)

net2 = gluon.nn.Sequential()

with net2.name_scope():
net2.add(gluon.nn.Dense(num_hidden, activation="relu"))
net2.add(gluon.nn.Dense(num_hidden, activation="relu"))
net2.add(gluon.nn.Dense(num_outputs))

net2.load_params(filename, ctx=ctx)

net2(nd.ones((1, 100), ctx=ctx))

Out[8]:

[[381.35409546]]
<NDArray 1x1 @gpu(0)>

Next

http://gluon.mxnet.io/chapter04_convolutional-neural-networks/cnn-scratch.html

https://github.com/zackchase/mxnet-the-straight-dope

Docs » Convolutional neural networks from scratch

Convolutional neural networks from scratch

Now let’s take a look at convolutional neural networks (CNNs), the models people really use for

classifying images.

In [1]:

from __ future__ import print_function
import mxnet as mx

from mxnet import nd, autograd

import numpy as np

ctx = mx.gpu()

mx.random.seed(1)

MNIST data (last one, we promise!)

In [2]:

batch_size = 64
num_inputs 784
num_outputs = 10
def transform(data, label):

return nd.transpose(data.astype(np.float32), (2,0,1))/255, label.astype(np.float32)
train_data = mx.gluon.data.DatalLoader(mx.gluon.data.vision.MNIST(train=True,
transform=transform),

batch_size, shuffle=True)
test_data = mx.gluon.data.DatalLoader(mx.gluon.data.vision.MNIST(train=False,
transform=transform),

batch_size, shuffle=False)

Convolutional neural networks (CNNs)

In the previous example, we connected the nodes of our neural networks in what seems like the

simplest possible way. Every node in each layer was connected to every node in the subsequent

layers.

http://gluon.mxnet.io/index.html
http://gluon.mxnet.io/chapter04_convolutional-neural-networks/5a-mlp-scratch.ipynb

This can require a lot of parameters! If our input were a 256x256 color image (still quite small for
a photograph), and our network had 1,000 nodes in the first hidden layer, then our first weight
matrix would require (256x256x3)x1000 parameters. That's nearly 200 million. Moreover the
hidden layer would ignore all the spatial structure in the input image even though we know the
local structure represents a powerful source of prior knowledge.

Convolutional neural networks incorporate convolutional layers. These layers associate each of
their nodes with a small window, called a receptive field, in the previous layer, instead of
connecting to the full layer. This allows us to first learn local features via transformations that
are applied in the same way for the top right corner as for the bottom left. Then we collect all
this local information to predict global qualities of the image (like whether or not it depicts a
dog).

3

32

=D QOO | imssecredt startor

32

¢s231n http:/cs231n.github.io/assets/cnn/depthcol.jpeg)

In short, there are two new concepts you need to grok here. First, we'll be introducting

convolutional layers. Second, we'll be interleaving them with pooling layers.

Parameters

Each node in convolutional layer is associated with a 3D block (height x width x channel) in the

input tensor. Moreover, the convolutional layer itself has multiple output channels. So the layer

is parameterized by a 4 dimensional weight tensor, commonly called a convolutional kernel.

The output tensor is produced by sliding the kernel across the input image skipping locations

according to a pre-defined stride (but we'll just assume that to be 1 in this tutorial). Let’s initialize

some such kernels from scratch.

In [3]:

HAHHAHHAHHHHHRHRHHHBHBHBH

Set the scale for weight initialization and choose

the number of hidden units in the fully-connected Layer
S e

weight_scale = .01

num_fc = 128

W1l = nd.random_normal(shape=(20, 1, 3,3), scale=weight_scale, ctx=ctx)

bl = nd.random_normal(shape=20, scale=weight_scale, ctx=ctx)

W2 = nd.random_normal(shape=(50, 20, 5, 5), scale=weight_scale, ctx=ctx)

b2 = nd.random_normal(shape=50, scale=weight_scale, ctx=ctx)

W3 = nd.random_normal(shape=(800, num_fc), scale=weight_scale, ctx=ctx)

b3 = nd.random_normal(shape=128, scale=weight_scale, ctx=ctx)

W4 = nd.random_normal(shape=(num_fc, num_outputs), scale=weight_scale, ctx=ctx)
b4 = nd.random_normal(shape=10, scale=weight_scale, ctx=ctx)

params = [W1, bl, W2, b2, W3, b3, W4, b4a]

http://cs231n.github.io/assets/cnn/depthcol.jpeg

And assign space for gradients

In [4]: for param in params:
param.attach_grad()

Convolving with MXNet's NDArrray

To write a convolution when using raw MXNet, we use the function nd.convolution() . This
function takes a few important arguments: inputs (data), a 4D weight matrix (weight), a bias

(bias), the shape of the kernel (kernel), and a number of filters (num_filter).

In [5]: for data, _ in train_data:
data = data.as_in_context(ctx)
break
conv = nd.Convolution(data=data, weight=W1, bias=bl, kernel=(3,3), num_filter=20)
print(conv.shape)

(64, 20, 26, 26)

Note the shape. The number of examples (64) remains unchanged. The number of channels (also
called filters) has increased to 20. And because the (3,3) kernel can only be applied in 26
different heights and widths (without the kernel busting over the image border), our output is
26,26. There are some weird padding tricks we can use when we want the input and output to
have the same height and width dimensions, but we won'’t get into that now.

Average pooling

The other new component of this model is the pooling layer. Pooling gives us a way to
downsample in the spatial dimensions. Early convnets typically used average pooling, but max
pooling tends to give better results.

In [6]: pool = nd.Pooling(data=conv, pool type="max", kernel=(2,2), stride=(2,2))
print(pool.shape)

(64, 20, 13, 13)

Note that the batch and channel components of the shape are unchanged but that the height
and width have been downsampled from (26,26) to (13,13).

Activation function

In [7]: def relu(X):
return nd.maximum(X,nd.zeros_like(X))

Softmax output

In [8]:

def softmax(y_linear):

exp = nd.exp(y_linear-nd.max(y_linear))
partition = nd.sum(exp, axis=0, exclude=True).reshape((-1,1))
return exp / partition

Softmax cross-entropy loss

In [9]:

def softmax_cross_entropy(yhat_linear, y):

return - nd.nansum(y * nd.log_softmax(yhat_linear), axis=0, exclude=True)

Define the model

Now we're ready to define our model

In [10]:

def net(X, debug=False):

HABHABHARH AR AR HABHARHAH
Define the computation of the first convolutional Layer
B R e
hl_conv = nd.Convolution(data=X, weight=W1l, bias=b1l, kernel=(3,3), num_filter=20)
hl activation = relu(hl_conv)
hl = nd.Pooling(data=h1_activation, pool_type="avg", kernel=(2,2), stride=(2,2))
if debug:

print("hl shape: %s" % (np.array(hl.shape)))

SR s e
Define the computation of the second convolutional Layer
G
h2_conv = nd.Convolution(data=hl, weight=W2, bias=b2, kernel=(5,5), num_filter=59)
h2_activation = relu(h2_conv)
h2 = nd.Pooling(data=h2_activation, pool_type="avg", kernel=(2,2), stride=(2,2))
if debug:

print("h2 shape: %s" % (np.array(h2.shape)))

B R e
Flattening h2 so that we can feed it into a fully-connected Layer
HABHABHARHABHABHABHARHAH
h2 = nd.flatten(h2)
if debug:
print("Flat h2 shape: %s" % (np.array(h2.shape)))

HAER R R
Define the computation of the third (fully-connected) Layer
e
h3 linear = nd.dot(h2, W3) + b3
h3 = relu(h3_linear)
if debug:
print("h3 shape: %s" % (np.array(h3.shape)))

SR s e
Define the computation of the output Layer
G
yhat_linear = nd.dot(h3, W4) + b4
if debug:
print("yhat_linear shape: %s" % (np.array(yhat_linear.shape)))

return yhat_linear

Test run

We can now print out the shapes of the activations at each layer by using the debug flag.

In [11]: output = net(data, debug=True)

hl shape: [64 20 13 13]

h2 shape: [64 50 4 4]
Flat h2 shape: [64 800]
h3 shape: [64 128]
yhat_linear shape: [64 10]

Optimizer

In [12]: def SGD(params, 1r):
for param in params:
param[:] = param - lr * param.grad

Evaluation metric

In [13]: def evaluate_accuracy(data_iterator, net):

numerator = 0.

denominator = 0.

for i, (data, label) in enumerate(data_iterator):
data = data.as_in_context(ctx)
label = label.as_in_context(ctx)
label_one_hot = nd.one_hot(label, 10)
output = net(data)
predictions = nd.argmax(output, axis=1)
numerator += nd.sum(predictions == label)
denominator += data.shape[0]

return (numerator / denominator).asscalar()

The training loop

In [14]: epochs = 1
learning_rate = .01
smoothing_constant = .01

for e in range(epochs):
for i, (data, label) in enumerate(train_data):
data = data.as_in_context(ctx)
label = label.as_in_context(ctx)
label one_hot = nd.one_hot(label, num_outputs)
with autograd.record():
output = net(data)
loss = softmax_cross_entropy(output, label one_hot)
loss.backward()
SGD(params, learning_rate)

S s
Keep a moving average of the Losses
S e e e e
curr_loss = nd.mean(loss).asscalar()
moving_loss = (curr_loss if ((i == 0) and (e == 0))
else (1 - smoothing_constant) * moving_loss + (smoothing_constant)
* curr_loss)

test_accuracy = evaluate_accuracy(test_data, net)

train_accuracy = evaluate_accuracy(train_data, net)

print("Epoch %s. Loss: %s, Train_acc %s, Test_acc %s" % (e, moving_loss,
train_accuracy, test_accuracy))

Epoch ©. Loss: 0.140828552357, Train_acc 0.9532, Test_acc 0.9524

Conclusion

Contained in this example are nearly all the important ideas you'll need to start attacking
problems in computer vision. While state-of-the-art vision systems incorporate a few more bells
and whistles, they're all built on this foundation. Believe it or not, if you knew just the content in
this tutorial 5 years ago, you could probably have sold a startup to a Fortune 500 company for
millions of dollars. Fortunately (or unfortunately?), the world has gotten marginally more
sophisticated, so we'll have to come up with some more sophisticated tutorials to follow.

Next

Convolutional neural networks with gluon

For whinges or inquiries, open an issue on GitHub.

http://gluon.mxnet.io/chapter04_convolutional-neural-networks/cnn-gluon.html
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Convolutional Neural Networks in gluon

Convolutional Neural Networks In giuon

Now let’s see how succinctly we can express a convolutional neural network using giuon . You

might be relieved to find out that this too requires hardly any more code than a logistic
regression.

In [1]: from _ future__ import print_function
import mxnet as mx
from mxnet import nd, autograd
from mxnet import gluon
import numpy as np
mx.random.seed(1)

Set the context

In [2]: ctx = mx.gpu()

Grab the MNIST dataset

In [3]: batch_size = 64
num_inputs = 784
num_outputs = 10
def transform(data, label):
return nd.transpose(data.astype(np.float32), (2,0,1))/255, label.astype(np.float32)
train_data = mx.gluon.data.DatalLoader(mx.gluon.data.vision.MNIST(train=True,
transform=transform),
batch_size, shuffle=True)
test_data = mx.gluon.data.DatalLoader(mx.gluon.data.vision.MNIST(train=False,
transform=transform),
batch_size, shuffle=False)

Define a convolutional neural network

Again, a few lines here is all we need in order to change the model. Let’s add a couple of
convolutional layers using gluon.nn .

In [4]: num_fc = 512

net = gluon.nn.Sequential()

with net.name_scope():
net.add(gluon.nn.Conv2D(channels=20, kernel_size=5, activation='relu'))
net.add(gluon.nn.MaxPool2D(pool_size=2, strides=2))
net.add(gluon.nn.Conv2D(channels=50, kernel_size=5, activation='relu'))
net.add(gluon.nn.MaxPool2D(pool_size=2, strides=2))
The Flatten Layer collapses all axis, except the first one, into one axis.
net.add(gluon.nn.Flatten())

http://gluon.mxnet.io/index.html

net.add(gluon.nn.Dense(num_fc, activation="relu"))
net.add(gluon.nn.Dense(num_outputs))

Parameter initialization

In [5]: net.collect params().initialize(mx.init.Xavier(magnitude=2.24), ctx=ctx)

Softmax cross-entropy Loss

In [6]: softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss()

Optimizer

In [7]: trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': .1})

Write evaluation loop to calculate accuracy

In [8]: def evaluate_accuracy(data_iterator, net):

acc = mx.metric.Accuracy()

for i, (data, label) in enumerate(data_iterator):
data = data.as_in_context(ctx)
label = label.as_in_context(ctx)
output = net(data)
predictions = nd.argmax(output, axis=1)
acc.update(preds=predictions, labels=label)

return acc.get()[1]

Training Loop

In [9]: epochs =1
smoothing_constant = .01

for e in range(epochs):
for i, (data, label) in enumerate(train_data):
data = data.as_in_context(ctx)
label = label.as_in_context(ctx)
with autograd.record():
output = net(data)
loss = softmax_cross_entropy(output, label)
loss.backward()
trainer.step(data.shape[0])

S e e e e
Keep a moving average of the losses
S s
curr_loss = nd.mean(loss).asscalar()
moving _loss = (curr_loss if ((i == 0) and (e == 9))
else (1 - smoothing_constant) * moving_loss + smoothing_constant *
curr_loss)

test_accuracy = evaluate_accuracy(test_data, net)
train_accuracy = evaluate_accuracy(train_data, net)

print("Epoch %s. Loss: %s, Train_acc %s, Test_acc %s" % (e, moving_loss,
train_accuracy, test_accuracy))

Epoch ©. Loss: 0.0823292345241, Train_acc 0.974483333333, Test_acc 0.9759

Conclusion

You might notice that by using giuon , we get code that runs much faster whether on CPU or
GPU. That’s largely because giuon can call down to highly optimized layers that have been
written in C++.

Next

Deep convolutional networks (AlexNet)

For whinges or inquiries, open an issue on GitHub.

http://gluon.mxnet.io/chapter04_convolutional-neural-networks/deep-cnns-alexnet.html
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Deep convolutional neural networks

Deep convolutional neural networks

In the previous chapters, you got a sense for how to classify images with convolutional neural
network (CNNs). Specifically, we implemented a CNN with two convolutional layers interleaved
with pooling layers, a singly fully-connected hidden layer, and a softmax output layer. That
architecture loosely resembles a neural network affectionately named LeNet, in honor Yann
LeCun, an early pioneer of convolutional neural networks and the first to reduced them to
practice in 1989 by training them with gradient descent (i.e. backpropagation). At the time, this
was fairly novel idea. A cadre of researchers interested in biologically-inspired learning models
had taken to investigating artificial simulations of neurons as learning models. However, as
remains true to this day, few researchers believed that real brains learn by gradient descent. The
community of neural networks researchers had explored many other learning rules. LeCun
demonstrated that CNNs trained by gradient descent, could get state-of-the-art results on the
task of recognizing hand-written digits. These groundbreaking results put CNNs on the map.

However, in the intervening years, neural networks were superseded by numerous other
methods. Neural networks were considered slow to train, and there wasn’t wide consensus on
whether it was possible to train very deep neural networks from a random initialization of the
weights. Moreover, training networks with many channels, layers, and parameters required
excessive computation relative to the resources available decades ago. While it was possible to
train a LeNet for MNIST digit classification and get good scores, neural networks fell out of favor
on larger, real-world datasets.

Instead researchers precomputed features based on a mixture of elbow grease, knowledge of

optics, and black magic. A typical pattern was this: 1. Grab a cool dataset 2. Preprocess it with
giant bag of predetermined feature functions 3. Dump the representations into a simple linear
model to do the machine learning part.

This was the state of affairs in computer vision up until 2012, just before deep learning began to
change the world of applied machine learning. One of us (Zack) entered graduate school in 2013.
A friend in graduate school summarized the state of affairs thus:

If you spoke to machine learning researchers, they believed that machine learning was both
important and beautiful. Elegant theories proved the properties of various classifiers. The field of
machine learning was thriving, rigorous and eminently useful. However, if you spoke to a
computer vision researcher, you'd hear a very different story. The dirty truth of image
recognition, they’'d tell you, is that the really important aspects of the ML for CV pipeline were

http://gluon.mxnet.io/index.html
http://yann.lecun.com/
http://www.mitpressjournals.org/doi/abs/10.1162/neco.1989.1.4.541

data and features. A slightly cleaner dataset, or a slightly better hand-tuned feature mattered a
lot to the final accuracy. However, the specific choice of classifier was little more than an
afterthought. At the end of the day you could throw your features in a logistic regression model,
a support vector machine, or any other classifier of choice, and they would all perform roughly
the same.

Learning the representations

Another way to cast the state of affairs is that the most important part of the pipeline was the
representation. And up until 2012, this part was done mechanically, based on some hard-fought
intuition. In fact, engineering a new set of feature functions, improving results, and writing up
the method was a prominent genre of paper.

Another group of researchers had other plans. They believed that features themselves ought to
be learned. Moreover they believed that to be reasonably complex, the features ought to be
hierarchically composed. These researchers, including Yann LeCun, Geoff Hinton, Yoshua Bengio,
Andrew Ng, Shun-ichi Amari, and Juergen Schmidhuber believed that by jointly training many
layers of a neural network, they might come to learn hierarchical representations of data. In the
case of an image, the lowest layers might come to detect edges, colors, and textures.

Higher layers might build upon these representations to represent larger structures, like eyes,
noses, blades of grass, and features. Yet higher layers might represent whole objects like people,
airplanes, dogs, or frisbees. And ultimately, before the classification layer, the final hidden state
might represent a compact representation of the image that summarized the contents in a space
where data belonging to different categories would be linearly separable.

Missing ingredient 1: data

Despite the sustained interest of a committed group of researchers in learning deep
representations of visual data, for a long time these ambitions were frustrated. The failures to
make progress owed to a few factors. First, while this wasn’t yet known, supervised deep models
with many representation require large amounts of labeled training data in order to outperform
classical approaches. However, given the limited storage capacity of computers and the
comparatively tighter research budgets in the 1990s and prior, most research relied on tiny
datasets. For example, many credible research papers relied on a small set of corpora hosted by
UCI, many of which contained hundreds or a few thousand images.

This changed in a big way when Fei-Fei Li presented the ImageNet database in 2009. The

ImageNet dataset dwarfed all previous research datasets. It contained one million images: one
thousand each from one thousand distinct classes.

 IMAGENET

This dataset pushed both computer vision and machine learning research into a new regime
where the previous best methods would no longer dominate.

Missing ingredient 2: hardware

Deep Learning has a voracious need for computation. This is one of the main reasons why in the
90s and early 2000s algorithms based on convex optimization were the preferred way of solving
problems. After all, convex algorithms have fast rates of convergence, global minima, and
efficient algorithms can be found.

The game changer was the availability of GPUs. They had long been tuned for graphics
processing in computer games. In particular, they were optimized for high throughput 4x4
matrix-vector products, since these are needed for many computer graphics tasks. Fortunately,
the math required for that is very similar to convolutional layers in deep networks. Furthermore,
around that time, NVIDIA and ATI had begun optimizing GPUs for general compute operations,
going as far as renaming them GPGPU (General Purpose GPUs).

To provide some intuition, consider the cores of a modern microprocessor. Each of the cores is
quite powerful, running at a high clock frequency, it has quite advanced and large caches (up to
several MB of L3). Each core is very good at executing a very wide range of code, with branch
predictors, a deep pipeline and lots of other things that make it great at executing regular
programs. This apparent strength, however, is also its Achilles’ heel: general purpose cores are
very expensive to build. They require lots of chip area, a sophisticated support structure
(memory interfaces, caching logic between cores, high speed interconnects, etc.), and they’re
comparatively bad at any single task. Modern laptops have up to 4 cores, and even high end
servers rarely exceed 64 cores, simply because it is not cost effective.

Compare that with GPUs. They consist of 100-1000 small processing elements (the details differ
somewhat betwen NVIDIA, ATI, ARM and other chip vendors), often grouped into larger groups
(NVIDIA calls them warps). While each core is relatively weak, running at sub-1GHz clock
frequency, it is the total number of such cores that makes GPUs orders of magnitude faster than
CPUs. For instance, NVIDIA's latest Volta generation offers up to 120 TFlops per chip for
specialized instructions (and up to 24 TFlops for more general purpose ones), while floating
point performance of CPUs has not exceeded 1 TFlop to date. The reason for why this is
possible is actually quite simple: firstly, power consumption tends to grow quadratically with
clock frequency. Hence, for the power budget of a CPU core that runs 4x faster (a typical
number) you can use 16 GPU cores at 1/4 the speed, which yields 16 x 1/4 = 4x the
performance. Furthermore GPU cores are much simpler (in fact, for a long time they weren't
even able to execute general purpose code), which makes them more energy efficient. Lastly,
many operations in deep learning require high memory bandwidth. Again, GPUs shine here with
buses that are at least 10x as wide as many CPUs.

Back to 2012. A major breakthrough came when Alex Krizhevsky and Ilya Sutskever
implemented a deep convolutional neural network that could run on GPU hardware. They
realized that the computational bottlenecks in CNNs (convolutions and matrix multiplications)
are all operations that could be parallelized in hardware. Using two NIVIDA GTX 580s with 3GB
of memory (depicted below) they implemented fast convolutions. The code cuda-convnet was
good enough that for several years it was the industry standard and powered the first couple
years of the deep learning boom.

https://code.google.com/archive/p/cuda-convnet/

AlexNet

In 2012, using their cuda-convnet implementation on an eight-layer CNN, Khrizhevsky,
Sutskever and Hinton won the ImageNet challenge on image recognition by a wide margin. Their
model, introduced in this paper, is very similar to the LeNet architecture from 1995.

In the rest of the chapter we're going to implement a similar model to the one designed by them.
Due to memory constraints on the GPU they did some wacky things to make the model fit. For
example, they designed a dual-stream architecture in which half of the nodes live on each GPU.
The two streams, and thus the two GPUs only communicate at certain layers. This limits the
amount of overhead for keeping the two GPUs in sync with each other. Fortunately, distributed
deep learning has advanced a long way in the last few years, so we won’t be needing those
features (except for very unusual architectures). In later sections, we'll go into greater depth on
how you can speed up your networks by training on many GPUs (in AWS you can get up to 16
on a single machine with 12GB each), and how you can train on many machine simultaneously.
As usual, we'll start by importing the same dependencies as in the past gluon tutorials:

In [1]: from _ future__ import print_function
import mxnet as mx
from mxnet import nd, autograd
from mxnet import gluon
import numpy as np
mx.random.seed(1)

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

In [2]: ctx = mx.gpu()

Load up a dataset

Now let’s load up a dataset. This time we’re going to use gluon’s new vision package, and

import the CIFAR dataset. Cifar is a much smaller color dataset, roughly the dimensions of
ImageNet. It contains 50,000 training and 10,000 test images. The images belong in equal
quantities to 10 categories. While this dataset is considerably smaller than the 1M image, 1k
category, 256x256 ImageNet dataset, we'll use it here to demonstrate the model because we
don’t want to assume that you have a license for the ImageNet dataset or a machine that can
store it comfortably. To give you some sense for the proportions of working with ImageNet data,
we'll upsample the images to 224x224 (the size used in the original AlexNet).

In [3]: def transformer(data, label):

data = mx.image.imresize(data, 224, 224)
data = mx.nd.transpose(data, (2,0,1))
data = data.astype(np.float32)

return data, label

In [4]: batch_size = 64
train_data = gluon.data.DatalLoader(
gluon.data.vision.CIFAR1Q('./data', train=True, transform=transformer),
batch_size=batch_size, shuffle=True, last_batch='discard')

test_data = gluon.data.DatalLoader(
gluon.data.vision.CIFAR10('./data', train=False, transform=transformer),
batch_size=batch_size, shuffle=False, last_batch='discard')

Downloading ./data/cifar-10-binary.tar.gz from https://www.cs.toronto.edu/~kriz/cifar-10-
binary.tar.gz...

In [5]: for d, 1 in train_data:
break

In [6]: print(d.shape, l.shape)

(64, 3, 224, 224) (64,)

In [7]: d.dtype

Out[7]: numpy.float32

The AlexNet architecture

This model has some notable features. First, in contrast to the relatively tiny LeNet, AlexNet
contains 8 layers of transformations, five convolutional layers followed by two fully connected
hidden layers and an output layer.

The convolutional kernels in the first convolutional layer are reasonably large at 11 X 11, in the
second they are 5 X 5 and thereafter they are 3 X 3. Moreover, the first, second, and fifth
convolutional layers are each followed by overlapping pooling operations with pool size 3 X 3
and stride (2 X 2).

Following the convolutional layers, the original AlexNet had fully-connected layers with 4096
nodes each. Using gluon.nn.sequential() , we can define the entire AlexNet architecture in just

14 lines of code. Besides the specific architectural choices and the data preparation, we can
recycle all of the code we'd used for LeNet verbatim.

[right now relying on a different data pipeline (the new gluon.vision). Sync this with the other
chapter soon and commit to one data pipeline.]

[add dropout once we are 100% final on API]

In [8]: alex_net = gluon.nn.Sequential()
with alex_net.name_scope():
First convolutional Layer
alex_net.add(gluon.nn.Conv2D(channels=96, kernel size=11, strides=(4,4),
activation="relu'))
alex_net.add(gluon.nn.MaxPool2D(pool_size=3, strides=2))
Second convolutional Layer
alex_net.add(gluon.nn.Conv2D(channels=192, kernel size=5, activation='relu'))
alex_net.add(gluon.nn.MaxPool2D(pool_size=3, strides=(2,2)))
Third convolutional Layer
alex_net.add(gluon.nn.Conv2D(channels=384, kernel_size=3, activation='relu'))
Fourth convolutional Layer
alex_net.add(gluon.nn.Conv2D(channels=384, kernel_size=3, activation='relu'))
Fifth convolutional Layer
alex_net.add(gluon.nn.Conv2D(channels=256, kernel_size=3, activation='relu'))
alex_net.add(gluon.nn.MaxPool2D(pool size=3, strides=2))
Flatten and apply fullly connected Llayers
alex_net.add(gluon.nn.Flatten())
alex_net.add(gluon.nn.Dense (4096, activation="relu"))
alex_net.add(gluon.nn.Dense(4096, activation="relu"))
alex_net.add(gluon.nn.Dense(10))

Initialize parameters

In [9]: alex_net.collect_params().initialize(mx.init.Xavier(magnitude=2.24), ctx=ctx)

Optimizer

In [10]: trainer = gluon.Trainer(alex_net.collect _params(), 'sgd', {'learning_rate': .001})

Softmax cross-entropy loss

In [11]: softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss()

Evaluation loop

In [12]: def evaluate_accuracy(data_iterator, net):
acc = mx.metric.Accuracy()
for d, 1 in data_iterator:
data = d.as_in_context(ctx)
label = l.as_in_context(ctx)
output = net(data)
predictions = nd.argmax(output, axis=1)
acc.update(preds=predictions, labels=label)
return acc.get()[1]

Training loop

In [13]: | #####IHHIHH I
Only one epoch so tests can run quickly, increase this variable to actually run
S e s e
epochs = 1
smoothing_constant = .01

for e in range(epochs):
for i, (d, 1) in enumerate(train_data):
data = d.as_in_context(ctx)
label = l.as_in_context(ctx)
with autograd.record():
output = alex_net(data)
loss = softmax_cross_entropy(output, label)
loss.backward()
trainer.step(data.shape[@])

S s s
Keep a moving average of the lLosses
B e e
curr_loss = nd.mean(loss).asscalar()
moving_loss = (curr_loss if ((i == ©) and (e == 0))
else (1 - smoothing_constant) * moving_loss + (smoothing_constant)
* curr_loss)

test_accuracy = evaluate_accuracy(test_data, alex_net)

train_accuracy = evaluate_accuracy(train_data, alex_net)

print("Epoch %s. Loss: %s, Train_acc %s, Test_acc %s" % (e, moving_loss,
train_accuracy, test_accuracy))

Epoch ©. Loss: 1.83321327117, Train_acc 0.359094910371, Test_acc 0.347956730769

Next

Very deep convolutional neural nets with repeating blocks

For whinges or inquiries, open an issue on GitHub.

http://gluon.mxnet.io/chapter04_convolutional-neural-networks/very-deep-nets-vgg.html
https://github.com/zackchase/mxnet-the-straight-dope

Very deep networks with repeating elements

VGG

In [1]: from _ future__ import print_function
import mxnet as mx
from mxnet import nd, autograd
from mxnet import gluon
import numpy as np
mx.random.seed(1)

In [2]: | ctx = mx.gpu()

Load up a dataset

In [3]: | batch_size = 64

def transform(data, label):
return nd.transpose(data.astype(np.float32), (2,0,1))/255, label.astype(np.float32)

train_data = mx.gluon.data.DatalLoader(mx.gluon.data.vision.MNIST(train=True,
transform=transform),

batch_size, shuffle=True)
test_data = mx.gluon.data.DatalLoader(mx.gluon.data.vision.MNIST(train=False,
transform=transform),

batch_size, shuffle=False)

The VGG architecture

vgg stack

http://gluon.mxnet.io/index.html

In [4]: from mxnet.gluon import nn

def vgg _block(num_convs, channels):
out = nn.Sequential()
for _ in range(num_convs):
out.add(nn.Conv2D(channels=channels, kernel size=3,
padding=1, activation='relu'))
out.add(nn.MaxPool2D(pool_size=2, strides=2))
return out

def vgg_stack(architecture):
out = nn.Sequential()
for (num_convs, channels) in architecture:
out.add(vgg _block(num_convs, channels))
return out

num_outputs = 10

architecture = ((1,64), (1,128), (2,256), (2,512))

net = nn.Sequential()

with net.name_scope():
net.add(vgg_stack(architecture))
net.add(nn.Flatten())
net.add(nn.Dense(512, activation="relu"))
net.add(nn.Dropout(.5))
net.add(nn.Dense(512, activation="relu"))
net.add(nn.Dropout(.5))
net.add(nn.Dense(num_outputs))

Initialize parameters

In [5]: net.collect_params().initialize(mx.init.Xavier(magnitude=2.24), ctx=ctx)

Optimizer

In [6]: trainer = gluon.Trainer(net.collect params(), 'sgd', {'learning rate': .05})

Softmax cross-entropy loss

In [7]: | softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss()

Evaluation loop

In [8]: | def evaluate_accuracy(data_iterator, net):
acc = mx.metric.Accuracy()
for d, 1 in data_iterator:
data = d.as_in_context(ctx)
label = l.as_in_context(ctx)
output = net(data)
predictions = nd.argmax(output, axis=1)

acc.update(preds=predictions, labels=label)
return acc.get()[1]

Training loop

In [9]: | ####HHIHIHIHHHHHHHHHHH
Only one epoch so tests can run quickly, increase this variable to actually run
S e
epochs = 1
smoothing_constant = .01

for e in range(epochs):
for i, (d, 1) in enumerate(train_data):
data = d.as_in_context(ctx)
label = l.as_in_context(ctx)
with autograd.record():
output = net(data)
loss = softmax_cross_entropy(output, label)
loss.backward()
trainer.step(data.shape[0])

St s s e
Keep a moving average of the losses
S R s
curr_loss = nd.mean(loss).asscalar()
moving_loss = (curr_loss if ((i == @) and (e == 9))
else (1 - smoothing_constant) * moving_loss + smoothing_constant *
curr_loss)

if i > 0 and i % 200 == 0:
print('Batch %d. Loss: %f' % (i, moving_loss))

test_accuracy = evaluate_accuracy(test_data, net)

train_accuracy = evaluate_accuracy(train_data, net)

print("Epoch %s. Loss: %s, Train_acc %s, Test_acc %s" % (e, moving_loss,
train_accuracy, test_accuracy))

Batch 200. Loss: 2.299252
Batch 400. Loss: 2.272448
Batch 600. Loss: 1.222286
Batch 800. Loss: 0.454571
Epoch @. Loss: ©.288249925115, Train_acc 0.939216666667, Test_acc 0.9427

Next

http://gluon.mxnet.io/chapter04_convolutional-neural-networks/cnn-batch-norm-scratch.html
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Batch Normalization from scratch

Batch Normalization from scratch

When you train a linear model, you update the weights in order to optimize some objective. And
for the linear model, the distribution of the inputs stays the same throughout training. So all we
have to worry about is how to map from these well-behaved inputs to some appropriate
outputs. But if we focus on some layer in the middle of a deep neural network, for example the
third, things look a bit different. After each training iteration, we update the weights in all the
layers, including the first and the second. That means that over the course of training, as the
weights for the first two layers are learned, the inputs to the third layer might look dramatically
different than they did at the beginning. For starters, they might take values on a scale orders of
magnitudes different from when we started training. And this shift in feature scale might have
serious implications, say for the ideal learning rate at each time.

To explain, let us consider the Taylor’s expansion for the objective function f with respect to the
updated parameter w, such as f(w — nVf(w)). Coefficients of those higher-order terms with
respect to the learning rate # may be so large in scale (usually due to many layers) that these
terms cannot be ignored. However, the effect of common lower-order optimization algorithms,
such as gradient descent, in iteratively reducing the objective function is based on an important
assumption: all those higher-order terms with respect to the learning rate in the aforementioned
Taylor’s expansion are ignored.

Motivated by this sort of intuition, Sergey loffe and Christian Szegedy proposed Batch
Normalization, a technique that normalizes the mean and variance of each of the features at
every level of representation during training. The technique involves normalization of the
features across the examples in each mini-batch. While competing explanations for the
technique’s effect abound, its success is hard to deny. Empirically it appears to stabilize the
gradient (less exploding or vanishing values) and batch-normalized models appear to overfit less.
In fact, batch-normalized models seldom even use dropout. In this notebooks, we'll explain how
it works.

Import dependencies and grab the MNIST dataset

WEe'll get going by importing the typical packages and grabbing the MNIST data.

In [1]: from _ future__ import print_function
import mxnet as mx
import numpy as np
from mxnet import nd, autograd

http://gluon.mxnet.io/index.html
https://arxiv.org/abs/1502.03167

mx.random.seed(1)
ctx = mx.gpu()

The MNIST dataset

In [2]: batch_size = 64
num_inputs = 784
num_outputs = 10
def transform(data, label):
return nd.transpose(data.astype(np.float32), (2,0,1))/255, label.astype(np.float32)
train_data = mx.gluon.data.DatalLoader(mx.gluon.data.vision.MNIST(train=True,
transform=transform),
batch_size, shuffle=True)
test_data = mx.gluon.data.DatalLoader(mx.gluon.data.vision.MNIST(train=False,
transform=transform),
batch_size, shuffle=False)

Batch Normalization layer

The layer, unlike Dropout, is usually used before the activation layer (according to the authors’
original paper), instead of after activation layer.

The basic idea is doing the normalization then applying a linear scale and shift to the mini-batch:

For input mini-batch B = {x;__,,}, we want to learn the parameter y and /. The output of the

layer is {y; = BN, g(x;)}, where:

1 m
HUB < E le'
1=

1 m
op . ;(Xi — up)’
=

A Xi —HUB

Xj & ————
0'2+€
B

Vi —y+p= BN, 4(x;)

e formulas taken from loffe, Sergey, and Christian Szegedy. “Batch normalization: Accelerating
deep network training by reducing internal covariate shift.” International Conference on
Machine Learning. 2015.

With gluon, this is all actually implemented for us, but we'll do it this one time by ourselves,
using the formulas from the original paper so you know how it works, and perhaps you can
improve upon it!

Pay attention that, when it comes to (2D) CNN, we normalize batch size * height * width Over
each channel. So that gamma and beta have the lengths the same as channel_count . In our
implementation, we need to manually reshape gamnma and beta so that they could (be

automatically broadcast and) multipy the matrices in the desired way.

In [3]: def pure_batch_norm(X, gamma, beta, eps = le-5):
if len(X.shape) not in (2, 4):
raise ValueError('only supports dense or 2dconv')

dense
if len(X.shape) == 2:
mini-batch mean
mean = nd.mean(X, axis=0)
mini-batch variance
variance = nd.mean((X - mean) ** 2, axis=0)
normalize
X_hat = (X - mean) * 1.0 / nd.sqrt(variance + eps)
scale and shift
out = gamma * X_hat + beta

2d conv
elif len(X.shape) == 4:
extract the dimensions
N, C, H, W = X.shape
mini-batch mean
mean = nd.mean(X, axis=(9, 2, 3))
mini-batch variance
variance = nd.mean((X - mean.reshape((1, C, 1, 1))) ** 2, axis=(0, 2, 3))
normalize
X_hat = (X - mean.reshape((1, C, 1, 1))) * 1.0 / nd.sqrt(variance.reshape((1, C,
1, 1)) + eps)
scale and shift
out = gamma.reshape((1, C, 1, 1)) * X _hat + beta.reshape((1, C, 1, 1))

return out

Let’s do some sanity checks. We expect each column of the input matrix to be normalized.

In [4]: A = nd.array([1,7,5,4,6,10], ctx=ctx).reshape((3,2))
A

Out[4]:

([1.
[5. 4.]
[6. 10.]1]
<NDArray 3x2 @gpu(0)>

In [5]: pure_batch_norm(A,
gamma = nd.array([1,1], ctx=ctx),
beta=nd.array([0,0], ctx=ctx))

Out[5]:
[[-1.38872862 ©.]
[©.46290955 -1.22474384]
[©.9258191 1.22474384]]
<NDArray 3x2 @gpu(0)>
In [6]: ga = nd.array([1,1], ctx=ctx)

o
(0]
nn

nd.array([0,0], ctx=ctx)

= nd.array([1,6,5,7,4,3,2,5,6,3,2,4,5,3,2,5,6], ctx=ctx).reshape((2,2,2,2))

—
—
—
—

Jany

o)}
—

—
—
»

o .
w
—

([6. 3.]
[2. 4.]]

[[5. 3

[2. 5101
<NDArray 2x2x2x2 @gpu(0)>

In [7]: pure_batch_norm(B, ga, be)

out[7]:
[[[[-1.63784397 ©.88191599]
[©.37796399 1.38586795]]

[.30779248 -0.51298743]

[o
[-1.33376741 1.12857234]]]

[[[©.88191599 -0.62993997]

[o
[-1.13389194 -0.12598799]]

[[1.12857234 -0.51298743]
[-1.33376741 1.12857234]]]]
<NDArray 2x2x2x2 @gpu(0)>

Our tests seem to support that we've done everything correctly. Note that for batch
normalization, implementing backward pass is a little bit tricky. Fortunately, you won't have to
worry about that here, because the MXNet’s autograd package can handle differentiation for us

automatically.

Besides that, in the testing process, we want to use the mean and variance of the complete
dataset, instead of those of mini batches. In the implementation, we use moving statistics as a
trade off, because we don’t want to or don’t have the ability to compute the statistics of the
complete dataset (in the second loop).

Then here comes another concern: we need to maintain the moving statistics along with
multiple runs of the BN. It's an engineering issue rather than a deep/machine learning issue. On
the one hand, the moving statistics are similar to gamma and beta ; on the other hand, they are

not updated by the gradient backwards. In this quick-and-dirty implementation, we use the
global dictionary variables to store the statistics, in which each key is the name of the layer
(scope_name), and the value is the statistics. (Attention: always be very careful if you have to use

global variables!) Moreover, we have another parameter is training to indicate whether we are

doing training or testing.

Now we are ready to define our complete batch_norm() :

In [8]:

def batch_norm(X,

gamma,

beta,

momentum = 0.9,

eps = le-5,

scope_name = ',

is_training = True,

debug = False):
compute the batch norm
global _BN_MOVING_MEANS, _BN_MOVING_VARS

SR e e
the usual batch norm transformation
s e e

if len(X.shape) not in (2, 4):
raise ValueError('the input data shape should be one of:\n' +
'dense: (batch size, # of features)\n' +
'2d conv: (batch size, # of features, height, width)"’

)

dense
if len(X.shape) == 2:
mini-batch mean
mean = nd.mean(X, axis=0)
mini-batch variance
variance = nd.mean((X - mean) ** 2, axis=0)
normalize
if is_training:
while training, we normalize the data using its mean and variance
X_hat = (X - mean) * 1.0 / nd.sqrt(variance + eps)
else:
while testing, we normalize the data using the pre-computed mean and

variance

X_hat = (X - _BN_MOVING_MEANS[scope_name]) *1.0 /

nd.sqrt(_BN_MOVING_VARS[scope_name] + eps)

scale and shift
out = gamma * X_hat + beta

2d conv
elif len(X.shape) == 4:
extract the dimensions
N, C, H, W = X.shape
mini-batch mean
mean = nd.mean(X, axis=(0,2,3))
mini-batch variance
variance = nd.mean((X - mean.reshape((1, C, 1, 1))) ** 2, axis=(0, 2, 3))
normalize
X_hat = (X - mean.reshape((1, C, 1, 1))) * 1.0 / nd.sqgrt(variance.reshape((1, C,

1, 1)) + eps)

if is_training:
while training, we normalize the data using its mean and variance
X_hat = (X - mean.reshape((1, C, 1, 1))) * 1.0 / nd.sqrt(variance.reshape((1,

C, 1, 1)) + eps)

else:
while testing, we normalize the data using the pre-computed mean and

variance

X_hat = (X - _BN_MOVING_MEANS[scope_name].reshape((1, C, 1, 1))) * 1.0 \
/ nd.sqrt(_BN_MOVING_VARS[scope_name].reshape((1, C, 1, 1)) + eps)
scale and shift
out = gamma.reshape((1, C, 1, 1)) * X hat + beta.reshape((1, C, 1, 1))

S s s s
to kReep the moving statistics
R e e

init the attributes
try: # to access them
_BN_MOVING_MEANS, _BN_MOVING_VARS
except: # error, create them
_BN_MOVING_MEANS, _BN_MOVING_VARS = {}, {}

store the moving statistics by their scope_names, inplace
if scope_name not in _BN_MOVING_MEANS:
_BN_MOVING_MEANS[scope_name] = mean
else:
_BN_MOVING_MEANS[scope_name] = _BN_MOVING_MEANS[scope_name] * momentum + mean *
(1.0 - momentum)
if scope_name not in _BN_MOVING_VARS:
_BN_MOVING_VARS[scope_name] = variance
else:
_BN_MOVING_VARS[scope_name] = _BN_MOVING_VARS[scope_name] * momentum + variance *
(1.0 - momentum)

R e e
debug info
S s s s
if debug:
print('== info start ==')
print('scope_name = {}'.format(scope_name))
print('mean = {}'.format(mean))
print('var = {}'.format(variance))
print('_BN_MOVING_MEANS = {}'.format(_BN_MOVING_MEANS[scope_name]))
print('_BN_MOVING_VARS = {}'.format(_BN_MOVING_VARS[scope_name]))
print('output = {}'.format(out))
print('== info end ==")

HAHBHHHAAR BB R A AR B BBRRRAH
return

BB AR R RS SHR AR
return out

Parameters and gradients

In [9]: | #H##HHIHHIHHH I
Set the scale for weight initialization and choose
the number of hidden units in the fully-connected Layer
S e
weight_scale = .01
num_fc = 128

W1
bl

nd.random_normal(shape=(20, 1, 3,3), scale=weight_scale, ctx=ctx)
nd.random_normal(shape=20, scale=weight_scale, ctx=ctx)

gammal = nd.random_normal(shape=20, loc=1, scale=weight_scale, ctx=ctx)
betal = nd.random_normal(shape=20, scale=weight_scale, ctx=ctx)

W2
b2

nd.random_normal(shape=(50, 20, 5, 5), scale=weight_scale, ctx=ctx)
nd.random_normal(shape=50, scale=weight_scale, ctx=ctx)

gamma2 = nd.random_normal(shape=50, loc=1, scale=weight_scale, ctx=ctx)
beta2 = nd.random_normal(shape=50, scale=weight_scale, ctx=ctx)

W3
b3

nd.random_normal(shape=(800, num_fc), scale=weight_scale, ctx=ctx)
nd.random_normal(shape=num_fc, scale=weight_scale, ctx=ctx)

gamma3 = nd.random_normal(shape=num_fc, loc=1, scale=weight_scale, ctx=ctx)
beta3 = nd.random_normal(shape=num_fc, scale=weight_scale, ctx=ctx)

W4
b4

nd.random_normal(shape=(num_fc, num_outputs), scale=weight_scale, ctx=ctx)
nd.random_normal(shape=10, scale=weight_scale, ctx=ctx)

params = [W1, bl, gammal, betal, W2, b2, gamma2, beta2, W3, b3, gamma3, beta3, W4, b4]

In [1@0]: for param in params:
param.attach_grad()

Activation functions

In [11]:

def relu(X):

return nd.maximum(X, ©)

Softmax output

In [12]:

def softmax(y_linear):

exp = nd.exp(y_linear-nd.max(y_linear))
partition = nd.nansum(exp, axis=0, exclude=True).reshape((-1,1))
return exp / partition

The softmax cross-entropy loss function

In [13]:

def softmax_cross_entropy(yhat_linear, y):

return - nd.nansum(y * nd.log_softmax(yhat_linear), axis=0, exclude=True)

Define the model

We insert the BN layer right after each linear layer.

In [14]:

def net(X, is_training = True, debug=False):

HAHHHBHBHBHBHBAB AR AR

Define the computation of the first convolutional Layer
L e e e

hl_conv = nd.Convolution(data=X, weight=W1l, bias=bl, kernel=(3,3), num_filter=20)
hl_normed = batch_norm(hl_conv, gammal, betal, scope_name='bnl',

is_training=is_training)

hl_activation = relu(hl_normed)
hl = nd.Pooling(data=h1_activation, pool_type="avg", kernel=(2,2), stride=(2,2))
if debug:

print("hl shape: %s" % (np.array(hl.shape)))

R s e e

Define the computation of the second convolutional Layer
HHBHABH AR ABHABHABHAB A

h2_conv = nd.Convolution(data=hl, weight=W2, bias=b2, kernel=(5,5), num_filter=50)
h2_normed = batch_norm(h2_conv, gamma2, beta2, scope_name='bn2',

is_training=is_training)

h2_activation = relu(h2_normed)
h2 = nd.Pooling(data=h2_activation, pool type="avg", kernel=(2,2), stride=(2,2))
if debug:

print("h2 shape: %s" % (np.array(h2.shape)))

L e e e
Flattening h2 so that we can feed it into a fully-connected Llayer
HAHHHBHBHBHBHBABABABARAH
h2 = nd.flatten(h2)
if debug:
print("Flat h2 shape: %s" % (np.array(h2.shape)))

S s e e

Define the computation of the third (fully-connected) Layer
R R s e e

h3_linear = nd.dot(h2, W3) + b3

h3_normed = batch_norm(h3_linear, gamma3, beta3, scope_name='bn3',

is_training=is_training)

h3 = relu(h3_normed)
if debug:
print("h3 shape: %s" % (np.array(h3.shape)))

R R R s e e
Define the computation of the output Layer
G
yhat_linear = nd.dot(h3, W4) + b4
if debug:
print("yhat_linear shape: %s" % (np.array(yhat_linear.shape)))

return yhat_linear

Test run

Can data be passed into the net() ?

In [15]: for data, _ in train_data:
data = data.as_in_context(ctx)
break

In [16]: output = net(data, is_training=True, debug=True)

hl shape: [64 20 13 13]

h2 shape: [64 50 4 4]
Flat h2 shape: [64 800]
h3 shape: [64 128]
yhat_linear shape: [64 10]

Optimizer

In [17]: def SGD(params, lr):
for param in params:
param[:] = param - lr * param.grad

Evaluation metric

In [18]: def evaluate_accuracy(data_iterator, net):

numerator = 0.

denominator = 0.

for i, (data, label) in enumerate(data_iterator):
data = data.as_in_context(ctx)
label = label.as_in_context(ctx)
label one_hot = nd.one_hot(label, 10)
output = net(data, is_training=False) # attention here!
predictions = nd.argmax(output, axis=1)
numerator += nd.sum(predictions == label)
denominator += data.shape[0]

return (numerator / denominator).asscalar()

Execute the training loop

Note: you may want to use a gpu to run the code below. (And remember to set the
ctx = mx.gpu() accordingly in the very beginning of this article.)

In [19]: epochs = 1
moving_loss = 0.
learning_rate = .001

for e in range(epochs):

for i, (data, label) in enumerate(train_data):
data = data.as_in_context(ctx)
label = label.as_in_context(ctx)
label_one_hot = nd.one_hot(label, num_outputs)
with autograd.record():
we are in training process,
so we normalize the data using batch mean and variance
output = net(data, is_training=True)
loss = softmax_cross_entropy(output, label one_hot)
loss.backward()
SGD(params, learning rate)

b R e
Keep a moving average of the Losses
L e e
if i ==

moving loss = nd.mean(loss).asscalar()
else:

moving loss

.99 * moving_loss + .01 * nd.mean(loss).asscalar()
test_accuracy = evaluate_accuracy(test_data, net)
train_accuracy = evaluate_accuracy(train_data, net)
print("Epoch %s. Loss: %s, Train_acc %s, Test_acc %s" % (e, moving_loss,
train_accuracy, test_accuracy))

Epoch @. Loss: 0.0563528287594, Train_acc ©.989017, Test_acc 0.9874

Next

Batch normalization with gluon

For whinges or inquiries, open an issue on GitHub.

http://gluon.mxnet.io/chapter04_convolutional-neural-networks/cnn-batch-norm-gluon.html
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Batch Normalization in gluon

Batch Normalization in gluon

In the preceding section, we implemented batch normalization ourselves using NDArray and
autograd. As with most commonly used neural network layers, Gluon has batch normalization
predefined, so this section is going to be straightforward.

In [1]: from _ future__ import print_function
import mxnet as mx
from mxnet import nd, autograd
from mxnet import gluon
import numpy as np
mx.random.seed(1)
ctx = mx.cpu()

The MNIST dataset

In [2]: batch_size = 64
num_inputs = 784
num_outputs = 10
def transform(data, label):
return nd.transpose(data.astype(np.float32), (2,0,1))/255, label.astype(np.float32)
train_data = mx.gluon.data.DatalLoader(mx.gluon.data.vision.MNIST(train=True,
transform=transform),

batch_size, shuffle=True)
test_data = mx.gluon.data.DatalLoader(mx.gluon.data.vision.MNIST(train=False,
transform=transform),

batch_size, shuffle=False)

Define a CNN with Batch Normalization

To add batchnormalization to a giuon model defined with Sequential, we only need to add a few

lines. Specifically, we just insert Batchnorm layers before the applying the ReLU activations.

In [3]: num_fc = 512
net = gluon.nn.Sequential()
with net.name_scope():
net.add(gluon.nn.Conv2D(channels=20, kernel_size=5))
net.add(gluon.nn.BatchNorm(axis=1, center=True, scale=True))
net.add(gluon.nn.Activation(activation="relu'))
net.add(gluon.nn.MaxPool2D(pool_size=2, strides=2))

net.add(gluon.nn.Conv2D(channels=50, kernel_size=5))
net.add(gluon.nn.BatchNorm(axis=1, center=True, scale=True))
net.add(gluon.nn.Activation(activation="relu"))
net.add(gluon.nn.MaxPool2D(pool_size=2, strides=2))

The Flatten Layer collapses all axis, except the first one, into one axis.
net.add(gluon.nn.Flatten())

http://gluon.mxnet.io/index.html
http://gluon.mxnet.io/chapter04_convolutional-neural-networks/cnn-batch-norm-scratch.html

net.add(gluon.nn.Dense(num_fc))
net.add(gluon.nn.BatchNorm(axis=1, center=True, scale=True))
net.add(gluon.nn.Activation(activation="relu'))

net.add(gluon.nn.Dense(num_outputs))

Parameter initialization

In [4]: net.collect_params().initialize(mx.init.Xavier(magnitude=2.24), ctx=ctx)

Softmax cross-entropy Loss

In [5]: softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropylLoss()

Optimizer

In [6]: trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning rate': .1})

Write evaluation loop to calculate accuracy

In [7]: def evaluate_accuracy(data_iterator, net):

acc = mx.metric.Accuracy()

for i, (data, label) in enumerate(data_iterator):
data = data.as_in_context(ctx)
label = label.as_in_context(ctx)
output = net(data)
predictions = nd.argmax(output, axis=1)
acc.update(preds=predictions, labels=label)

return acc.get()[1]

Training Loop

In [8]: epochs =1
smoothing_constant = .01

for e in range(epochs):
for i, (data, label) in enumerate(train_data):
data = data.as_in_context(ctx)
label = label.as_in_context(ctx)
with autograd.record():
output = net(data)
loss = softmax_cross_entropy(output, label)
loss.backward()
trainer.step(data.shape[0])

B e e e
Keep a moving average of the losses
e e e
curr_loss = nd.mean(loss).asscalar()
moving_loss = (curr_loss if ((i == @) and (e == 0))
else (1 - smoothing constant) * moving_loss + (smoothing_constant)
* curr_loss)

test_accuracy = evaluate_accuracy(test_data, net)

train_accuracy = evaluate_accuracy(train_data, net)

print("Epoch %s. Loss: %s, Train_acc %s, Test_acc %s" % (e, moving_loss,
train_accuracy, test_accuracy))

Epoch @. Loss: 0.0453136331317, Train_acc 0.976166666667, Test_acc 0.973

Next

Introduction to recurrent neural networks

For whinges or inquiries, open an issue on GitHub.

http://gluon.mxnet.io/chapter05_recurrent-neural-networks/simple-rnn.html
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Recurrent Neural Networks (RNNs) for Language Modeling

Recurrent Neural Networks (RNNs) for Language
Modeling
In previous tutorials, we worked with feedforward neural networks. They're called feedforward

networks because each layer feeds into the next layer in a chain connecting the inputs to the
outputs.

At each iteration 7, we feed in a new example X;, by setting the values of the input nodes
(orange). We then feed the activation forward by successively calculating the activations of each
higher layer in the network. Finally, we read the outputs from the topmost layer.

So when we feed the next example x,, 1, we overwrite all of the previous activations. If
consecutive inputs to our network have no special relationship to each other (say, images
uploaded by unrelated users), then this is perfectly acceptable behavior. But what if our inputs
exhibit a sequential relationship?

http://gluon.mxnet.io/index.html

Say for example that you want to predict the next character in a string of text. We might decide
to feed each character into the neural network with the goal of predicting the succeeding

character.

[i L m | (e [|
In the above example, the neural network forgets the previous context every time you feed a
new input. How is the neural network supposed to know that “e” is followed by a space? It's hard

to see why that should be so probable if you didn’t know that the “e” was the final letter in the
word “Time”.

Recurrent neural networks provide a slick way to incorporate sequential structure. At each time
step ¢, each hidden layer /; (typically) will receive input from both the current input x; and from
that same hidden layer at the previous time step /;_4

Now, when our net is trying to predict what comes after the “e” in time, it has access to its
previous beliefs, and by extension, the entire history of inputs. Zooming back in to see how the
nodes in a basic RNN are connected, you'll see that each node in the hidden layer is connected
to each node at the hidden layer at the next time step:

Even though the neural network contains loops (the hidden layer is connected to itself), because
this connection spans a time step our network is still technically a feedforward network. Thus
we can still train by backpropagration just as we normally would with an MLP. Typically the loss
function will be an average of the losses at each time step.

In this tutorial, we're going to roll up our sleeves and write a simple RNN in MXNet using
nothing but mxnet.ndarray and mxnet.autograd . In practice, unless you're trying to develop

fundamentally new recurrent layers, you'll want to use the prebuilt layers that call down to
extremely optimized primitives. You'll also want to rely on some pre-built batching code because
batching sequences can be a pain. But we think in general, if you're going to work with this stuff,
and have a modicum of self respect, you'll want to implement from scratch and understand how
it works at a reasonably low level.

Let’s go ahead and import our dependencies and specify our context. If you've been following
along without a GPU until now, this might be where you'll want to get your hands on some
faster hardware. GPU instances are available by the hour through Amazon Web Services. A
single GPU via a p2 instance (NVIDIA K80s) or even an older g2 instance will be perfectly
adequate for this tutorial.

In [1]: from _ future__ import print_function
import mxnet as mx
from mxnet import nd, autograd
import numpy as np
mx.random.seed(1)
ctx = mx.gpu(0)

Dataset: “The Time Machine”

https://aws.amazon.com/ec2/instance-types/p2/

Now mess with some data. | grabbed a copy of the Time machine , mostly because it's available

freely thanks to the good people at Project Gutenberg and a lot of people are tired of seeing
RNNs generate Shakespeare. In case you prefer torturing Shakespeare to torturing H.G. Wells,
I've also included Andrej Karpathy's tinyshakespeare.txt in the data folder. Let'’s get started by
reading in the data.

In [2]: with open("../data/nlp/timemachine.txt") as f:
time_machine = f.read()

And you'll probably want to get a taste for what the text looks like.

In [3]: print(time_machine[0:500])
Project Gutenberg's The Time Machine, by H. G. (Herbert George) Wells
This eBook is for the use of anyone anywhere at no cost and with
almost no restrictions whatsoever. You may copy it, give it away or
re-use it under the terms of the Project Gutenberg License included
with this eBook or online at www.gutenberg.net
Title: The Time Machine

Author: H. G. (Herbert George) Wells

Release Date: October 2, 2004 [EBook #35]
[Last updated: October 3, 2014]

Language: English

*** START OF THIS PR

Tidying up

| went through and discovered that the last 38083 characters consist entirely of legalese from
the Gutenberg gang. So let’s chop that off lest our language model learn to generate such boring
drivel.

In [4]: print(time_machine[-38075:-37500])
time_machine = time_machine[:-38083]

End of Project Gutenberg's The Time Machine, by H. G. (Herbert George) Wells
*** END OF THIS PROJECT GUTENBERG EBOOK THE TIME MACHINE ***
¥¥***% This file should be named 35.txt or 35.zip *¥***

This and all associated files of various formats will be found in:
http://www.gutenberg.net/3/35/

Updated editions will replace the previous one--the old editions
will be renamed.

Creating the works from public domain print editions means that no

http://www.gutenberg.org/

one owns a United States copyright in these works, so the Foundation
(and you!) ¢

Numerical representations of characters

When we create numerical representations of characters, we’'ll use one-hot representations. A
one-hot is a vector that takes value 1 in the index corresponding to a character, and O elsewhere.
Because this vector is as long as the vocab, let’s get a definitive list of characters in this dataset
so that our representation is not longer than necessary.

In [5]: character_list = list(set(time_machine))
vocab_size = len(character_list)
print(character_list)
print("Length of vocab: %s" % vocab_size)

['\n'J |!'J ' ') '#'} '"') I”"J ')IJ '(I) I*IJ I_|J I)‘J l") ‘1'1 ‘0'1 '3'} '2') '5IJ
I4l) '9" I8‘J ‘;') ' ') '?'J 'A'J 'CIJ 'BI) 'EIJ IDIJ IGI) IF‘) II‘) IH') ‘K'J ‘J'J 'M'J
IL‘) 'O', lNl) lQ') lP'} lS') 'Rl) 'UIJ 'TIJ 'wl) IVI) IYI) le) l[l) l]') l_'} 'a', 'C')
Ibl) Iel) Id') lg') l-F') 'i'} 'h'} 'kl) 'jIJ 'm', Ill) 'o') 'n') 'q', lp') ls') 'r") 'u'}
T, twh, vy, xP,

Length of vocab: 77

WEe'll often want to access the index corresponding to each character quickly so let’s store this
as a dictionary.

In [6]: character_dict = {}
for e, char in enumerate(character_list):
character_dict[char] = e
print(character_dict)

{'\n': 0, "I'': 1, " ':2, "#$':3, ""':4, """ 5 "Y:.:6, "(':7, "*':8, '-':9, ',': 10,
'.':11, '1': 12, 'e': 13, '3': 14, '2': 15, '5': 16, '4': 17, '9': 18, '8': 19, ';': 20,
‘iteo21, '?':o22, 'A': 23, 'C': 24, 'B': 25, 'E': 26, 'D': 27, 'G': 28, 'F': 29, 'I': 30,
'H': 31, 'K': 32, 'J': 33, 'M': 34, 'L': 35, '0': 36, 'N': 37, 'Q': 38, 'P': 39, 'S': 40,
'R': 41, 'U': 42, 'T': 43, '"W': 44, 'V': 45, 'Y': 46, 'X': 47, '[': 48, ']': 49, ' _': 50,
'a': 51, 'c¢': 52, 'b': 53, 'e': 54, 'd': 55, 'g': 56, 'f': 57, 'i': 58, 'h': 59, 'k': 60,
'j': 61, 'm': 62, 'l': 63, '0': 64, 'n': 65, 'q': 66, 'p': 67, 's': 68, 'r': 69, 'u': 70,
t'e 71, 'w': 72, 'v': 73, 'y': 74, 'x': 75, 'z': 76}

In [7]: time_numerical = [character_dict[char] for char in time_machine]

In [8]: | ###HHHIHHIHHHIHHIHIHIHIHIHE
Check that the length is right
S S s s e
print(len(time_numerical))

S e e e,
Check that the format Looks right
e e e e e e
print(time_numerical[:20])

S S s s e

Convert back to text

S e s e e

print("".join([character_list[idx] for idx in time_numerical[:39]]))

179533
[39, 69, 64, 61, 54, 52, 71, 2, 28, 70, 71, 54, 65, 53, 54, 69, 56, 5, 68, 2]
Project Gutenberg's The Time Machine, b

One-hot representations

We can use NDArray’s one_hot() operation to render a one-hot representation of each character.
But frack it, since this is the from scratch tutorial, let’s write this ourselves.

In [9]: def one_hots(numerical list, vocab_size=vocab_size):
result = nd.zeros((len(numerical_list), vocab_size), ctx=ctx)
for i, idx in enumerate(numerical_list):
result[i, idx] = 1.0
return result

In [10]: print(one_hots(time_numerical[:2]))

[[o. ©. ©. ©. ©. ©. 0. ©. 0. 0. 0. 0. ©. 0©0. 0©0. 0. 0 Q.
0. ©. ©. 0. 0. ©. ©. 0. ©. ©. 0. 0. O0. 0O. 0. 0. 0 Q.
6. 0. 0. 1. 0. ©. ©. ©. 0. ©. 0. 0. 0. 0. 0. 0. 0 Q.
0. 0. 0. ©. 0. 0. 0. ©. 0. ©. 0. O©0. 0. O©. 0. 0. 0 Q.
0. 0. 0. 0. 0.]
[6. ©. ©. ©. ©. ©. ©. ©. ©. ©. ©. ©. ©. 0©0. 0. 0. 0 Q.
6. ©. ©. 0. 0. 0. ©. ©. 0. O©. 0. O0. 0. 0. 0. 0. 0 Q.
0. 0. 0. ©. 0. 0. 0. ©. 0. ©. 0. O©0. 0. O©. 0. 0. 0 Q.
0. ©. ©. 0. 0. ©. ©. ©. O©. 0. O©. O0. 0. 0O. 0. 1. 0 Q.
0. 0. 0. 0. 0.]]
<NDArray 2x77 @gpu(®0)>

That looks about right. Now let’s write a function to convert our one-hots back to readable text.

In [11]: def textify(embedding):
result = ""
indices = nd.argmax(embedding, axis=1).asnumpy()
for idx in indices:
result += character_list[int(idx)]
return result

In [12]: textify(one_hots(time_numerical[0:40]))

Out[12]: "Project Gutenberg's The Time Machine, by"

Preparing the data for training

Great, it's not the most efficient implementation, but we know how it works. So we're already
doing better than the majority of people with job titles in machine learning. Now, let’s chop up
our dataset into sequences that we could feed into our model.

You might think we could just feed in the entire dataset as one gigantic input and backpropagate
across the entire sequence. When you try to backpropagate across thousands of steps a few
things go wrong: (1) The time it takes to compute a single gradient update will be unreasonably
long (2) The gradient across thousands of recurrent steps has a tendency to either blow up,
causing NaN errors due to losing precision, or to vanish.

Thus we're going to look at feeding in our data in reasonably short sequences. Note that this
home-brew version is pretty slow; if you're still running on a CPU, this is the right time to make

dinner.

In [13]:

Out[13]:

seq_length = 64

-1 here so we have enough characters for Labels Later

num_samples = (len(time_numerical) - 1) // seq_length

dataset = one_hots(time_numerical[:seq_length*num_samples]).reshape((num_samples,
seq_length, vocab_size))

textify(dataset[0])

"Project Gutenberg's The Time Machine, by H. G. (Herbert George) "

Now that we've chopped our dataset into sequences of length seq length , at every time step,

our input is a single one-hot vector. This means that our computation of the hidden layer would
consist of matrix-vector multiplications, which are not especially efficient on GPU. To take
advantage of the available computing resources, we'll want to feed through a batch of sequences
at the same time. The following code may look tricky but it's just some plumbing to make the
data look like this.

In [14]:

In [15]:

batch_size = 32

print('# of sequences in dataset: ', len(dataset))

num_batches = len(dataset) // batch_size

print('# of batches: ', num_batches)

train_data = dataset[:num_batches*batch_size].reshape((num_batches, batch_size,
seq_length, vocab_size))

swap batch_size and seq_length axis to make Later access easier

train_data = nd.swapaxes(train_data, 1, 2)

print('Shape of data set: ', train_data.shape)

of sequences in dataset: 2805
of batches: 87
Shape of data set: (87L, 64L, 32L, 77L)

Let’s sanity check that everything went the way we hope. For each data_row, the second

sequence should follow the first:

In [16]:

for i in range(3):
print("***Batch %s:***\n %s \n\n" % (i, textify(train_data[i, :, @]) +
textify(train_data[i, :, 1])))

¥¥*Batch @:***
Project Gutenberg's The Time Machine, by H. G. (Herbert George) Wells

This eBook is for the use of anyone anywhere at no cost a
¥¥*¥Batch 1:***
, breadth, and thickness, can a cube have a

real existence.'

'There I object,' said Filby. 'Of course a solid body may exist. A

**¥*Batch 2:%%*

mensions

particularly--why not another direction at right angles to the other
three?--and have even tried to construct a Four-Di

Preparing our labels

Now let’s repurpose the same batching code to create our label batches

In [17]: 1labels = one_hots(time_numerical[1l:seq_length*num_samples+1])
train_label = labels.reshape((num_batches, batch_size, seq_length, vocab_size))
train_label = nd.swapaxes(train_label, 1, 2)
print(train_label.shape)

(87L, 64L, 32L, 77L)

A final sanity check

Remember that our target at every time step is to predict the next character in the sequence. So
our labels should look just like our inputs but offset by one character. Let’s look at corresponding
inputs and outputs to make sure everything lined up as expected.

In [18]: print(textify(train_data[@, :, 0]))
print(textify(train_label[0, :, 9]))

Project Gutenberg's The Time Machine, by H. G. (Herbert George)
roject Gutenberg's The Time Machine, by H. G. (Herbert George) W

Recurrent neural networks

[Explain RNN updates]

Recall that the update for an ordinary hidden layer in a neural network with activation function
phi is given by

h=pXW +b)

To make this a recurrent neural network, we're simply going to add a weight sum of the previous
hidden state /;_1:

he = X Wy + hi—y Wiy, + by)

Then at every time set ¢, we'll calculate the output as:

y, = softmax(h; W, + by)

Allocate parameters

In [19]: num_inputs = 77
num_hidden = 256
num_outputs = 77

S e e

Weights connecting the inputs to the hidden Llayer

S s s e

Wxh = nd.random_normal(shape=(num_inputs,num_hidden), ctx=ctx) * .01

R T
Recurrent weights connecting the hidden Layer across time steps
S R e e ey
Whh = nd.random_normal(shape=(num_hidden,num_hidden), ctx=ctx)* .01

S s s e

Bias vector for hidden Llayer
S e e

bh = nd.random_normal(shape=num_hidden, ctx=ctx) * .01

S e e

Weights to the output nodes

S s s e

Why = nd.random_normal(shape=(num_hidden,num_outputs), ctx=ctx) * .01
by = nd.random_normal(shape=num_outputs, ctx=ctx) * .01

NOTE: to keep notation consistent,

we should really use capital Letters

for hidden Layers and outputs,

since we are doing batchwise computations]

Attach the gradients

In [20]: params = [Wxh, Whh, bh, Why, by]

for param in params:
param.attach_grad()

Softmax Activation

In [21]: def softmax(y_linear, temperature=1.0):
lin = (y_linear-nd.max(y_linear)) / temperature
exp = nd.exp(lin)
partition =nd.sum(exp, axis=0, exclude=True).reshape((-1,1))
return exp / partition

In [22]: | #####HHHHEHHEHEHHE
With a temperature of 1 (always 1 during training), we get back some set of
probabilities
SR e e e
softmax(nd.array([[1, -1], [-1, 1]]), temperature=1.9)

Out[22]:
[[©.88079703 ©.11920292]
[0.11920292 ©.88079703]]
<NDArray 2x2 @cpu(@)>

In [23]: | ####HHHHHHHEHHHHTE
If we set a high temperature, we can get more entropic (*noisier*) probabilities
HHABHA AR AR AR A
softmax(nd.array([[1,-1],[-1,1]]), temperature=1000.0)

Out[23]:
[[©.50049996 ©.49949998]
[©.49949998 ©.50049996]]
<NDArray 2x2 @cpu(0)>

In [24]: | ####H#BHHHIHHHIHHH R
Often we want to sample with Low temperatures to produce sharp probabilities
HARHABHAHARHABHABHAH
softmax(nd.array([[10,-10],[-10,10]]), temperature=.1)

out[24]:
[[1. o.]

[0. 1.]]
<NDArray 2x2 @cpu(0@)>

Define the model

In [25]: def simple_rnn(inputs, state, temperature=1.0):

outputs = []

h = state

for X in inputs:
h_linear = nd.dot(X, Wxh) + nd.dot(h, Whh) + bh
h = nd.tanh(h_linear)
yhat_linear = nd.dot(h, Why) + by
yhat = softmax(yhat_linear, temperature=temperature)
outputs.append(yhat)

return (outputs, h)

Cross-entropy loss function

At every time step our task is to predict the next character, given the string up to that point. This
is the familiar multi-task classification that we introduced for handwritten digit classification.
Accordingly, we'll rely on the same loss function, cross-entropy.

In [26]: | # def cross_entropy(yhat, y):
return - nd.sum(y * nd.log(yhat))

def cross_entropy(yhat, y):
return - nd.mean(nd.sum(y * nd.log(yhat), axis=0, exclude=True))

In [27]: «cross_entropy(nd.array([.2,.5,.3]), nd.array([1.,0,0]))
Out[27]:

[©.53647929]
<NDArray 1 @cpu(®@)>

Averaging the loss over the sequence

Because the unfolded RNN has multiple outputs (one at every time step) we can calculate a loss
at every time step. The weights corresponding to the net at time step 7 influence both the loss at
time step and the loss at time step 7 + 1. To combine our losses into a single global loss, we'll
take the average of the losses at each time step.

In [28]: def average_ce_loss(outputs, labels):
assert(len(outputs) == len(labels))
total_loss = 0.
for (output, label) in zip(outputs,labels):
total_loss = total_loss + cross_entropy(output, label)
return total loss / len(outputs)

Optimizer

In [29]: def SGD(params, 1r):
for param in params:
param[:] = param - 1lr * param.grad

Generating text by sampling

We have now defined a model that takes a sequence of real inputs from our training data and
tries to predict the next character at every time step. You might wonder, what can we do with
this model? Why should | care about predicting the next character in a sequence of text?

This capability is exciting because given such a model, we can now generate strings of plausible
text. The generation procedure goes as follows. Say our string begins with the character “T”. We
can feed the letter “T” and get a conditional probability distribution over the next character
P(xy|x; = "T"). We can the sample from this distribution, e.g. producing an “i”, and then assign
xy = "1", feeding this to the network at the next time step.

[Add a nice graphic to illustrate sampling]

In [30]: def sample(prefix, num_chars, temperature=1.0):
S e R e e s e ey
Initialize the string that we'll return to the supplied prefix
B e e e e
string = prefix

HAHHHBHBHRHBHBHBHBHBHBHBABABHBABAB A

Prepare the prefix as a sequence of one-hots for 1ingestion by RNN
S e e e e e e e e e s,

prefix_numerical = [character_dict[char] for char in prefix]

input = one_hots(prefix_numerical)

S e e e e e e e e e s,

Set the 1initial state of the hidden representation (h_0) to the zero vector
HAHHHBHBHRHBHBHBHBHBHBHBABABHBABAB A

sample_state = nd.zeros(shape=(1, num_hidden), ctx=ctx)

HER T T A A S e R R A e T
For num_chars 1iterations,
1) feed in the current input

2) sample next character from from output distribution
3) add sampled character to the decoded string
4) prepare the sampled character as a one_hot (to be the next input)
B e e e
for i in range(num_chars):
outputs, sample_state = simple_rnn(input, sample_state, temperature=temperature)
choice = np.random.choice(77, p=outputs[-1][@].asnumpy())
string += character_list[choice]
input = one_hots([choice])
return string

In []: epochs = 2000
moving_loss = 0.

learning_rate = .5

state = nd.zeros(shape=(batch _size, num_hidden), ctx=ctx)
for e in range(epochs):
S R e R s e
Attenuate the lLearning rate by a factor of 2 every 100 epochs.
S s s s e s s ey
if ((e+l) % 100 == 0):
learning_rate = learning_rate / 2.0
state = nd.zeros(shape=(batch_size, num_hidden), ctx=ctx)
for i in range(num_batches):
data_one_hot = train_data[i]
label_one_hot = train_label[i]
with autograd.record():
outputs, state = simple_rnn(data_one_hot, state)
loss = average_ce_loss(outputs, label one_hot)
loss.backward()
SGD(params, learning_rate)

L e e
Keep a moving average of the losses
b R e
if (i == 9) and (e == 0):
moving loss = np.mean(loss.asnumpy()[@])
else:
moving_loss

.99 * moving_loss + .01 * np.mean(loss.asnumpy()[0])
print("Epoch %s. Loss: %s" % (e, moving_loss))

print(sample("The Time Ma", 1024, temperature=.1))
print(sample("The Medical Man rose, came to the lamp,", 1024, temperature=.1))

Conclusions

Once you start running this code, it will spit out a sample at the end of each epoch. I'll leave this
output cell blank so you don’t see megabytes of text, but here are some patterns that | observed
when | ran this code.

The network seems to first work out patterns with no sequential relationship and then slowly
incorporates longer and longer windows of context. After just 1 epoch, my RNN generated this:

e e e ee e eee e e ee e e ee ee ee e e ee e
e e e e e e e e ee e aee e e ee e e ee ee
e ee e e eee ete e e e e e e ee n eee ee e eeee e e
e e e e ee e e e e e e eee ee e e e e
ee ee ee e e e e e ee et e ee e eee e e e ee e e

e e eee e e e eeeee e eeee e e ee ee ee a e e
eee ee e e e e aee e e ee eee e

e e e ee e e e e e e e ee e ee e e e
e e e e e e e e ee e e een e ee e e
e e e e t ee ee ee eee et e e e e ee e
e e e e ee e e e"

It's learned that spaces and “e”s (to my knowledge, there’s no aesthetically pleasing way to spell
the plural form of the letter “e”) are the most common characters.

A little bit later on it spits out strings like:

the the
the the
the the
the the
the the
the the
the the
the the
the the
the the the the the the the the the the the the the the the the the the the the

At this point it’s learned that after the space usually comes a nonspace character, and perhaps
that “t” is the most common character to immediately follow a space, “h” to follow a “t” and “e”
to follow “th”. However it doesn’t appear to be looking far enough back to realize that the word
“the” should be very unlikely immediately after the word “the”..

By the 175th epoch, the model appears to be putting together a fairly large vocabulary although
it puts words together in ways that might be charitably described as “creative”.

the little people had been as | store of the sungher had leartered along the realing of the
stars of the little past and stared at the thing that | had the sun had to the stars of the
sunghed a stirnt a moment the sun had come and fart as the stars of the sunghed a stirnt a
moment the sun had to the was completely and of the little people had been as | stood and
all amations of the staring and some of the really

In subsequent tutorials we'll explore sophisticated techniques for evaluating and improving
language models. We'll also take a look at some related but more complicate problems like
language translations and image captioning.

Next

LSTM recurrent neural networks from scratch

For whinges or inquiries, open an issue on GitHub.

http://gluon.mxnet.io/chapter05_recurrent-neural-networks/lstm-scratch.html
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Long short-term memory (LSTM) RNNs

Long short-term memory (LSTM) RNNs

In [1]: from _ future__ import print_function
import mxnet as mx
from mxnet import nd, autograd
import numpy as np
mx.random.seed(1)
ctx = mx.gpu(0)

Dataset: “The Time Machine”

In [1]: | with open("../data/nlp/timemachine.txt") as f:
time_machine = f.read()
time_machine = time_machine[:-38083]

Numerical representations of characters

In [3]: character_list = list(set(time_machine))
vocab_size = len(character_list)
character_dict = {}
for e, char in enumerate(character_list):
character_dict[char] = e
time_numerical = [character_dict[char] for char in time_machine]

One-hot representations

In [4]: def one_hots(numerical list, vocab_size=vocab_size):
result = nd.zeros((len(numerical_list), vocab_size), ctx=ctx)
for i, idx in enumerate(numerical_list):
result[i, idx] = 1.0
return result

In [5]: def textify(embedding):
result = ""
indices = nd.argmax(embedding, axis=1).asnumpy()
for idx in indices:
result += character_list[int(idx)]
return result

Preparing the data for training

In [6]: batch_size = 32
seq_length = 64
-1 here so we have enough characters for Labels Later
num_samples = (len(time_numerical) - 1) // seq_length
dataset = one_hots(time_numericall[:seq_length*num_samples]).reshape((num_samples,

http://gluon.mxnet.io/index.html

seq_length, vocab_size))

num_batches = len(dataset) // batch_size

train_data = dataset[:num_batches*batch_size].reshape((num_batches, batch_size,
seq_length, vocab_size))

swap batch_size and seq_length axis to make Llater access easier

train_data = nd.swapaxes(train_data, 1, 2)

Preparing our labels

In [7]: 1labels = one_hots(time_numerical[1l:seq_length*num_samples+1])
train_label = labels.reshape((num_batches, batch_size, seq_length, vocab_size))
train_label = nd.swapaxes(train_label, 1, 2)

Long short-term memory (LSTM) RNNs

An LSTM block has mechanisms to enable “memorizing” information for an extended number
of time steps. We use the LSTM block with the following transformations that map inputs to
outputs across blocks at consecutive layers and consecutive time steps:

& = tanh(X, Wy, + hy_y Wye + by),
iy = o(X, Wy + iy Wy + b)),
Ji = o(XeWyp + hi1 Wiy + by),
0 = 6(X;Wyo + i1 Wy + b,),
¢ =fiOc_1+1i;0g,
h; = o, ® tanh(c,),

where O is an element-wise multiplication operator, and for all X = [x|, X2, ..., x| € RX
the two activation functions:

1 1 '
olx) = [1 +exp(—x1) 7 1+exp(—xz)]] ’

tanh(x) =

| —exp(=2x) 1—exp(=2x) 7
1+exp(=2x1) " T4exp(=2x) |

In the transformations above, the memory cell ¢; stores the “long-term” memory in the vector
form. In other words, the information accumulatively captured and encoded until time step ¢ is
stored in ¢; and is only passed along the same layer over different time steps.

Given the inputs ¢; and A;, the input gate i, and forget gate f; will help the memory cell to
decide how to overwrite or keep the memory information. The output gate o, further lets the
LSTM block decide how to retrieve the memory information to generate the current state /;

that is passed to both the next layer of the current time step and the next time step of the
current layer. Such decisions are made using the hidden-layer parameters W and b with
different subscripts: these parameters will be inferred during the training phase by giuon .

Allocate parameters

In [8]: num_inputs = vocab_size
num_hidden = 256
num_outputs = vocab_size

HHAHHAH AR B ARG AR AR AR
Weights connecting the 1inputs to the hidden Layer
S e e e e

Wxg = nd.random_normal(shape=(num_inputs,num_hidden), ctx=ctx) * .01
Wxi = nd.random_normal(shape=(num_inputs,num_hidden), ctx=ctx) * .01
Wxf = nd.random_normal(shape=(num_inputs,num_hidden), ctx=ctx) * .01
Wxo = nd.random_normal(shape=(num_inputs,num_hidden), ctx=ctx) * .01

HHAHHAH AR B ARG AR AR AR
Recurrent weights connecting the hidden Layer across time steps
S e e e e
Whg = nd.random_normal(shape=(num_hidden,num_hidden), ctx=ctx)* .01

Whi = nd.random_normal(shape=(num_hidden,num_hidden), ctx=ctx)* .01
Whf = nd.random_normal(shape=(num_hidden,num_hidden), ctx=ctx)* .01
Who = nd.random_normal(shape=(num_hidden,num_hidden), ctx=ctx)* .01

HHAHHAH AR B ARG AR AR AR
Bias vector for hidden Layer
S e e e e

bg = nd.random_normal(shape=num_hidden, ctx=ctx) * .01
bi = nd.random_normal(shape=num_hidden, ctx=ctx) * .01
bf = nd.random_normal(shape=num_hidden, ctx=ctx) * .01
bo = nd.random_normal(shape=num_hidden, ctx=ctx) * .01

HHAHHAH AR B ARG AR AR AR

Weights to the output nodes

S e e e e

Why = nd.random_normal(shape=(num_hidden,num_outputs), ctx=ctx) * .01
by = nd.random_normal(shape=num_outputs, ctx=ctx) * .01

Attach the gradients

In [9]: params = [Wxg, Wxi, Wxf, Wxo, Whg, Whi, Whf, Who, bg, bi, bf, bo, Why, by]

for param in params:
param.attach_grad()

Softmax Activation

In [10]: def softmax(y_linear, temperature=1.0):
lin = (y_linear-nd.max(y_linear)) / temperature
exp = nd.exp(lin)
partition = nd.sum(exp, axis=0, exclude=True).reshape((-1,1))
return exp / partition

Define the model

In [11]: def 1lstm_rnn(inputs, h, c, temperature=1.0):
outputs = []
for X in inputs:

g = nd.tanh(nd.dot(X, Wxg) + nd.dot(h, Whg) + bg)

i = nd.sigmoid(nd.dot(X, Wxi) + nd.dot(h, Whi) + bi)
f = nd.sigmoid(nd.dot(X, Wxf) + nd.dot(h, Whf) + bf)
o = nd.sigmoid(nd.dot(X, Wxo) + nd.dot(h, Who) + bo)

SR e e s,
#
B
c=f*c+1i*g
h = o * nd.tanh(c)
HHUHABHHHHBHBHBHBHBHBABH
#
B e i e
yhat_linear = nd.dot(h, Why) + by
yhat = softmax(yhat_linear, temperature=temperature)
outputs.append(yhat)

return (outputs, h, c)

Cross-entropy loss function

In [12]: def cross_entropy(yhat, y):
return - nd.mean(nd.sum(y * nd.log(yhat), axis=0, exclude=True))

Averaging the loss over the sequence

In [13]: def average_ce_loss(outputs, labels):
assert(len(outputs) == len(labels))
total_loss = 0.
for (output, label) in zip(outputs,labels):
total_loss = total_loss + cross_entropy(output, label)
return total_loss / len(outputs)

Optimizer

In [14]: def SGD(params, 1r):
for param in params:
param[:] = param - 1lr * param.grad

Generating text by sampling

In [15]: def sample(prefix, num_chars, temperature=1.0):
S e e e e e e,
Initialize the string that we'll return to the supplied prefix
HHBHARHB AR AR AR AR BA B AR AR AR
string = prefix

A R R e R e s e e e

Prepare the prefix as a sequence of one-hots for ingestion by RNN
S s s e e

prefix_numerical = [character_dict[char] for char in prefix]

input = one_hots(prefix_numerical)

S s s e e s

Set the initial state of the hidden representation (h_0) to the zero vector
S R R e R e s e e e e

h = nd.zeros(shape=(1, num_hidden), ctx=ctx)

c = nd.zeros(shape=(1, num_hidden), ctx=ctx)

S R R e R e s e e e e

For num_chars 1iterations,

1) feed in the current input

2) sample next character from from output distribution

3) add sampled character to the decoded string

4) prepare the sampled character as a one_hot (to be the next input)

S s s e e s

for i in range(num_chars):
outputs, h, ¢ = 1lstm_rnn(input, h, c, temperature=temperature)
choice = np.random.choice(vocab_size, p=outputs[-1][0].asnumpy())
string += character_list[choice]
input = one_hots([choice])

return string

H B R R

In []: epochs = 2000
moving_loss = 0.

learning_rate = 2.0

state = nd.zeros(shape=(batch_size, num_hidden), ctx=ctx)
for e in range(epochs):
S s e e e ey
Attenuate the Llearning rate by a factor of 2 every 100 epochs.
FE T
if ((e+l) % 100 == 0):
learning_rate = learning_rate / 2.0
h = nd.zeros(shape=(batch_size, num_hidden), ctx=ctx)
c = nd.zeros(shape=(batch_size, num_hidden), ctx=ctx)
for i in range(num_batches):
data_one_hot = train_data[i]
label_one_hot = train_label[i]
with autograd.record():
outputs, h, c = 1stm_rnn(data_one_hot, h, c)
loss = average_ce_loss(outputs, label_one_hot)
loss.backward()
SGD(params, learning_rate)

S e
Keep a moving average of the losses
SR R e s
if (i == 0) and (e == 0):
moving_loss = nd.mean(loss).asscalar()
else:
moving_loss = .99 * moving_loss + .01 * nd.mean(loss).asscalar()

print("Epoch %s. Loss: %s" % (e, moving_loss))
print(sample("The Time Ma", 1024, temperature=.1))
print(sample("The Medical Man rose, came to the lamp,", 1024, temperature=.1))

Conclusions

Next

Gated recurrent units (GRU) RNNs from scratch

For whinges or inquiries, open an issue on GitHub.

http://gluon.mxnet.io/chapter05_recurrent-neural-networks/gru-scratch.html
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Gated recurrent unit (GRU) RNNs

Gated recurrent unit (GRU) RNNs

This chapter requires some exposition. The GRU updates are fully implemented and the code
appears to work properly.

In [1]: from _ future__ import print_function
import mxnet as mx
from mxnet import nd, autograd
import numpy as np
mx.random.seed(1)
ctx = mx.gpu(0)

Dataset: “The Time Machine”

In [1]: with open("../data/nlp/timemachine.txt") as f:
time_machine = f.read()
time_machine = time_machine[:-38083]

Numerical representations of characters

In [3]: character_list = list(set(time_machine))
vocab_size = len(character_list)
character_dict = {}
for e, char in enumerate(character_list):
character_dict[char] = e
time_numerical = [character_dict[char] for char in time_machine]

One-hot representations

In [4]: def one_hots(numerical list, vocab_size=vocab size):
result = nd.zeros((len(numerical_list), vocab_size), ctx=ctx)
for i, idx in enumerate(numerical_list):
result[i, idx] = 1.0
return result

In [5]: def textify(embedding):
result = ""
indices = nd.argmax(embedding, axis=1).asnumpy()
for idx in indices:
result += character_list[int(idx)]
return result

Preparing the data for training

http://gluon.mxnet.io/index.html

In [6]: batch_size = 32
seq_length = 64
-1 here so we have enough characters for Labels Later
num_samples = (len(time_numerical) - 1) // seq_length
dataset = one_hots(time_numerical[:seq_length*num_samples]).reshape((num_samples,
seq_length, vocab_size))
num_batches = len(dataset) // batch_size
train_data = dataset[:num_batches*batch_size].reshape((num_batches, batch_size,
seq_length, vocab_size))
swap batch_size and seq_length axis to make Llater access easier
train_data = nd.swapaxes(train_data, 1, 2)

Preparing our labels

In [7]: 1labels = one_hots(time_numerical[1l:seq_length*num_samples+1])
train_label = labels.reshape((num_batches, batch_size, seq_length, vocab_size))
train_label = nd.swapaxes(train_label, 1, 2)

Gated recurrent units (GRU) RNNs

Similar to LSTM blocks, the GRU also has mechanisms to enable “memorizing” information for an
extended number of time steps. However, it does so in a more expedient way:

e We no longer keep a separate memory cell ¢;. Instead, /,_; is added to a “new content”
version of itself to give A;.

e The “new content” version is given by g, = tanh(X; Wy, + (r; © h;—1)Wp, + by,),and is
analogous to g; in the LSTM tutorial.

e Here, there is a reset gate r; which moderates the impact of /;_; on the “new content”
version.

e The input gate i, and forget gate f; are replaced by an single update gate z;, which weighs
the old and new content via z; and (1 — z;) respectively.

e There is no output gate o;; the weighted sum is what becomes #;.

We use the GRU block with the following transformations that map inputs to outputs across
blocks at consecutive layers and consecutive time steps:

zt = o(X; Wy, + h Wy, + b,),
rr = o(X;Wyr + iy Wy + b)),

g: = tanh(X; W, + (r; © hy_)Wy, + by),
hh=z0h 1+ -2)0g,

where ¢ and tanh are as before in the LSTM case.

Empirically, GRUs have similar performance to LSTMs, while requiring less parameters and
forgoing an internal time state. Intuitively, GRUs have enough gates/state for long-term
retention, but not too much, so that training and convergence remain fast and convex. See the
work of Chung et al. [2014] (https://arxiv.org/abs/1412.3555).

Allocate parameters

In [8]: num_inputs = vocab_size
num_hidden = 256
num_outputs = vocab_size

FAR A R i ey
MWeights connecting the inputs to the hidden Layer
B e S e

Wxz = nd.random_normal(shape=(num_inputs,num_hidden), ctx=ctx) * .01
Wxr = nd.random_normal(shape=(num_inputs,num_hidden), ctx=ctx) * .01
Wxh = nd.random_normal(shape=(num_inputs,num_hidden), ctx=ctx) * .01

S R e e ey
Recurrent weights connecting the hidden Layer across time steps
HAHAHHHHHHHHHRHBHBHBH B

Whz = nd.random_normal(shape=(num_hidden,num_hidden), ctx=ctx)* .01
Whr = nd.random_normal(shape=(num_hidden,num_hidden), ctx=ctx)* .01
Whh = nd.random_normal(shape=(num_hidden,num_hidden), ctx=ctx)* .01

S s e
Bias vector for hidden Llayer
S A e e e

bz = nd.random_normal(shape=num_hidden, ctx=ctx) * .01
br = nd.random_normal(shape=num_hidden, ctx=ctx) * .01
bh = nd.random_normal(shape=num_hidden, ctx=ctx) * .01

HAHAHHHHHHHHHRHBHBHBH B

Weights to the output nodes

S R e e ey

Why = nd.random_normal(shape=(num_hidden,num_outputs), ctx=ctx) * .01
by = nd.random_normal(shape=num_outputs, ctx=ctx) * .01

Attach the gradients

In [9]: params = [Wxz, Wxr, Wxh, Whz, Whr, Whh, bz, br, bh, Why, by]

for param in params:
param.attach_grad()

Softmax Activation

In [10]: def softmax(y_linear, temperature=1.0):
lin = (y_linear-nd.max(y_linear)) / temperature
exp = nd.exp(lin)
partition = nd.sum(exp, axis=0, exclude=True).reshape((-1,1))
return exp / partition

Define the model

https://arxiv.org/abs/1412.3555

In [11]: def gru_rnn(inputs, h, temperature=1.0):
outputs = []
for X in inputs:

z = nd.sigmoid(nd.dot(X, Wxz) + nd.dot(h, Whz) + bz)
nd.sigmoid(nd.dot(X, Wxr) + nd.dot(h, Whr) + br)
nd.tanh(nd.dot(X, Wxh) + nd.dot(r * h, Whh) + bh)
=z*h+ (1-2)*g

>0 S
n

yhat_linear = nd.dot(h, Why) + by
yhat = softmax(yhat_linear, temperature=temperature)
outputs.append(yhat)

return (outputs, h)

Cross-entropy loss function

In [12]: def cross_entropy(yhat, y):
return - nd.mean(nd.sum(y * nd.log(yhat), axis=0, exclude=True))

Averaging the loss over the sequence

In [13]: def average_ce_loss(outputs, labels):
assert(len(outputs) == len(labels))
total_loss = nd.array([0.], ctx=ctx)
for (output, label) in zip(outputs,labels):
total_loss = total_loss + cross_entropy(output, label)
return total loss / len(outputs)

Optimizer

In [14]: def SGD(params, 1r):
for param in params:
param[:] = param - 1lr * param.grad

Generating text by sampling

In [15]: def sample(prefix, num_chars, temperature=1.0):
S e e e e e e ey
Initialize the string that we'll return to the supplied prefix
S e s e s e s e s s s s,
string = prefix

HAHHHBHBHRHRHBHBHBHBHBHBABABABABABABH

Prepare the prefix as a sequence of one-hots for 1ingestion by RNN
B e T e e

prefix_numerical = [character_dict[char] for char in prefix]

input = one_hots(prefix_numerical)

B e T e e

Set the initial state of the hidden representation (h_o) to the zero vector
HAHHHBHBHRHHHBHBHBHBHBHBABABABABABABH

h = nd.zeros(shape=(1, num_hidden), ctx=ctx)

¢ = nd.zeros(shape=(1, num_hidden), ctx=ctx)

HHAB AR AR AR AR AR AR AR HA BB IH

For num_chars 1iterations,

1) feed in the current input

2) sample next character from from output distribution

3) add sampled character to the decoded string
4) prepare the sampled character as a one_hot (to be the next input)
B e e T P e
for i in range(num_chars):
outputs, h = gru_rnn(input, h, temperature=temperature)
choice = np.random.choice(vocab_size, p=outputs[-1][0].asnumpy())
string += character_list[choice]
input = one_hots([choice])
return string

In []: epochs = 2000
moving_loss = 0.

learning_rate = 2.0

state = nd.zeros(shape=(batch_size, num_hidden), ctx=ctx)
for e in range(epochs):
S s e e R s ey
Attenuate the Llearning rate by a factor of 2 every 100 epochs.
S R
if ((e+l) % 100 == 0):
learning_rate = learning_rate / 2.0
h = nd.zeros(shape=(batch_size, num_hidden), ctx=ctx)
for i in range(num_batches):
data_one_hot = train_data[i]
label one_hot = train_label[i]
with autograd.record():
outputs, h = gru_rnn(data_one_hot, h)
loss = average_ce_loss(outputs, label one_hot)
loss.backward()
SGD(params, learning_rate)

S s s e e
Keep a moving average of the Losses
SR R e R s e e e
if (i == @) and (e == 0):
moving loss = nd.mean(loss).asscalar()
else:
moving_loss = .99 * moving_loss + .01 * nd.mean(loss).asscalar()

print("Epoch %s. Loss: %s" % (e, moving loss))
print(sample("The Time Ma", 1024, temperature=.1))
print(sample("The Medical Man rose, came to the lamp,", 1024, temperature=.1))

Conclusions

[Placeholder]

Next

Simple, LSTM, and GRU RNNs with gluon

For whinges or inquiries, open an issue on GitHub.

http://gluon.mxnet.io/chapter05_recurrent-neural-networks/rnns-gluon.html
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Recurrent Neural Networks with gluon

Recurrent Neural Networks with giuon

With gluon, now we can train the recurrent neural networks (RNNs) more neatly, such as the
long short-term memory (LSTM) and the gated recurrent unit (GRU). To demonstrate the end-to-
end RNN training and prediction pipeline, we take a classic problem in language modeling as a
case study. Specifically, we will show how to predict the distribution of the next word given a
sequence of previous words.

Import packages

To begin with, we need to make the following necessary imports.

In []: import math
import os
import time
import numpy as np
import mxnet as mx
from mxnet import gluon, autograd
from mxnet.gluon import nn, rnn

Define classes for indexing words of the input document

In a language modeling problem, we define the following classes to facilitate the routine
procedures for loading document data. In the following, the pictionary class is for word

indexing: words in the documents can be converted from the string format to the integer format.

In this example, we use consecutive integers to index words of the input document.

In []: class Dictionary(object):
def _ init_ (self):

self.word2idx

self.idx2word

{}
(]

def add_word(self, word):
if word not in self.word2idx:
self.idx2word.append(word)
self.word2idx[word] = len(self.idx2word) - 1
return self.word2idx[word]

def __len_ (self):
return len(self.idx2word)

The pictionary class is used by the corpus class to index the words of the input document.

http://gluon.mxnet.io/index.html

In []: class Corpus(object):
def init (self, path):
self.dictionary = Dictionary()
self.train = self.tokenize(path + 'train.txt"')
self.valid = self.tokenize(path + 'valid.txt')
self.test = self.tokenize(path + 'test.txt")

def tokenize(self, path):
"""Tokenizes a text file.
assert os.path.exists(path)
Add words to the dictionary
with open(path, 'r') as f:
tokens = 0
for line in f:
words = line.split() + ['<eos>']
tokens += len(words)
for word in words:
self.dictionary.add_word(word)

Tokenize file content
with open(path, 'r') as f:
ids = np.zeros((tokens,), dtype="int32")
token = 0
for line in f:
words = line.split() + ['<eos>']
for word in words:
ids[token] = self.dictionary.word2idx[word]
token += 1

return mx.nd.array(ids, dtype='int32")

Provide an exposition of different RNN models with giuon

Based on the giuon.Block class, we can make different RNN models available with the following

single RnNModel class.

Users can select their preferred RNN model or compare different RNN models by configuring
the argument of the constructor of rnnmMode1l . We will show an example following the definition

of the RnnModel class.

In []: class RNNModel(gluon.Block):
"""A model with an encoder, recurrent layer, and a decoder."""
def __init_ (self, mode, vocab_size, num_embed, num_hidden,
num_layers, dropout=0.5, tie weights=False, **kwargs):
super(RNNModel, self).__init_(**kwargs)
with self.name_scope():
self.drop = nn.Dropout(dropout)
self.encoder = nn.Embedding(vocab_size, num_embed,
weight_initializer = mx.init.Uniform(©.1))
if mode == 'rnn_relu':
self.rnn = rnn.RNN(num_hidden, num_layers, activation='relu’,
dropout=dropout,
input_size=num_embed)
elif mode == 'rnn_tanh':
self.rnn = rnn.RNN(num_hidden, num_layers, dropout=dropout,
input_size=num_embed)
elif mode == 'lstm':
self.rnn = rnn.LSTM(num_hidden, num_layers, dropout=dropout,
input_size=num_embed)
elif mode == 'gru':
self.rnn = rnn.GRU(num_hidden, num_layers, dropout=dropout,

input_size=num_embed)
else:
raise ValueError("Invalid mode %s. Options are rnn_relu,
"rnn_tanh, 1lstm, and gru"%mode)

if tie_weights:
self.decoder = nn.Dense(vocab_size, in_units = num_hidden,
params = self.encoder.params)
else:
self.decoder = nn.Dense(vocab_size, in_units = num_hidden)
self.num_hidden = num_hidden

def forward(self, inputs, hidden):
emb = self.drop(self.encoder(inputs))
output, hidden = self.rnn(emb, hidden)
output = self.drop(output)
decoded = self.decoder(output.reshape((-1, self.num_hidden)))
return decoded, hidden

def begin_state(self, *args, **kwargs):
return self.rnn.begin_state(*args, **kwargs)

Select an RNN model and configure parameters

For demonstration purposes, we provide an arbitrary selection of the parameter values. In
practice, some parameters should be more fine tuned based on the validation data set.

For instance, to obtain a better performance, as reflected in a lower loss or perplexity, one can
set args_epochs to a larger value.

In this demonstration, LSTM is the chosen type of RNN. For other RNN options, one can replace
the 'i1stm' stringto ‘'rnn_relu', 'rnn_tanh' ,0r ‘'gru' as provided by the aforementioned

gluon.Block class.

In [1]: args_data = '../data/nlp/ptb."'
args_model = 'rnn_relu’
args_emsize = 100
args_nhid = 100
args_nlayers = 2
args_1lr = 1.0
args_clip = 0.2
args_epochs =1
args_batch_size = 32
args_bptt = 5
args_dropout = 0.2
args_tied = True

args_cuda = 'store_true’
args_log interval = 500
args_save = 'model.param’

Load data as batches

We load the document data by leveraging the aforementioned corpus class.

To speed up the subsequent data flow in the RNN model, we pre-process the loaded data as
batches. This procedure is defined in the following batchify function.

In []: context = mx.cpu(9)
corpus = Corpus(args_data)

def batchify(data, batch_size):
"""Reshape data into (num_example, batch_size)
nbatch = data.shape[@] // batch_size
data = data[:nbatch * batch_size]
data = data.reshape((batch_size, nbatch)).T
return data

train_data = batchify(corpus.train, args_batch_size).as_in_context(context)
val _data = batchify(corpus.valid, args_batch_size).as_in_context(context)
test_data = batchify(corpus.test, args_batch_size).as_in_context(context)

Build the model

We go on to build the model, initialize model parameters, and configure the optimization
algorithms for training the RNN model.

In []: ntokens = len(corpus.dictionary)

model = RNNModel(args_model, ntokens, args_emsize, args_nhid,
args_nlayers, args_dropout, args_tied)
model.collect params().initialize(mx.init.Xavier(), ctx=context)
trainer = gluon.Trainer(model.collect_params(), 'sgd',
{'learning_rate': args_lr, 'momentum': @, 'wd': 0})
loss = gluon.loss.SoftmaxCrossEntropylLoss()

Train the model and evaluate on validation and testing data
sets

Now we can define functions for training and evaluating the model. The following are two helper
functions that will be used during model training and evaluation.

In []: def get_batch(source, i):
seq_len = min(args_bptt, source.shape[0] - 1 - i)
data = source[i : i + seq_len]
target = source[i + 1 : i + 1 + seq_len]
return data, target.reshape((-1,))

def detach(hidden):
if isinstance(hidden, (tuple, list)):
hidden = [i.detach() for i in hidden]
else:
hidden = hidden.detach()
return hidden

The following is the function for model evaluation. It returns the loss of the model prediction.
We will discuss the details of the loss measure shortly.

In []: def eval(data_source):
total L = 0.0
ntotal = 0
hidden = model.begin_state(func = mx.nd.zeros, batch_size = args_batch_size,

ctx=context)

for i in range(@, data_source.shape[0] - 1, args_bptt):
data, target = get_batch(data_source, i)
output, hidden = model(data, hidden)
L = loss(output, target)
total_L += mx.nd.sum(L).asscalar()
ntotal += L.size

return total L / ntotal

Now we are ready to define the function for training the model. We can monitor the model
performance on the training, validation, and testing data sets over iterations.

In []: def train():
best val = float("Inf")
for epoch in range(args_epochs):
total L = 0.0
start_time = time.time()
hidden = model.begin_state(func = mx.nd.zeros, batch_size = args_batch_size, ctx =
context)
for ibatch, i in enumerate(range(9, train_data.shape[@] - 1, args_bptt)):
data, target = get_batch(train_data, i)
hidden = detach(hidden)
with autograd.record():
output, hidden = model(data, hidden)
L = loss(output, target)
L.backward()

grads = [i.grad(context) for i in model.collect_params().values()]

Here gradient is for the whole batch.

So we multiply max_norm by batch_size and bptt size to balance it.
gluon.utils.clip_global norm(grads, args_clip * args_bptt * args_batch_size)

trainer.step(args_batch_size)
total L += mx.nd.sum(L).asscalar()

if ibatch % args_log_interval == @ and ibatch > 0:
cur_L = total L / args_bptt / args_batch_size / args_log interval
print('[Epoch %d Batch %d] loss %.2f, perplexity %.2f"' % (
epoch + 1, ibatch, cur_L, math.exp(cur_L)))
total L = 0.0

val L = eval(val _data)

print('[Epoch %d] time cost %.2fs, validation loss %.2f, validation perplexity

%.2F" % (
epoch + 1, time.time() - start_time, val L, math.exp(val L)))

if val_L < best_val:
best_val = val_L
test L = eval(test_data)
model.save_params(args_save)
print('test loss %.2f, test perplexity %.2f"' % (test_L, math.exp(test_L)))
else:
args_1lr = args_1lr * 0.25
trainer._init_optimizer('sgd’,
{'learning_rate': args_1r,
'momentum': 0O,
'wd': 0})
model.load_params(args_save, context)

Recall that the RNN model training is based on maximization likelihood of observations. For
evaluation purposes, we have used the following two measures:

e Loss: the loss function is defined as the average negative log likelihood of the words under
prediction:

N
1
loss = — ﬁ ; 10g Ppredicted, 5

where N is the number of predictions and ppredicted; the likelihood of observing the next
word in the i-th prediction.
o Perplexity: the average per-word perplexity is exp(loss).

To orient the reader using concrete examples, let us illustrate the idea of the perplexity measure
as follows.

e Consider a perfect scenario where the prediction model always predicts the likelihood of the
next word correctly. In this case, for every i we have Ppredicted, = 1. As a result, the
perplexity of a perfect prediction model is always 1.

e Consider a baseline scenario where the prediction model always predicts the likelihood of the
next word randomly at uniform among the given word set W. In this case, for every i we
have Ppredicted, = 1/|W]. As a result, the perplexity of a uniformly random prediction model
is always |W|.

Therefore, a perplexity value is always between 1 and |W|. A model with a lower perplexity that
is closer to 1 is generally more accurate in prediction.

Now we are ready to train the model and evaluate the model performance on validation and
testing data sets.

In []: train()
model.load_params(args_save, context)
test L = eval(test_data)
print('Best test loss %.2f, test perplexity %.2f'%(test_L, math.exp(test_L)))

Next

Introduction to optimization

For whinges or inquiries, open an issue on GitHub.

In []:

http://gluon.mxnet.io/chapter06_optimization/optimization-intro.html
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Introduction

Introduction

You might find it weird that we’re sticking a chapter on optimization here. If you're following the
tutorials in sequence, then you've probably already been optimizing over the parameters of ten
or more machine learning models. You might consider yourself an old pro. In this chapter we'll
supply some depth to complement your experience.

We need to think seriously about optimization matters for several reasons. First, we want
optimizers to be fast. Optimizing complicated models with millions of parameters can take
upsettingly long. You might have heard of researchers training deep learning models for many
hours, days, or even weeks. They probably weren't exaggerating. Second, optimization is how we
choose our parameters. So the performance (e.g. accuracy) of our models depends entirely on
the quality of the optimizer.

THE #7 deep learning expert L X(CUSE
FOR LEGITIMATELY SLACKING OFF:

“MY model's training "

HEY! GET BACK

Challenges in optimization

The pre-defined loss function in the learning problem is called the objective function for
optimization. Conventionally, optimization considers a minimization problem. Any maximization
problem can be trivially converted to an equivalent minimization problem by flipping the sign fo
the objective function. Optimization is worth studying both because it’s essential to learning. It's
also worth studying because it’s an area where progress is being made, and smart choices can

http://gluon.mxnet.io/index.html

lead to superior performance. In other words, even fixing all the other modeling decisions,
figuring out how to optimize the parameters is a formidable challenge. We'll briefly describe
some of the issues that make optimization hard, especially for neural networks.

Local minima

An objective function f(x) may have a local minimum x, where f(x) is smaller at x than at the
neighboring points of x. If f(x) is the smallest value that can be obtained in the entire domain of
X, f(x) is a global mininum. The following figure demonstrates examples of local and global
minima for the function:

f(x) = x - cos(zx), -1.0<x<2.0.

In [1]: dimport numpy as np
import matplotlib.pyplot as plt

def f(x):
return x * np.cos(np.pi * x)

X = np.arange(-1.0, 2.0, 0.1)

fig = plt.figure()

subplt = fig.add_subplot(111)

subplt.annotate('local minimum', xy=(-0.3, -0.2), xytext=(-0.8, -1.0),
arrowprops=dict(facecolor="black', shrink=0.05))

subplt.annotate('global minimum', xy=(1.1, -0.9), xytext=(0.7, 0.1),
arrowprops=dict(facecolor="black', shrink=0.05))

plt.plot(x, f(x))

plt.show()

15

10 4

05 4

global minimum

/

-1.0 4 local minimum

Analytic vs approximate solutions

Ideally, we'd find the optimal solution x™* that globally minimizes an objective function. For
instance, the function f(x) = x? has a global minimum solution at x* = 0. We can obtain this
solution analytically. Another way of saying this is that there exists a closed-form solution. This
just means that we can analyze the equation for the function and produce an exact solution
directly. Linear regression, for example, has an analytic solution. To refresh you memory, in linear
regression we build a predictor of the form:

y = Xw

We ignored the intercept term b here but that can be handled by simply appending a column of
all 1s to the design matrix X.

And we want to solve the following minimization problem
. A 2
min £(y, y) = [ly — Xwll3

As a refresher, that's just the sum of the squared differences between our predictions and the
ground truth answers.

n
Z()’i —wix;)?
i=1

Because we know that this function is quadratic, we know that it has a single critical point
where the derivative of the loss with respect to the weights w is equal to 0. Moreover, we know
that the weights that minimize our loss constitute a critical point. So our solution corresponds to
the one setting of the weights that gives derivative of 0. First, let’s rewrite our loss function:

Ly, 9) =y —Xw)'(y — Xw)

Now, setting the derivative of our loss to O gives the following equation:

WY 2x)(y—xw) = 0
oW

We can now simplify these equations to find the optimal setting of the parameters w:

2XTy +2XTXw =0
XTXxw =XTy
w=X"x)"xTy

You might have noticed that we assumed that the matrix XTX can be inverted. If you take this
fact for granted, then it should be clear that we can recover the exact optimal value w* exactly.
No matter what values the data X, y takes we can produce an exact answer by computing just
one matrix multiplication, one matrix inversion, and two matrix-vector products.

Numerical optimization

However, in practice and for the most interesting models, we usually can’t find such analytical
solutions. Even for logistic regression, possibly the second simplest model considered in this
book, we don'’t have any exact solution. When we don’t have an analytic solution, we need to

resort to a numerical solution. A numerical solution usually involves starting with some guess of
the objective-minimizing setting of all the parameters, and successively improving the
parameters iterative manner. The most popular optimization techniques of this variety are
variants of gradient descent (GD). In the next notebook, we'll take a deep dive into gradient
descent and stochastic gradient descent (SGD). Depending on the optimizer you use, iterative
methods may take a long time to converge on a good answer.

For many problems, even if they don’t have an analytic solution, they may have only one minima.
An especially convenient class of functions are the convex functions. These are functions with a
uniformly positive second derivative. They have no local minima and are especially well-suited to
efficient optimization. Unfortunately, this is a book about neural networks. And neural networks
are not in general convex. Moreover, they have abundant local minima. With numerical methods,
it may not be possible to find the global minimizer of an objective function. For non-convex
functions, a numerical method often halts around local minima that are not necessarily the global
minima.

Saddle points

Saddle points are another challenge for optimizers. Even though these points are not local
minima, they are points where the gradient is equal to zero. For high dimensional models, saddle
points are typically more numerous than local minima. We depict a saddle point example in one-
dimensional space below.

In [2]: x = np.arange(-2.0, 2.0, 0.1)
fig = plt.figure()
subplt = fig.add_subplot(111)
subplt.annotate('saddle point', xy=(0, -0.2), xytext=(-0.4, -5.9),
arrowprops=dict(facecolor="black', shrink=0.05))
plt.plot(x, x**3)
plt.show()

I

saddle point

-20 -15 -10 -05 00 05 10 15 20

http://gluon.mxnet.io/chapter06_optimization/gd-sgd.html

Many optimization algorithms, like Newton’s method, are designed to be attracted to critical
points, including minima and saddle points. Since saddle points are generally common in high-
dimensional space, some optimization algorithms, such as the Newton’s method, may fail to train
deep learning models effectively as they may get stuck in saddle points. Another challenging
scenarios for neural networks is that there may be large, flat regions in parameters space that
correspond to bad values of the objective function.

Challenges due to machine precision

Even for convex functions, where all minima are global minima, it may still be hard to find the
precise optimal solutions. For one, the accuracy of any solution can be limited by the machine
precision.

In computers, numbers are represented in a discrete manner. The accuracy of a floating-point
system is characterized by a quantity called machine precision. For IEEE binary floating-point
systems,

24

e single precision = (about 7 decimal digits of precision)

e double precision = 23 (about 16 decimal digits of precision).

In fact, the precision of a solution to optimization can be worse than the machine precision. To
demonstrate that, consider a function f : R — R, its Taylor series exansion is

")

5 e? + O()

f+e)=f)+f (x)e+

where ¢ is small. Denote the global optimum solution as x* for minimizing f(x). It usually holds
that

f'*)=0 and f"(x*)#0.

Thus, for a small value €, we have

fO* +e) = f(x*) + O(?),

where the coefficient term of (O(e?) is £ (x)/2. This means that a small change of order € in the
optimum solution x* will change the value of f(x*) in the order of €2. In other words, if there is
an error in the function value, the precision of solution value is constrained by the order of the
square root of that error. For example, if the machine precision is 1078, the precision of the
solution value is only in the order of 10~*, which is much worse than the machine precision.

Optimality isn't everything

Although finding the precise global optimum solution to an objective function is hard, it is not
always necessary for deep learning. To start with, we care about test set performance. So we
may not even want to minimize the error on the training set to the lowest possible value.
Moreover, finding a suboptimal minimum of a great model can still be better than finding the
true global minimum of a lousy model.

Many algorithms have solid theoretical guarantees of convergence to global minima, but these
guarantees often only hold for functions that are convex. In old times, most researchers tried to
avoid non-convex optimizations due to the lack of guaranteed. Doing gradient descent without a
theoretical guarantee of convergence was considered unprincipled. However, the practice is
supported by a large body of empirical evidence. The state of the art models in computer vision,
natural language processing, and speech recognition for example, all rely on applying numerical
optimizer to non-convex objective functions. Machine learners now often have to choose
between those methods that are beautiful and those that work. In the next sections we'll try to
give you some more background on the field of optimisation and a deeper sense of the state of
the art techniques for training neural networks.

Next

Gradient descent and stochastic gradient descent

For whinges or inquiries, open an issue on GitHub.

http://gluon.mxnet.io/chapter06_optimization/gd-sgd.html
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Optimization by gradient descent

Optimization by gradient descent

In the previous tutorials, we decided which direction to move each parameter and how much to
move each parameter by taking the gradient of the loss with respect to each parameter. We also
scaled each gradient by some learning rate, although we never really explained where this
number comes from. We then updated the parameters by performing a gradient step

0,1 < nVyL,. Each update is called a gradient step and the process is called gradient descent.

The hope is that if we just take a whole lot of gradient steps, we'll wind up with an awesome
model that gets very low loss on our training data, and that this performance might generalize to
our hold-out data. But as a sharp reader, you might have any number of doubts. You might
wonder, for instance:

e Why does gradient descent work?

e Why doesn'’t the gradient descent algorithm get stuck on the way to a low loss?

e How should we choose a learning rate?

e Do all the parameters need to share the same learning rate?

e Is there anything we can do to speed up the process?

e Why does the solution of gradient descent over training data generalize well to test data?

Some answers to these questions are known. For other questions, we have some answers but
only for simple models like logistic regression that are easy to analyze. And for some of these
guestions, we know of best practices that seem to work even if they're not supported by any
conclusive mathematical analysis. Optimization is a rich area of ongoing research. In this chapter,
we'll address the parts that are most relevant for training neural networks. To begin, let’s take a
more formal look at gradient descent.

Gradient descent in one dimension

To get going, consider a simple scenario in which we have one parameter to manipulate. Let’s
also assume that our objective associates every value of this parameter with a value. Formally,
we can say that this objective function has the signature f : R — R. It maps from one real
number to another.

Note that the domain of f is in one-dimensional. According to its Taylor series expansion as
shown in the introduction chapter, we have

http://gluon.mxnet.io/index.html
http://gluon.mxnet.io/chapter06_optimization/optimization-intro.html

fa+e) = f0)+f (We.

Substituting € with —rf’ (x) where 7 is a constant, we have

fe=nf' () = fx) —nf (%)%

If 17 is set as a small positive value, we obtain

fO=nf'(x) <).

In other words, updating x as

x:=x—nf"(x)

may reduce the value of f(x) if its current derivative value f/ (x) # 0. Since the derivative /"’ (x)
is a special case of gradient in one-dimensional domain, the above update of x is gradient
descent in one-dimensional domain.

The positive scalar 77 is called the learning rate or step size. Note that a larger learning rate
increases the chance of overshooting the global minimum and oscillating. However, if the
learning rate is too small, the convergence can be very slow. In practice, a proper learning rate is
usually selected with experiments.

Gradient descent over multi-dimensional parameters

Consider the objective function f : RY — R that takes any multi-dimensional vector
X = [x1,X2,...,%7]" asits input. The gradient of f(X) with respect to X is defined by the
vector of partial derivatives:

X X X T_

ox; ~ Oxp = 0Oxy

Vif(x) =

To keep our notation compact we may use the notation Vf(X) and Vf(X) interchangeably
when there is no ambiguity about which parameters we are optimizing over. In plain English,
each element df (x)/0x; of the gradient indicates the rate of change for f at the point X with
respect to the input x; only. To measure the rate of change of f in any direction that is
represented by a unit vector u, in multivariate calculus, we define the directional derivative of f
at X in the direction of u as

Dyf(x) = lim J(x+) —f(x) ’

h—0 h

which can be rewritten according to the chain rule as

Dyf(x) = Vf(X) - u.

Since Dy f (X) gives the rates of change of f at the point X in all possible directions, to minimize
f, we are interested in finding the direction where f can be reduced fastest. Thus, we can
minimize the directional derivative Dyf(X) with respect to u. Since

Dyf(x) = ||[VfX)|| - [Ja]| - cos(@) = ||VF(X)|| - cos(8) where G is the angle between Vf(X)
and u, the minimum value of cos(8) is -1 when @ = x. Therefore, Dy f(X) is minimized when u
is at the opposite direction of the gradient Vf(x). Now we can iteratively reduce the value of f
with the following gradient descent update:

X 1= X = nVf(x),

where the positive scalar 7 is called the learning rate or step size.

Stochastic gradient descent

However, the gradient descent algorithm may be infeasible when the training data size is huge.
Thus, a stochastic version of the algorithm is often used instead.

To motivate the use of stochastic optimization algorithms, note that when training deep learning
models, we often consider the objective function as a sum of a finite number of functions:

1 n
f®) = g}fi(x),

where f;(X) is a loss function based on the training data instance indexed by i. It is important to
highlight that the per-iteration computational cost in gradient descent scales linearly with the
training data set size n. Hence, when n is huge, the per-iteration computational cost of gradient
descent is very high.

In view of this, stochastic gradient descent offers a lighter-weight solution. At each iteration,
rather than computing the gradient Vf(X), stochastic gradient descent randomly samples i at
uniform and computes Vf;(X) instead. The insight is, stochastic gradient descent uses Vf;(X) as
an unbiased estimator of Vf(X) since

1 n
ENVA®) = — Y Vi) = V().
i=1

In a generalized case, at each iteration a mini-batch B that consists of indices for training data
instances may be sampled at uniform with replacement. Similarly, we can use

1
Vfs®0 = 1 D Vfix)

ieB

to update x as

X 1= X = Vfp(x),

where | B| denotes the cardinality of the mini-batch and the positive scalar 7 is the learning rate
or step size. Likewise, the mini-batch stochastic gradient Vf5(X) is an unbiased estimator for the
gradient Vf(x):

EpVis(x) = Vf(X).

This generalized stochastic algorithm is also called mini-batch stochastic gradient descent and
we simply refer to them as stochastic gradient descent (as generalized). The per-iteration
computational cost is O(|3]). Thus, when the mini-batch size is small, the computational cost at
each iteration is light.

There are other practical reasons that may make stochastic gradient descent more appealing
than gradient descent. If the training data set has many redundant data instances, stochastic
gradients may be so close to the true gradient Vf(X) that a small number of iterations will find
useful solutions to the optimization problem. In fact, when the training data set is large enough,
stochastic gradient descent only requires a small number of iterations to find useful solutions
such that the total computational cost is lower than that of gradient descent even for just one
iteration. Besides, stochastic gradient descent can be considered as offering a regularization
effect especially when the mini-batch size is small due to the randomness and noise in the mini-
batch sampling. Moreover, certain hardware processes mini-batches of specific sizes more
efficiently.

Experiments

For demonstrating the aforementioned gradient-based optimization algorithms, we use the
regression problem in the linear regression chapter as a case study.

First, we import related libraries, generate the synthetic data, and construct the model.

In [1]: from _ future__ import print_function
import mxnet as mx
from mxnet import autograd
from mxnet import gluon
import numpy as np

np.random.randn (10000, 2)
2 * X[:,0] - 3.4 * X[:,1] + 4.2 + .01 * np.random.normal(size=10000)

<
non

mx.cpu()
gluon.nn.Sequential()

n

+

x
inn

http://gluon.mxnet.io/chapter02_supervised-learning/linear-regression-scratch.html

net.add(gluon.nn.Dense(1))
net.collect_params().initialize()
loss = gluon.loss.L2Loss()

Then we specify the batch sizes and learning rates for stochastic gradient descent algorithms.
Since the number of samples is 10,000, when the batch size is 10,000, the algorithm is
essentially gradient descent.

In [2]: batch_sizes = [1, 10, 100, 1000, 10000]
learning_rates = [0.1, 0.1, 0.5, 0.5, 1.0]
epochs = 3

Now we are ready to train the models and observe the inferred parameter values after the model
training.

In [3]: for batch_size, learning_rate in zip(batch_sizes, learning_rates):
trainer = gluon.Trainer(net.collect_params(), 'sgd',
{'learning_rate': learning_rate})
net.collect_params().initialize(mx.init.Xavier(magnitude=2.24),
ctx=ctx, force_reinit=True)
train_data = mx.io.NDArrayIter(X, Y, batch_size=batch_size, shuffle=True)

for e in range(epochs):
train_data.reset()
for i, batch in enumerate(train_data):
data = batch.data[@].as_in_context(ctx)
label = batch.label[@].as_in_context(ctx).reshape((-1, 1))
with autograd.record():
output = net(data)
mse = loss(output, label)
mse.backward()
trainer.step(data.shape[0])

for para_name, para_value in net.collect_params().items():
print("Batch size:", batch_size, para_name,
para_value.data().asnumpy()[©@])

Batch size: 1 dense@_weight [2.00191855 -3.40352154]
Batch size: 1 dense@_bias 4.19731

Batch size: 10 dense@_weight [1.99962676 -3.40070438]
Batch size: 10 dense@_bias 4.20087

Batch size: 100 dense@_weight [1.99993229 -3.40007687]
Batch size: 100 dense@_bias 4.20093

Batch size: 1000 dense@ weight [2.0000422 -3.40001583]
Batch size: 1000 dense@_bias 4.20009

Batch size: 10000 dense@_weight [2.00000167 -3.40008521]
Batch size: 10000 dense@_bias 4.20016

As expected, all the investigated algorithms find the weight vector to be close to [2, -3.4] and
the bias term to be close to 4.2 as specified in the synthetic data generation.

Although the above demonstration uses a fixed learning rate for stochastic gradient descent, in
practice a decaying learning rate is often needed. This is because the noise in random sampling
does not vanish throughout the iterations. For gradient descent and for some objective

functions, the true gradient tends to get smaller, approaching the zero vector. In these cases it

may be ok to use a fixed learning rate because the steps will naturally get smaller as the gradient
gets smaller.

Next

SGD with momentum

For whinges or inquiries, open an issue on GitHub.

http://gluon.mxnet.io/chapter06_optimization/sgd-momentum.html
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Stochastic gradient descent with momentum

Stochastic gradient descent with momentum

As discussed in the previous chapter, at each iteration stochastic gradient descent (SGD) finds
the direction where the objective function can be reduced fastest on a given example. Thus,
gradient descent is also known as the method of steepest descent. Essentially, SGD is a myopic
algorithm. It doesn’t look very far into the past and it doesn’t think much about the future. At
each step, SGD just does whatever looks right just at that moment.

You might wonder, can we do something smarter? It turns out that we can. One class of
methods use an idea called momentum. The idea of momentum-based optimizers is to
remember the previous gradients from recent optimization steps and to use them to help to do a
better job of choosing the direction to move next, acting less like a drunk student walking
downhill and more like a rolling ball.In this chapter we’ll motivate and explain SGD with
momentum.

Motivating example

In order to motivate the method, let’s start by visualizing a simple quadratic objective function \
(f: \mathbb{R}"2 \rightarrow \mathbb{R}\) taking a two-dimensional vector \(\mathbf{x} = [x_1,
x_2]"\top\) as the input. In the following figure, each contour line indicates points of equivalent
value \(f(\mathbf{x})\). The objective function is minimized in the center and the outer rings have
progressively worse values.

The red triangle indicates the starting point for our stochastic gradient descent optimizer. The
lines and arrows that follow indicate each step of SGD. You might wonder why the lines don’t
just point directly towards the center. That's because the gradient estimates in SGD are noisy,
due to the small sample size. So the gradient steps are noisy even if they are correct on average
(unbiased). As you can see, SGD wastes too much time swinging back and forth along the
direction in parallel with the \(x_2\)-axis while advancing too slowly along the direction of the \
(x_1\)-axis.

http://gluon.mxnet.io/index.html
http://gluon.mxnet.io/chapter06_optimization/gd-sgd.html

X1

Curvature and Hessian matrix

Even if we just did plain old gradient descent, we'd expect our function to bounce around quite a
lot. That's because our gradient is changing as we move around in parameter space due to the
curvature of the function.

We can reason about the curvature of objective function by considering their second derivative.
The second derivative says how much the gradient changes as we move in parameter space. In
one dimension, a second derivative of a function indicates how fast the first derivative changes
when the input changes. Thus, it is often considered as a measure of the curvature of a function.
It is the rate of change of the rate of change. If you've never done calculus before, that might
sound rather meta, but you'll get over it.

Consider the objective function \(f: \mathbb{R}*d \rightarrow \mathbb{R}\) that takes a multi-
dimensional vector \(\mathbf{x} = [x_1, x_2, \Idots, x_d]*\top\) as the input. Its Hessian matrix \
(\mathbf{H} \in \mathbb{R}*{d \times d}\) collects its second derivatives. Each entry \((i, j)\) says
how much the gradient of the objective with respect to parameter \(i\) changes, with a small
change in parameter \(j\).

\[\mathbf{H}_{i,j} = \frac{\partial*2 f(\mathbf{x})}{\partial x_i \partial x_j}\]
for all \(i, j = 1, \Idots, d\). Since \(\mathbf{H}\) is a real symmetric matrix, by spectral theorem, it
is orthogonally diagonalizable as

\[\mathbf{S}*\top \mathbf{H} \mathbf{S} = \mathbf{\Lambda},\]
where \(\mathbf{S}\) is an orthonormal eigenbasis composed of eigenvectors of \(\mathbf{H}\)

with corresponding eigenvalues in a diagonal matrix \(\mathbf{\Lambda}\): the eigenvalue \
(\mathbf{\Lambda}_{i, i}\) corresponds to the eigenvector in the \(i*{\text{th}}\) column of \

(\mathbf{S}\). The second derivative (curvature) of the objective function \(f\) in any direction \
(\mathbf{d}\) (unit vector) is a quadratic form \(\mathbf{d}*\top \mathbf{H} \mathbf{d}\).
Specifically, if the direction \(\mathbf{d}\) is an eigenvector of \(\mathbf{H}\), the curvature of \
(f\) in that direction is equal to the corresponding eigenvalue of \(\mathbf{d}\). Since the
curvature of the objective function in any direction is a weighted average of all the eigenvalues
of the Hessian matrix, the curvature is bounded by the minimum and maximum eigenvalues of
the Hessian matrix \(\mathbf{H}\). The ratio of the maximum to the minimum eigenvalue is the
condition number of the Hessian matrix \(\mathbf{H}\).

Gradient descent in ill-conditioned problems

How does the condition number of the Hessian matrix of the objective function affect the
performance of gradient descent? Let us revisit the problem in the motivating example.

Recall that gradient descent is a greedy approach that selects the steepest gradient at the
current point as the direction of advancement. At the starting point, the search by gradient
descent advances more aggressively in the direction of the \(x_2\)-axis than that of the \(x_1\)-
axis.

In the plotted problem of the motivating example, the curvature in the direction of the \(x_2\)-
axis is much larger than that of the \(x_1\)-axis. Thus, gradient descent tends to overshoot the
bottom of the function that is projected to the plane in parallel with the \(x_2\)-axis. At the next
iteration, if the gradient along the direction in parallel with the \(x_2\)-axis remains larger, the
search continues to advance more aggressively along the direction in parallel with the \(x_2\)-
axis and the overshooting continues to take place. As a result, gradient descent wastes too much
time swinging back and forth in parallel with the \(x_2\)-axis due to overshooting while the
advancement in the direction of the \(x_1\)-axis is too slow.

To generalize, the problem in the motivating example is an ill-conditioned problem. In anill-
conditioned problem, the condition number of the Hessian matrix of the objective function is
large. In other words, the ratio of the largest curvature to the smallest is high.

The momentum algorithm

The aforementioned ill-conditioned problems are challenging for gradient descent. By treating
gradient descent as a special form of stochastic gradient descent, we can address the challenge
with the following momentum algorithm for stochastic gradient descent.

\[\begin{split)\begin{align*} \mathbf{v} &:= \gamma \mathbf{v} + \eta \nabla f_\mathcal{B}
(\mathbf{x}),\\ \mathbf{x} &:= \mathbf{x} - \mathbf{v}, \end{align*}\end{split}\]

where \(\mathbf{v}\) is the current velocity and \(\gamma\) is the momentum parameter. The
learning rate \(\eta\) and the stochastic gradient \(\nabla f_\mathcal{B}(\mathbf{x})\) with
respect to the sampled mini-batch \(\mathcal{B}\) are both defined in the previous chapter.

It is important to highlight that, the scale of advancement at each iteration now also depends on
how aligned the directions of the past gradients are. This scale is the largest when all the past
gradients are perfectly aligned to the same direction.

To better understand the momentum parameter \(\gamma\), let us simplify the scenario by
assuming the stochastic gradients \(\nabla f_\mathcal{B}(\mathbf{x})\) are the same as \
(\mathbf{g}\) throughout the iterations. Since all the gradients are perfectly aligned to the same
direction, the momentum algorithm accelerates the advancement along the same direction of \
(\mathbf{g}\) as

\[\begin{split)\begin{align*} \mathbf{v}_1 &:= \eta\mathbf{g},\\ \mathbf{v}_2 &:= \gamma
\mathbf{v}_1 + \eta\mathbf{g} = \eta\mathbf{g} (\gamma + 1),\\ \mathbf{v}_3 &:= \gamma
\mathbf{v} 2 + \eta\mathbf{g} = \eta\mathbf{g} (\gamma”2 + \gamma + 1),\\ &\Idots\\
\mathbf{v}_\inf &= \frac{\eta\mathbf{g}}{1 - \gamma]}. \end{align*}\end{split}\]
Thus, if \(\gamma = 0.99\), the final velocity is 100 times faster than that of the corresponding

gradient descent where the gradient is \(\mathbf{g}\).

Now with the momentum algorithm, a sample search path can be improved as illustrated in the
following figure.

: S

Experiments

http://gluon.mxnet.io/chapter06_optimization/gd-sgd.html

For demonstrating the momentum algorithm, we still use the regression problem in the linear
regression chapter as a case study. Specifically, we investigate stochastic gradient descent with
momentum.

As usual, we import related libraries, generate the synthetic data, and construct the model.

In [1]: from _ future__ import print_function
import mxnet as mx
from mxnet import autograd
from mxnet import gluon
import numpy as np

X
Y

np.random.randn (10000, 2)
2 * X[:,0] - 3.4 * X[:,1] + 4.2 + .01 * np.random.normal(size=10000)

ctx = mx.cpu()

net = gluon.nn.Sequential()
net.add(gluon.nn.Dense(1))
net.collect_params().initialize()
loss = gluon.loss.L2Loss()

Then we specify the batch sizes and learning rates for stochastic gradient descent algorithms
with momentum. Specifically, the momentum parameter is set to 0.5.

In [2]: batch_sizes = [1, 10, 100, 1000]
learning_rates = [0.1, 0.1, 0.5, 0.5]
momentum_param = 0.5

epochs = 3

Now we are ready to train the models and observe the inferred parameter values after the model
training.

In [3]: for batch_size, learning_rate in zip(batch_sizes, learning_rates):
trainer = gluon.Trainer(net.collect_params(), 'sgd',
{'learning_rate': learning_rate,
‘momentum': momentum_param})
net.collect_params().initialize(mx.init.Xavier(magnitude=2.24),
ctx=ctx, force_reinit=True)
train_data = mx.io.NDArrayIter(X, Y, batch_size=batch_size, shuffle=True)

for e in range(epochs):
train_data.reset()
for i, batch in enumerate(train_data):
data = batch.data[@].as_in_context(ctx)
label = batch.label[@].as_in_context(ctx).reshape((-1, 1))
with autograd.record():
output = net(data)
mse = loss(output, label)
mse.backward()
trainer.step(data.shape[0])

for para_name, para_value in net.collect_params().items():
print("Batch size:", batch_size, para_name,
para_value.data().asnumpy()[@])

Batch size: 1 dense@_weight [2.00212836 -3.39304566]
Batch size: 1 dense@_bias 4.20125
Batch size: 10 dense@_weight [2.00067949 -3.40136981]

http://gluon.mxnet.io/chapter02_supervised-learning/linear-regression-scratch.html

Batch size: 10 dense@_bias 4.20053

Batch size: 100 dense@_weight [2.00005388 -3.40086675]
Batch size: 100 dense@_bias 4.19988

Batch size: 1000 dense@_weight [2.00004411 -3.39969349]
Batch size: 1000 dense@_bias 4.20037

As expected, all the investigated algorithms find the weight vector to be close to [2, -3.4] and
the bias term to be close to 4.2 as specified in the synthetic data generation.

Next

Fast & flexible: combining imperative & symbolic nets with HybridBlocks

For whinges or inquiries, open an issue on GitHub.

http://gluon.mxnet.io/chapter07_distributed-learning/hybridize.html
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Fast, portable neural networks with Gluon HybridBlocks

Fast, portable neural networks with Gluon
HybridBlocks

The tutorials we saw so far adopt the imperative, or define-by-run, programming paradigm. It
might not even occur to you to give a name to this style of programming because it's how we
always write Python programs.

Take for example a prototypical program written below in pseudo-Python. We grab some input
arrays, we compute upon them to produce some intermediate values, and finally we produce the
result that we actually care about.

def our_function(A, B, C, D):
Compute some intermediate values
E = basic_functionl(A, B)
F = basic_function2(C, D)

Finally, produce the thing you really care about
G = basic_function3(E, F)
return G

Load up some data
some_stuff()
some_stuff()
some_stuff()
some_stuff()

N < X = #

result = our_function(W, X, Y, Z)

As you might expect when we compute e, we're actually performing some numerical operation,
like multiplication, and returning an array that we assign to the variable e .Same for r . And if

we want to do a similar computation many times by putting these lines in a function, each time
our program will have to step through these three lines of Python.

The advantage of this approach is it's so natural that it might not even occur to some people that
there is another way. But the disadvantage is that it’s slow. That’s because we are constantly
engaging the Python execution environment (which is slow) even though our entire function
performs the same three low-level operations in the same sequence every time. It’s also holding
on to all the intermediate values b and e until the function returns even though we can see

that they’re not needed. We might have made this program more efficient by re-using memory
from either £ or r to storetheresult ¢ .

http://gluon.mxnet.io/index.html

There actually is a different way to do things. It's called symbolic programming and most of the
early deep learning libraries, including Theano and Tensorflow, embraced this approach
exclusively. You might have also heard this approach referred to as declarative programming or
define-then-run programming. These all mean the exact same thing. The approach consists of
three basic steps:

e Define a computation workflow, like a pass through a neural network, using placeholder data
e Compile the program into a front-end language, e.g. Python, independent format

e Invoke the compiled function, feeding it real data

Revisiting our previous pseudo-Python example, a symbolic version of the same program might
look something like this:

Create some placeholders to stand in for real data that might be supplied to the compiled

function.

A = placeholder()

B = placeholder()

C = placeholder()

D = placeholder()

Compute some intermediate values
E = symbolic_functionl(A, B)

F = symbolic_function2(C, D)

Finally, produce the thing you really care about
= symbolic_function3(E, F)

[n)]

our_function = library.compile(inputs=[A, B, C, D], outputs=[G])

Load up some data
some_stuff()
some_stuff()
some_stuff()
some_stuff()

N < X = #

result = our_function(W, X, Y, Z)

Here, when we run the line E = symbolic_functioni(a, B) , no numerical computation actually
happens. Instead, the symbolic library notes the way that e isrelatedto Ao and 8 and records
this information. We don’t do actual computation, we just make a roadmap for how to go from
inputs to outputs. Because we can draw all of the variables and operations (both inputs and
intermediate values) a nodes, and the relationships between nodes with edges, we call the
resulting roadmap a computational graph. In the symbolic approach, we first define the entire
graph, and then compile it.

Imperative Programs Tend to be More Flexible

When you're using an imperative-style library from Python, you are writing in Python. Nearly
anything that would be intuitive to write in Python, you could accelerate by calling down in the
appropriate places to the imperative deep learning library. On the other hand, when you write a
symbolic program, you may not have access to all the familiar Python constructs, like iteration.
It's also easy to debug an imperative program. For one, because all the intermediate values hang
around, it’s easy to introspect the program later. Imperative programs are also much easier to
debug because we can just stick print statements in between operations.

In short, from a developer’s standpoint, imperative programs are just better. They're a joy to
work with. You don’t have the tricky indirection of working with placeholders. You can do
anything that you can do with native Python. And faster debugging, means you get to try out
more ideas. But the catch is that imperative programs are comparatively slow.

Symbolic Programs Tend to be More Efficient

The main reason is efficiency, both in terms of memory and speed. Let’s revisit our toy example
from before. Consider the following program:

import numpy as np
a = np.ones(10)
np.ones(10) * 2
b * a

c+1

b
C
d

Assume that each cell in the array occupies 8 bytes of memory. How much memory do we need
to execute this program in the Python console? As an imperative program we need to allocate
memory at each line. That leaves us allocating 4 arrays of size 10. So we'll need 4 * 10 %« 8 = 320
bytes. On the other hand, if we built a computation graph, and knew in advance that we only
needed d, we could reuse the memory originally allocated for intermediate values. For example,
by performing computations in-place, we might recycle the bits allocated for b to store c. And

we might recycle the bits allocated for c to store d. In the end we could cut our memory
requirement in half, requiring just 2 % 10 % 8 = 160 bytes.

Symbolic programs can also perform another kind of optimization, called operation folding.
Returning to our toy example, the multiplication and addition operations can be folded into one
operation. If the computation runs on a GPU processor, one GPU kernel will be executed,
instead of two. In fact, this is one way we hand-craft operations in optimized libraries, such as
CXXNet and Caffe. Operation folding improves computation efficiency. Note, you can’t perform
operation folding in imperative programs, because the intermediate values might be referenced

in the future. Operation folding is possible in symbolic programs because we get the entire
computation graph in advance, before actually doing any calculation, giving us a clear
specification of which values will be needed and which will not.

Getting the best of both worlds with MXNet Gluon's HybridBlocks

Most libraries deal with the imperative / symbolic design problem by simply choosing a side.
Theano and those frameworks it inspired, like TensorFlow, run with the symbolic way. And
because the first versions of MXNet optimized performance, they also went symbolic. Chainer
and its descendants like PyTorch are fully imperative way. In designing MXNet Gluon, we asked
the following question. Is it possible to get all of the benefits of imperative programming but to
still exploit, whenever possible, the speed and memory efficiency of symbolic programming. In
other words, a user should be able to use Gluon fully imperatively. And if they never want their
lives to be more complicated then they can get on just fine imagining that the story ends there.
But when a user needs production-level performance, it should be easy to compile the entire
compute graph, or at least to compile large subsets of it.

MXNet accomplishes this through the use of HybridBlocks. Each Hybridslock can run fully

imperatively defining their computation with real functions acting on real inputs. But they’re also
capable of running symbolically, acting on placeholders. Gluon hides most of this under the hood
so you'll only need to know how it works when you want to write your own layers. Given a
HybridBlock whose forward computation consists of going through other HybridBlocks, you can
compile that section of the network by calling the HybridBlocks .nybridize() method.

All of MXNet's predefined layers are HybridBlocks. This means that any network consisting
entirely of predefined MXNet layers can be compiled and run at much faster speeds by calling

.hybridize() .

HybridSequential

We already learned how to use sequential to stack the layers. The regular sequential can be

built from regular Blocks and so it too has to be a regular Block. However, when you want to
build a network using sequential and run it at crazy speeds, you can construct your network
using Hybridsequential instead. The functionality is the same sequential :

In [1]: dimport mxnet as mx
from mxnet.gluon import nn
from mxnet import nd

def get_net():
construct a MLP
net = nn.HybridSequential()
with net.name_scope():
net.add(nn.Dense(256, activation="relu"))
net.add(nn.Dense(128, activation="relu"))
net.add(nn.Dense(2))

initialize the parameters
net.collect_params().initialize()
return net

forward

x = nd.random_normal(shape=(1, 512))

net = get_net()

print('=== net(x) ==={}'.format(net(x)))

=== net(x) ===
[[©.16526183 -0.14005636]]
<NDArray 1x2 @cpu(@)>

To compile and optimize the Hybridsequential , we can then call its hybridize method. Only
HybridBlock S, €.8. HybridSequential , can be compiled. But you can still call hybridize on normal
Block and its Hybridelock children will be compiled instead. We will talk more about

HybridBlock S later.

In [2]: net.hybridize()
print('=== net(x) ==={}'.format(net(x)))

=== net(x) ===
[[©.16526183 -0.14005636]]
<NDArray 1x2 @cpu(0)>

Performance

To get a sense of the speedup from hybridizing, we can compare the performance before and
after hybridizing by measuring in either case the time it takes to make 1000 forward passes
through the network.

In [3]: from time import time
def bench(net, x):
mx.nd.waitall()
start = time()
for i in range(1000):
y = net(x)
mx.nd.waitall()
return time() - start

net = get_net()
print('Before hybridizing: %.4f sec'%(bench(net, x)))
net.hybridize()
print('After hybridizing: %.4f sec'%(bench(net, x)))

Before hybridizing: 0.4646 sec
After hybridizing: 0.2424 sec

As you can see, hybridizing gives a significant performance boost, almost 2x the speed.

Get the symbolic program

Previously, we feed net with nparray data x , and then net(x) returned the forward results.
Now if we feed it with a symbo1 placeholder, then the corresponding symbolic program will be

returned.

In [4]: from mxnet import sym
X = sym.var('data')

print('=== input data holder ===")

print(x)

y = net(x)

print('\n=== the symbolic program of net===")
print(y)

y_json = y.tojson()
print('\n=== the according json definition===")
print(y_json)

=== input data holder ===
<Symbol data>

=== the symbolic program of net===
<Symbol hybridsequentiall_dense2_fwd>

== the according json definition===

~ 1l

"nodes": [
{
"op": "null",
"name": "data",
"inputs": []
s
{
"op": "null",
"name": "hybridsequentiall _dense@ weight",
"attr": {
" __dtype__": "o",
" lr_mult_": "1.0",
" _shape__": "(256, 0)",
" wd_mult__": "1.0"
¥
"inputs": []
s
{
"op": "null",
"name": "hybridsequentiall dense@ bias",
"attr": {
" __dtype__": "o",
" _init__ ": "zeros",
" lr_mult_": "1.0",
" _shape__ ": "(256,)",
" wd_mult__": "1.0"
¥
"inputs": []
s
{
"op": "FullyConnected",
"name": "hybridsequentiall_dense@_fwd",

"attr": {"num_hidden": "256"},
“inputs”: [[e, @, @], [1, @, @], [2, @, @]]

"op": "Activation",

"name": "hybridsequentiall_dense@_relu_fwd",
"attr": {"act_type": "relu"},

"inputs": [[3, 0, 0]]

op": "null",

"name": "hybridsequentiall densel_weight",
"attr": {
" dtype__": "o",
" _1r_mult__": "1.0",
" _shape__ ": "(128, 0)",
" wd_mult__": "1.0"
¥
"inputs": []

"op": "null",
"name": "hybridsequentiall densel bias",
"attr": {
"__dtype__ ": "0",
__init__": "zeros",
" lr_mult_": "1.0",
" _shape__ ": "(128,)",
" wd_mult__": "1.0"
¥
"inputs": []

"op": "FullyConnected",

"name": "hybridsequentiall_ densel_ fwd",
"attr": {"num_hidden": "128"},

“inputs”: [[4, @, @], [5, @, @], [6, @, 0]]

"op": "Activation",

"name": "hybridsequentiall_densel_relu_fwd",
"attr": {"act_type": "relu"},

"inputs": [[7, ©, ©]]

"op": "null",
"name": "hybridsequentiall_dense2_weight",
"attr": {
"__dtype__ ": "0",
" 1lr_mult__": "1.0",
"_shape__ ": "(2, 0)",
" wd_mult__": "1.0"
¥
"inputs": []

"op": "null",

"name": "hybridsequentiall_dense2_bias",
"attr": {

"__dtype_ ": "0",

_init__ ": "zeros",
" _1r_mult__": "1.0",
" __shape__ ": "(2,)",
" wd_mult__": "1.0"

}s
"inputs": []

"op": "FullyConnected",
"name": "hybridsequentiall_dense2_fwd",
"attr": {"num_hidden": "2"},
"inputs": [[8, @, @], [9, @, @], [1e, @, O]]
}
1,
"arg_nodes": [0, 1, 2, 5, 6, 9, 10],
"node_row_ptr": [
)

3

-

AUV, WNEREO

-

7,
8,
9,
10,
11,
12
1,
"heads": [[11, o, @0]],
"attrs": {"mxnet_version": ["int", 1001]}

}

Now we can save both the program and parameters onto disk, so that it can be loaded later not
only in Python, but in all other supported languages, such as C++, R, and Scala, as well.

In [5]: y.save('model.json')
net.save_params('model.params")

HybridBlock

Now let’s dive deeper into how hybridize works. Remember that gluon networks are composed
of Blocks each of which subclass giuon.Block . With normal Blocks, we just need to define a
forward function that takes an input x and computes the result of the forward pass through the

network. MXNet can figure out the backward pass for us automatically with autograd.

To define a HybridBlock , we instead have a hybrid forward function:

In [6]: from mxnet import gluon

class Net(gluon.HybridBlock):
def __init_ (self, **kwargs):
super(Net, self). init_ (**kwargs)
with self.name_scope():
self.fcl = nn.Dense(256)
self.fc2 = nn.Dense(128)
self.fc3 = nn.Dense(2)

def hybrid_forward(self, F, x):
F 1s a function space that depends on the type of x
If x's type is NDArray, then F will be mxnet.nd
If x's type is Symbol, then F will be mxnet.sym
print('type(x): {}, F: {}'.format(
type(x).__name__, F.__name__))
X = F.relu(self.fcl(x))
x = F.relu(self.fc2(x))
return self.fc3(x)

The nybrid forward function takes an additional input, r , which stands for a backend. This
exploits one awesome feature of MXNet. MXNet has both a symbolic API (mxnet.symbol) and an
imperative API (mxnet.ndarray). In this book, so far, we've only focused on the latter. Owing to

fortuitous historical reasons, the imperative and symbolic interfaces both support roughly the
same API. They have many of same functions (currently about 90% overlap) and when they do,
they support the same arguments in the same order. When we define hybrid_forward , we pass in

F . When running in imperative mode, hybrid_forward is called with F as mxnet.ndarray and x
as some ndarray input. When we compile with hybridize , F will be mxnet.symbol and x will be

some placeholder or intermediate symbolic value. Once we call hybridize, the net is compiled, so

we'll never need to call hybrid_forward again.

Let’'s demonstrate how this all works by feeding some data through the network twice. We'll do
this for both a regular network and a hybridized net. You'll see that in the first case,
hybrid_forward is actually called twice.

In [7]: net = Net()
net.collect_params().initialize()
x = nd.random_normal(shape=(1, 512))

print('=== 1st forward ===")
y = net(x)
print('=== 2nd forward ===")
y = net(x)

=== 1st forward ===
type(x): NDArray, F: mxnet.ndarray
=== 2nd forward ===

F:

type(x): NDArray, mxnet.ndarray

Now run it again after hybridizing.

In [8]: net.hybridize()

print('=== 1st forward ===")
y = net(x)
print('=== 2nd forward ===")
y = net(x)

=== 1st forward ===
type(x): Symbol, F: mxnet.symbol
=== 2nd forward ==

It differs from the previous execution in two aspects:

1. the input data type now is symbol even when we fed an nparray into net , because gluon

implicitly constructed a symbolic data placeholder.
2. hybrid forward is called once at the first time we run net(x) . It is because giuon will

construct the symbolic program on the first forward, and then keep it for reuse later.

One main reason that the network is faster after hybridizing is because we don't need to
repeatedly invoke the Python forward function, while keeping all computations within the highly
efficient C++ backend engine.

But the potential drawback is the loss of flexibility to write the forward function. In other ways,
inserting print for debugging or control logic such as if and for into the forward function is

not possible now.

Conclusion

Through Hybridsequental and HybridBlock , we can convert an imperative program into a

symbolic program by calling nhybridize .

Next

Training MXNet models with multiple GPUs

For whinges or inquiries, open an issue on GitHub.

http://gluon.mxnet.io/chapter07_distributed-learning/multiple-gpus-scratch.html
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Training on multiple GPUs with gluon

gluon

Gluon makes it easy to implement data parallel training. In this notebook, we'll implement data
parallel training for a convolutional neural network. If you'd like a finer grained view of the
concepts, you might want to first read the previous notebook, multi gpu from scratch with

gluon .
To get started, let’s first define a simple convolutional neural network and loss function.

In [1]: from mxnet import gluon, gpu

net = gluon.nn.Sequential(prefix='cnn_")

with net.name_scope():
net.add(gluon.nn.Conv2D(channels=20, kernel_size=3, activation='relu'))
net.add(gluon.nn.MaxPool2D(pool_size=(2,2), strides=(2,2)))
net.add(gluon.nn.Conv2D(channels=50, kernel_size=5, activation='relu'))
net.add(gluon.nn.MaxPool2D(pool_size=(2,2), strides=(2,2)))
net.add(gluon.nn.Flatten())
net.add(gluon.nn.Dense(128, activation="relu"))
net.add(gluon.nn.Dense(10))

loss = gluon.loss.SoftmaxCrossEntropylLoss()

Gluon supports initialization of network parameters over multiple devices. We accomplish this
by passing in an array of device contexts, instead of the single contexts we've used in earlier
notebooks. When we pass in an array of contexts, the parameters are initialized to be identical
across all of our devices.

In [2]: | GPU_COUNT = 2 # increase if you have more
ctx = [gpu(i) for i in range(GPU_COUNT)]
net.collect_params().initialize(ctx=ctx)

Given a batch of input data, we can split it into parts (equal to the number of contexts) by calling
gluon.utils.split_and load(batch, ctx) . The split and load function doesn'’t just split the data, it

also loads each part onto the appropriate device context.

So now when we call the forward pass on two separate parts, each one is computed on the
appropriate corresponding device and using the version of the parameters stored there.

In [3]: from mxnet.test utils import get mnist
mnist = get_mnist()

http://gluon.mxnet.io/index.html
http://gluon.mxnet.io/chapter07_distributed-learning/multiple-gpus-scratch.html

batch = mnist['train_data'][©:GPU_COUNT*2, :]
data = gluon.utils.split_and_load(batch, ctx)
print(net(data[@]))
print(net(data[1]))

[[-0.01017658 ©.03012515 ©.02999702 ©0.01175333 -0.01746453 ©.00707828
0.02404996 0.00616632 -0.02094562 0.0136827]
[-0.01249129 0.0305641 0.02823936 -0.00159418 -0.00722831 ©0.00538148
0.01476716 ©.0225275 -0.02458289 0.0246105]]
<NDArray 2x10 @gpu(0)>

[[-0.00349744 ©.01896121 ©.02959755 0.00261514 0.00015916 -0.00355723
0.0040103 0.03075583 -0.00761715 ©0.00599077]
[-0.00557119 0.02766508 ©0.02406837 -0.0007478 -0.00511122 0.00538528
0.00292899 0.01488838 -0.00191687 0.01074106]]
<NDArray 2x10 @gpu(1l)>

At any time, we can access the version of the parameters stored on each device. Recall from the
first Chapter that our weights may not actually be initialized when we call initialize because

the parameter shapes may not yet be known. In these cases, initialization is deferred pending
shape inference.

In [4]: weight = net.collect_params()['cnn_conv@ weight']

for c in ctx:
print('=== channel @ of the first conv on {} ==={}'.format(
c, weight.data(ctx=c)[0@]))

=== channel @ of the first conv on gpu(@) ===
[[[©.0068339 0.01299825 0.0301265]

[©.04819721 ©0.01438687 ©.05011239]

[©.00628365 0.04861524 -0.01068833]]]
<NDArray 1x3x3 @gpu(0)>
=== channel @ of the first conv on gpu(l) ===
[[[©.0068339 ©.01299825 ©.0301265]

[©.04819721 0.01438687 ©0.05011239]

[©.00628365 ©0.04861524 -0.01068833]]]
<NDArray 1x3x3 @gpu(1l)>

Similarly, we can access the gradients on each of the GPUs. Because each GPU gets a different
part of the batch (a different subset of examples), the gradients on each GPU vary.

In [5]: def forward_backward(net, data, label):
with gluon.autograd.record():
losses = [loss(net(X), Y) for X, Y in zip(data, label)]
for 1 in losses:
1.backward()

label = gluon.utils.split_and_load(mnist['train_label'][0:4], ctx)
forward_backward(net, data, label)
for c in ctx:
print('=== grad of channel @ of the first conv2d on {} ==={}'.format(
c, weight.grad(ctx=c)[0]))

=== grad of channel @ of the first conv2d on gpu(@) ===
[[[-0.00481181 ©.02549155 ©.05066928]

[©.01503928 0.04740803 0.0411102]

[©.04527877 ©.06305876 0.04087966]]]
<NDArray 1x3x3 @gpu(0)>
=== grad of channel @ of the first conv2d on gpu(l) ===
[[[-0.01102538 -0.02251887 -0.02211753]

[-0.01587106 -0.03848277 -0.03960423]
[-0.03371562 -0.06092873 -0.064744 1]]
<NDArray 1x3x3 @gpu(1l)>

Now we can implement the remaining functions. Most of them are the same as when we did
everything by hand; one notable difference is that if a giuon trainer recognizes multi-devices, it

will automatically aggregate the gradients and synchronize the parameters.

In [6]: from mxnet import nd
from mxnet.io import NDArrayIter
from time import time

def train_batch(batch, ctx, net, trainer):
split the data batch and Load them on GPUs
data = gluon.utils.split_and_load(batch.data[@], ctx)
label = gluon.utils.split_and_load(batch.label[0], ctx)
compute gradient
forward_backward(net, data, label)
update parameters
trainer.step(batch.data[@].shape[9])

def valid_batch(batch, ctx, net):
data = batch.data[@].as_in_context(ctx[0])
pred = nd.argmax(net(data), axis=1)
return nd.sum(pred == batch.label[@].as_in_context(ctx[0])).asscalar()

def run(num_gpus, batch_size, 1r):
the List of GPUs will be used
ctx = [gpu(i) for i in range(num_gpus)]
print('Running on {}'.format(ctx))

data iterator

mnist = get_mnist()

train_data = NDArrayIter(mnist["train_data"], mnist["train_label"], batch_size)
valid_data = NDArrayIter(mnist["test_data"], mnist["test_label"], batch_size)
print('Batch size is {}'.format(batch_size))

net.collect_params().initialize(force_reinit=True, ctx=ctx)
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 1lr})
for epoch in range(5):
train
start = time()
train_data.reset()
for batch in train_data:
train_batch(batch, ctx, net, trainer)
nd.waitall() # wait until all computations are finished to benchmark the time
print('Epoch %d, training time = %.1f sec'%(epoch, time()-start))

validating
valid_data.reset()
correct, num = 0.0, 0.0
for batch in valid _data:
correct += valid_batch(batch, ctx, net)
num += batch.data[0].shape[9]
print(’ validation accuracy = %.4f'%(correct/num))

run(l, 64, .3)
run(GPU_COUNT, 64*GPU_COUNT, .3*GPU_COUNT)

Running on [gpu(@)]
Batch size is 64

/home/ubuntu/miniconda3/envs/gluon/lib/python3.6/site-
packages/mxnet/gluon/parameter.py:276: UserWarning: Parameter cnn_conv@_weight is already

http://gluon.mxnet.io/chapter07_distributed-learning/chapter07_distributed-learning/multiple-gpus-scratch.ipynb

initialized, ignoring. Set force_reinit=True to re-initialize.

"Set force_reinit=True to re-initialize."%self.name)
/home/ubuntu/miniconda3/envs/gluon/1lib/python3.6/site-
packages/mxnet/gluon/parameter.py:276: UserWarning: Parameter

initialized, ignoring. Set force_reinit=True to re-initialize.

"Set force_reinit=True to re-initialize."%self.name)
/home/ubuntu/miniconda3/envs/gluon/1lib/python3.6/site-
packages/mxnet/gluon/parameter.py:276: UserWarning: Parameter

initialized, ignoring. Set force_reinit=True to re-initialize.

"Set force_reinit=True to re-initialize."%self.name)
/home/ubuntu/miniconda3/envs/gluon/1lib/python3.6/site-
packages/mxnet/gluon/parameter.py:276: UserWarning: Parameter

initialized, ignoring. Set force_reinit=True to re-initialize.

"Set force_reinit=True to re-initialize."%self.name)
/home/ubuntu/miniconda3/envs/gluon/1lib/python3.6/site-
packages/mxnet/gluon/parameter.py:276: UserWarning: Parameter

initialized, ignoring. Set force_reinit=True to re-initialize.

"Set force_reinit=True to re-initialize."%self.name)
/home/ubuntu/miniconda3/envs/gluon/1lib/python3.6/site-
packages/mxnet/gluon/parameter.py:276: UserWarning: Parameter

initialized, ignoring. Set force_reinit=True to re-initialize.

"Set force_reinit=True to re-initialize."%self.name)
/home/ubuntu/miniconda3/envs/gluon/1lib/python3.6/site-
packages/mxnet/gluon/parameter.py:276: UserWarning: Parameter

initialized, ignoring. Set force_reinit=True to re-initialize.

"Set force_reinit=True to re-initialize."%self.name)
/home/ubuntu/miniconda3/envs/gluon/1lib/python3.6/site-
packages/mxnet/gluon/parameter.py:276: UserWarning: Parameter

initialized, ignoring. Set force_reinit=True to re-initialize.

"Set force_reinit=True to re-initialize."%self.name)

Epoch 0, training time = 10.3 sec
validation accuracy = ©.9703
Epoch 1, training time = 10.1 sec
validation accuracy = 0.9743
Epoch 2, training time = 10.1 sec
validation accuracy = 0.9754
Epoch 3, training time = 10.1 sec
validation accuracy = 0.9806
Epoch 4, training time = 10.1 sec

validation accuracy = ©.1139
Running on [gpu(@), gpu(1)]
Batch size is 128
Epoch training time = 8.4 sec
validation accuracy = 0.1010
training time = 8.3 sec
validation accuracy = 0.1010
training time = 8.3 sec
validation accuracy = 0.1137
training time = 8.3 sec
validation accuracy = 0.1137
training time = 8.3 sec
validation accuracy = 0.1137

Epoch
Epoch
Epoch

Epoch

cnn_conv@_bias is already

cnn_convl_weight is already

cnn_convl_bias is already

cnn_dense®_weight is already

cnn_dense®_bias is already

cnn_densel_weight is already

cnn_densel_bias is already

Both parameters and trainers in giuon support multi-devices. Moving from one device to multi-

devices is straightforward.

Distributed training with multiple machines

For whinges or inquiries, open an issue on GitHub.

http://gluon.mxnet.io/chapter07_distributed-learning/training-with-multiple-machines.html
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Distributed training with multiple machines

Distributed training with multiple machines

In the previous two tutorials, we saw that using multiple GPUs within a machine can accelerate
training. The speedup, however, is limited by the number of GPUs installed in that machine. And
it’s rare to find a single machine with more than 16 GPUs nowadays. For some truly large-scale
applications, this speedup might still be insufficient. For example, it could still take many days to
train a state-of-the-art CNN on millions of images.

In this tutorial, we'll discuss the key concepts you'll need in order to go from a program that does
single-machine training to one that executes distributed training across multiple machines. We
depict a typical distributed system in the following figure, where multiple machines are
connected by network switches.

Network
Switch
CPU CPU CPU CPU

PCle
Switch

0NdS
I NdS
¢ NdO

Note that the way we used copyto to copy data from one GPU to another in the multiple-GPU

tutorial does not work when our GPUs are sitting on different machines. To make use of the
available resources here well need a better abstraction.

Key-value store

MXNet provides a key-value store to synchronize data among devices. The following code
initializes an ndarray associated with the key “weight” on a key-value store.

In [1]: from mxnet import kv, nd
store = kv.create('local")
shape = (2, 3)
x = nd.random_uniform(shape=shape)

http://gluon.mxnet.io/index.html
http://gluon.mxnet.io/multiple-gpus-scratch.ipynb

store.init('weight', x)
print('=== init "weight" ==={}'.format(x))

=== init "weight" ===

[[©.54881352 ©.59284461 ©0.71518934]
[©.84426576 ©0.60276335 ©.85794562]]

<NDArray 2x3 @cpu(0)>

After initialization, we can pull the value to multiple devices.

In [2]: from mxnet import gpu
ctx = [gpu(@), gpu(1)]
y = [nd.zeros(shape, ctx=c) for c in ctx]
store.pull('weight', out=y)
print('=== pull "weight" to {} ===\n{}'.format(ctx, y))

=== pull "weight" to [gpu(@), gpu(l)] ===
[

[[©.54881352 ©0.59284461 ©.71518934]

[©.84426576 0.60276335 ©.85794562]]
<NDArray 2x3 @gpu(0)>,

[[©.54881352 ©.59284461 ©.71518934]

[©.84426576 0.60276335 ©.85794562]]
<NDArray 2x3 @gpu(1)>]

We can also push new data value into the store. It will first sum the data on the same key and
then overwrite the current value.

In [3]: z = [nd.ones(shape, ctx=ctx[i])+i for i in range(len(ctx))]
store.push('weight', z)
print('=== push to "weight" ===\n{}'.format(z))
store.pull('weight', out=y)
print('=== pull "weight" ===\n{}'.format(y))

== push to "weight" ===

]
gpu(0)>,

N W
[y A

1

1.
rray 2x

2. .
2. 2.1]
rray 2x3 @gpu(1l)>]
= pull "weight" ===

——l

— 2

]
1]
< @gpu(@)>,
[1
[3. 1]
<NDArray 2x3 @gpu(1l)>]

With push and pull we can replace the alireduce function defined in multiple-gpus-scratch by

def allreduce(data, data_name, store):
store.push(data_name, data)
store.pull(data_name, out=data)

http://gluon.mxnet.io/chapter07_distributed-learning/P14-C02-multiple-gpus-scratch.ipynb

Distributed key-value store

Not only can we synchronize data within a machine, with the key-value store we can facilitate
inter-machine communication. To use it, one can create a distributed kvstore by using the
following command: (Note: distributed key-value store requires mxnet to be compiled with the

flag USE_DIST_KVSTORE=1 , €.8. make USE_DIST_KVSTORE=1 .)

store = kv.create('dist"')

Now if we run the code from the previous section on two machines at the same time, then the
store will aggregate the two ndarrays pushed from each machine, and after that, the pulled
results will be:

—
—r—
[e)We))
o))
[e)le))
—

In the distributed setting, mxnet launches three kinds of processes (each time, running
python myprog.py Will create a process). One is a worker, which runs the user program, such as

the code in the previous section. The other two are the server, which maintains the data pushed
into the store, and the scheduler, which monitors the aliveness of each node.

It's up to users which machines to run these processes on. But to simplify the process placement
and launching, MXNet provides a tool located at tools/launch.py.

Assume there are two machines, A and B. They are ssh-able, and their IPs are saved in a file
named hostfile . Then we can start one worker in each machine through:

$ mxnet_path/tools/launch.py -H hostfile -n 2 python myprog.py

It will also start a server in each machine, and the scheduler on the same machine we are
currently on.

Using kvstore 1N gluon

https://github.com/dmlc/mxnet/blob/master/tools/launch.py

As mentioned in our section on training with multiple GPUs from scratch, to implement data
parallelism we just need to specify

e how to split data
e how to synchronize gradients and weights

We already see from multiple-gpu-gluon that a giuon trainer can automatically aggregate the
gradients among different GPUs. What it really does is having a key-value store with type 1ocal

within it. Therefore, to change to multi-machine training we only need to pass a distributed key-
value store, for example,

store = kv.create('dist"')
trainer = gluon.Trainer(..., kvstore=store)

To split the data, however, we cannot directly copy the previous approach. One commonly used
solution is to split the whole dataset into k parts at the beginning, then let the /i-th worker only
read the /-th part of the data.

We can obtain the total number of workers by reading the attribute num_workers and the rank of

the current worker from the attribute rank .

In [4]: print('total number of workers: %d'%(store.num_workers))
print('my rank among workers: %d'%(store.rank))

total number of workers: 1
my rank among workers: @

With this information, we can manually access the proper chunk of the input data. In addition,
several data iterators provided by wmxnet already support reading only part of the data. For

example,

from mxnet.io import ImageRecordIter
data = ImageRecordIter(num_parts=store.num_workers, part_index=store.rank, ...)

For whinges or inquiries, open an issue on GitHub.

http://gluon.mxnet.io/chapter07_distributed-learning/multiple-gpus-scratch.html#Data-Parallelism
http://gluon.mxnet.io/chapter07_distributed-learning/P14-C03-multiple-gpus-gluon.ipynb#put-all-things-together
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Object Detection Using Convolutional Neural Networks

Object Detection Using Convolutional Neural
Networks

So far, when we've talked about making predictions based on images, we were concerned only
with classification. We asked questions like is this digit a “0” “1”, ..., or “9?” or, does this picture
depict a “cat” or a “dog”? Object detection is a more challenging task. Here our goal is not only to
say whatis in the image but also to recognize where it is in the image. As an example, consider
the following image, which depicts two dogs and a cat together with their locations.

DOG, DOG, CAT

So object defers from image classification in a few ways. First, while a classifier outputs a single
category per image, an object detector must be able to recognize multiple objects in a single
image. Technically, this task is called multiple object detection, but most research in the area
addresses the multiple object setting, so we'll abuse terminology just a little. Second, while
classifiers need only to output probabilities over classes, object detectors must output both
probabilities of class membership and also the coordinates that identify the location of the
objects.

On this chapter we'll demonstrate the single shot multiple box object detector (SSD), a popular
model for object detection that was first described in this paper, and is straightforward to
implement in MXNet Gluon.

SSD: Single Shot MultiBox Detector

The SSD model predicts anchor boxes at multiple scales. The model architecture is illustrated in
the following figure.

http://gluon.mxnet.io/index.html
https://arxiv.org/abs/1512.02325

class predictor

\\< S box predictor
class predictor
body .
s downsample box predictor
input scale 0 scale 1

We first use a body network to extract the image features, which are used as the input to the
first scale (scale O). The class labels and the corresponding anchor boxes are predicted by
class_predictor and box_predictor , respectively. We then downsample the representations to
the next scale (scale 1). Again, at this new resolution, we predict both classes and anchor boxes.
This downsampling and predicting routine can be repeated in multiple times to obtain results on
multiple resolution scales. Let’s walk through the components one by one in a bit more detail.

Default anchor boxes

Since an anchor box can have arbituary shape, we sample a set of anchor boxes as the candidate.
In particular, for each pixel, we sample multiple boxes centered at this pixel but have various
sizes and ratios. Assume the input size is w X h, - for size s € (0, 1], the generated box shape
will be ws X hs - for ratio r > 0, the generated box shape will be w\/}_’ X ir

NG
We can sample the boxes using the operator multiBoxprior . It accepts nsizes and mratios to
generate n+m-1 boxes for each pixel. The first i boxes are generated from sizes[i], ratios[e] if

i < n otherwise sizes[@], ratios[i-n] .

In [1]: dimport mxnet as mx
from mxnet import nd
from mxnet.contrib.ndarray import MultiBoxPrior

n = 40
shape: batch x channel x height x weight
x = nd.random_uniform(shape=(1, 3, n, n))

MultiBoxPrior(x, sizes=[.5, .25, .1], ratios=[1, 2, .5])

<
1]

the first anchor box generated for pixel at (20,20)
its format is (x_min, y_min, x_max, y_max)

boxes = y.reshape((n, n, -1, 4))
print('The first anchor box at row 21, column 21:', boxes[20, 20, ©, :])

The first anchor box at row 21, column 21:
[©.26249999 0.26249999 ©.76249999 0.76249999]
<NDArray 4 @cpu(0)>

We can visualize all anchor boxes generated for one pixel on a certain size feature map.

In [2]: import matplotlib.pyplot as plt
def box_to_rect(box, color, linewidth=3):
"""convert an anchor box to a matplotlib rectangle
box = box.asnumpy()
return plt.Rectangle(
(box[0], box[1]), (box[2]-box[@©]), (box[3]-box[1]),
fill=False, edgecolor=color, linewidth=1linewidth)
colors = ['blue', 'green', 'red', 'black', 'magenta']
plt.imshow(nd.ones((n, n, 3)).asnumpy())
anchors = boxes[20, 20, :, :]
for i in range(anchors.shape[0]):
plt.gca().add_patch(box_to_rect(anchors[i,:]*n, colors[i]))
plt.show()

15 -

20 4

25 1

35 1

Predict classes

For each anchor box, we want to predict the associated class label. We make this prediction by
using a convolution layer. We choose a kernel of size 3 X 3 with padding size (1, 1) so that the
output will have the same width and height as the input. The confidence scores for the anchor
box class labels are stored in channels. In particular, for the /~th anchor box:

e channel i*(num class+1) store the scores for this box contains only background
e channel i*(num class+1)+1+j store the scores for this box contains an object from the j-th

class

In [3]: from mxnet.gluon import nn
def class_predictor(num_anchors, num_classes):
"""peturn a layer to predict classes
return nn.Conv2D(num_anchors * (num_classes + 1), 3, padding=1)

cls_pred = class_predictor(5, 190)

cls_pred.initialize()
x = nd.zeros((2, 3, 20, 20))
print('Class prediction', cls_pred(x).shape)

Class prediction (2, 55, 20, 20)

Predict anchor boxes

The goal is predict how to transfer the current anchor box to the correct box. That is, assume b
is one of the sampled default box, while Y is the ground truth, then we want to predict the delta
positions A(Y, b), which is a 4-length vector.

More specifically, the we define the delta vector as: [t,, y, tyidsh» theigni], Where

o 1y = Yy = D)/byiam

e Iy = (Yy - by)/bheight

o twidih = (Ywidih — bwidth) Dwidih

° theight = (Yheight - bheight)/bheight

Normalizing the deltas with box width/height tends to result in better convergence behavior.

Similar to classes, we use a convolution layer here. The only difference is that the output channel
size is now num_anchors * 4 , with the predicted delta positions for the i~th box stored from

channel i*a to i*a+3 .

In [4]: def box_predictor(num_anchors):
"""return a layer to predict delta locations"""
return nn.Conv2D(num_anchors * 4, 3, padding=1)

box_pred = box_predictor(10)
box_pred.initialize()

X = nd.zeros((2, 3, 20, 20))

print('Box prediction', box_pred(x).shape)

Box prediction (2, 40, 20, 20)

Down-sample features

Each time, we downsample the features by half. This can be achieved by a simple pooling layer
with pooling size 2. We may also stack two convolution, batch normalization and ReLU blocks
before the pooling layer to make the network deeper.

In [5]: def down_sample(num_filters):

"""stack two Conv-BatchNorm-Relu blocks and then a pooling layer

to halve the feature size"""

out = nn.HybridSequential()

for _ in range(2):
out.add(nn.Conv2D(num_filters, 3, strides=1, padding=1))
out.add(nn.BatchNorm(in_channels=num_filters))
out.add(nn.Activation('relu'))

out.add(nn.MaxPool2D(2))
return out

blk = down_sample(10)

blk.initialize()

x = nd.zeros((2, 3, 20, 20))

print('Before', x.shape, 'after', blk(x).shape)

Before (2, 3, 20, 20) after (2, 10, 10, 10)

Manage preditions from multiple layers

A key property of SSD is that predictions are made at multiple layers with shrinking spatial size.
Thus, we have to handle predictions from multiple feature layers. One idea is to concatenate
them along convolutional channels, with each one predicting a correspoding value(class or box)
for each default anchor. We give class predictor as an example, and box predictor follows the
same rule.

In [6]: | # a certain feature map with 20x20 spatial shape
featl = nd.zeros((2, 8, 20, 20))
print('Feature map 1', featl.shape)
cls_predl = class_predictor(5, 10)
cls_predl.initialize()
yl = cls_predl(featl)
print('Class prediction for feature map 1', yl.shape)
down-sample
ds = down_sample(16)
ds.initialize()
feat2 = ds(featl)
print('Feature map 2', feat2.shape)
cls_pred2 = class_predictor(3, 10)
cls_pred2.initialize()
y2 = cls_pred2(feat2)
print('Class prediction for feature map 2', y2.shape)

Feature map 1 (2, 8, 20, 20)
Class prediction for feature map 1 (2, 55, 20, 20)
Feature map 2 (2, 16, 10, 10)
Class prediction for feature map 2 (2, 33, 10, 10)

In [7]: def flatten_prediction(pred):
return nd.flatten(nd.transpose(pred, axes=(9, 2, 3, 1)))

def concat_predictions(preds):
return nd.concat(*preds, dim=1)

flat_yl = flatten_prediction(yl)

print('Flatten class prediction 1', flat_yl.shape)

flat_y2 = flatten_prediction(y2)

print('Flatten class prediction 2', flat_y2.shape)

print('Concat class predictions', concat_predictions([flat_yl, flat_y2]).shape)

Flatten class prediction 1 (2, 22000)

Flatten class prediction 2 (2, 3300)
Concat class predictions (2, 25300)

Body network

The body network is used to extract features from the raw pixel inputs. Common choices follow
the architectures of the state-of-the-art convolution neural networks for image classification.
For demonstration purpose, we just stack several down sampling blocks to form the body
network.

In [8]: from mxnet import gluon
def body():
"""peturn the body network"""
out = nn.HybridSequential()
for nfilters in [16, 32, 64]:
out.add(down_sample(nfilters))
return out

bnet = body()

bnet.initialize()

x = nd.zeros((2, 3, 256, 256))

print('Body network', [y.shape for y in bnet(x)])

Body network [(64, 32, 32), (64, 32, 32)]

Create a toy SSD model

Now, let’s create a toy SSD model that takes images of resolution 256 X 256 as input.

In [9]: def toy_ssd_model(num_anchors, num_classes):
return SSD modules"""

downsamples = nn.Sequential()
class_preds = nn.Sequential()

box_preds = nn.Sequential()

downsamples.add(down_sample(128))
downsamples.add(down_sample(128))
downsamples.add(down_sample(128))

for scale in range(5):
class_preds.add(class_predictor(num_anchors, num_classes))
box_preds.add(box_predictor(num_anchors))

return body(), downsamples, class_preds, box_preds
print(toy_ssd_model(5, 2))

(HybridSequential(

(0): HybridSequential(
(0): Conv2D(16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm(fix_gamma=False, axis=1, momentum=0.9, eps=1e-05, in_channels=16)
(2): Activation(relu)
(3): Conv2D(16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): BatchNorm(fix_gamma=False, axis=1, momentum=0.9, eps=1e-05, in_channels=16)
(5): Activation(relu)
(6): MaxPool2D(size=(2, 2), stride=(2, 2), padding=(0, ©), ceil _mode=False)

)

(1): HybridSequential(
(0): Conv2D(32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm(fix_gamma=False, axis=1, momentum=0.9, eps=1e-05, in_channels=32)
(2): Activation(relu)
(3): Conv2D(32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): BatchNorm(fix_gamma=False, axis=1, momentum=0.9, eps=1e-05, in_channels=32)
(5): Activation(relu)
(6): MaxPool2D(size=(2, 2), stride=(2, 2), padding=(@, ©), ceil mode=False)

)

(2): HybridSequential(
(0): Conv2D(64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(1):
(2):
(3):
(4):
(5):
(6):

)

BatchNorm(fix_gamma=False, axis=1, momentum=0.9, eps=1e-05, in_channels=64)
Activation(relu)

Conv2D(64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm(fix_gamma=False, axis=1, momentum=0.9, eps=1e-05, in_channels=64)
Activation(relu)

MaxPool2D(size=(2, 2), stride=(2, 2), padding=(0, @), ceil_mode=False)

), Sequential(

(9):

(@):
(1):
(2):
(3):
(4):
(5):
(6):

)
(1):

(0):
(1):
(2):
(3):
(4):
(5):
(6):

)
(2):

(0):
(1):
(2):
(3):
(4):
(5):
(6):

)

HybridSequential(

: Conv2D(128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm(fix_gamma=False, axis=1, momentum=0.9, eps=1e-05, in_channels=128)
Activation(relu)

Conv2D(128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm(fix_gamma=False, axis=1, momentum=0.9, eps=1e-05, in_channels=128)
Activation(relu)

MaxPool2D(size=(2, 2), stride=(2, 2), padding=(©@, @), ceil mode=False)

HybridSequential(

Conv2D(128, kernel _size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm(fix_gamma=False, axis=1, momentum=0.9, eps=1e-05, in_channels=128)
Activation(relu)

Conv2D(128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm(fix_gamma=False, axis=1, momentum=0.9, eps=1e-05, in_channels=128)
Activation(relu)

MaxPool2D(size=(2, 2), stride=(2, 2), padding=(0, 0), ceil mode=False)

HybridSequential(

Conv2D(128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm(fix_gamma=False, axis=1, momentum=0.9, eps=1e-05, in_channels=128)
Activation(relu)

Conv2D(128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm(fix_gamma=False, axis=1, momentum=0.9, eps=1e-05, in_channels=128)
Activation(relu)

MaxPool2D(size=(2, 2), stride=(2, 2), padding=(0, @), ceil_mode=False)

), Sequential(

(0):
(1):
(2):
(3):
(4):

Conv2D(15, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
Conv2D(15, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
Conv2D(15, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
Conv2D(15, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
Conv2D(15, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

), Sequential(

(0):

(1):

(2):

(3):

(4):
)

Forward

Conv2D(20, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
Conv2D(20, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
Conv2D(20, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
Conv2D(20, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
Conv2D(20, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

Given an input and the model, we can run the forward pass.

In [10]:

def toy_ssd_forward(x, body, downsamples, class_preds, box_preds, sizes, ratios):
extract feature with the body network
x = body(x)

for each scale, add anchors, box and class predictions,
then compute the input to next scale

default_anchors = []

predicted_boxes = []

predicted classes = []

for i in range(5):

default_anchors.append(MultiBoxPrior(x, sizes=sizes[i], ratios=ratios[i]))
predicted_boxes.append(flatten_prediction(box_preds[i](x)))
predicted_classes.append(flatten_prediction(class_preds[i](x)))

if i < 3:

x = downsamples[i](x)
elif i ==
simply use the pooling Llayer
x = nd.Pooling(x, global pool=True, pool_type='max', kernel=(4, 4))

return default_anchors, predicted_classes, predicted_boxes

Put all things together

In [11]: from mxnet import gluon
class ToySSD(gluon.Block):
def __init_ (self, num_classes, **kwargs):

super(ToySSD, self).__init__ (**kwargs)
anchor box sizes for 4 feature scales
self.anchor_sizes = [[.2, .272], [.37, .447], [.54, .619], [.71, .79], [.88,

.9611]
anchor box ratios for 4 feature scales
self.anchor_ratios = [[1, 2, .5]] * 5
self.num_classes = num_classes

with self.name_scope():
self.body, self.downsamples, self.class_preds, self.box_preds =
toy_ssd_model(4, num_classes)

def forward(self, x):

default_anchors, predicted_classes, predicted_boxes = toy_ssd_forward(x,

self.body, self.downsamples,
self.class_preds, self.box_preds, self.anchor_sizes, self.anchor_ratios)

we want to concatenate anchors, class predictions, box predictions from
different Llayers

anchors = concat_predictions(default_anchors)

box_preds = concat_predictions(predicted_boxes)

class_preds = concat_predictions(predicted_classes)

1t is better to have class predictions reshaped for softmax computation

class_preds = nd.reshape(class_preds, shape=(0, -1, self.num_classes + 1))

return anchors, class_preds, box_preds

Outputs of ToySSD

In [12]: | # instantiate a ToySSD network with 10 classes
net = ToySSD(2)
net.initialize()
X = nd.zeros((1, 3, 256, 256))
default_anchors, class_predictions, box_predictions = net(x)
print('Outputs:', 'anchors', default_anchors.shape, 'class prediction’,
class_predictions.shape, 'box prediction', box_predictions.shape)

Outputs: anchors (1, 5444, 4) class prediction (1, 5444, 3) box prediction (1, 21776)

Dataset

For demonstration purposes, we'll build a train our model to detect Pikachu in the wild. We
generated a a synthetic toy dataset by rendering images from open-sourced 3D Pikachu models.
The dataset consists of 1000 pikachus with random pose/scale/position in random background
images. The exact locations are recorded as ground-truth for training and validation.

Download dataset

In [13]: from mxnet.test_utils import download
import os.path as osp
def verified(file_path, shalhash):
import hashlib
shal = hashlib.shal()
with open(file_path, 'rb') as f:
while True:
data = f.read(1048576)
if not data:
break
shal.update(data)
matched = shal.hexdigest() == shalhash
if not matched:
print('Found hash mismatch in file {}, possibly due to incomplete
download.'.format(file_path))
return matched

url_format = 'https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/dataset/pikachu/{}"
hashes = {'train.rec': 'e6bcb6ffbalac@4ff8a9blll5e650af56ee969c8",
"train.idx': 'dcf7318b2602c06428b9988470c731621716c393",
'val.rec': 'd6c33f799b4d058e82f2cb5bd9a976169d72d520"}
for k, v in hashes.items():
fname = 'pikachu_' + k
target = osp.join('data‘', fname)
url = url_format.format(k)
if not osp.exists(target) or not verified(target, v):
print('Downloading', target, url)
download(url, fname=fname, dirname='data', overwrite=True)

Load dataset

In [14]: dimport mxnet.image as image
data_shape = 256
batch_size = 32
def get_iterators(data_shape, batch_size):
class_names = ['pikachu']
num_class = len(class_names)
train_iter = image.ImageDetIter(
batch_size=batch_size,
data_shape=(3, data_shape, data_shape),
path_imgrec="'./data/pikachu_train.rec’,
path_imgidx="./data/pikachu_train.idx",
shuffle=True,
mean=True,
rand_crop=1,
min_object_covered=0.95,
max_attempts=200)
val_iter = image.ImageDetIter(
batch_size=batch_size,
data_shape=(3, data_shape, data_shape),
path_imgrec="'./data/pikachu_val.rec"',
shuffle=False,
mean=True)
return train_iter, val_iter, class_names, num_class

train_data, test_data, class_names, num_class = get_iterators(data_shape, batch_size)
batch = train_data.next()
print(batch)

DataBatch: data shapes: [(32, 3, 256, 256)] label shapes: [(32, 1, 5)]

Illustration

Let’s display one image loaded by ImageDetlter.

In [15]: | import numpy as np

img = batch.data[@][@].asnumpy() # grab the first image, convert to numpy array
img = img.transpose((1, 2, @)) # we want channel to be the last dimension
img += np.array([123, 117, 104])
img = img.astype(np.uint8) # use uint8 (©-255)
draw bounding boxes on image
for label in batch.label[@][@].asnumpy():

if label[0] < ©:

break

print(label)

xmin, ymin, xmax, ymax = [int(x * data_shape) for x in label[1:5]]

rect = plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, edgecolor=(1,
9, 0), linewidth=3)

plt.gca().add_patch(rect)
plt.imshow(img)
plt.show()

[o. 0.75724518 ©.34316057 ©.93332517 ©0.70017999]

Train

Losses

Network predictions will be penalized for incorrect class predictions and wrong box deltas.

In [16]: from mxnet.contrib.ndarray import MultiBoxTarget
def training_targets(default_anchors, class_predicts, labels):
class_predicts = nd.transpose(class_predicts, axes=(0, 2, 1))
z = MultiBoxTarget(*[default_anchors, labels, class_predicts])
box_target = z[@] # box offset target for (x, y, width, height)
box_mask = z[1] # mask is used to ignore box offsets we don't want to penalize, e.g.
negative samples
cls_target = z[2] # cls_target is an array of Llabels for all anchors boxes
return box_target, box_mask, cls_target

Pre-defined losses are provided in giluon.1loss package, however, we can define losses manually.

First, we need a Focal Loss for class predictions.

In [17]: class FocallLoss(gluon.loss.Loss):
def _ init_ (self, axis=-1, alpha=0.25, gamma=2, batch_axis=0, **kwargs):
super(FocallLoss, self). init_ (None, batch_axis, **kwargs)
self._axis = axis
self._alpha = alpha
self._gamma = gamma

def hybrid_forward(self, F, output, label):
output = F.softmax(output)
pt = F.pick(output, label, axis=self._axis, keepdims=True)
loss = -self._alpha * ((1 - pt) ** self. gamma) * F.log(pt)
return F.mean(loss, axis=self._batch_axis, exclude=True)

cls Loss = gluon.loss.SoftmaxCrossEntropylLoss()
cls _loss = FocallLoss()
print(cls_loss)

Focalloss(batch_axis=0, w=None)

Next, we need a SmoothL1Loss for box predictions.

In [18]:

class SmoothLlLoss(gluon.loss.Loss):
def __init_ (self, batch_axis=0, **kwargs):
super(SmoothLlLoss, self). init__ (None, batch_axis, **kwargs)

def hybrid_forward(self, F, output, label, mask):
loss = F.smooth_11((output - label) * mask, scalar=1.0)
return F.mean(loss, self. batch_axis, exclude=True)

box_loss = SmoothL1Loss()
print(box_loss)

SmoothL1lLoss(batch_axis=0, w=None)

Evaluation metrics

Here, we define two metrics that we'll use to evaluate our performance whien training. You're

already familiar with accuracy unless you've been naughty and skipped straight to object
detection. We use the accuracy metric to assess the quality of the class predictions. Mean
absolute error (MAE) is just the L1 distance, introduced in our linear algebra chapter. We use this
to determine how close the coordinates of the predicted bounding boxes are to the ground-truth

coordinates. Because we are jointly solving both a classification problem and a regression

problem, we need an appropriate metric for each task.

In [19]:

In [20]:

cls_metric = mx.metric.Accuracy()
box_metric =

Set context for training
ctx = mx.gpu() # it may takes too lLong to train using CPU
try:
_ = nd.zeros(1, ctx=ctx)
pad Label for cuda implementation
train_data.reshape(label _shape=(3, 5))
train_data = test_data.sync_label_shape(train_data)
except mx.base.MXNetError as err:

print('No GPU enabled, fall back to CPU, sit back and be patient...

ctx = mx.cpu()

Initialize parameters

In [21]:

net = ToySSD(num_class)
net.initialize(mx.init.Xavier(magnitude=2), ctx=ctx)

Set up trainer

In [22]:

net.collect_params().reset_ctx(ctx)
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate’

Start training

mx.metric.MAE() # measure absolute difference between prediction and target

: 0.1, 'wd': 5e-4})

http://gluon.mxnet.io/chapter01_crashcourse/linear-algebra.html

Optionally we load pretrained model for demonstration purpose. One can set
from_scratch = True to training from scratch, which may take more than 30 mins to finish using a

single capable GPU.

In [23]: | epochs = 150 # set Larger to get better performance
log_interval = 20
from_scratch = False # set to True to train from scratch
if from_scratch:
start_epoch = 0
else:
start_epoch = 148
pretrained = 'ssd_pretrained.params’
shal = 'fbb7d872d76355fff1790d864c2238decdb452bc'
url = 'https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/models/ssd_pikachu-
fbb7d872.params'
if not osp.exists(pretrained) or not verified(pretrained, shal):
print('Downloading', pretrained, url)
download(url, fname=pretrained, overwrite=True)
net.load_params(pretrained, ctx)

In [24]: import time
from mxnet import autograd as ag
for epoch in range(start_epoch, epochs):
reset iterator and tick
train_data.reset()
cls_metric.reset()
box_metric.reset()
tic = time.time()
iterate through all batch
for i, batch in enumerate(train_data):
btic = time.time()
record gradients
with ag.record():
x = batch.data[@].as_in_context(ctx)
y = batch.label[0].as_in_context(ctx)
default_anchors, class_predictions, box_predictions = net(x)
box_target, box_mask, cls_target = training_targets(default_anchors,
class_predictions, y)
losses
lossl = cls_loss(class_predictions, cls_target)
loss2 = box_loss(box_predictions, box_target, box_mask)
sum all Llosses
loss = lossl + loss2
backpropagate
loss.backward()
apply
trainer.step(batch_size)
update metrics
cls_metric.update([cls_target], [nd.transpose(class_predictions, (0, 2, 1))])
box_metric.update([box_target], [box_predictions * box_mask])
if (i + 1) % log_interval == 0:
namel, vall = cls_metric.get()
name2, val2 = box_metric.get()
print('[Epoch %d Batch %d] speed: %f samples/s, training: %s=%f, %s=%f"'
%(epoch ,i, batch_size/(time.time()-btic), namel, vall, name2, val2))

end of epoch Llogging

namel, vall = cls_metric.get()

name2, val2 = box_metric.get()

print('[Epoch %d] training: %s=%f, %s=%f'%(epoch, namel, vall, name2, val2))
print('[Epoch %d] time cost: %f'%(epoch, time.time()-tic))

we can save the trained parameters to disk
net.save_params('ssd_%d.params' % epochs)

[Epoch 148 Batch 19] speed: 109.217423 samples/s, training: accuracy=0.997539,
mae=0.001862
[Epoch 148] training: accuracy=0.997610, mae=0.001806

[Epoch 148] time cost: 17.762958

[Epoch 149 Batch 19] speed: 110.492729 samples/s, training: accuracy=0.997607,
mae=0.001824

[Epoch 149] training: accuracy=0.997692, mae=0.001789

[Epoch 149] time cost: 15.353258

Test

Testing is similar to training, except that we don’t need to compute gradients and training
targets. Instead, we take the predictions from network output, and combine them to get the real
detection output.

Prepare the test data

In [25]: dimport numpy as np

import cv2

def preprocess(image):
"""Takes an image and apply preprocess
resize to data shape
image = cv2.resize(image, (data_shape, data_shape))
swap BGR to RGB
image = image[:, :, (2, 1, 0)]
convert to float before subtracting mean
image = image.astype(np.float32)
subtract mean
image -= np.array([123, 117, 104])
organize as [batch-channel-height-width]
image = np.transpose(image, (2, 0, 1))
image = image[np.newaxis, :]
convert to ndarray
image = nd.array(image)
return image

image = cv2.imread('img/pikachu.jpg")
X = preprocess(image)
print('x"', x.shape)

x (1, 3, 256, 256)

Network inference

In a single line of code!

In [26]: | # if pre-trained model is provided, we can load it
net.load _params('ssd_%d.params' % epochs, ctx)
anchors, cls_preds, box_preds = net(x.as_in_context(ctx))
print('anchors', anchors)
print('class predictions', cls_preds)
print('box delta predictions', box_preds)

anchors

[[[-0.084375 -0.084375 0.115625 0.115625]
[-9.12037501 -0.12037501 .15162501 .15162501]
[-9.12579636 -0.05508568 ©.15704636 ©.08633568]

(O]
[

B

[©.01949999 ©0.01949999

[-0.12225395 ©.18887302

[©.18887302 -0.12225395
<NDArray 1x5444x4 @gpu(0)>
class predictions

()

.98049998 0.98049998]
.12225389 0.81112695]
.81112695 1.12225389]]]

[y
[

o
[y

[[[©.33754104 -1.64660323]

[o.

[1.15297699 -1.77257478]

[1.1535604 -0.98352218]

cees

[-0.27562004 -1.29400492]

[©.45524898 -0.88782215]

[©.20327765 -0.94481993]]]

<NDArray 1x5444x2 @gpu(0)>

box delta predictions

[[-0.16735925 -0.13083346 -0.68860865 ..., -0.18972112 ©.11822788
-0.27067867]]

<NDArray 1x21776 @gpu(@)>

Convert predictions to real object detection results

In [27]: from mxnet.contrib.ndarray import MultiBoxDetection
convert predictions to probabilities using softmax
cls_probs = nd.SoftmaxActivation(nd.transpose(cls_preds, (0, 2, 1)), mode='channel")
apply shifts to anchors boxes, non-maximum-suppression, etc...
output = MultiBoxDetection(*[cls_probs, box_preds, anchors], force_suppress=True,
clip=False)

print(output)

[[[e. 0.61178613 ©.51807499 0.5042429 0.67325425 ©.70118797]
[-1. 0.59466797 ©.52491206 ©0.50917625 0.66228026 ©.70489514]
[-1 0.5731774 0.53843218 ©0.50217044 ©.66522425 ©0.7118448]
cees
[-1. -1. -1. -1. -1. -1.]
[-1. -1. -1. -1. -1. -1.]
[-1. -1 -1. -1. -1. -1. 111

<NDArray 1x5444x6 @gpu(0)>

Each row in the output corresponds to a detection box, as in format [class_id, confidence, xmin,
ymin, xmax, ymax].

Most of the detection results are -1, indicating that they either have very small confidence
scores, or been suppressed through non-maximum-suppression.

Display results

In [28]: def display(img, out, thresh=0.5):
import random
import matplotlib as mpl
mpl.rcParams['figure.figsize'] = (10,10)
pens = dict()
plt.clf()
plt.imshow(img)
for det in out:
cid = int(det[0])
if cid < o:
continue
score = det[1]
if score < thresh:
continue
if cid not in pens:
pens[cid] = (random.random(), random.random(), random.random())
scales = [img.shape[1l], img.shape[0@]] * 2
xmin, ymin, xmax, ymax = [int(p * s) for p, s in zip(det[2:6].tolist(), scales)]
rect = plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False,
edgecolor=pens[cid], linewidth=3)

plt.gca().add_patch(rect)
text = class_names[cid]
plt.gca().text(xmin, ymin-2, '{:s} {:.3f}'.format(text, score),
bbox=dict(facecolor=pens[cid], alpha=0.5),
fontsize=12, color='white')
plt.show()

display(image[:, :, (2, 1, ©)], output[@].asnumpy(), thresh=0.45)

‘T Wl O W | S

Conclusion

Detection is harder than classification, since we want not only class probabilities, but also
localizations of different objects including potential small objects. Using sliding window together
with a good classifier might be an option, however, we have shown that with a properly
designed convolutional neural network, we can do single shot detection which is blazing fast and
accurate!

For whinges or inquiries, open an issue on GitHub.

https://github.com/zackchase/mxnet-the-straight-dope

Docs » Transfering knowledge through finetuning

Transfering knowledge through finetuning

In previous chapters, we demonstrated how to train a neural network to recognize the
categories corresponding to objects in images. We looked at toy datasets like hand-written
digits, and thumbnail-sized pictures of animals. And we talked about the ImageNet dataset, the
default academic benchmark, which contains 1M million images, 1000 each from 1000 separate
classes.

The ImageNet dataset categorically changed what was possible in computer vision. It turns out
some things are possible (these days, even easy) on gigantic datasets, that simply aren’t with
smaller datasets. In fact, we don’t know of any technique that can comparably powerful model
on a similar photograph dataset but containing only, say, 10k images.

And that’s a problem. Because however impressive the results of CNNs on ImageNet may be,
most people aren’t interested in ImageNet itself. They're interested in their own problems.
Recognize people based on pictures of their faces. Distinguish between photographs of 10
different types of corral on the ocean floor. Usually when individuals (and not Amazon, Google,
or inter-institutional big science initiatives) are interested in solving a computer vision problem,
they come to the table with modestly sized datasets. A few hundred examples may be common
and a few thousand examples may be as much as you can reasonably ask for.

So one natural question emerges. Can we somehow use the powerful models trained on millions
of examples for one dataset, and apply them to improve performance on a new problem with a
much smaller dataset? This kind of problem (learning on source dataset, bringing knowledge to
target dataset), is appropriately called transfer learning. Fortunately, we have some effective
tools for solving this problem.

For deep neural networks, the most popular approach is called finetuning and the idea is both
simple and effective:

e Train a neural network on the source task S.

e Decapitate it, replacing it's output layer appropriate to target task 7.

e Initialize the weights on the new output layer randomly, keeping all other (pretrained)
weights the same.

e Begin training on the new dataset.

This might be clearer if we visualize the algorithm:

http://gluon.mxnet.io/index.html

Predicted Output layer for
ImageNet label target task

(Pre-trained)

Awesome CNN awesome CNN

ImageNet data Target task data

In this section, we'll demonstrate fine-tuning, using the popular and compact SqueezeNet
architecture. Since we don't want to saddle you with the burden of downloading ImageNet, or of
training on ImageNet from scratch, we'll pull the weights of the pretrained Squeeze net from the
internet. Specifically, we'll be fine-tuning a squeezenet-1.1 that was pre-trained on imagenet-12.
Finally, we'll fine-tune it to recognize hotdogs.

hot dog

WEe'll start with the obligatory ritual of importing a bunch of stuff that you'll need later.

In [2]: %pylab inline
pylab.rcParams['figure.figsize'] = (10, 6)

Populating the interactive namespace from numpy and matplotlib

Settings

WEe'll set a few settings up here that you can configure later to manipulate the behavior of the
algorithm. These are mostly familiar. Hybrid mode, uses the just in time compiler described in
our chapter on high performance training to make the network much faster to train. Since we're
not working with any crazy dynamic graphs that can’t be compiled, there’s not reason not to
hybridize. The batch size, number of training epochs, weight decay, and learing rate should all be
familiar by now. The positive class weight, says how much more we should upweight the
importance of positive instances (photos of hot dogs) in the objective function. We use this to
combat the extreme class imbalance (not surprisingly, most pictures do not depict hot dogs).

In [3]: | # Demo mode uses the validation dataset for training, which is smaller and faster to
train.
demo = True
log_interval = 100
gpus = 0

Options are imperative or hybrid. Use hybrid for better performance.
mode = ‘hybrid’

training hyperparameters

batch_size = 256

if demo:
epochs = 5
learning_rate = 0.02
wd = 0.002

else:
epochs = 40
learning_rate = 0.05
wd = 0.002

the class weight for hotdog class to help the imbalance problem.
positive class_weight = 5

In [4]: from _ future__ import print_function
import logging
logging.basicConfig(level=1logging.INFO)
import os
import time
from collections import OrderedDict
import skimage.io as io

import mxnet as mx

from mxnet.test_utils import download
mx.random.seed(127)

Dataset

http://gluon.mxnet.io/chapter07_distributed-learning/hybridize.html

Formally, hot dog recognition is a binary classification problem. We'll use 1 to represent the
hotdog class, and O for the not hotdog class. Our hot dog dataset (the target dataset which we'll
fine-tune the model to) contains 18,141 sample images, 2091 of which are hotdogs. Because the
dataset is imbalanced (e.g. hotdog class is only 1% in mscoco dataset), sampling interesting
negative samples can help to improve the performance of our algorithm. Thus, in the negative
class in the our dataset, two thirds are images from food categories (e.g. pizza) other than
hotdogs, and 30% are images from all other categories.

Files

We prepare the dataset in the format of MXRecord using im2rec tool. As of the current draft, rec
files are not yet explained in the book, but if you're reading after November or December 2017
and you still see this note, open an issue on GitHub and let us know to stop slacking off.

e not_hotdog_train.rec 641M (1882 positive, 10000 interesting negative, and 5000 random
negative)

e not_hotdog_validation.rec 49M (209 positive, 700 interesting negative, and 350 random
negative)

In [4]: dataset_files = {'train': ('not_hotdog train-e6ef27b4.rec',
'Qaad7elfl6f5fb109b719a414a867bbeebef27b4 "),
‘validation': ('not_hotdog_validation-c020174@.rec’,
'723ae5f8a433ed2e2bf729baec6b878ac0201740")}

To demo the model here, we're justgoing to use the smaller validation set. But if you're
interested in training on the full set, set ‘demo’ to False in the settings at the beginning. Now
we're ready to download and verify the dataset.

In [5]: if demo:
training_dataset, training_data_hash
else:
training_dataset, training_data_hash = dataset_files['train']

dataset_files['validation']

validation_dataset, validation_data_hash = dataset_files['validation']

def verified(file_path, shalhash):
import hashlib
shal = hashlib.shal()
with open(file path, 'rb') as f:
while True:
data = f.read(1048576)
if not data:
break
shal.update(data)
matched = shal.hexdigest() == shalhash
if not matched:
logging.warn('Found hash mismatch in file {}, possibly due to incomplete
download.'
.format(file_path))
return matched

url_format = 'https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/dataset/{}"
if not os.path.exists(training_dataset) or not verified(training_dataset,

http://mxnet.io/how_to/recordio.html?highlight=im2rec
https://github.com/zackchase/mxnet-the-straight-dope

training_data_hash):
logging.info('Downloading training dataset.')
download(url_format.format(training_dataset),
overwrite=True)
if not os.path.exists(validation_dataset) or not verified(validation_dataset,
validation_data_hash):
logging.info('Downloading validation dataset.')
download(url format.format(validation_dataset),
overwrite=True)

Iterators

The record files can be read using mx.io.ImageRecordlter

In [6]:

Model

load dataset
train_iter = mx.io.ImageRecordIter(path_imgrec=training_dataset,
min_img_size=256,
data_shape=(3, 224, 224),
rand_crop=True,
shuffle=True,
batch_size=batch_size,
max_random_scale=1.5,
min_random_scale=0.75,
rand_mirror=True)
val_iter = mx.io.ImageRecordIter(path_imgrec=validation_dataset,
min_img_size=256,
data_shape=(3, 224, 224),
batch_size=batch_size)

The model we are finetuning is SqueezeNet. Gluon module offers squeezenet v1.0 and v1.1 that
are pretrained on ImageNet. This is just a convolutional neural network, with an architecture

chosen to have a small number of parameters and to require a minimal amount of computation.
It’s especially popular for folks that need to run CNNs on low-powered devices like cell phones
and other internet-of-things devices.

Pulling the pre-trained model

Fortunately, MXNet has a model zoo that gives us convenient access to a number of popular
models, both their architectres and their pretrained parameters. Let's download SqueezeNet
right now with just a few lines of code.

In [7]:

from mxnet.gluon import nn
from mxnet.gluon.model_zoo import vision as models

get pretrained squeezenet

net = models.squeezenetl_1(pretrained=True, prefix='deep_dog_ ')
hot dog happens to be a class in imagenet.

we can reuse the weight for that class for better performance
here's the index for that class for Later use
imagenet_hotdog_index = 713

http://mxnet.io/api/python/io.html#mxnet.io.ImageRecordIter
https://arxiv.org/abs/1602.07360

DeepDog net

We can now use the feature extractor part from the pretrained squeezenet to build our own
network. The model zoo, even handles the decaptiation for us. All we have to do is specify the
number out of output classes in our new task, which we do via the keyword argument

classes=2 .

In [8]: deep_dog net = models.squeezenetl 1(prefix='deep_dog ', classes=2)
deep_dog_net.collect_params().initialize()
deep_dog net.features = net.features
print(deep_dog_net)

SqueezeNet(
(features): HybridSequential(
(0): Conv2D(64, kernel _size=(3, 3), stride=(2, 2))
(1): Activation(relu)
(2): MaxPool2D(size=(3, 3), stride=(2, 2), padding=(@, 0), ceil_mode=True)
(3): HybridSequential(
(0): HybridSequential(
(0): Conv2D(16, kernel_size=(1, 1), stride=(1, 1))
(1): Activation(relu)
)
(1): HybridConcurrent(
(0): HybridSequential(
(0): Conv2D(64, kernel size=(1, 1), stride=(1, 1))
(1): Activation(relu)
)
(1): HybridSequential(
(0): Conv2D(64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): Activation(relu)
)
)
)
(4): HybridSequential(
(0): HybridSequential(
(0): Conv2D(16, kernel size=(1, 1), stride=(1, 1))
(1): Activation(relu)
)
(1): HybridConcurrent(
(0): HybridSequential(
(0): Conv2D(64, kernel size=(1, 1), stride=(1, 1))
(1): Activation(relu)
)
(1): HybridSequential(
(0): Conv2D(64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): Activation(relu)
)
)
)
(5): MaxPool2D(size=(3, 3), stride=(2, 2), padding=(0, 0), ceil mode=True)
(6): HybridSequential(
(0): HybridSequential(
(0): Conv2D(32, kernel size=(1, 1), stride=(1, 1))
(1): Activation(relu)
)
(1): HybridConcurrent(
(0): HybridSequential(
(0): Conv2D(128, kernel size=(1, 1), stride=(1, 1))
(1): Activation(relu)
)
(1): HybridSequential(
(0): Conv2D(128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): Activation(relu)
)
)
)

(7): HybridSequential(
(0): HybridSequential(

(0): Conv2D(32, kernel size=(1, 1), stride=(1, 1))

(1): Activation(relu)
)
(1): HybridConcurrent(
(0): HybridSequential(

(0): Conv2D(128, kernel size=(1,

(1): Activation(relu)

)
(1): HybridSequential(

(0): Conv2D(128, kernel size=(3,

(1): Activation(relu)
)
)
)

(8): MaxPool2D(size=(3, 3), stride=(2,

(9): HybridSequential(
(0): HybridSequential(

1), stride=(1, 1))

3), stride=(1, 1), padding=(1, 1))

2), padding=(0, 0), ceil mode=True)

(0): Conv2D(48, kernel size=(1, 1), stride=(1, 1))

(1): Activation(relu)
)
(1): HybridConcurrent(
(0): HybridSequential(

(0): Conv2D(192, kernel size=(1,

(1): Activation(relu)
)
(1): HybridSequential(

(0): Conv2D(192, kernel size=(3,

(1): Activation(relu)
)
)
)
(10): HybridSequential(
(0): HybridSequential(

1), stride=(1, 1))

3), stride=(1, 1), padding=(1, 1))

(0): Conv2D(48, kernel size=(1, 1), stride=(1, 1))

(1): Activation(relu)
)
(1): HybridConcurrent(
(0): HybridSequential(

(0): Conv2D(192, kernel size=(1,

(1): Activation(relu)
)
(1): HybridSequential(

(0): Conv2D(192, kernel size=(3,

(1): Activation(relu)
)
)
)
(11): HybridSequential(
(0): HybridSequential(

1), stride=(1, 1))

3), stride=(1, 1), padding=(1, 1))

(0): Conv2D(64, kernel size=(1, 1), stride=(1, 1))

(1): Activation(relu)
)
(1): HybridConcurrent(
(0): HybridSequential(

(0): Conv2D(256, kernel size=(1,

(1): Activation(relu)
)
(1): HybridSequential(

(0): Conv2D(256, kernel size=(3,

(1): Activation(relu)
)
)
)
(12): HybridSequential(
(0): HybridSequential(

1), stride=(1, 1))

3), stride=(1, 1), padding=(1, 1))

(0): Conv2D(64, kernel size=(1, 1), stride=(1, 1))

(1): Activation(relu)
)
(1): HybridConcurrent(
(0): HybridSequential(

(0): Conv2D(256, kernel_size=(1, 1), stride=(1, 1))
(1): Activation(relu)
)
(1): HybridSequential(
(0): Conv2D(256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): Activation(relu)
)
)
)
)
(classifier): HybridSequential(
(0): Dropout(p = 0.5)
(1): Conv2D(2, kernel size=(1, 1), stride=(1, 1))
(2): Activation(relu)
(3): AvgPool2D(size=(13, 13), stride=(13, 13), padding=(@, 0), ceil_mode=False)
(4): Flatten

The network can already be used for prediction. However, since it hasn't been finetuned yet, the
network performance could be bad.

In [9]: from skimage.color import rgba2rgb

def classify_hotdog(net, url):
I = io.imread(url)
if I.shape[2] == 4:
I = rgba2rgb(I)
image = mx.nd.array(I).astype(np.uint8)
plt.subplot(1, 2, 1)
plt.imshow(image.asnumpy())
image = mx.image.resize_short(image, 256)
image, _ = mx.image.center_crop(image, (224, 224))
plt.subplot(1, 2, 2)
plt.imshow(image.asnumpy())
image = mx.image.color_normalize(image.astype(np.float32)/255,
mean=mx.nd.array([0.485, 0.456, 0.406]),
std=mx.nd.array([0.229, 0.224, 0.225]))
image = mx.nd.transpose(image.astype('float32'), (2,1,0))
image = mx.nd.expand_dims(image, axis=0)
out = mx.nd.SoftmaxActivation(net(image))
print('Probabilities are: '+str(out[@].asnumpy()))
result = np.argmax(out.asnumpy())
outstring = ['Not hotdog!', 'Hotdog!']
print(outstring[result])

v

In [10]: <classify hotdog(deep_dog net, '../img/real_hotdog.jpg")

Probabilities are: [0.84632009 0.15367992]
Not hotdog!

It = s .

Reuse class weights

As mentioned earlier, in addition to the feature extractor, we can reuse the class weights for hot

dog from the pretrained model, since hot dog was already a class in the imagenet. To do that, we

need to get the weight from the classifier layers of the pretrained model, find the right slice, and

put it into our two-class classifier.

In [11]:

In [12]:

Llet's examine the classifier and find the Llast conv Llayer
print(net.classifier)

HybridSequential(
(0): Dropout(p = 0.5)
(1): Conv2D(1000, kernel size=(1, 1), stride=(1, 1))
(2): Activation(relu)
(3): AvgPool2D(size=(13, 13), stride=(13, 13), padding=(@, ©), ceil_mode=False)
(4): Flatten
)

the last conv layer is the second layer
pretrained_conv_params = net.classifier[1].params

weights can then be found from the above parameter dict
pretrained_weight_param = pretrained_conv_params.get(‘'weight")
pretrained_bias_param = pretrained_conv_params.get('bias")

next, we Llocate the right slice that we're interested 1in.

hotdog w = mx.nd.split(pretrained_weight_param.data().as_in_context(mx.cpu()),
1000, axis=0)[imagenet_hotdog_index]

hotdog_b = mx.nd.split(pretrained_bias_param.data().as_in_context(mx.cpu()),
1000, axis=0)[imagenet_hotdog_index]

our classifier is for two classes. here, we reuse the hotdog class weight,

and randomly initialize the 'not hotdog' class.

new_classifier_w = mx.nd.concat(mx.nd.random_normal(shape=hotdog_w.shape, scale=0.02),
hotdog w,
dim=0)

new_classifier_b = mx.nd.concat(mx.nd.random_normal(shape=hotdog_b.shape, scale=0.02),
hotdog_b,
dim=0)

finally, we initialize the parameter buffers and set the values.
since classifier is a HybridSequential/Sequential, the following
takes the zero-indexed 1-st layer of the classifier
final_conv_layer_params = deep_dog _net.classifier[1].params

final_conv_layer_params.get('weight').set_data(new_classifier_w)
final_conv_layer_params.get('bias').set_data(new_classifier_b)

Evaluation

Our task is a binary classification problem with imbalanced classes. So we'll monitor performance
both using accuracy and F1 score, a metric favored in settings with extreme class imbalance.
[Note to authors: ensure that F1 score is explained earlier or explain it here in full]

In [13]: | # return metrics string representation
def metric_str(names, accs):
return ', '.join(['%s=%f'%(name, acc) for name, acc in zip(names, accs)])
metric = mx.metric.create(['acc', 'f1'])

The following snippet performs inferences on evaluation dataset, and updates the metrics. Once
the evaluation data iterator is exhausted, it returns the values of each of the metrics.

In [14]: import mxnet.gluon as gluon
from mxnet.image import color_normalize

def evaluate(net, data_iter, ctx):
data_iter.reset()
for batch in data_iter:
data = color_normalize(batch.data[©]/255,
mean=mx.nd.array([0.485, ©0.456, 0.406]).reshape((1,3,1,1)),
std=mx.nd.array([0.229, ©0.224, 0.225]).reshape((1,3,1,1)))
data = gluon.utils.split_and_load(data, ctx_list=ctx, batch_axis=0)
label = gluon.utils.split_and_load(batch.label[0], ctx_list=ctx, batch_axis=0)
outputs = []
for x in data:
outputs.append(net(x))
metric.update(label, outputs)
out = metric.get()
metric.reset()
return out

Training

We now can train the model just as we would any supervised model. In this example, we set up
the training loop for multi-GPU use as described from first principles here and in the context of
gluon here.

In [15]: dimport mxnet.autograd as autograd

def train(net, train_iter, val_iter, epochs, ctx):
if isinstance(ctx, mx.Context):

ctx = [ctx]
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning rate': learning_rate,
‘'wd': wd})

loss = gluon.loss.SoftmaxCrossEntropyLoss()

best f1 = 0

val _names, val_accs = evaluate(net, val_iter, ctx)

logging.info('[Initial] validation: %s'%(metric_str(val_names, val_accs)))
for epoch in range(epochs):

http://gluon.mxnet.io/chapter07_distributed-learning/multiple-gpus-scratch.html
http://gluon.mxnet.io/chapter07_distributed-learning/multiple-gpus-gluon.html

tic = time.time()
train_iter.reset()
btic = time.time()
for i, batch in enumerate(train_iter):
the model zoo models expect normalized images
data = color_normalize(batch.data[©]/255,
mean=mx.nd.array([0.485, 0.456,
0.406]).reshape((1,3,1,1)),
std=mx.nd.array([0.229, 0.224,
0.225]).reshape((1,3,1,1)))
data = gluon.utils.split_and_load(data, ctx_list=ctx, batch_axis=0)
label = gluon.utils.split_and_load(batch.label[@], ctx_list=ctx, batch_axis=90)
outputs = []
Ls = []
with autograd.record():
for x, y in zip(data, label):
z = net(x)
rescale the Lloss based on class to counter the imbalance problem
L = loss(z, y) * (l+y*positive_class_weight)/positive_class_weight
store the Lloss and do backward after we have done forward
on all GPUs for better speed on multiple GPUs.
Ls.append(L)
outputs.append(z)
for L in Ls:
L.backward()
trainer.step(batch.data[@].shape[0])
metric.update(label, outputs)
if log_interval and not (i+1)%log_interval:
names, accs = metric.get()
logging.info('[Epoch %d Batch %d] speed: %f samples/s, training: %s'%(
epoch, i, batch_size/(time.time()-btic), metric_str(names,
accs)))
btic = time.time()

names, accs = metric.get()

metric.reset()

logging.info('[Epoch %d] training: %s'%(epoch, metric_str(names, accs)))
logging.info('[Epoch %d] time cost: %f'%(epoch, time.time()-tic))

val names, val_accs = evaluate(net, val_iter, ctx)

logging.info('[Epoch %d] validation: %s'%(epoch, metric_str(val_names, val_accs)))

if val_accs[1] > best_f1:
best_f1 = val_accs[1]
logging.info('Best validation f1 found. Checkpointing...")
net.save_params('deep-dog-%d.params'%(epoch))

if mode == 'hybrid':
deep_dog_net.hybridize()
if epochs > 0:
contexts = [mx.gpu(i) for i in range(gpus)] if gpus > © else [mx.cpu()]
deep_dog_net.collect_params().reset_ctx(contexts)
train(deep_dog_net, train_iter, val_iter, epochs, contexts)

INFO:root:[Initial] validation: accuracy=0.185938, {1=0.286732
INFO:root:[Epoch @] training: accuracy=0.482031, f1=0.256851
INFO:root:[Epoch @] time cost: 205.866237

INFO:root:[Epoch @] validation: accuracy=0.612500, f1=0.360263
INFO:root:Best validation f1 found. Checkpointing...
INFO:root:[Epoch 1] training: accuracy=0.530469, f1=0.375600
INFO:root:[Epoch 1] time cost: 170.821589

INFO:root:[Epoch 1] validation: accuracy=0.611719, 1=0.418568
INFO:root:Best validation f1 found. Checkpointing...
INFO:root:[Epoch 2] training: accuracy=0.538281, f1=0.401126
INFO:root:[Epoch 2] time cost: 226.555910

INFO:root:[Epoch 2] validation: accuracy=0.643750, 1=0.446779
INFO:root:Best validation f1 found. Checkpointing...
INFO:root:[Epoch 3] training: accuracy=0.590625, f1=0.423331
INFO:root:[Epoch 3] time cost: 204.861021

INFO:root:[Epoch 3] validation: accuracy=0.735156, 1=0.496402
INFO:root:Best validation f1 found. Checkpointing...
INFO:root:[Epoch 4] training: accuracy=0.640625, f1=0.453261
INFO:root:[Epoch 4] time cost: 175.274520

INFO:root:[Epoch 4] validation: accuracy=0.810937, f1=0.556719
INFO:root:Best validation f1 found. Checkpointing...

Try it out!

Once our model is trained, we can either use the deep dog net model in the notebook kernel, or

load it from the best checkpoint.

In [16]:

In [17]:

In [18]:

Uncomment below Line and replace the file name with the Llast checkpoint.
deep_dog_net. load_params('deep-dog-4.params', mx.cpu())
#
Alternatively, you can uncomment the following Lines to get the model that we finetuned,
with validation F1 score of 0.74.
download('https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/models/deep-dog-
5a342a6f.params’,
overwrite=True)
deep_dog_net.load_params('deep-dog-5a342a6f.params', mx.cpu())

INFO:root:downloaded https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/models/deep-
dog-5a342a6f.params into deep-dog-5a342a6f.params successfully

'

classify_hotdog(deep_dog _net, '../img/real_hotdog.jpg")

Probabilities are: [©.19303364 0.80696636]

Hotdog!
0
25

0-

200 -
75
400 - 100
600 - 125
800 150
1000 | 175
0 200 400 600 800 1000 1200 1400 1600 o4

'

classify_hotdog(deep_dog net, '../img/leg_hotdog.jpg")

Probabilities are: [©.92225069 0.07774931]
Not hotdog!

200 100

250
300

125

150
350

400
450

175

200

In [19]: classify_hotdog(deep_dog net, '../img/dog_hotdog.jpg")

Probabilities are: [©.99648535 0.00351469]
Not hotdog!

: —_— z:l d&i

Conclusions

As you can see, given a pretrained model, we can get a great classifier, even for tasks where we
simply don’t have enough data to train from scratch. That’s because the representations
necessary to perform both tasks have a lot in common. Since they both address natural images,
they both require recognizing textures, shapes, edges, etc. Whenever you have a small enough
dataset that you fear impoverishing your model, try thinking about what larger datasets you
might be able to pre-train your model on, so that you can just perform fine-tuning on the task at
hand.

Next

This section is still changing too fast to say for sure what will come next. Stay tuned!

For whinges or inquiries, open an issue on GitHub.

https://github.com/zackchase/mxnet-the-straight-dope

Docs » Visual Question Answering in gluon

Visual Question Answering in gluon

This is a notebook for implementing visual question answering in gluon.

In [1]: from _ future__ import print_function
import numpy as np
import mxnet as mx
import mxnet.ndarray as F
import mxnet.contrib.ndarray as C
import mxnet.gluon as gluon
from mxnet.gluon import nn
from mxnet import autograd
import bisect
from IPython.core.display import display, HTML
import logging
logging.basicConfig(level=1ogging.INFO)
import os
from mxnet.test_utils import download
import json
from IPython.display import HTML, display

The VQA dataset

In the VQA dataset, for each sample, there is one image and one question. The label is the
answer for the question regarding the image. You can download the VQA1.0 dataset from VQA
website.

How many slices of pizza are there?

You need to preprocess the data:
1. Extract the samples from original json files.

2. Filter the samples giving top k answers(k can be 1000, 2000...). This will make the prediction
easier.

Pretrained Models

http://gluon.mxnet.io/index.html

Usually people use pretrained models to extract features from the image and question.

VGG: A key aspect of VGG was to use many convolutional blocks with relatively narrow kernels,
followed by a max-pooling step and to repeat this block multiple times.

Resnet: It is a residual learning framework to ease the training of networks that are substantially
deep. It reformulate the layers as learning residual functions with reference to the layer inputs,
instead of learning unreferenced functions.

Word2Vec: The word2vec tool takes a text corpus as input and produces the word vectors as
output. It first constructs a vocabulary from the training text data and then learns vector
representation of words. The model contains 300-dimensional vectors for 3 million words and
phrases.

Glove: Similar to Word2Vec, it is a word embedding dataset. It contains 100/200/300-
dimensional vectors for 2 million words.

skipthought: This is an encoder-decoder model that tries to reconstruct the surrounding
sentences of an encoded passage. Sentences that share semantic and syntactic properties are
thus mapped to similar vector representations. Different from the previous two model, this is a
sentence based model.

GNMT encoder: We propose using the encoder of google neural machine translation system to
extract the question features.

Define the model

We define out model with gluon. gluon.Block is the basic building block of models. If any
operator is not defined under gluon, you can use mxnet.ndarray operators to subsititude.

In [2]: | # Some parameters we are going to use
batch_size = 64
ctx = mx.cpu()
compute_size = batch_size
out_dim = 10000
gpus = 1

In the

, we will concatenate the image and question features and use multilayer
perception(MLP) to predict the answer.

In [3]: class Netl(gluon.Block):

def __init_ (self, **kwargs):
super(Netl, self)._ init_ (**kwargs)
with self.name_scope():

def

In the

Layers created in name_scope will inherit name space
from parent Layer.

self.bn = nn.BatchNorm()

self.dropout = nn.Dropout(0.3)

self.fcl = nn.Dense(8192,activation="relu")

self.fc2 = nn.Dense(1000)

forward(self, x):
x1 = F.L2Normalization(x[@])
x2 = F.L2Normalization(x[1])

N N N N N

F.concat(x1,x2,dim=1)
self.fcl(z)
self.bn(z)
self.dropout(z)
self.fc2(z)

return z

, instead of linearly combine the image and text features, we use count

sketch to estimate the outer product of the image and question features. It is also named as
multimodel compact bilinear pooling(MCB).

This method was proposed in Multimodal Compact Bilinear Pooling for VQA. The key idea is:

Y @y, h,s) = y(x, b, 5) * w(y, h,s)

where i is the count sketch operator, x, y are the inputs, &, s are the hash tables, ® defines
outer product and % is the convolution operator. This can further be simplified by using FFT
properties: convolution in time domain equals to elementwise product in frequency domain.

One improvement we made is adding ones vectors to each features before count sketch. The
intuition is: given input vectors X, y, estimating outer product between [x, 1s] and [y, 1s] gives
us information more than just x @ y. It also contains information of x and y.

In [4]: class Net2(gluon.Block):
def __init_ (self, **kwargs):

super(Net2, self)._ init_ (**kwargs)
with self.name_scope():

Layers created in name_scope will inherit name space
from parent Layer.

self.bn = nn.BatchNorm()

self.dropout = nn.Dropout(0.3)

self.fcl = nn.Dense(8192,activation="relu")

self.fc2 = nn.Dense(1000)

def forward(self, x):

x1

= F.L2Normalization(x[@])

x2 = F.L2Normalization(x[1])

text_ones = F.ones((batch_size/gpus, 2048),ctx = ctx)
img_ones = F.ones((batch_size/gpus, 1024),ctx = ctx)
text_data = F.Concat(x1l, text ones,dim = 1)
image_data = F.Concat(x2,img_ones,dim = 1)

Initialize hash tables

S1 = F.array(np.random.randint(0, 2, (1,3072))*2-1,ctx = ctx)
H1 = F.array(np.random.randint(@, out_dim,(1,3072)),ctx = ctx)
S2 = F.array(np.random.randint(e, 2, (1,3072))*2-1,ctx = ctx)
H2 = F.array(np.random.randint(0, out_dim, (1,3072)),ctx = ctx)

Count sketch
csl = C.count_sketch(data = image_data, s=S1, h = H1 ,name='csl',out_dim =

out_dim)

cs2 = C.count_sketch(data = text_data, s=S2, h = H2 ,name="'cs2',out_dim =
out_dim)

fftl = C.fft(data = csl, name='fftl', compute_size = compute_size)

fft2 = C.fft(data = cs2, name='fft2', compute_size = compute_size)

c = fftl * fft2
ifftl = C.ifft(data = c, name="ifftl', compute_size = compute_size)

MLP

z = self.fcl(ifftl)
z = self.bn(z)

z = self.dropout(z)
z = self.fc2(z)
return z

Data Iterator

The inputs of the data iterator are extracted image and question features. At each step, the data
iterator will return a data batch list: question data batch and image data batch.

We need to seperate the data batches by the length of the input data because the input
questions are in different lengths. The buckets parameter defines the max length you want to
keep in the data iterator. Here since we already used pretrained model to extract the question
feature, the question length is fixed as the output of the pretrained model.

The layout parameter defines the layout of the data iterator output. “N” specify where is the
data batch dimension is.

reset() function is called after every epoch. next() function is call after each batch.

In [5]: class VQAtrainIter(mx.io.Datalter):
def __init_ (self, img, sentences, answer, batch_size, buckets=None, invalid_label=-1,
text_name='text', img name = 'image', label_name='softmax_label"',
dtype="'float32', layout='NTC'):
super(VQAtrainIter, self).__init_ ()
if not buckets:
buckets = [i for i, j in enumerate(np.bincount([len(s) for s in sentences]))
if j >= batch_size]
buckets.sort()

ndiscard = 0

self.data = [[] for _ in buckets]

for i in range(len(sentences)):
buck = bisect.bisect_left(buckets, len(sentences[i]))
if buck == len(buckets):

ndiscard += 1

continue
buff = np.full((buckets[buck],), invalid_label, dtype=dtype)
buff[:len(sentences[i])] = sentences[i]
self.data[buck].append(buff)

self.data = [np.asarray(i, dtype=dtype) for i in self.data]

self.answer = answer

self.img = img

print("WARNING: discarded %d sentences longer than the largest bucket."%ndiscard)

self.batch_size = batch_size
self.buckets = buckets
self.text_name = text_name
self.img_name = img_name
self.label _name = label name
self.dtype = dtype
self.invalid_label = invalid_label
self.nd_text = []

self.nd_img = []

self.ndlabel = []

self.major_axis = layout.find('N")
self.default_bucket_key = max(buckets)

if self.major_axis == 0:
self.provide_data = [(text_name, (batch_size, self.default_bucket_key)),
(img_name, (batch_size, self.default_bucket_key))]
self.provide_label = [(label_name, (batch_size, self.default_bucket_key))]
elif self.major_axis == 1:
self.provide_data = [(text_name, (self.default_bucket_key, batch_size)),
(img_name, (self.default_bucket_key, batch_size))]
self.provide_label = [(label_name, (self.default_bucket_key, batch_size))]
else:
raise ValueError("Invalid layout %s: Must by NT (batch major) or TN (time
major)")

self.idx = []
for i, buck in enumerate(self.data):
self.idx.extend([(i, j) for j in range(®, len(buck) - batch_size + 1,
batch_size)])
self.curr_idx = @

self.reset()

def reset(self):

self.curr_idx = ©

self.nd_text = []

self.nd_img = []

self.ndlabel = []

for buck in self.data:
label = np.empty_like(buck.shape[@])
label = self.answer
self.nd_text.append(mx.ndarray.array(buck, dtype=self.dtype))
self.nd_img.append(mx.ndarray.array(self.img, dtype=self.dtype))
self.ndlabel.append(mx.ndarray.array(label, dtype=self.dtype))

def next(self):
if self.curr_idx == len(self.idx):
raise StopIteration
i, j = self.idx[self.curr_idx]
self.curr_idx += 1

if self.major_axis == 1:
img = self.nd_img[i][j:j + self.batch_size].T
text = self.nd_text[i][j:j + self.batch_size].T
label = self.ndlabel[i][j:j+self.batch_size]
else:
img = self.nd_img[i][j:j + self.batch_size]
text = self.nd_text[i][j:j + self.batch_size]
label = self.ndlabel[i][j:j+self.batch_size]

data = [text, img]

return mx.io.DataBatch(data, [label],
bucket_key=self.buckets[i],
provide_data=[(self.text_name, text.shape),(self.img_name,
img.shape)],
provide_label=[(self.label_name, label.shape)])

Load the data

Here we will use subset of VQA dataset in this tutorial. We extract the image feature from
ResNet-152, text feature from GNMT encoder. In first two model, we have 21537 training
samples and 1044 validation samples in this tutorial. Image feature is a 2048-dim vector.
Question feature is a 1048-dim vector.

In [6]: | # Download the dataset
dataset_files = {'train': ('train_question.npz','train_img.npz','train_ans.npz'),
'validation': ('val_question.npz','val img.npz','val ans.npz'),
"test':
('test_question_id.npz', 'test_question.npz', 'test_img_id.npz', 'test_img.npz','atoi.json', '

train_q, train_i, train_a = dataset_files['train']
val g, val_i, val_a = dataset_files['validation']

url format = 'https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/dataset/VQA-

notebook/{}"

if not os.path.exists(train_q):
logging.info('Downloading training dataset.')
download(url format.format(train_q),overwrite=True)
download(url_format.format(train_i),overwrite=True)
download(url_format.format(train_a),overwrite=True)

if not os.path.exists(val_q):
logging.info('Downloading validation dataset.')
download(url_format.format(val_q),overwrite=True)
download(url_format.format(val_i),overwrite=True)
download(url_format.format(val_a),overwrite=True)

INFO:root:Downloading training dataset.

INFO:root:downloaded https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/dataset/VQA-
notebook/train_question.npz into train_question.npz successfully

INFO:root:downloaded https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/dataset/VQA-
notebook/train_img.npz into train_img.npz successfully

INFO:root:downloaded https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/dataset/VQA-
notebook/train_ans.npz into train_ans.npz successfully

INFO:root:Downloading validation dataset.

INFO:root:downloaded https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/dataset/VQA-
notebook/val_question.npz into val_question.npz successfully

INFO:root:downloaded https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/dataset/VQA-
notebook/val_img.npz into val_img.npz successfully

INFO:root:downloaded https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/dataset/VQA-
notebook/val_ans.npz into val_ans.npz successfully

—
[1024]

In [7]: 1layout
bucket

train_question = np.load(train_q)['x"]
val_question = np.load(val_qg)['x"]
train_ans = np.load(train_a)['x"']
val_ans = np.load(val_a)['x']
train_img = np.load(train_i)['x"']

val img = np.load(val_i)['x"]

print("Total training sample:",train_ans.shape[0])
print("Total validation sample:",val_ans.shape[0])

data_train = VQAtrainIter(train_img, train_question, train_ans, batch_size, buckets =
bucket, layout=layout)

data_eva = VQAtrainIter(val_img, val_question, val_ans, batch_size, buckets =

bucket, layout=1ayout)

Total training sample: 21537

Total validation sample: 1044

WARNING: discarded @ sentences longer than the largest bucket.
WARNING: discarded @ sentences longer than the largest bucket.

Initialize the Parameters

In [8]: net = Netl()
#net = Net2()
net.collect_params().initialize(mx.init.Xavier(), ctx=ctx)

Loss and Evaluation Metrics

In [9]: 1loss = gluon.loss.SoftmaxCrossEntropyloss()
metric = mx.metric.Accuracy()

def evaluate_accuracy(data_iterator, net):
numerator = 0.
denominator = 0.

data_iterator.reset()
for i, batch in enumerate(data_iterator):
with autograd.record():

datal = batch.data[@].as_in_context(ctx)
data2 = batch.data[1].as_in_context(ctx)
data = [datal,data2]
label = batch.label[0].as_in_context(ctx)
output = net(data)

metric.update([label], [output])
return metric.get()[1]

Optimizer

In [10]: trainer = gluon.Trainer(net.collect params(), 'sgd', {'learning rate': 0.01})

Training loop

In [11]: epochs = 10
moving_loss = 0.
best_eva = 0
for e in range(epochs):
data_train.reset()
for i, batch in enumerate(data_train):
datal = batch.data[@].as_in_context(ctx)
data2 = batch.data[1].as_in_context(ctx)
data = [datal,data2]
label = batch.label[0].as_in_context(ctx)

with autograd.record():
output = net(data)
cross_entropy = loss(output, label)
cross_entropy.backward()
trainer.step(data[@].shape[0])

S s
Keep a moving average of the Losses
S e e e e
if i ==
moving_loss = np.mean(cross_entropy.asnumpy()[0])
else:
moving _loss = .99 * moving loss + .01 * np.mean(cross_entropy.asnumpy()[0])
#if 1 % 200 == o:
print("Epoch %s, batch %s. Moving avg of loss: %s" % (e, i1, moving Loss))
eva_accuracy = evaluate_accuracy(data_eva, net)
train_accuracy = evaluate_accuracy(data_train, net)
print("Epoch %s. Loss: %s, Train_acc %s, Eval_acc %s" % (e, moving_loss,
train_accuracy, eva_accuracy))
if eva_accuracy > best_eva:
best_eva = eva_accuracy
logging.info('Best validation acc found. Checkpointing...")
net.save_params('vga-mlp-%d.params'%(e))

INFO:root:Best validation acc found. Checkpointing...

Epoch ©. Loss: 3.07848375872, Train_acc 0.439319957386, Eval acc 0.3525390625
INFO:root:Best validation acc found. Checkpointing...

Epoch 1. Loss: 2.08781239439, Train_acc 0.478870738636, Eval_acc ©.436820652174
INFO:root:Best validation acc found. Checkpointing...

Epoch 2. Loss: 1.63500481371, Train_acc 0.515536221591, Eval_acc 0.476584201389
INFO:root:Best validation acc found. Checkpointing...

Epoch 3. Loss: 1.45585072303, Train_acc 0.549283114347, Eval _acc 0.513701026119
INFO:root:Best validation acc found. Checkpointing...

Epoch 4. Loss: 1.17097555747, Train_acc ©.579172585227, Eval_acc 0.547500438904
INFO:root:Best validation acc found. Checkpointing...

Epoch 5. Loss: 1.0625076159, Train_acc 0.606460108902, Eval_acc 0.577517947635
INFO:root:Best validation acc found. Checkpointing...

Epoch 6. Loss: 0.832051645247, Train_acc 0.629863788555, Eval acc 0.60488868656
INFO:root:Best validation acc found. Checkpointing...

Epoch 7. Loss: 0.749606922723, Train_acc 0.650507146662, Eval acc 0.62833921371
INFO:root:Best validation acc found. Checkpointing...

Epoch 8. Loss: 0.680526961879, Train_acc 0.668269610164, Eval_acc 0.649105093573
INFO:root:Best validation acc found. Checkpointing...

Epoch 9. Loss: 0.53362678042, Train_acc 0.683984375, Eval_acc 0.666923484611

Try it out!

Currently we have test data for the first two models we mentioned above. After the training loop
over Netl or Net2, we can try it on test data. Here we have 10 test samples.

In [12]: test = True
if test:
test_g_id, test_q, test_i id, test_ i, atoi,text = dataset_files['test']

if test and not os.path.exists(test_q):
logging.info('Downloading test dataset.')
download(url_format.format(test_q_id),overwrite=True)
download(url_format.format(test_q),overwrite=True)
download(url_format.format(test_i_id),overwrite=True)
download(url format.format(test i),overwrite=True)
download(url_format.format(atoi),overwrite=True)
download(url_format.format(text),overwrite=True)

if test:
test_question = np.load("test_question.npz")['x"]
test_img = np.load("test_img.npz")['x"]
test_question_id = np.load("test_question_id.npz")['x"]
test_img_id = np.load("test_img_id.npz")['x"]
#atoi = np.load("atoi.json")['x"']

INFO:root:Downloading test dataset.

INFO:root:downloaded https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/dataset/VQA-
notebook/test_question_id.npz into test_question_id.npz successfully
INFO:root:downloaded https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/dataset/VQA-
notebook/test_question.npz into test_question.npz successfully

INFO:root:downloaded https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/dataset/VQA-
notebook/test_img id.npz into test_img id.npz successfully

INFO:root:downloaded https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/dataset/VQA-
notebook/test_img.npz into test_img.npz successfully

INFO:root:downloaded https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/dataset/VQA-
notebook/atoi.json into atoi.json successfully

INFO:root:downloaded https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/dataset/VQA-
notebook/test_question_txt.json into test_question_txt.json successfully

We pass the test data iterator to the trained model.

In [13]: data_test = VQAtrainIter(test_img, test_question, np.zeros((test_img.shape[0],1)), 10,
buckets = bucket,layout=1layout)
for i, batch in enumerate(data_test):
with autograd.record():

datal = batch.data[@].as_in_context(ctx)
data2 = batch.data[1].as_in_context(ctx)
data = [datal,data2]
#label = batch.label[0].as_1in_context(ctx)
#label one _hot = nd.one_hot(label, 10)
output = net(data)

output = np.argmax(output.asnumpy(), axis = 1)

WARNING: discarded @ sentences longer than the largest bucket.

In [17]: idx = np.random.randint(10)
print(idx)
question = json.load(open(text))
print("Question:", question[idx])

6
Question: Is there a boat in the water?

In [18]: image _name = 'COCO test2015 ' + str(int(test_img id[idx])).zfill(12)+'.jpg"
if not os.path.exists(image_name):
logging.info('Downloading training dataset.')
download(url_format.format('test_images/'+image_name),overwrite=True)

from IPython.display import Image
Image(filename=image_name)

INFO:root:Downloading training dataset.

INFO:root:downloaded https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/dataset/VQA-
notebook/test_images/COCO_test2015_000000419358. jpg into COCO_test2015_000000419358. jpg
successfully

Out[18]:

In [19]: dataset = json.load(open('atoi.json'))
ans = dataset['ix_to_ans'][str(output[idx]+1)]
print("Answer:", ans)

Answer: yes

For whinges or inquiries, open an issue on GitHub.

https://github.com/zackchase/mxnet-the-straight-dope

Docs » Tree LSTM modeling for semantic relatedness

Tree LSTM modeling for semantic relatedness

Just five years ago, many of the most successful models for doing supervised learning with
text ignored word order altogether. Some of the most successful models represented
documents or sentences with the order-invariant bag-of-words representation. Anyone
thinking hard should probably have realized that these models couldn’t dominate forever.
That’s because we all know that word order actually does matter. Bag-of-words models, which
ignored word order, left some information on the table.

The recurrent neural networks that we introduced in chapter 5 model word order, by passing
over the sequence of words in order, updating the models representation of the sentence after
each word. And, with LSTM recurrent cells and training on GPUs, even the straightforward
LSTM far outpaces classical approaches, on a number of tasks, including language modeling,
named entity recognition and more.

But while those models are impressive, they still may be leaving some knowledge on the table.
To begin with, we know a priori that sentence have a grammatical structure. And we already
have some tools that are very good at recovering parse trees that reflect grammatical structure
of the sentences. While it may be possible for an LSTM to learn this information implicitly, it’s
often a good idea to build known information into the structure of a neural network. Take for
example convolutional neural networks. They build in the prior knowledge that low level
feature should be translation-invariant. It’s possible to come up with a fully connected net that
does the same thing, but it would require many more nodes and would be much more
susceptible to overfitting. In this case, we would like to build the grammatical tree structure of
the sentences into the architecture of an LSTM recurrent neural network. This tutorial walks
through tree LSTMs, an approach that does precisely that. The models here are based on the
tree-structured LSTM by Kai Sheng Tai, Richard Socher, and Chris Manning. Our
implementation borrows from this Pytorch example.

Sentences involving Compositional Knowledge

This tutorial walks through training a child-sum Tree LSTM model for analyzing semantic
relatedness of sentence pairs given their dependency parse trees.

Preliminaries

Before getting going, you’ll probably want to note a couple preliminary details:

http://gluon.mxnet.io/index.html
http://gluon.mxnet.io/chapter05_recurrent-neural-networks/simple-rnn.html
https://nlp.stanford.edu/pubs/tai-socher-manning-acl2015.pdf
https://github.com/dasguptar/treelstm.pytorch

e Use of GPUs is preferred if one wants to run the complete training to match the state-of-
the-art results.
e To show a progress meter, one should install the tqdm (“progress” in Arabic) through

pip install tqdm . One should also install the HTTP library through pip install requests .

In [1]: | import mxnet as mx
from mxnet.gluon import Block, nn
from mxnet.gluon.parameter import Parameter

In [2]: class Tree(object):
def __init_ (self, idx):
self.children = []
self.idx = idx

def __repr_ (self):
if self.children:
return '{0}: {1}'.format(self.idx, str(self.children))
else:
return str(self.idx)

In [3]: | tree = Tree(®)
tree.children.append(Tree(1))
tree.children.append(Tree(2))
tree.children.append(Tree(3))
tree.children[1].children.append(Tree(4))
print(tree)

0: [1, 2: [4], 3]

Model

The model is based on child-sum tree LSTM. For each sentence, the tree LSTM model
extracts information following the dependency parse tree structure, and produces the
sentence embedding at the root of each tree. This embedding can be used to predict semantic
similarity.

Child-sum Tree LSTM

In [4]: | class ChildSumLSTMCell(Block):
def __init_ (self, hidden_size,
i2h_weight_initializer=None,
hs2h_weight_initializer=None,
hc2h_weight_initializer=None,
i2h_bias_initializer='zeros"',
hs2h_bias_initializer='zeros',
hc2h_bias_initializer='zeros"',
input_size=0, prefix=None, params=None):
super(ChildSumLSTMCell, self)._ init__ (prefix=prefix, params=params)
with self.name_scope():
self._hidden_size = hidden_size
self. _input_size = input_size
self.i2h_weight = self.params.get('i2h_weight', shape=(4*hidden_size,
input_size),
init=i2h_weight_initializer)
self.hs2h_weight = self.params.get('hs2h_weight', shape=(3*hidden_size,
hidden_size),
init=hs2h_weight_initializer)

https://nlp.stanford.edu/pubs/tai-socher-manning-acl2015.pdf

self.hc2h_weight = self.params.get('hc2h_weight', shape=(hidden_size,
hidden_size),
init=hc2h_weight_initializer)
self.i2h_bias = self.params.get('i2h_bias', shape=(4*hidden_size,),
init=i2h_bias_initializer)
self.params.get('hs2h_bias"', shape=(3*hidden_size,),
init=hs2h_bias_initializer)
self.params.get('hc2h_bias', shape=(hidden_size,),
init=hc2h_bias_initializer)

self.hs2h_bias

self.hc2h_bias

def forward(self, F, inputs, tree):
children_outputs = [self.forward(F, inputs, child)
for child in tree.children]
if children_outputs:
_, children_states = zip(*children_outputs) # unzip
else:
children_states = None

with inputs.context as ctx:
return self.node_forward(F, F.expand dims(inputs[tree.idx], axis=0),
children_states,

self.i2h_weight.data(ctx),
self.hs2h_weight.data(ctx),
self.hc2h_weight.data(ctx),
self.i2h_bias.data(ctx),
self.hs2h_bias.data(ctx),
self.hc2h_bias.data(ctx))

def node_forward(self, F, inputs, children_states,
i2h_weight, hs2h_weight, hc2h_weight,
i2h_bias, hs2h_bias, hc2h_bias):
comment notation:
N for batch size
C for hidden state dimensions
K for number of children.

FC for 1, f, u, o gates (N, 4*C), from input to hidden

i2h = F.FullyConnected(data=inputs, weight=i2h_weight, bias=i2h_bias,
num_hidden=self._hidden_size*4)

i2h_slices = F.split(i2h, num_outputs=4) # (N, C)*4

i2h_iuo = F.concat(*[i2h_slices[i] for i in [0, 2, 3]], dim=1) # (N, C*3)

if children_states:
sum of children states, (N, C)
hs = F.add_n(*[state[@] for state in children_states])
concatenation of children hidden states, (N, K, C)
hc = F.concat(*[F.expand_dims(state[@], axis=1) for state in children_states],

dim=1)

concatenation of children cell states, (N, K, C)

cs = F.concat(*[F.expand_dims(state[1], axis=1) for state in children_states],
dim=1)

calculate activation for forget gate. addition in f _act is done with
broadcast

i2h_f_slice = i2h_slices[1]

f_act = i2h_f _slice + hc2h_bias + F.dot(hc, hc2h_weight) # (N, K, C)

forget_gates = F.Activation(f_act, act_type='sigmoid') # (N, K, C)
else:

for Leaf nodes, summation of children hidden states are zeros.

hs = F.zeros_like(i2h_slices[9])

FC for i, u, o gates, from summation of children states to hidden state

hs2h_iuo = F.FullyConnected(data=hs, weight=hs2h_weight, bias=hs2h_bias,
num_hidden=self. hidden_size*3)

i2h_iuo = i2h_iuo + hs2h_iuo

iuo_act_slices = F.SliceChannel(i2h_iuo, num_outputs=3) # (N, C)*3
i act, u_act, o _act = iuo_act_slices[9], iuo_act _slices[1], iuo_act_slices[2] #
(N, C) each

calculate gate outputs
in_gate = F.Activation(i_act, act_type='sigmoid")

in_transform = F.Activation(u_act, act_type='tanh")
out_gate = F.Activation(o_act, act_type='sigmoid")

calculate cell state and hidden state
next_c = in_gate * in_transform
if children_states:
next_c = F.sum(forget_gates * cs, axis=1) + next_c
next_h = out_gate * F.Activation(next_c, act_type='tanh")

return next_h, [next_h, next_c]

Similarity regression module

In [5]: | # module for distance-angle similarity
class Similarity(nn.Block):
def init (self, sim_hidden_size, rnn_hidden_size, num_classes):
super(Similarity, self).__init_ ()
with self.name_scope():
self.wh = nn.Dense(sim_hidden_size, in_units=2*rnn_hidden_size)
self.wp = nn.Dense(num_classes, in_units=sim_hidden_size)

def forward(self, F, lvec, rvec):
Lvec and rvec will be tree Lstm cell states at roots
mult dist = F.broadcast mul(lvec, rvec)
abs_dist = F.abs(F.add(lvec,-rvec))
vec_dist = F.concat(*[mult_dist, abs_dist],dim=1)
out = F.log_softmax(self.wp(F.sigmoid(self.wh(vec_dist))))
return out

Final model

In [6]: | # putting the whole model together
class SimilarityTreeLSTM(nn.Block):
def __init_ (self, sim_hidden_size, rnn_hidden_size, embed_in_size, embed_dim,
num_classes):
super(SimilarityTreeLSTM, self)._init_ ()
with self.name_scope():
self.embed = nn.Embedding(embed_in_size, embed_dim)
self.childsumtreelstm = ChildSumLSTMCell(rnn_hidden_size,
input_size=embed_dim)
self.similarity = Similarity(sim_hidden_size, rnn_hidden_size, num_classes)

def forward(self, F, 1_inputs, r_inputs, 1_tree, r_tree):
1 inputs = self.embed(l_inputs)
r_inputs = self.embed(r_inputs)
get cell states at roots
lstate = self.childsumtreelstm(F, 1_inputs, 1_tree)[1][1]
rstate = self.childsumtreelstm(F, r_inputs, r_tree)[1][1]
output = self.similarity(F, lstate, rstate)
return output

Dataset classes

Vocab

In [7]: | import os
import logging
logging.basicConfig(level=1logging.INFO)
import numpy as np
import random

from tqdm import tqdm
import mxnet as mx

class for vocabulary and the word embeddings
class Vocab(object):
constants for special tokens: padding, unknown, and beginning/end of sentence.
PAD, UNK, BOS, EOS = 0, 1, 2, 3
PAD_WORD, UNK_WORD, BOS_WORD, EOS_WORD = '<blank>', ‘'<unk>", '<s>', '</s>'
def __init_ (self, filepaths=[], embedpath=None, include_unseen=False, lower=False):
self.idx2tok = []
self.tok2idx = {}
self.lower = lower
self.include_unseen = include_unseen

self.add(Vocab.PAD_WORD)
self.add(Vocab.UNK_WORD)
self.add(Vocab.BOS_WORD)
self.add(Vocab.EOS_WORD)

self.embed = None

for filename in filepaths:
logging.info('loading %s'%filename)
with open(filename, 'r') as f:
self.load_file(f)
if embedpath is not None:
logging.info('loading %s'%embedpath)
with open(embedpath, 'r') as f:
self.load_embedding(f, reset=set([Vocab.PAD_WORD, Vocab.UNK_WORD,
Vocab.BOS_WORD,
Vocab.EOS_WORD]))

@property
def size(self):
return len(self.idx2tok)

def get_index(self, key):
return self.tok2idx.get(key.lower() if self.lower else key,
Vocab.UNK)

def get_token(self, idx):
if idx < self.size:
return self.idx2tok[idx]
else:
return Vocab.UNK_WORD

def add(self, token):

token = token.lower() if self.lower else token

if token in self.tok2idx:
idx = self.tok2idx[token]

else:
idx = len(self.idx2tok)
self.idx2tok.append(token)
self.tok2idx[token] = idx

return idx

def to_indices(self, tokens, add_bos=False, add_eos=False):
vec = [BOS] if add_bos else []
vec += [self.get_index(token) for token in tokens]
if add_eos:
vec.append(EOS)
return vec

def to_tokens(self, indices, stop):
tokens = []
for i in indices:
tokens += [self.get_token(i)]
if i == stop:
break
return tokens

def load_file(self, f):
for line in f:
tokens = line.rstrip('\n').split()
for token in tokens:
self.add(token)

def load_embedding(self, f, reset=[]):
vectors = {}
for line in tqdm(f.readlines(), desc='Loading embeddings'):
tokens = line.rstrip('\n').split(' ')
word = tokens[@].lower() if self.lower else tokens[9]
if self.include_unseen:
self.add(word)
if word in self.tok2idx:
vectors[word] = [float(x) for x in tokens[1:]]
dim = len(vectors.values()[0])
def to_vector(tok):
if tok in vectors and tok not in reset:
return vectors[tok]
elif tok not in vectors:
return np.random.normal(-0.05, ©.05, size=dim)
else:
return [0.0]*dim
self.embed = mx.nd.array([vectors[tok] if tok in vectors and tok not in reset
else [0.0]*dim for tok in self.idx2tok])

Data iterator

In [8]: | # Iterator class for SICK dataset
class SICKDataIter(object):
def __init_ (self, path, vocab, num_classes, shuffle=True):

super(SICKDatalter, self). init ()
self.vocab = vocab
self.num_classes = num_classes
self.1l_sentences [1]
self.r_sentences [1]
self.1l trees = []
self.r_trees = []
self.labels = []
self.size = @
self.shuffle = shuffle
self.reset()

def reset(self):

if self.shuffle:
mask = list(range(self.size))
random.shuffle(mask)
self.l sentences = [self.l sentences[i] for i in mask]
self.r_sentences = [self.r_sentences[i] for i in mask]
self.1l_trees = [self.1l_trees[i] for i in mask]
self.r_trees = [self.r_trees[i] for i in mask]
self.labels = [self.labels[i] for i in mask]

self.index = @

def next(self):
out = self[self.index]
self.index += 1
return out

def set_context(self, context):
self.l _sentences = [a.as_in_context(context) for a in self.l sentences]
self.r_sentences = [a.as_in_context(context) for a in self.r_sentences]

def len_ (self):
return self.size

def _ getitem_ (self, index):
1 tree = self.l trees[index]
r_tree = self.r_trees[index]

1 sent = self.l_sentences[index]

r_sent = self.r_sentences[index]

label = self.labels[index]

return (1_tree, 1 sent, r_tree, r_sent, label)

Training with autograd

In [9]:

import argparse, pickle, math, os, random
import logging
logging.basicConfig(level=1logging.INFO)
import numpy as np

import mxnet as mx

from mxnet import gluon

from mxnet.gluon import nn

from mxnet import autograd as ag

training settings and hyper-parameters

use_gpu = False

optimizer = 'AdaGrad’

seed = 123

batch_size = 25

training_batches_per_epoch = 10

learning_rate = 90.01

weight_decay = 0.0001

epochs = 1

rnn_hidden_size, sim_hidden_size, num_classes = 150, 50, 5

initialization
context = [mx.gpu(@) if use_gpu else mx.cpu()]

seeding
mx.random.seed(seed)
np.random.seed(seed)
random.seed(seed)

read dataset
def verified(file_path, shalhash):
import hashlib
shal = hashlib.shal()
with open(file_path, 'rb') as f:
while True:
data = f.read(1048576)
if not data:
break
shal.update(data)
matched = shal.hexdigest() == shalhash
if not matched:
logging.warn('Found hash mismatch in file {}, possibly due to incomplete
download.'
.format(file_path))
return matched

data_file_name "tree_lstm_dataset-3d85a6c4.cPickle’
data_file_hash = '3d85a6c44a335a33edcP60028f91395ab0dcf601"’
if not os.path.exists(data_file_name) or not verified(data_file_name, data_file hash):
from mxnet.test_utils import download
download('https://apache-mxnet.s3-
accelerate.amazonaws.com/gluon/dataset/%s'%data_file_name,
overwrite=True)

with open('tree_ lstm dataset-3d85a6c4.cPickle', 'rb') as f:
train_iter, dev_iter, test_iter, vocab = pickle.load(f)

logging.info('==> SICK vocabulary size : %d ' % vocab.size)
logging.info('==> Size of train data : %d " % len(train_iter))
logging.info('==> Size of dev data : %d " % len(dev_iter))
logging.info('==> Size of test data : %d ' % len(test_iter))

get network
net = SimilarityTreeLSTM(sim_hidden_size, rnn_hidden_size, vocab.size,
vocab.embed.shape[1], num_classes)

use pearson correlation and mean-square error for evaluation
metric = mx.metric.create(['pearsonr', 'mse'])

the prediction from the network is Log-probability vector of each score class
so use the following function to convert scalar score to the vector
#e.g 4.5 -> [0, 0, 0, 0.5, 0.5]
def to_target(x):
target = np.zeros((1, num_classes))
ceil = int(math.ceil(x))
floor = int(math.floor(x))
if ceil==floor:
target[@][floor-1] = 1
else:
target[0@][floor-1] = ceil - x
target[0][ceil-1] = x - floor
return mx.nd.array(target)

and use the following to convert Llog-probability vector to score
def to_score(x):

levels = mx.nd.arange(1l, 6, ctx=x.context)

return [mx.nd.sum(levels*mx.nd.exp(x), axis=1).reshape((-1,1))]

when evaluating in validation mode, check and see if pearson-r is improved
1f so, checkpoint and run evaluation on test dataset
def test(ctx, data_iter, best, mode='validation', num_iter=-1):
data_iter.reset()
samples = len(data_iter)
data_iter.set_context(ctx[0])
preds = []
labels = [mx.nd.array(data_iter.labels, ctx=ctx[0]).reshape((-1,1))]
for _ in tqgdm(range(samples), desc='Testing in {} mode'.format(mode)):
1 tree, 1 _sent, r_tree, r_sent, label = data_iter.next()
z = net(mx.nd, 1_sent, r_sent, 1 _tree, r_tree)
preds.append(z)

preds = to_score(mx.nd.concat(*preds, dim=e0))

metric.update(preds, labels)

names, values = metric.get()

metric.reset()

for name, acc in zip(names, values):
logging.info(mode+' acc: %s=%f'%(name, acc))

if name == 'pearsonr':
test_r = acc
if mode == 'validation' and num_iter >= 0:

if test_r >= best:

best = test_r

logging.info('New optimum found: {}.'.format(best))
return best

def train(epoch, ctx, train_data, dev_data):
initialization with context
if isinstance(ctx, mx.Context):

ctx = [ctx]

net.collect_params().initialize(mx.init.Xavier(magnitude=2.24), ctx=ctx[0])
net.embed.weight.set_data(vocab.embed.as_in_context(ctx[0]))
train_data.set_context(ctx[0])
dev_data.set_context(ctx[0])

set up trainer for optimizing the network.
trainer = gluon.Trainer(net.collect_params(), optimizer, {'learning_rate':
learning_rate, 'wd': weight_decay})

best r = -1

Loss = gluon.loss.KLDivLoss()

for i in range(epoch):
train_data.reset()

num_samples = min(len(train_data), training_batches_per_epoch*batch_size)
collect predictions and Llabels for evaluation metrics
preds = []
labels = [mx.nd.array(train_data.labels[:num_samples],
ctx=ctx[0]).reshape((-1,1))]
for j in tqdm(range(num_samples), desc='Training epoch {}'.format(i)):
get next batch
1 tree, 1 sent, r_tree, r_sent, label = train_data.next()
use autograd to record the forward calculation
with ag.record():
forward calculation. the output is Log probability
z = net(mx.nd, 1 _sent, r_sent, 1 tree, r_tree)
calculate Lloss
loss = Loss(z, to_target(label).as_in_context(ctx[0]))
backward calculation for gradients.
loss.backward()
preds.append(z)
update weight after every batch_size samples
if (j+1) % batch_size ==
trainer.step(batch_size)

translate Llog-probability to scores, and evaluate
preds = to_score(mx.nd.concat(*preds, dim=0))
metric.update(preds, labels)
names, values = metric.get()
metric.reset()
for name, acc in zip(names, values):
logging.info('training acc at epoch %d: %s=%f'%(i, name, acc))
best_r = test(ctx, dev_data, best_r, num_iter=i)

train(epochs, context, train_iter, dev_iter)

INFO:root:==> SICK vocabulary size : 2412

INFO:root:==> Size of train data : 4500
INFO:root:==> Size of dev data : 500
INFO:root:==> Size of test data 1 4927

Training epoch @: 100% || NEEE| 259/250 [e0:11<e0:00, 21.48it/s]
INFO:root:training acc at epoch @: pearsonr=0.096197

INFO:root:training acc at epoch @: mse=1.138699

Testing in validation mode: 100% ||| s0¢/500 [00:09<00:00, 51.57it/s]
INFO:root:validation acc: pearsonr=0.490352

INFO:root:validation acc: mse=1.237509

INFO:root:New optimum found: ©.49035187610029013.

Conclusion

e Gluon offers great tools for modeling in an imperative way.

Docs » Introduction to recommender systems

Introduction to recommender systems

[Early, early draft]

This chapter introduces recommender systems (commonly called RecSys), tools that
recommmend items to users. Many of the most popular uses of recommender systems involve
to suggesting products to customers. Amazon, for example, uses recommender systems to
choose which retail products to display. Recommender systems aren’t limited to physical
products. For example, the algorithms that Pandora and Spotify use to curate playlists are
recommender systems. Personalized suggestions on news websites are recommender systems.
And as of this writing, several carousels on the home page for Amazon'’s Prime Videos’s contain
personalized TV and Movie recommendations.

T o MEERE T

- W o | " o

| (Zack) have honestly no idea why Amazon wants me to watch Bubble Guppies. It’s possible that
Bubble Guppies is a masterpiece, and the recommender systems knows that my life will change
upon watching it. It's also possible that the recommender made a mistake. For example, it might
have extrapolated incorrectly from my affinity for the anime Death Note, thinking that | would
similarly love any animated series. And, since I've never rated a nickelodean series (either
postiively or negatively), the system may have no knowledge to the contrary. It's also possible
that this series is a new addition to the catalogue, and thus they need to recommend the item to
many users in ordder to develop a sense of who likes Bubble Guppies. This problem, of sorting
out how to handle a new item, is called the cold-start problem.

A recommender system doesn’t have to use any sophisticated machine learning techniques. And
it doesn’t even have to be personalized. One reasonable baseline for most applications is to
suggest the most popular items to everyone. But we have to be careful. Depending on how we
define popularity, we might create a feedback loop. The most popular items get recommended
which makes them even more popular, which makes them even more frequently recommended,
etc.

http://gluon.mxnet.io/index.html

For services with diverse users, however, personalization can be essential. Diapers are among
the most popular items on Amazon, but we probably shouldn’t recommend diapers to
adolescents. We also probably should not recommend anything associated with Justin Bieber to
a user who /sn’t an adolescent. Moreover, we might want to personalize, not only to the user, but
to the context. For example, just after | bought a Pixel phone, | was in the market for a phone
case. But | have no interested in buying a phone case one year later.

Many ways to pose the problem

While it might seem obvious, that personalization is a good strategy, it's not immediately obvious
how best to articualate recommendation as a machine learning problem.

Discuss: * Rating prediction * Passive feedback (view/notview) * Content-based
recommendation

Amazon review dataset

e introduce dataset

In [5]: import mxnet
import mxnet.ndarray as nd
import urllib
import gzip

In [10]: | with
gzip.open(urllib.request.urlopen("http://snap.stanford.edu/data/amazon/productGraph/categor
as f:
data = [eval(l) for 1 in f]

In [11]: data[@]

Out[11]: {'asin': '616719923X",
"helpful': [0, 0],
'overall': 4.0,

"reviewText': 'Just another flavor of Kit Kat but the taste is unique and a bit
different. The only thing that is bothersome is the price. I thought it was a bit
expensive....',

'reviewTime': '06 1, 2013',
'reviewerID': 'A1VEELTKS8NLZB',
"reviewerName': 'Amazon Customer',
"summary': 'Good Taste',
"unixReviewTime': 1370044800}

[Do some dataset exploration]

e Look at the average rating

e Look at the number of unique users and items

e Plot a histogram of the number of ratings/reviews corresponding to each user
e “"foritems

In [17]: wusers = [d['reviewerID'] for d in data]

In [18]: items

[d["asin'] for d in data]

In [14]: ratings = [d['overall'] for d in data]

Models

e Just the average
e Offset plus user and item biases
e Latent factor model / matrix factorization

In []:
In []:
In []:
In []:

In []:

Docs » Linear Dynamical Systems with MXNet

Linear Dynamical Systems with MXNet

In this notebook we will look at how to implement filtering in general linear dynamical systems
(aka Kalman filtering) using MXNet.

First, a short mathematical description of the problem.
A general (Gaussian) linear dynamical system is specified by two equations.

e The first, called the transition equation,

hy = Ahi_1 + ¢ e ~ N(0,Z)

describes how the hidden (also called “latent”) state h; € R evolves with time. In a LDS this
involves applying a linear transformation A € RAXH 6 the previous hidden state h;_;, followed
by adding zero-mean Gaussian noise.

e The second, the observation equation or emission model,

Vy = Bht + Uy Uy ~ N(O, ZV)

descibes how the latent state 4, relates to the observations (“visibles”) v; € RP . In particular, v;
is a linear transformation of the hidden state, B/;, to which Gaussian noise is added.

Finally, we need to specify the initial state, usually by placing a Gaussian prior on Ay,

ho ~ N (po, Zo)

The LDS is thus fully specified by the system parameters A € R*# B e RP*H ¥, Sf,
2, € Sf, uo € R 3 € Sf. S, denotes the space of positive definite (PD) matrices.

Given such a LDS specification, and a sequence of observations v, vi, ..., v, one is typically
interested in one of the following

1. (Log-)Likelihood computation, i.e. computing the probability of the data under the model,
P(vo,vi,...,vr)

2. Filtering, i.e. computing the mean and covariance of P(h;|vo,vi, ..., V)

3. Smoothing, i.e. computing the mean and covariance of P(h;|vo, V1, ...,VvT)

http://gluon.mxnet.io/index.html

4. Parameter learning: find the system parameters that best describe the data, e.g. by
maximizing likelihood

In this notebook we will focus on the filtering problem, and will also see how to compute the
log-likelihood as a byproduct. For details on other problems, See e.g. Barber, 2012, Chapter 24.

Filtering

We want to find the “filtered” distributions p(h; |vo.;) where vq., denotes {vg, -+, v, }. Due to
the closure properties of Gaussian distributions, each of these distributions is also Gaussian
p(h;|vo-) = N (hf;, Fr). The filtering procedure proceeds sequentially, by expressing f; and
F, in terms of f;_; and F,_;. We initialize f; and F{y to be O.

Prerequisite

To derive the formulas for filtering, here is all you need [see Bishop 2008, Appendix B]

e Conditional Gaussian equations

p(x) = N, A™")
pOylx) = J\f(yle+ b,L_l)

The marginal distribution of y and the conditional distribution of x given y are

p(Y) = NOlAu + b, L7 + AAIATY (1)
pixly) = N&IZ[ATLy = b))+ Ap].D), Z=A+ATLA™ ()

e Matrix Inversion Lemma (aka Woodbury matrix identity)
A+BD'C) ' =A1—A'BD+CA™'B)'ca™! (3)
Derivation

Now we are ready to derive the filtering equations, by Bayes Theorem

P(he|vo.) = p(he|ve, vo—1)
x p(velhey vo.—1)p(he|vos—1)
= p(v¢e|h)p(he|vos-1) by Markov property

The derivation boils down to caclulate the two terms on the right hand side (you can think that
the first is p(y|x) and the second is p(x) as in the conditional Gaussian equations) and use (2)
above to get the desired formula.

http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/020217.pdf
https://en.wikipedia.org/wiki/Woodbury_matrix_identity

The first term is directly given by the observation equation, i.e., p(v;|h;) = N'(Bh;, Z,), and the
second term can be calculated as follows

p(ht|V0:t—1) = /p(ht|ht—l,V0:t—1)p(ht—1|V0:t—1)dhz—1
= /p(ht|ht—1)p(ht—1 [vo.—1)dh;—1 by Markov property

= /N(hZ«'Aht_],Zh)N(ht_l lft—lsFt—l)dht—l

= N(Af._1,AF,_iA" +%,) using the marginalization equation (1)
= N(us, Znn)

First, we calculate the covariance matrix F7,
_ _ -1
F,= (%, -B"%,'B) =4, — ZuB" (S, + BEyB") ' By, = (I — KB)Zy,
where we have used the matrix inversion lemman and define the Kalman gain matrix as

K =%,B' =, + BZ,,B)7!.

Notice that for numerical stability, the covariance matrix is normally calculated using so-called
“Joseph’s symmetrized update,”

F,=(I-KBZu(-KB" +KZ,K],

which consists of summing two PD matrices.

Finally, after some algebraic manipulation, we have the mean
fr = pn + K(v — Bup).

LDS Foward Pass

To summarize, the iterative algorithm proceeds as follows

pn = Afi—1 Wy = Buy,
Y = AF,_ AT +3, Y, =BZ,BT +2,
K, = ,BT%;)

fi=un+K0v—p) F,=U-KBXZy(-KB" +KXK"

As we can see, each step in the recursive filtering procedure involves a few matrix-matrix and
matrix-vector multiplications, as well as some matrix and vector additions and subtractions.
These are standard operators available is most deep learning frameworks (including MXNet,
where matrix multiplication is available through nx.sym.dot()). However, the update also
involves the term Z;VI , the inverse of a D-by-D symmetric, postive semidefinite matrix (due to it
being a covariance matrix). If the output dimensionality D is 1, this is simply the scalar 1/%,,, but
in the general case we need to compute the inverse (or, preferably, solve the corresponding
linear system directly).

Luckily, operators for doing exactly that have recently been added to MXNet. In particular, we
have

e mx.nd.linalg gemm2 (Matrix-matrix product, more flexible than dot)

e mx.nd.linalg potrf (Cholesky decomposition A = LLT for symmetric, PD matrix A)

e x.nd.linalg trsm (Solve system of equations involving triangular matrices)

e mx.nd.linalg sumlogdiag (compute the sum of the log of the diagonal elements of a matrix)

e mx.nd.linalg potri (compute A~ ! froma previously computed Cholesky factor L of A (i.e.
LLT = A).

Computing the likelihood

The terms pu, and X,, computed during the filtering update correspond to the mean and
covariance of the predictive distribution P(v¢|vo, V1, ..., V1), which allows us to compute the
likelihood by decomposing it into telescoping conditional distributions,

P(vo,vi,...,vi) = P(vo)P(vi|vo)P(valvo,v1) -« P(Vi|vo, Vi, ..., Vie1)

and then using P(v;|vg, Vi, ..., Vi—1) = N (v |y, Z,,) with parameters obtained during
filtering to compute each term.

In [1]: dimport mxnet as mx

from mxnet.ndarray import linalg_gemm as gemm

from mxnet.ndarray import linalg gemm2 as gemm2

from mxnet.ndarray import linalg potrf as potrf

from mxnet.ndarray import linalg_trsm as trsm

from mxnet.ndarray import linalg sumlogdiag as sumlogdiag

import mxnet.ndarray as nd
In [2]: dimport numpy as np
import matplotlib.pyplot as plt

%matplotlib inline
plt.rcParams["figure.figsize"] = (10, 5)

Generating Synthetic Dataset

This example is adapted from Example 24.3 in (Barber, 2017). The two-dimensional latent vector
h;, is rotated at each iteration and then is projected to produce a scalar observation. More
precisely, we have

cos@ —sind

ht+1 :Aht+€h’ A=< >7€hNN(Oaa2'ﬂ2)

sin @ cosd

Verr = [1,0] - hyyy + €, €, ~ N(O, 02)-

In [3]: alpha
sigma
theta
T =750

0.5
0.5
n

p.pi / 6

In [4]: A = nd.array([[np.cos(theta), -np.sin(theta)],
[np.sin(theta), np.cos(theta)]])
B = nd.array([[1, ©@]])

nd.array(np.square(alpha) * np.eye(2))

S_h
S_v = nd.array(np.square(sigma) * np.eye(1))

v =[]
initial state h o
h = np.array([1, ©])
for t in range(T):
h_t = Bh_{t-1} + \epsilon_h
h = np.random.multivariate_normal(A.asnumpy().dot(h), S_h.asnumpy())

v t = Ah_t + \epsilon_ v
vv = np.random.normal(B.asnumpy().dot(h), S_v.asnumpy())

v.append(vv)
v = nd.array(np.array(v).reshape((T,1)))

In [5]: plt.plot(v.asnumpy());

7.5 1

5.0 4

25 1

LDS Forward Function (Filtering)

In [6]: def LDS_forward(v, A, B, S_h, S v):

H = A.shape[@] # dim of latent state
D = B.shape[@] # dim of observation
T = v.shape[@] # num of observations
f_0 = nd.zeros((H,1))
F_© = nd.zeros((H,H))

eye_h = nd.array(np.eye(H))

= None

= None
_seq = []
_seq = []
log_p_seq = []

for t in range(T):

==
At the first time step, use the prior
mu_h = f_ 0
S_hh = F_o

else:

Otherwise compute using update eqns.
mu_h = gemm2(A, f_t)
S_hh = gemm2(A, gemm2(F_t, A, transpose_b=1)) + S_h

direct transcription of the update equations above
mu_v = gemm2(B, mu_h)

S_hh_x_B_t = gemm2(S_hh, B, transpose_b=1)

S_vv = gemm2(B, S_hh_x B t) + S_v

S_vh = gemm2(B, S_hh)

use potrf to compute the Cholesky decomposition S_vv = LL"T
S_vv_chol = potrf(S_vv)

K = S_hh X with X = BT S_vvA{-1}

We have X = BAT S_vv {-1} => X S_vv = B~T => X LL*T = B"T

We can thus obtain X by solving two Linear systems involving L

K = trsm(S_vv_chol, trsm(S_vv_chol, S_hh_x_B t, rightside=1, transpose=1),
rightside=1)

delta = v[t] - mu_v
f t = mu_h + gemm2(K, delta)

ImKB = eye_h - gemm2(K, B)
F_t = (gemm2(ImKB, gemm2(S_hh, ImKB, transpose_b=True))
+ gemm2(K, gemm2(S_v, K, transpose_b=True), name="Ft"))

save filtered covariance and mean
F_seq.append(F_t)
f _seq.append(f_t)

compute the Likelihood using mu_v and L (LL"T = S_vv)
Z = trsm(S_vv_chol, trsm(S_vv_chol, delta), transpose=1)
log p = (-0.5 * (mx.nd.reshape(gemm2(delta, Z, transpose_a=True), shape=(9,),
name="reshaped")
+ D*np.log(2.0 * np.pi)) - sumlogdiag(S_vv_chol))
log_p_seq.append(log_p)

return f_seq, F_seq, log p seq

In [7]: f_seq, F_seq, _ = LDS_forward(v, A, B, S_h, S_v)

Calculate the filtered mean and variance

Given p(h;|vo.:) = N (s, %), we can compute the distribution of the reconstructed
observations

p(%) = N'(Bu,, BE,B" + 6?).

In [8]: from functools import reduce
B_np = B.asnumpy()
h_states = reduce(lambda x, y: np.hstack((x,y)), [ff.asnumpy() for ff in f_seq])
v_filtered_mean = B.asnumpy().dot(h_states).reshape((T,))

In [9]: v_filtered_var = np.sqrt(
np.array([B_np.dot(ff.asnumpy()).dot(B_np.T) + np.square(sigma) for ff in
F_seq]).reshape((T,)))

In [10]: plt.plot(v.asnumpy(), color="r")
plt.plot(v_filtered_mean, color="b")
X = np.arange(T)
plt.fill between(x, v_filtered_mean-v_filtered_var,
v_filtered_mean+v_filtered_var,
facecolor="blue", alpha=0.2)
plt.legend(["data", "reconstruction"]);

—_— data

751 — reconstruction

5.0 4

25 4

0.0 1

—2.5 1

=5.0 1

=7.5 1

—10.0 1

In the next notebook, we will use Kalman filtering as a subroutine in more complex models. In
particular, we will show how to do time series forecasting with innovative state space models
(ISSMs).

Docs » Exponential Smoothing and Innovation State Space Model (ISSM)

Exponential Smoothing and Innovation State
Space Model (ISSM)

In this notebook we will illustrate the implementation of filtering in innovation state space model
(ISSM, for short) using MXNet. Let us first briefy reivew the basic concepts.

Time series forecasting is a central problem occuring in many applications from optimal
inventory management, staff scheduling to topology planning. Given a sequence of
measurements Z7i, ..., Z7 observed over time, the problem here is to predict future values of the
time series 7741, ... , 2Zr+1, Where 7 is referred as the time horizon.

Exponential smoothing (ETS, which stands for Error, Trend, and Seasonality) is a family of very
successful forecasting methods which are based on the key property that forecasts are weighted
combinations of past observations (Hyndman et. al, 2008).

For example, in simple exponential smoothing, the foreacast Z74 for time step T + 1 is written
as (Hyndman, Athanasopoulos, 2012)

rvi =zr+azr—zr)=a-zr+ (1 —a) - Zr,

In words, the next step forecast is a convex combination of the most recent obseravtion and
forecast. Expanding the above equation, it is clear that the forecast is given by the exponentially
weighted average of past observations,

Zr+1 = azr +a(l — a)zr—; + a(l — a)ZZT_z + .-

Here a > 0 is a smoothing parameter that controls the weight given to each observation. Note
that the recent observations are given more weight than the older observations. In fact the
weight given to the past observation descreases exponentially as it gets older and hence the
name exponential smoothing.

General exponential smoothing methods consider the extensions of simple ETS to include time
series patterns such as (linear) trend, various periodic seasonal effects. All ETS methods falls
under the category of forecasting methods as the predictions are point forecasts (a single value
is predicted for each future time step). On the other hand a statistical model describes the
underlying data generation process and has an advantage that it can produce an entire

http://gluon.mxnet.io/index.html
http://www.exponentialsmoothing.net/home
https://www.otexts.org/fpp/7/1

probability distribuiton for each of the future time steps. Innovation state space model (ISSM) is
an example of such models with considerable flexibility in respresnting commonly occurring time
series patterns and underlie the exponential smoothing methods.

The idea behind ISSMs is to maintain a latent state vector [, with recent information about level,
trend, and seasonality factors. The state vector /; evolves over time adding small innvoation (i.e.,
the Gaussian noise) at each time step. The observations are then a linear combination of the
components of the current state.

Mathematically, ISSM is specified by two equations

e The state transition equation is given by

li = Fili—1 + gi€r, € ~ N(O, D).

Note that the innovation strength is controlled by g;, i.e., g;¢; ~ N'(0, gtz).
e The observation equation is given by

i = a;rlt—l +b,+v, v~ N(O,Utz)

Note that here we allow for an additional term b; which can model any determinstic component
(exogenous variables).

This describes a fairy generic model allowing the user to encode specific time series patterns
using the coefficients F, a; and thus are problem dependent. The innovation vector g, comes in
terms of parameters to be learned (the innovation strengths). Moreover, the initial state [y has to
be specified. We do so by specifying a Gaussian prior distribution P(l)), whose parameters
(means, standard deviation) are learned from data as well.

The parameters of the ISSM are typically learned using the maximum likelihood principle. This
requires the computation of the log-likelihood of the given observations i.e., computing the
probability of the data under the model, P(z;, ..., zr). Fortunately, in the previous notebook,
we have learned how to compute the log-likelihood as a byproduct of LDS filtering problem.

Filtering

We remark that ISSM is a special case of linear dynamical system except that the coefficients are
allowed to change over time. The filtering equations for ISSM can readily be obtained from the
general derivation described in LDS.

Note the change in the notation in the following equations for filtered mean (y,) and filtered
variance (S;) because of the conflict of notation for the ISSM coefficient F. Also note that the
deterministic part b, needs to be subtracted from the observations [z;].

pn = Frp—i py = a pn
Zhh = FtSt_lFtT + gtgtT 0'1,2 = atTZhhat + Gtz
1
K, = _22hhat
A%
e = p + Kz — by — py) S, = I = KaZ(- Kal)" + 62 K,KT

In [1]: dimport mxnet as mx
from mxnet.ndarray import linalg_gemm2 as gemm2
import mxnet.ndarray as nd

ISSM Filtering Function

In [2]: def ISSM_filter(z, b, F, a, g, sigma, m_prior, S_prior):

H
T

F.shape[@] # dim of latent state
z.shape[@] # num of observations

eye_h = nd.array(np.eye(H))

mu_seq = []
S seq = []
log_p_seq = []

for t in range(T):

if t ==
At the first time step, use the prior
= m_prior
S_hh = S _prior

Otherwise compute using update eqns.

F t=F[:, :, t]

g t =g[:, t].reshape((H,1))

gemm2(F_t, mu_t)

gemm2(F_t, gemm2(S_t, F_t, transpose_b=1)) + \
gemm2(g_t, g_t, transpose_b=1)

a_t = a[:, t].reshape((H,1))
mu_v = gemm2(mu_h, a_t, transpose_a=1)

Compute the Kalman gain (vector)
S_hh_x_a_t = gemm2(S_hh, a_t)

sigma_t = sigma[t]
S_vv = gemm2(a_t, S_hh_x_a_t, transpose_a=1) + nd.square(sigma_t)
kalman_gain = nd.broadcast_div(S_hh_x_a_t, S_vv)

Compute the error (delta)
delta = z[t] - b[t] - mu_v

Filtered estimates
mu_t = mu_h + gemm2(kalman_gain, delta)

Joseph's symmetrized update for covariance:
ImKa = nd.broadcast_sub(eye_h, gemm2(kalman_gain, a_t, transpose_b=1))
S_t = gemm2(gemm2(ImKa, S_hh), ImKa, transpose_b=1) + \
nd.broadcast_mul(gemm2(kalman_gain, kalman_gain, transpose_b=1),
nd.square(sigma_t))

Likelihood term
log p = (-0.5 * (delta * delta / S_wv
+ np.log(2.9 * np.pi)
+ nd.log(S_vv))
)

mu_seq.append(mu_t)
S_seq.append(S_t)
log_p_seq.append(log_p)

return mu_seq, S_seq, log p_seq

Data

We will use the beer shipment dataset to illustrate two specific instances of ISSM models.

In [3]: dimport pandas as pd
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (12, 5)
import seaborn as sns

In [4]: df = pd.read_csv("./data/fourweekly-totals-of-beer-shipme.csv", header=0)

In [5]: df.set_index("Week")

get the time series
ts = df.values[:,1]

Let us normalize the time series
ts = np.array((ts - np.mean(ts)) / np.std(ts), dtype=np.double)

In [6]: plt.plot(ts);

201

154

10 1

0.5

0.0 4

-1.0 {

_15 4

Level ISSM

https://datamarket.com/data/set/2325/four-weekly-totals-of-beer-shipments#!ds=2325&display=line

The simplest possible ISSM maintains a level component only. Abusing the notation and let /;
denote /evel, the level ISSM can be written as

l[== 51[_1 + ac;.

Or in ISSM terminology,

a; =[0], F,=1[4], g =la], a>0.

The level [, € R evolves over time by adding a random innovation ae; ~ N'(0, az) to the
previous level, so that a specifies the amount of level drift over time. At time t, the previous
level [,_; is used in the prediction z; and then the level is updated. The damping factor

0 € (0, 1] allows the *“damping” of the level. The initial state prior P(ly) is given by

lo ~ N(uo, 0'(%). For Level-ISSM, we learn the parameters a > 0, ug, o9 > 0.

Here we will fix the parameters for the illustration of filtering. Learning of the parameters will be
discussed in another notebook.

In [7]: 1latent_dim
T

1
len(ts)

Set the coefficients of the ISSM
delta 1.0

F delta * nd.ones((1, 1, T))
a delta * nd.ones((1, T))

Set the parameters of the ISSM

alpha = 0.5
g = alpha * nd.ones((1, T))
m_prior = nd.zeros((latent_dim, 1))
S_prior = nd.zeros((latent_dim, latent_dim))
sigma = 0.5 * nd.ones((T, 1))
b = nd.zeros((T, 1))
z = nd.array(ts).reshape((T, 1))
In [8]: mu_seq, S_seq, _ = ISSM filter(z, b, F, a, g, sigma, m_prior, S _prior)

Calculate the filtered mean and variance of observations

Given p(l,_1|z1:) = N (s, S;), we can compute the distribution of the reconstructed
observations

p(z) = N(azTﬂt,atTStat + Gtz)-

In [9]: from functools import reduce

def reconstruct(mu_seq, S_seq):
a_np = a.asnumpy()
T = len(mu_seq)
sigma_np = sigma.asnumpy()

v_filtered_mean = np.array([a_np[:, t].dot(mu_t.asnumpy())

for t, mu_t in enumerate(mu_seq)]
).reshape(T,)

v_filtered_std = np.sqrt(np.array([a_np[:, t].dot(S_t.asnumpy()).dot(a_np[:, t]) +
np.square(sigma_np[t])
for t, S_t in enumerate(S_seq)]).reshape((T,)))

return v_filtered _mean, v_filtered std

In [10]: reconst_mean, reconst_std = reconstruct(mu_seq, S_seq)

Forecast

One advantage of the ISSM model is that one can obtain the complete probability distribution
for each of the future time steps:

- T T 2
P(Zre) = N(aT+tﬂT+tvaT+[ST+taT+t + 6T+t)’ >0

p(r+) = N(Furse—1, FSro1 FT + gT+fg;+t)

In [11]: def forecast(mu_last_state, S_last_state, F, a, g, sigma, horizon):

forecasts_mean =
forecasts_std = [

[]
]

mu_last_state = mu_last_state.asnumpy()
S_last_state = S_last_state.asnumpy()

F = F.asnumpy()

a = a.asnumpy()

g = g.asnumpy()

s

igma = sigma.asnumpy()

for t in range(horizon):
a_t =al[:, t]
forecast_mean = a_t.dot(mu_last state)[9]
forecast_std = a_t.dot(S_last_state).dot(a_t) + np.square(sigma[t])[0]

forecasts_mean.append(forecast_mean)
forecasts_std.append(forecast_std)

mu_last_state = F[:, :, t].dot(mu_last_state)
S_last_state = F[:, :, t].dot(S_last_state).dot(F[:, :, t].T)

return np.array(forecasts_mean), np.array(forecasts_std)

In [12]: | # Let us use the same cofficients (constant over time) for the future as well
forecasts_mean, forecasts_std = forecast(mu_seq[-1],
S_seq[-1],
F, a, g, sigma, horizon=13)

Plot the reconstruction as well as the forecasts

In [13]: def plot_reconstruction_forecasts(v_filtered mean, v_filtered std, forecasts_mean,
forecasts_std):

plt.plot(ts, color="r")

plt.plot(v_filtered_mean, color="b")

T = len(v_filtered_mean)

X = np.arange(T)

plt.fill between(x, v_filtered_mean-v_filtered_std,
v_filtered _mean+v_filtered_std,

facecolor="blue", alpha=0.2)

plt.plot(np.arange(T, T+len(forecasts_mean)), forecasts_mean, color="g")

plt.fill between(np.arange(T, T+len(forecasts_mean)), forecasts_mean-forecasts_std,
forecasts_mean+forecasts_std,
facecolor="green", alpha=0.2)

plt.legend(["data", "reconstruction", "forecasts"]);

In [14]: plot_reconstruction_forecasts(reconst _mean, reconst_std, forecasts_mean, forecasts_std)

— data
— recanstruction
27 —— forecasts

Level Trend ISSM

We can model a piecewise linear random process by using a two-dimensional latent state
[, € R2, where one dimension represents the level (again with a slight abusing of notation, /)
and the other represents the trend (slope) b.

lt = 511—1 + Yb[_l +a-e;
by =ybi-1 + - €

In ISSM framework, such a (Damped) LevelTrend-ISSM is given by

o o a
Clt=[], F; = 7/’ gt=[],
4 0 vy p

where a > 0, f > 0 and the damping factors d,y € (0, 1]. Both the level and slope
components evolve over time by adding innovations ae; and fe; respectively, so that f > O is
the innovation strength for the slope. The level at time ¢ is the sum of level at — 1 and slope at
t — 1 (linear prediction) modulo the damping factors for level 6 and growth .

2
len(ts)

In [15]: 1latent_dim
=

Set the coefficients of the ISSM
damp_fact = 1.0
damp_growth = 1.0

Set the parameters of the ISSM

alpha = 0.5

beta = 0.1

g t = nd.array([alpha, beta])

g = nd.repeat(g_t, T).reshape((latent_dim, T))

F and a are constant over time

F_t = nd.reshape(nd.array([damp_fact, damp_growth, ©, damp_growth]), (latent_dim,
latent_dim))

a_t = nd.array([damp_fact, damp_growth])

F = nd.repeat(F_t, T).reshape((latent_dim, latent_dim, T))
a = nd.repeat(a_t, T).reshape((latent_dim, T))
m_prior = nd.zeros((latent_dim, 1))
S_prior = nd.zeros((latent_dim, latent_dim))
sigma = 0.5 * nd.ones((T, 1))
b = nd.zeros((T, 1))
z = nd.array(ts).reshape((T, 1))
In [16]: mu_seq, S_seq, _ = ISSM _filter(z, b, F, a, g, sigma, m_prior, S_prior)

In [17]: | # Let us use the same cofficients (constant over time) for the future as well
forecasts_mean, forecasts_std = forecast(mu_seq[-1],
S_seq[-1],
F, a, g, sigma, horizon=13)

Plot the reconstruction as well as the forecasts

In [18]: reconst_mean, reconst_std = reconstruct(mu_seq, S_seq)
plot_reconstruction_forecasts(reconst_mean, reconst_std, forecasts_mean, forecasts_std)

— data
= reconstruction
21 —— forecasts
1 4
D -
] §
-7 1
-3

Docs » Generative Adversarial Networks

Generative Adversarial Networks

Throughout most of this book, we've talked about how to make predictions. In some form or
another, we used deep neural networks learned mappings from data points to labels. This kind of
learning is called discriminative learning, as in, we'd like to be able to discriminate between
photos cats and photos of dogs. Classifiers and regressors are both examples of discriminative
learning. And neural networks trained by backpropagation have upended everything we thought
we knew about discriminative learning on large complicated datasets. Classification accuracies
on high-res images has gone from useless to human-level (with some caveats) in just 5-6 years.
WEe'll spare you another spiel about all the other discriminative tasks where deep neural
networks do astoundingly well.

But there’s more to machine learning than just solving discriminative tasks. For example, given a
large dataset, without any labels, we might want to learn a model that concisely captures the
characteristics of this data. Given such a model, we could sample synthetic data points that
resemble the distribution of the training data. For example, given a large corpus of photographs
of faces, we might want to be able to generate a new photorealistic image that looks like it might
plausibly have come from the same dataset. This kind of learning is called generative modeling.

Until recently, we had no method that could synthesize novel photorealistic images. But the
success of deep neural networks for discriminative learning opened up new possiblities. One big
trend over the last three years has been the application of discriminative deep nets to overcome
challenges in problems that we don’t generally think of as supervised learning problems. The
recurrent neural network language models are one example of using a discriminative network
(trained to predict the next character) that once trained can act as a generative model.

In 2014, a young researcher named lan Goodfellow introduced Generative Adversarial Networks
(GANSs) a clever new way to leverage the power of discriminative models to get good generative
models. GANs made quite a splash so it’s quite likely you've seen the images before. For
instance, using a GAN you can create fake images of bedrooms, as done by Radford et al. in
2015 and depicted below.

http://gluon.mxnet.io/index.html
https://arxiv.org/abs/1406.2661
https://arxiv.org/pdf/1511.06434.pdf

At their heart, GANs rely on the idea that a data generator is good if we cannot tell fake data
apart from real data. In statistics, this is called a two-sample test - a test to answer the question
whether datasets X = {x1,...x,}and X’ = {x], ... x},} were drawn from the same
distribution. The main difference between most statistics papers and GANs is that the latter use
this idea in a constructive way. In other words, rather than just training a model to say ‘hey,
these two datasets don’t look like they came from the same distribution’, they use the two-
sample test to provide training signal to a generative model. This allows us to improve the data
generator until it generates something that resembles the real data. At the very least, it needs to
fool the classifier. And if our classifier is a state of the art deep neural network.

As you can see, there are two pieces to GANSs - first off, we need a device (say, a deep network
but it really could be anything, such as a game rendering engine) that might potentially be able to
generate data that looks just like the real thing. If we are dealing with images, this needs to
generate images. If we're dealing with speech, it needs to generate audio sequences, and so on.
We call this the generator network. The second component is the discriminator network. It
attempts to distinguish fake and real data from each other. Both networks are in competition
with each other. The generator network attempts to fool the discriminator network. At that
point, the discriminator network adapts to the new fake data. This information, in turn is used to
improve the generator network, and so on.

Generator * Draw some parameter z from a source of randomness, e.g. a normal distribution
7z ~ N(0,1). * Apply a function f such that we get x’ = G(u, w) * Compute the gradient with
respect to w to minimize log p(y = fake|x’)

Discriminator * Improve the accuracy of a binary classifier f, i.e. maximize log p(y = fake|x’)
and log p(y = true|x) for fake and real data respectively.

Discriminator

Fake data G(2)

Generator Real data

In short, there are two optimization problems running simultaneously, and the optimization
terminates if a stalemate has been reached. There are lots of further tricks and details on how to
modify this basic setting. For instance, we could try solving this problem in the presence of side
information. This leads to cGAN, i.e. conditional Generative Adversarial Networks. We can
change the way how we detect whether real and fake data look the same. This leads to wGAN
(Wasserstein GAN), kernel-inspired GANs and lots of other settings, or we could change how
closely we look at the objects. E.g. fake images might look real at the texture level but not so at
the larger level, or vice versa.

Many of the applications are in the context of images. Since this takes too much time to solve in
a Jupyter notebook on a laptop, we're going to content ourselves with fitting a much simpler
distribution. We will illustrate what happens if we use GANSs to build the world’s most inefficient
estimator of parameters for a Gaussian. Let’s get started.

In [1]: from _ future__ import print_function
import matplotlib as mpl
from matplotlib import pyplot as plt
import mxnet as mx
from mxnet import gluon, autograd, nd
from mxnet.gluon import nn
import numpy as np

ctx = mx.cpu()

Generate some ‘real’ data

Since this is going to be the world’s lamest example, we simply generate data drawn from a
Gaussian. And let’s also set a context where we'll do most of the computation.

In [2]: nd.random_normal(shape=(1000, 2))
nd.array([[1, 2], [-90.1, ©.5]])
nd.array([1, 2])

nd.dot(X,A) + b

nd.ones(shape=(1000,1))

< X o > X
nmunnnn

and stick them into an 1iterator
batch_size = 4
train_data = mx.io.NDArrayIter(X, Y, batch_size, shuffle=True)

Let’s see what we got. This should be a Gaussian shifted in some rather arbitrary way with mean
b and covariance matrix AT A.

In [3]: plt.scatter(X[:, 0].asnumpy(),X[:,1].asnumpy())
plt.show()
print("The covariance matrix is")
print(nd.dot(A, A.T))

The covariance matrix is

[[5. 0.89999998]
[©.89999998 ©.25999999]]

<NDArray 2x2 @cpu(@)>

Defining the networks

Next we need to define how to fake data. Our generator network will be the simplest network
possible - a single layer linear model. This is since we'll be driving that linear network with a
Gaussian data generator. Hence, it literally only needs to learn the parameters to fake things
perfectly. For the discriminator we will be a bit more discriminating: we will use an MLP with 3
layers to make things a bit more interesting.

The cool thing here is that we have two different networks, each of them with their own
gradients, optimizers, losses, etc. that we can optimize as we please.

In [4]:

build the generator

netG = nn.Sequential()

with netG.name_scope():
netG.add(nn.Dense(2))

build the discriminator (with 5 and 3 hidden units respectively)
netD = nn.Sequential()
with netD.name_scope():

netD.add(nn.Dense(5, activation="tanh'))

netD.add(nn.Dense(3 ,activation="tanh"'))

netD.add(nn.Dense(2))

Loss
loss = gluon.loss.SoftmaxCrossEntropylLoss()

initialize the generator and the discriminator
netG.initialize(mx.init.Normal(©.02), ctx=ctx)
netD.initialize(mx.init.Normal(©.02), ctx=ctx)

trainer for the generator and the discriminator
trainerG
trainerD

Setting up the training loop

gluon.Trainer(netG.collect_params(), 'adam', {'learning_rate':
gluon.Trainer(netD.collect_params(), 'adam', {'learning rate': 0.05})

0.01})

We are going to iterate over the data a few times. To make life simpler we need a few variables

In [5]:

real_label = mx.nd.ones((batch_size,), ctx=ctx)
fake_label = mx.nd.zeros((batch_size,), ctx=ctx)
metric = mx.metric.Accuracy()

set up logging

from datetime import datetime
import os

import time

Training loop

In [6]: stamp = datetime.now().strftime('%Y_%m %d-%H_%M")
for epoch in range(10):

tic = time.time()

train_data.reset()

for i, batch in enumerate(train_data):
Sl s e
(1) Update D network: maximize Llog(D(x)) + Log(1 - D(G(z)))
B e
train with real t
data = batch.data[@].as_in_context(ctx)
noise = nd.random_normal(shape=(batch_size, 2), ctx=ctx)

with autograd.record():
real_output = netD(data)
errD_real = loss(real_output, real_label)

fake = netG(noise)

fake_output = netD(fake.detach())
errD_fake = loss(fake_output, fake_label)
errD = errD_real + errD_fake
errD.backward()

trainerD.step(batch_size)
metric.update([real_label,], [real output,])
metric.update([fake_label,], [fake_output,])

S s
(2) Update G network: maximize Log(D(G(z)))
S R s s s e
with autograd.record():
output = netD(fake)
errG = loss(output, real label)
errG.backward()

trainerG.step(batch_size)

name, acc = metric.get()

metric.reset()

print('\nbinary training acc at epoch %d: %s=%f' % (epoch, name, acc))
print('time: %f' % (time.time() - tic))

noise = nd.random_normal(shape=(100, 2), ctx=ctx)

fake = netG(noise)

plt.scatter(X[:, @].asnumpy(),X[:,1].asnumpy())
plt.scatter(fake[:,0].asnumpy(),fake[:,1].asnumpy())

plt.show()

binary training acc at epoch 0: accuracy=0.764500
time: 5.838877

binary training acc at epoch 1: accuracy=0.639000
time: 6.052228

binary training acc at epoch 2: accuracy=0.551000
time: 5.773329

binary training acc at epoch 3: accuracy=0.522000
time: 5.613472

binary training acc at epoch 4: accuracy=0.498000
time: 6.069607

binary training acc at epoch 5: accuracy=0.496500
time: 5.800509

binary training acc at epoch 6: accuracy=0.498500
time: 5.982538

binary training acc at epoch 7: accuracy=0.515500
time: 6.017519

—Z -1 o 1 2 3 4

binary training acc at epoch 8: accuracy=0.500000
time: 6.143714

10 A

binary training acc at epoch 9: accuracy=0.499000
time: 6.123487

Checking the outcome

Let's now generate some fake data and check whether it looks real.

In [7]: noise = mx.nd.random_normal(shape=(100, 2), ctx=ctx)
fake = netG(noise)

plt.scatter(X[:, ©].asnumpy(),X[:,1].asnumpy())
plt.scatter(fake[:,0].asnumpy(),fake[:,1].asnumpy())
plt.show()

Conclusion

A word of caution here - to get this to converge properly, we needed to adjust the learning rates
very carefully. And for Gaussians, the result is rather mediocre - a simple mean and covariance
estimator would have worked much better. However, whenever we don’t have a really good idea
of what the distribution should be, this is a very good way of faking it to the best of our abilities.
Note that a lot depends on the power of the discriminating network. If it is weak, the fake can be
very different from the truth. E.g. in our case it had trouble picking up anything along the axis of
reduced variance. In summary, this isn’'t exactly easy to set and forget. One nice resource for
dirty practioner’s knowledge is Soumith Chintala’s handy list of tricks for how to babysit GANs.

For whinges or inquiries, open an issue on GitHub.

https://github.com/soumith/ganhacks
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Deep Convolutional Generative Adversarial Networks

Deep Convolutional Generative Adversarial
Networks

In our introduction to generative adversarial networks (GANs), we introduced the basic ideas
behind how GANs work. We showed that they can draw samples from some simple, easy-to-
sample distribution, like a uniform or normal distribution, and transform them into samples that
appear to match the distribution of some data set. And while our example of matching a 2D
Gaussian distribution got the point across, it's not especially exciting.

In this notebook, we'll demonstrate how you can use GANs to generate photorealistic images.
WE'll be basing our models on the deep convolutional GANs introduced in this paper. We'll
borrow the convolutional architecture that have proven so successful for discriminative
computer vision problems and show how via GANs, they can be leveraged to generate
photorealistic images.

In this tutorial, concentrate on the LWF Face Dataset, which contains roughly 13000 images of
faces. By the end of the tutorial, you'll know how to generate photo-realistic images of your
own, given any dataset of images. First, we'll the the preliminaries out of the way.

In [1]: from _ future__ import print_function
import os
import matplotlib as mpl
import tarfile
import matplotlib.image as mpimg
from matplotlib import pyplot as plt

import mxnet as mx

from mxnet import gluon

from mxnet import ndarray as nd
from mxnet.gluon import nn, utils
from mxnet import autograd

import numpy as np

Set training parameters

In [2]: | epochs = 2 # Set Low by default for tests, set higher when you actually run this code.
batch_size = 64
latent_z_size = 100

use_gpu = True
ctx = mx.gpu() if use_gpu else mx.cpu()

1r = 0.0002
betal = 0.5

http://gluon.mxnet.io/index.html
http://gluon.mxnet.io/chapter14_generative-adversarial-networks/gan-intro.html
https://arxiv.org/abs/1511.06434
http://vis-www.cs.umass.edu/lfw/

Download and preprocess the LWF Face Dataset

In [3]: 1fw_url = 'http://vis-www.cs.umass.edu/lfw/1fw-deepfunneled.tgz'
data_path = 'l1fw_dataset'’
if not os.path.exists(data_path):
os.makedirs(data_path)
data_file = utils.download(lfw_url)
with tarfile.open(data_file) as tar:
tar.extractall(path=data_path)

Downloading lfw-deepfunneled.tgz from http://vis-www.cs.umass.edu/lfw/1fw-
deepfunneled.tgz...

First, we resize images to size 64 X 64. Then, we normalize all pixel values to the [—1, 1] range.

In [4]: target_wd = 64
target_ht = 64
img_list = []

def transform(data, target_wd, target_ht):
resize to target wd * target_ht
data = mx.image.imresize(data, target_wd, target_ht)
transpose from (target wd, target ht, 3)
to (3, target_wd, target _ht)
data = nd.transpose(data, (2,90,1))
normalize to [-1, 1]
data = data.astype(np.float32)/127.5 - 1
1f image is greyscale, repeat 3 times to get RGB 1image.
if data.shape[@] == 1:
data = nd.tile(data, (3, 1, 1))
return data.reshape((1,) + data.shape)

for path, _, fnames in os.walk(data_path):
for fname in fnames:
if not fname.endswith('.jpg'):
continue
img = os.path.join(path, fname)
img_arr = mx.image.imread(img)
img_arr = transform(img_arr, target wd, target_ht)
img_list.append(img_arr)
train_data = mx.io.NDArrayIter(data=nd.concatenate(img_list), batch_size=batch_size)

Visualize 4 images:

In [5]: def visualize(img_arr):
plt.imshow(((img_arr.asnumpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8))
plt.axis('off")

for i in range(4):
plt.subplot(1,4,i+1)
visualize(img_list[i + 10][0])
plt.show()

Defining the networks

The core to the DCGAN architecture uses a standard CNN architecture on the discriminative
model. For the generator, convolutions are replaced with upconvolutions, so the representation
at each layer of the generator is actually successively larger, as it mapes from a low-dimensional
latent vector onto a high-dimensional image.

e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

e Use batch normalization in both the generator and the discriminator.

e Remove fully connected hidden layers for deeper architectures.

e Use RelLU activation in generator for all layers except for the output, which uses Tanh.

e Use LeakyRelLU activation in the discriminator for all layers.

74

gl —— &

Project and reshape

In [6]: | # build the generator

nc =3

ngf = 64

netG = nn.Sequential()

with netG.name_scope():
input is Z, going into a convolution
netG.add(nn.Conv2DTranspose(ngf * 8, 4, 1, 0, use_bias=False))
netG.add(nn.BatchNorm())
netG.add(nn.Activation('relu'))
state size. (ngf*8) x 4 x 4
netG.add(nn.Conv2DTranspose(ngf * 4, 4, 2, 1, use_bias=False))
netG.add(nn.BatchNorm())
netG.add(nn.Activation('relu'))
state size. (ngf*8) x 8 x 8
netG.add(nn.Conv2DTranspose(ngf * 2, 4, 2, 1, use_bias=False))
netG.add(nn.BatchNorm())
netG.add(nn.Activation('relu'))
state size. (ngf*8) x 16 x 16
netG.add(nn.Conv2DTranspose(ngf, 4, 2, 1, use_bias=False))
netG.add(nn.BatchNorm())
netG.add(nn.Activation('relu'))
state size. (ngf*8) x 32 x 32
netG.add(nn.Conv2DTranspose(nc, 4, 2, 1, use_bias=False))
netG.add(nn.Activation('tanh"))
state size. (nc) x 64 x 64

build the discriminator
ndf = 64
netD = nn.Sequential()
with netD.name_scope():
input is (nc) x 64 x 64
netD.add(nn.Conv2D(ndf, 4, 2, 1, use_bias=False))
netD.add(nn.LeakyRelLU(©.2))
state size. (ndf) x 32 x 32

netD.add(nn.Conv2D(ndf * 2, 4, 2, 1, use_bias=False))
netD.add(nn.BatchNorm())

netD.add(nn.LeakyReLU(©0.2))

state size. (ndf) x 16 x 16

netD.add(nn.Conv2D(ndf * 4, 4, 2, 1, use_bias=False))
netD.add(nn.BatchNorm())

netD.add(nn.LeakyReLU(©0.2))

state size. (ndf) x 8 x 8

netD.add(nn.Conv2D(ndf * 8, 4, 2, 1, use_bias=False))
netD.add(nn.BatchNorm())

netD.add(nn.LeakyReLU(©0.2))

state size. (ndf) x 4 x 4

netD.add(nn.Conv2D(1, 4, 1, 0, use_bias=False))

Setup Loss Function and Optimizer

We use binary cross-entropy as our loss function and use the Adam optimizer. We initialize the
network’s parameters by sampling from a normal distribution.

In [7]: | # Loss
loss = gluon.loss.SigmoidBinaryCrossEntropyLoss()

initialize the generator and the discriminator
netG.initialize(mx.init.Normal(9.02), ctx=ctx)
netD.initialize(mx.init.Normal(©.02), ctx=ctx)

trainer for the generator and the discriminator

trainerG = gluon.Trainer(netG.collect_params(), 'adam', {'learning_rate': 1lr, 'betal':
betal})

trainerD = gluon.Trainer(netD.collect_params(), 'adam', {'learning_rate': 1lr, 'betal':
betal})

Training Loop

We recommend thst you use a GPU for training this model. After a few epochs, we can see
human-face-like images are generated.

In [8]: from datetime import datetime
import time
import logging

real_label
fake_label

nd.ones((batch_size,), ctx=ctx)
nd.zeros((batch_size,),ctx=ctx)

def facc(label, pred):

pred = pred.ravel()

label = label.ravel()

return ((pred > 0.5) == label).mean()
metric = mx.metric.CustomMetric(facc)

stamp = datetime.now().strftime('%Y_%m_%d-%H_%M")
logging.basicConfig(level=1logging.DEBUG)

for epoch in range(epochs):
tic = time.time()
btic = time.time()
train_data.reset()
iter = 0
for batch in train_data:
S e e e e

(1) Update D network: maximize Log(D(x)) + Llog(1 - D(G(z)))

e e e e e e e

data = batch.data[@].as_in_context(ctx)

latent_z = mx.nd.random_normal(®, 1, shape=(batch_size, latent z size, 1, 1),
ctx=ctx)

with autograd.record():
train with real image
output = netD(data).reshape((-1, 1))
errD_real = loss(output, real_label)
metric.update([real_label,], [output,])

train with fake 1image

fake = netG(latent_z)

output = netD(fake).reshape((-1, 1))
errD_fake = loss(output, fake label)
errD = errD_real + errD_fake
errD.backward()
metric.update([fake_label,], [output,])

trainerD.step(batch.data[@].shape[9])

S s
(2) Update G network: maximize Log(D(G(z)))
S R s s s e
with autograd.record():
fake = netG(latent_z)
output = netD(fake).reshape((-1, 1))
errG = loss(output, real label)
errG.backward()

trainerG.step(batch.data[@].shape[@])

Print Llog infomation every ten batches
if iter % 10 ==
name, acc = metric.get()
logging.info('speed: {} samples/s'.format(batch_size / (time.time() - btic)))
logging.info('discriminator loss = %f, generator loss = %f, binary training
acc = %f at iter %d epoch %d'
%(nd.mean(errD).asscalar(),
nd.mean(errG).asscalar(), acc, iter, epoch))
iter + 1
time.time()

iter
btic

name, acc = metric.get()

metric.reset()

Logging.info('\nbinary training acc at epoch %d: %s=%f' % (epoch, name, acc))
Logging.info('time: %f' % (time.time() - tic))

Visualize one generated image for each epoch
fake img = fake[O]

visualize(fake_img)

plt.show()

INFO:root:speed: 7.755799027099384 samples/s

INFO:root:discriminator loss = 1.267250, generator loss = 3.865826, binary training acc =
0.593750 at iter @ epoch ©

INFO:root:speed: 588.3748969822371 samples/s

INFO:root:discriminator loss = ©0.158070, generator loss = 7.865579, binary training acc =
0.885653 at iter 10 epoch ©

INFO:root:speed: 585.7634125158751 samples/s

INFO:root:discriminator loss = ©0.062522, generator loss = 9.711842, binary training acc =
0.920387 at iter 20 epoch ©

INFO:root:speed: 580.0184872678558 samples/s

INFO:root:discriminator loss = ©.113141, generator loss = 7.781098, binary training acc =
0.930444 at iter 30 epoch ©

INFO:root:speed: 583.7342663729535 samples/s

INFO:root:discriminator loss = ©0.059121, generator loss = 10.791117, binary training acc
0.920922 at iter 40 epoch ©

INFO:root:speed: 579.9194960292427 samples/s

INFO:root:discriminator loss = 0.965627, generator loss = 22.836861, binary training acc
0.923866 at iter 50 epoch ©

INFO:root:speed: 581.6119964379888 samples/s

INFO:root:discriminator loss = 3.174960, generator loss = 27.712910, binary training acc
0.914703 at iter 60 epoch ©

INFO:root:speed: 577.151467198734 samples/s

INFO:root:discriminator loss = 5.759238, generator loss = 26.630047, binary training acc
0.901629 at iter 70 epoch ©

INFO:root:speed: 577.1105201263284 samples/s

INFO:root:discriminator loss = 0.161419, generator loss = 8.691389, binary training acc =
0.894097 at iter 80 epoch ©

INFO:root:speed: 586.9802412336328 samples/s

INFO:root:discriminator loss = 1.483496, generator loss = 15.815531, binary training acc
0.888650 at iter 90 epoch ©

INFO:root:speed: 573.1734239812782 samples/s

INFO:root:discriminator loss = 3.764262, generator loss = 13.882145, binary training acc
0.873376 at iter 100 epoch ©

INFO:root:speed: 578.515962043676 samples/s

INFO:root:discriminator loss = 1.166709, generator loss = 6.694098, binary training acc =
0.862190 at iter 110 epoch ©

INFO:root:speed: 582.7154687917198 samples/s

INFO:root:discriminator loss = 1.872752, generator loss = 4.427429, binary training acc =
0.852144 at iter 120 epoch ©

INFO:root:speed: 567.5912191450042 samples/s

INFO:root:discriminator loss = ©0.367282, generator loss = 3.143092, binary training acc =
0.850549 at iter 130 epoch ©

INFO:root:speed: 580.2128088187615 samples/s

INFO:root:discriminator loss = 1.140358, generator loss = 8.651748, binary training acc =
0.848349 at iter 140 epoch ©

INFO:root:speed: 577.9815862680757 samples/s

INFO:root:discriminator loss = ©.495512, generator loss = 5.053850, binary training acc =
0.847630 at iter 150 epoch ©

INFO:root:speed: 574.0019501513933 samples/s

INFO:root:discriminator loss = 0.444338, generator loss = 3.439436, binary training acc =
0.844818 at iter 160 epoch ©

INFO:root:speed: 571.9412026650133 samples/s

INFO:root:discriminator loss = 0.399045, generator loss = 5.902631, binary training acc =
0.847542 at iter 170 epoch @

INFO:root:speed: 573.7676120612081 samples/s

INFO:root:discriminator loss = 0.467865, generator loss = 4.489837, binary training acc =
0.845520 at iter 180 epoch ©

INFO:root:speed: 562.1119887424929 samples/s

INFO:root:discriminator loss = 0.630585, generator loss = 5.973484, binary training acc =
0.846818 at iter 190 epoch ©

INFO:root:speed: 576.4809157190564 samples/s

INFO:root:discriminator loss = ©0.627957, generator loss = 5.089905, binary training acc =
0.843206 at iter 200 epoch ©

INFO:root:speed: 580.216571165489 samples/s

INFO:root:discriminator loss = ©0.542177, generator loss = 4.040678, binary training acc =
0.906250 at iter @ epoch 1

INFO:root:speed: 580.091185896397 samples/s

INFO:root:discriminator loss = ©.815529, generator loss = 7.728797, binary training acc =
0.909091 at iter 10 epoch 1

INFO:root:speed: 576.0256816869916 samples/s

INFO:root:discriminator loss = 0.633265, generator loss = 3.232196, binary training acc =
0.861979 at iter 20 epoch 1

INFO:root:speed: 569.4611750479969 samples/s

INFO:root:discriminator loss = ©0.575909, generator loss = 4.796301, binary training acc =
0.849042 at iter 30 epoch 1

INFO:root:speed: 554.097813006368 samples/s

INFO:root:discriminator loss = 0.447131, generator loss = 5.489185, binary training acc =
0.856898 at iter 40 epoch 1

INFO:root:speed: 570.8538411645242 samples/s

INFO:root:discriminator loss = 1.440910, generator loss = 8.547214, binary training acc =
0.852788 at iter 50 epoch 1

INFO:root:speed: 570.9121179445625 samples/s

INFO:root:discriminator loss = 1.095329, generator loss = 4.820041, binary training acc =
0.850282 at iter 60 epoch 1

INFO:root:speed: 578.9326874758721 samples/s

INFO:root:discriminator loss = 0.777688, generator loss = 6.919479, binary training acc =
0.849142 at iter 70 epoch 1

INFO:root:speed: 583.4411875937317 samples/s

INFO:root:discriminator loss = 0.679454, generator loss = 5.001040, binary training acc =
0.858893 at iter 80 epoch 1

INFO:root:speed: 584.0937211690776 samples/s
INFO:root:discriminator loss = 0.295851, generator
0.858431 at iter 90 epoch 1

INFO:root:speed: 565.923142440316 samples/s
INFO:root:discriminator loss = 0.551316, generator
0.864016 at iter 100 epoch 1

INFO:root:speed: 580.1852197669191 samples/s
INFO:root:discriminator loss = 0.421467, generator
0.867047 at iter 110 epoch 1

INFO:root:speed: 580.7186547451903 samples/s
INFO:root:discriminator loss = 0.769515, generator
0.872482 at iter 120 epoch 1

INFO:root:speed: 578.0351038883015 samples/s
INFO:root:discriminator loss = 1.008357, generator
0.862059 at iter 130 epoch 1

INFO:root:speed: 574.0375470193125 samples/s
INFO:root:discriminator loss = 0.833088, generator
0.862810 at iter 140 epoch 1

INFO:root:speed: 584.0771994107779 samples/s
INFO:root:discriminator loss = 0.662278, generator
0.855960 at iter 150 epoch 1

INFO:root:speed: 569.7331182613125 samples/s
INFO:root:discriminator loss = 0.584824, generator
0.857046 at iter 160 epoch 1

INFO:root:speed: 578.4935208232315 samples/s
INFO:root:discriminator loss = 1.130421, generator
0.859147 at iter 170 epoch 1

INFO:root:speed: 570.2680925734728 samples/s
INFO:root:discriminator loss = 0.167190, generator
0.861576 at iter 180 epoch 1

INFO:root:speed: 562.6634023643834 samples/s
INFO:root:discriminator loss = 0.130641, generator
0.864938 at iter 190 epoch 1

INFO:root:speed: 576.3435275122596 samples/s
INFO:root:discriminator loss = 0.271539, generator
0.865050 at iter 200 epoch 1

Results

loss

loss

loss

loss

loss

loss

loss

loss

loss

loss

loss

loss

5.098488, binary training acc

4.998213, binary training acc

5.157113, binary training acc

10.623252, binary training acc

2.453021, binary

0.940359, binary

4.458453, binary

2.921254, binary

8.173367, binary

5.951529, binary

5.944596, binary

5.291772, binary

Given a trained generator, we can generate some images of faces.

In [9]:

num_image = 8
for i in range(num_image):

training

training

training

training

training

training

training

training

latent_z = mx.nd.random_normal(@, 1, shape=(1, latent_z_size, 1, 1), ctx=ctx)

img = netG(latent_z)

plt.subplot(2,4,i+1)

visualize(img[@])
plt.show()

acc

acc

acc

acc

acc

acc

acc

acc

We can also interpolate along the manifold between images by interpolating linearly between
points in the latent space and visualizing the corresponding images. We can see that small
changes in the latent space results in smooth changes in generated images.

In [10]: num_image = 12
latent_z = mx.nd.random_normal(@, 1, shape=(1, latent_z size, 1, 1), ctx=ctx)
step = 0.05
for i in range(num_image):
img = netG(latent_z)
plt.subplot(3,4,i+1)
visualize(img[@])
latent_z += 0.05
plt.show()

For whinges or inquiries, open an issue on GitHub.

https://github.com/zackchase/mxnet-the-straight-dope

Docs » Pixel to Pixel Generative Adversarial Networks

Pixel to Pixel Generative Adversarial Networks

Pixel to Pixel Generative Adversarial Networks applies Conditional Generative Adversarial
Networks as a general-purpose solution to image-to-image translation problems. These
networks not only learn the mapping from input image to output image, but also learn a loss
function to train this mapping.

With pixel2pixel GAN, it is possible to train different type of image translation tasks with small
datasets. In this tutorial, we will train on three image translation tasks: facades with 400 images
from CMP Facades dataset, cityscapes with 2975 images from Cityscapes training set and maps
with 1096 training images scraped from Google Maps.

For harder problems such as edges2shoes and edges2handbags, it may be important to train on
far larger datasets, which takes significantly more time. You can try them with Multiple GPUs.

In [1]: from _ future__ import print_function
import os
import matplotlib as mpl
import tarfile
import matplotlib.image as mpimg
from matplotlib import pyplot as plt

import mxnet as mx

from mxnet import gluon

from mxnet import ndarray as nd

from mxnet.gluon import nn, utils

from mxnet.gluon.nn import Dense, Activation, Conv2D, Conv2DTranspose, \
BatchNorm, LeakyRelLU, Flatten, HybridSequential, HybridBlock, Dropout

from mxnet import autograd

import numpy as np

Set Training parameters

In [2]: epochs = 100
batch_size = 10

use_gpu = True
ctx = mx.gpu() if use_gpu else mx.cpu()

1r = 0.0002
betal = 0.5
lambdal = 100

pool_size = 50

Download and Preprocess Dataset

http://gluon.mxnet.io/index.html
https://arxiv.org/abs/1611.07004
https://arxiv.org/abs/1411.1784
http://cmp.felk.cvut.cz/~tylecr1/facade/
https://www.cityscapes-dataset.com/
http://vision.cs.utexas.edu/projects/finegrained/utzap50k/
https://github.com/junyanz/iGAN
http://gluon.mxnet.io/chapter07_distributed-learning/multiple-gpus-gluon.html

We first train on facades dataset. We need to crop images to input images and output images.
Notice that pixel2pixel GAN is capable to train these tasks bidirectional. You can set
is-reversed=True to switch input and output image patterns.

In [3]: dataset = 'facades'

We first resize images to size 512 * 256. Then normalize image pixel values to be between -1
and 1.

In [4]: img wd = 256
img_ht = 256
train_img_path = '%s/train' % (dataset)
val _img _path = '%s/val' % (dataset)

def download_data(dataset):
if not os.path.exists(dataset):

url =
"https://people.eecs.berkeley.edu/~tinghuiz/projects/pix2pix/datasets/%s.tar.gz"' %
(dataset)

os.mkdir(dataset)

data_file = utils.download(url)

with tarfile.open(data_file) as tar:

tar.extractall(path=".")
os.remove(data_file)

def load_data(path, batch_size, is_reversed=False):
img_in_list = []
img_out_list = []
for path, _, fnames in os.walk(path):
for fname in fnames:
if not fname.endswith('.jpg'):
continue
img = os.path.join(path, fname)
img_arr = mx.image.imread(img).astype(np.float32)/127.5 - 1
img_arr = mx.image.imresize(img_arr, img_wd * 2, img_ht)
Crop input and output images
img_arr_in, img_arr_out = [mx.image.fixed_crop(img_arr, 0, 0, img_wd, img_ht),
mx.image.fixed _crop(img_arr, img wd, 0, img_wd,
img_ht)]
img_arr_in, img_arr_out = [nd.transpose(img_arr_in, (2,0,1)),
nd.transpose(img_arr_out, (2,0,1))]
img_arr_in, img_arr_out = [img_arr_in.reshape((1,) + img_arr_in.shape),
img_arr_out.reshape((1,) + img_arr_out.shape)]
img_in_list.append(img_arr_out if is_reversed else img_arr_in)
img_out_list.append(img_arr_in if is_reversed else img_arr_out)

return mx.io.NDArrayIter(data=[nd.concat(*img_in_list, dim=0),
nd.concat(*img_out_list, dim=0)],
batch_size=batch_size)

download_data(dataset)

train_data = load_data(train_img_path, batch_size, is_reversed=True)
val data = load_data(val_img_path, batch_size, is_reversed=True)

Visualize 4 images:

In [5]: def visualize(img_arr):
plt.imshow(((img_arr.asnumpy().transpose(1l, 2, 0) + 1.0) * 127.5).astype(np.uint8))
plt.axis('off")

def preview_train_data():

img_in_list, img out_list = train_data.next().data
for i in range(4):
plt.subplot(2,4,i+1)
visualize(img_in_list[i])
plt.subplot(2,4,i+5)
visualize(img_out_list[i])
plt.show()

preview_train_data()

Defining the networks

Both generator and discriminator use modules of the form convolution-BatchNorm-ReLu.

The key for generator is U-net architecture adding skip connections which shuttle low-level
infomation shared between input and output images across net.

. T

i

1

oy M _]

r e

A i

i M
T |

Encoder-decoder U-Net

PatchGAN - that only penalizes structure at the scale of patches is applied as disciminator
architecture. This discriminator tries to classify if each N x N patch in an image is real or fake.
We run this discriminator convolutionally across the image, averaging all responses to provide
the ultimate output of netD.

In [6]: | # Define Unet generator skip block
class UnetSkipUnit(HybridBlock):
def _init_ (self, inner_channels, outer_channels, inner_block=None, innermost=False,
outermost=False,
use_dropout=False, use_bias=False):
super(UnetSkipunit, self). init ()

with self.name_scope():
self.outermost = outermost
en_conv = Conv2D(channels=inner_channels, kernel_size=4, strides=2, padding=1,
in_channels=outer_channels, use_bias=use_bias)

en_relu = LeakyRelLU(alpha=0.2)

en_norm = BatchNorm(momentum=0.1, in_channels=inner_channels)
de_relu = Activation(activation="'relu')

de_norm = BatchNorm(momentum=0.1, in_channels=outer_channels)

if innermost:
de_conv = Conv2DTranspose(channels=outer_channels, kernel size=4,
strides=2, padding=1,
in_channels=inner_channels, use_bias=use_bias)
encoder [en_relu, en_conv]
decoder [de_relu, de_conv, de_norm]
model = encoder + decoder

elif outermost:
de_conv = Conv2DTranspose(channels=outer_channels, kernel size=4,
strides=2, padding=1,
in_channels=inner_channels * 2)
encoder = [en_conv]
decoder = [de_relu, de_conv, Activation(activation="tanh"')]
model = encoder + [inner_block] + decoder
else:
de_conv = Conv2DTranspose(channels=outer_channels, kernel size=4,
strides=2, padding=1,
in_channels=inner_channels * 2,
use_bias=use_bias)
encoder = [en_relu, en_conv, en_norm]
decoder = [de_relu, de_conv, de_norm]
model = encoder + [inner_block] + decoder
if use_dropout:
model += [Dropout(rate=0.5)]

self.model = HybridSequential()
with self.model.name_scope():
for block in model:
self.model.add(block)

def hybrid_forward(self, F, x):
if self.outermost:
return self.model(x)
else:
return F.concat(self.model(x), x, dim=1)

Define Unet generator
class UnetGenerator(HybridBlock):
def __init_ (self, in_channels, num_downs, ngf=64, use_dropout=True):
super(UnetGenerator, self)._ init_ ()

#Build unet generator structure
unet = UnetSkipUnit(ngf * 8, ngf * 8, innermost=True)
for _ in range(num_downs - 5):
unet = UnetSkipUnit(ngf * 8, ngf * 8, unet, use_dropout=use_dropout)

unet = UnetSkipUnit(ngf * 8, ngf * 4, unet)
unet = UnetSkipUnit(ngf * 4, ngf * 2, unet)
unet = UnetSkipUnit(ngf * 2, ngf * 1, unet)
unet = UnetSkipUnit(ngf, in_channels, unet, outermost=True)

with self.name_scope():
self.model = unet

def hybrid_forward(self, F, x):
return self.model(x)

Define the PatchGAN discriminator
class Discriminator(HybridBlock):
def __init_ (self, in_channels, ndf=64, n_layers=3, use_sigmoid=False,
use_bias=False):
super(Discriminator, self)._ init_ ()

with self.name_scope():
self.model = HybridSequential()
kernel_size = 4
padding = int(np.ceil((kernel_size - 1)/2))
self.model.add(Conv2D(channels=ndf, kernel size=kernel size, strides=2,
padding=padding, in_channels=in_channels))
self.model.add(LeakyReLU(alpha=0.2))

nf mult = 1
for n in range(1, n_layers):
nf_mult_prev = nf_mult
nf_mult = min(2 ** n, 8)
self.model.add(Conv2D(channels=ndf * nf_mult, kernel size=kernel size,
strides=2,
padding=padding, in_channels=ndf * nf_mult_prev,
use_bias=use_bias))
self.model.add(BatchNorm(momentum=0.1, in_channels=ndf * nf_mult))

strides=

def

Construct networks, Initialize parameters, Setup Loss

self.model.add(LeakyRelLU(alpha=0.2))

nf_mult_prev = nf_mult
nf_mult = min(2 ** n_layers, 8)

self.model.add(Conv2D(channels=ndf * nf_mult, kernel size=kernel_size,

1,
padding=padding, in_channels=ndf * nf_mult_prev,
use_bias=use_bias))
self.model.add(BatchNorm(momentum=0.1, in_channels=ndf * nf_mult))
self.model.add(LeakyReLU(alpha=0.2))
self.model.add(Conv2D(channels=1, kernel_size=kernel_size, strides=1,
padding=padding, in_channels=ndf * nf_mult))
if use_sigmoid:
self.model.add(Activation(activation="sigmoid"'))
hybrid_forward(self, F, x):

out = self.model(x)
#print(out)
return out

Function and Optimizer

We use binary cross entropy and L1 loss as loss functions. L1 loss can be used to capture low

frequencies in images.

In [7]: def para
if p

elif

def netw
for

m_init(param):

aram.name.find('conv') I= -1:

if param.name.find('weight') != -1:
param.initialize(init=mx.init.Normal(©.02), ctx=ctx)

else:
param.initialize(init=mx.init.Zero(), ctx=ctx)

param.name.find('batchnorm') != -1:

param.initialize(init=mx.init.Zero(), ctx=ctx)

Initialize gamma from normal distribution with mean 1 and std .02

if param.name.find('gamma') != -1:
param.set_data(nd.random_normal(1l, ©.02, param.data().shape))

ork_init(net):
param in net.collect_params().values():
param_init(param)

def set_network():

Pi
netG
netD

In

netw
netw
tr
trai
betal})
trai
betal})
retu
Loss
GAN_loss
L1 loss

netG, ne

xel2pixel networks
= UnetGenerator(in_channels=3, num_downs=8)
= Discriminator(in_channels=6)

itialize parameters
ork_init(netG)
ork_init(netD)

ainer for the generator and the discriminator

nerG = gluon.Trainer(netG.collect_params(), ‘'adam', {'learning_rate': 1r,

nerD = gluon.Trainer(netD.collect_params(), 'adam', {'learning rate': 1r,

rn netG, netD, trainerG, trainerD

= gluon.loss.SigmoidBinaryCrossEntropyLoss()
= gluon.loss.L1lLoss()

tD, trainerG, trainerD = set_network()

‘betal':

'betal’:

Image pool for discriminator

We use history image pool to help discriminator memorize history errors instead of just
comparing current real input and fake output.

In [8]: class ImagePool():
def __init_ (self, pool_size):
self.pool_size = pool_size
if self.pool size > 0:
self.num_imgs = 0
self.images = []

def query(self, images):
if self.pool _size ==
return images
ret_imgs = []
for i in range(images.shape[0]):
image = nd.expand_dims(images[i], axis=0)
if self.num_imgs < self.pool_size:
self.num_imgs = self.num_imgs + 1
self.images.append(image)
ret_imgs.append(image)
else:
p = nd.random_uniform(@, 1, shape=(1,)).asscalar()
if p > 0.5:
random_id = nd.random_uniform(@, self.pool_size - 1, shape=
(1,)).astype(np.uint8).asscalar()
tmp = self.images[random_id].copy()
self.images[random_id] = image
ret_imgs.append(tmp)
else:
ret_imgs.append(image)
ret_imgs = nd.concat(*ret_imgs, dim=0)
return ret_imgs

Training Loop

We recommend to use gpu to boost training. After a few epochs, we can see images silimar to
building structure are generated.

In [9]: from datetime import datetime
import time
import logging

def facc(label, pred):
pred = pred.ravel()
label = label.ravel()
return ((pred > 0.5) == label).mean()

def train():
image_pool = ImagePool(pool_size)
metric = mx.metric.CustomMetric(facc)

stamp = datetime.now().strftime('%Y_%m_%d-%H_%M")
logging.basicConfig(level=1logging.DEBUG)

for epoch in range(epochs):
tic = time.time()
btic = time.time()
train_data.reset()
iter = 0
for batch in train_data:

S R e e e e

(1) Update D network: maximize Llog(D(x, y)) + log(1 - D(x, G(x, z)))
G s e s s

real_in = batch.data[@].as_in_context(ctx)

real out = batch.data[1].as_in_context(ctx)

fake_out = netG(real_in)
fake_concat = image_pool.query(nd.concat(real_in, fake_out, dim=1))
with autograd.record():
Train with fake image
Use image pooling to utilize history images
output = netD(fake_concat)
fake_label = nd.zeros(output.shape, ctx=ctx)
errD_fake = GAN_loss(output, fake_label)
metric.update([fake_label,], [output,])

Train with real image

real_concat = nd.concat(real_in, real_out, dim=1)
output = netD(real_concat)

real label = nd.ones(output.shape, ctx=ctx)
errD_real = GAN_loss(output, real_label)

errD = (errD_real + errD_fake) * 0.5
errD.backward()

metric.update([real_label,], [output,])

trainerD.step(batch.data[0].shape[@0])

S s R s ey
(2) Update G network: maximize log(D(x, G(x, z))) - lambdal * Li1(y, G(x, z))
HAHHHHHRHRHBHBHBHBHBHBHBHBH
with autograd.record():
fake_out = netG(real_in)
fake_concat = nd.concat(real_in, fake_out, dim=1)
output = netD(fake_concat)
real_label = nd.ones(output.shape, ctx=ctx)
errG = GAN_loss(output, real label) + L1 loss(real out, fake out) *

lambdal
errG.backward()
trainerG.step(batch.data[@].shape[0])
Print Log infomation every ten batches
if iter % 10 ==
name, acc = metric.get()
logging.info('speed: {} samples/s'.format(batch_size / (time.time() -
btic)))

logging.info('discriminator loss = %f, generator loss = %f, binary
training acc = %f at iter %d epoch %d’
%(nd.mean(errD).asscalar(),
nd.mean(errG).asscalar(), acc, iter, epoch))
iter + 1
time.time()

iter
btic

name, acc = metric.get()

metric.reset()

logging.info('\nbinary training acc at epoch %d: %s=%f' % (epoch, name, acc))
logging.info('time: %f' % (time.time() - tic))

Visualize one generated image for each epoch

fake_img = fake_out[0]

visualize(fake_img)

plt.show()

train()

Results

Generate images with generator.

In [10]: def print_result():

num_image = 4

img_in_list, img_out_list = val_data.next().data

for i in range(num_image):
img_in = nd.expand_dims(img_in_list[i], axis=0)
plt.subplot(2,4,i+1)
visualize(img_in[@])
img_out = netG(img_in.as_in_context(ctx))
plt.subplot(2,4,i+5)
visualize(img_out[0])

plt.show()

print_result()

Other dataset experiments

Run experiments on cityscapes and maps datasets

In [11]: datasets = ['cityscapes', 'maps']
is_reversed = False
batch_size = 64

for dataset in datasets:
train_img_path = '%s/train' % (dataset)
val_img_path = '%s/val' % (dataset)
download_data(dataset)
train_data = load_data(train_img_path, batch_size, is_reversed=is_reversed)
val data = load_data(val_img path, batch_size, is_reversed=is_reversed)

print("Preview %s training data:" % (dataset))
preview_train_data()

netG, netD, trainerG, trainerD = set_network()
train()

print("Training result for %s" % (dataset))
print_result()

Preview cityscapes training data:

Training result for cityscapes

Ih =S LA T Bk

Preview maps training data:

Training result for maps

Citation

CMP Facades dataset: @ NPROCEEDINGS{ Tylecek13, author = {Radim Tyle{:raw-latex: \v c"}ek,
Radim {:raw-latex:"\v S"}{' a}ra}, title = {Spatial Pattern Templates for Recognition of Objects with
Regular Structure}, booktitle = {Proc. GCPR}, year = {2013}, address = {Saarbrucken, Germany}, }

Cityscapes training set: @inproceedings{Cordts2016Cityscapes, title={The Cityscapes Dataset
for Semantic Urban Scene Understanding}, author={Cordts, Marius and Omran, Mohamed and
Ramos, Sebastian and Rehfeld, Timo and Enzweiler, Markus and Benenson, Rodrigo and Franke,
Uwe and Roth, Stefan and Schiele, Bernt}, booktitle={Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR)}, year={2016} }

Docs » Bayes by Backprop from scratch (NN, classification)

Bayes by Backprop from scratch (NN,
classification)
We have already learned how to implement deep neural networks and how to use them for

classification and regression tasks. In order to fight overfitting, we further introduced a concept
called dropout, which randomly turns off a certain percentage of the weights during training.

Recall the classic architecture of a MLP (shown below, without bias terms). So far, when training
a neural network, our goal was to find an optimal point estimate for the weights.

| First Second 0
anl‘It Hidden Hidden LUtPUt
ayer Layer Layer ayer

X

While networks trained using this approach usually perform well in regions with lots of data,
they fail to express uncertainity in regions with little or no data, leading to overconfident
decisions. This drawback motivates the application of Bayesian learning to neural networks,
introducing probability distributions over the weights. These distributions can be of various
nature in theory. To make our lifes easier and to have an intuitive understanding of the
distribution at each weight, we will use a Gaussian distribution.

http://gluon.mxnet.io/index.html

I First Second 0
anut Hidden Hidden LUtPUt
ayer Layer Layer ayer

N gt
“/0 . — N — nler

Unfortunately though, exact Bayesian inference on the parameters of a neural network is
intractable. One promising way of addressing this problem is presented by the “Bayes by
Backprop” algorithm (introduced by the “Weight Uncertainity in Neural Networks” paper) which
derives a variational approximation to the true posterior. This algorithm does not only make
networks more “honest” with respect to their overall uncertainity, but also automatically leads to
regularization, thereby eliminating the need of using dropout in this model.

While we will try to explain the most important concepts of this algorithm in this notebook, we
also encourage the reader to consult the paper for deeper insights.

Let's start implementing this idea and evaluate its performance on the MNIST classification
problem. We start off with the usual set of imports.

In [1]: from _ future__ import print_function
import collections
import mxnet as mx
import numpy as np
from mxnet import nd, autograd
from matplotlib import pyplot as plt

For easy tuning and experimentation, we define a dictionary holding the hyper-parameters of
our model.

https://arxiv.org/abs/1505.05424

In [2]:

config = {
"num_hidden_layers": 2,
"num_hidden_units": 400,
"batch_size": 128,
"epochs": 10,
"learning_rate": 0.001,
"num_samples": 1,
"pi": 0.25,
"sigma_p": 1.0,
"sigma_pl": 0.75,
"sigma_p2": 0.1,

Also, we specify the device context for MXNet.

In [3]:

ctx = mx.cpu()

Load MNIST data

We will again train and evaluate the algorithm on the MNIST data set and therefore load the

data set as follows:

In [4]:

In order to reproduce and compare the results from the paper, we preprocess the pixels by

def transform(data, label):
return data.astype(np.float32)/126.0, label.astype(np.float32)

mnist = mx.test_utils.get_mnist()
num_inputs = 784
num_outputs = 10
batch_size = config['batch_size']

train_data = mx.gluon.data.DatalLoader(mx.gluon.data.vision.MNIST(train=True,
transform=transform),

batch_size, shuffle=True)
test_data = mx.gluon.data.DatalLoader(mx.gluon.data.vision.MNIST(train=False,
transform=transform),

batch_size, shuffle=False)

num_train = sum([batch_size for i in train_data])
num_batches = num_train / batch_size

dividing by 126.

Model definition

Activation function

As with lots of past examples, we will again use the ReLU as our activation function for the

hidden units of our neural network.

In [5]:

def relu(X):
return nd.maximum(X, nd.zeros_like(X))

Neural net modeling

As our model we are using a straightforward MLP and we are wiring up our network just as we

are used to.

In [6]:

num_layers = config['num_hidden_layers']

define function for evaluating MLP
def net(X, layer_params):
layer_input = X
for i in range(len(layer_params) // 2 - 2):
h_linear = nd.dot(layer_input, layer_params[2*i]) + layer_params[2*i + 1]
layer_input = relu(h_linear)
Llast Layer without RelLU
output = nd.dot(layer_input, layer_params[-2]) + layer_params[-1]
return output

define network weight shapes
layer_param_shapes = []
num_hidden = config['num_hidden_units"]
for i in range(num_layers + 1):
if i == @: # input Layer
W_shape (num_inputs, num_hidden)
b_shape = (num_hidden,)
elif i == num_layers: # lLast Layer
W_shape = (num_hidden, num_outputs)
b_shape = (num_outputs,)
else: # hidden Llayers
W_shape = (num_hidden, num_hidden)
b_shape = (num_hidden,)
layer_param_shapes.extend([W_shape, b_shape])

Build objective/loss

As we briefly mentioned at the beginning of the notebook, we will use variational inference in

order to make the prediction of the posterior tractable. While we can not model the posterior
P(w | D) directly, we try to find the parameters 0 of a distribution on the weights g(w | 0)
(commly referred to as the variational posterior) that minimizes the KL divergence with the true

posterior. Formally this can be expressed as:

0" = arg mein KL[g(w | 0) || P(w | D]

) . qg(w | 60)
= arg meln/CI(W | 0)log PW)P(D | w)

= arg mgn KL[g(w |) [| P(W)] = Eyw | o) [log P(D | w)]

The resulting loss function, commonly referred to as either variational free energy or expected

lower bound (ELBO), has to be minimized and is then given as follows:

F(D,0) = KL[g(w | 0) || P(W)] = Egw |) [log P(D | w)]

As one can easily see, the cost function tries to balance the complexity of the data P(D | w)
and the simplicity of the prior P(w).

We can approximate this exact cost through a Monte Carlo sampling procedure as follows

F(D,0) ~ Z log gw® | 9) — log P(Ww®) — log P(D | w")
=1

where w) corresponds to the i-th Monte Carlo sample from the variational posterior. While
writing this notebook, we noticed that even taking just one sample leads to good results and we
will therefore stick to just sampling once throughout the notebook.

Since we will be working with mini-batches, the exact loss form we will be using looks as
follows:

1
F(Di,0) = 5 KL{logg(w | 0) || log P(W)] — Egqw) [log P(D; | w)]

Q

1
~-(logg(w | 0) — log P(w)) ~ log P(D; | w)
where M corresponds to the number of batches.
Let’s now look at each of these single terms individually.

Likelihood

As with lots of past examples, we will again use the softmax to define our likelihood P(D; | w).
Revisit the MLP from scratch notebook for a detailed motivation of this function.

In [7]: def log_softmax_likelihood(yhat_linear, y):
return nd.nansum(y * nd.log_softmax(yhat_linear), axis=0, exclude=True)

Prior

Since we are introducing a Bayesian treatment for the network, we need to define a Prior over
the weights.

Gaussian prior

A popular and simple prior is the Gaussian distribution. The prior over the entire weight vector
simply corresponds to the prodcut of the individual Gaussians:

Pw) = [[N(w:i10.62)

https://github.com/zackchase/mxnet-the-straight-dope/blob/master/chapter03_deep-neural-networks/mlp-scratch.ipynb

We can define the Gaussian distribution and our Gaussian prior as seen below. Note that we are
ultimately intersted in the log-prior log P(w) and therefore compute the sum of the log-
Gaussians.

log P(w) = Z log N'(w; | 0,67)

In [8]: LOG2PI = np.log(2.0 * np.pi)

def log_gaussian(x, mu, sigma):
return -0.5 * LOG2PI - nd.log(sigma) - (x - mu) ** 2 / (2 * sigma ** 2)

def gaussian_prior(x):
sigma_p = nd.array([config['sigma_p']], ctx=ctx)

return nd.sum(log_gaussian(x, 0., sigma_p))

Scale mixture prior

Instead of a single Gaussian, the paper also suggests the usage of a scale mixture prior for P(w)
as an alternative:

P(w) = H <7m/(w,- 10,67) + (1 —)N (w; | O, 022)>

1

where 7 € [0, 1], 01 > 0, and 6, < 1. Again we are intersted in the log-prior log P(w),
which can be expressed as follows:

log P(w) = Zlog <Jr./\f(w,- 10,67)+ (1 =)N (W; | 0, 022)>

In [9]: def gaussian(x, mu, sigma):
scaling = 1.0 / nd.sqrt(2.09 * np.pi * (sigma ** 2))
bell = nd.exp(- (x - mu) ** 2 / (2.0 * sigma ** 2))

return scaling * bell

def scale_mixture_prior(x):
sigma_pl = nd.array([config['sigma_p1l']], ctx=ctx)
sigma_p2 = nd.array([config['sigma_p2']], ctx=ctx)
pi = config['pi']

first_gaussian = pi * gaussian(x, 0., sigma_pl)
second_gaussian = (1 - pi) * gaussian(x, 9., sigma_p2)

return nd.log(first_gaussian + second_gaussian)

Variational Posterior

The last missing piece in the equation is the variational posterior. Again, we choose a Gaussian
disribution for this purpose. The variational posterior on the weights is centered on the mean

vector u and has variance o2

gqw|0) =[N | uo)
The log-posterior log g(w | 0) is given by:

logg(w | 0) =) log N(W; | u. o)

Combined Loss

After introducing the data likelihood, the prior, and the variational posterior, we are now able to
build our combined loss function: F(D;,0) = %(log qg(w | 0) —log P(w)) —log P(D; | w)

In [10]: def combined_loss(output, label one_hot, params, mus, sigmas, log prior, log_likelihood):

Calculate data Likelihood
log likelihood_sum = nd.sum(log_likelihood(output, label one_hot))

Calculate prior
log prior_sum = sum([nd.sum(log_prior(param)) for param in params])

Calculate variational posterior
log_var_posterior_sum = sum([nd.sum(log_gaussian(params[i], mus[i], sigmas[i])) for i
in range(len(params))])

Calculate total Lloss
return 1.0 / num_batches * (log_var_posterior_sum - log_prior_sum) -
log_likelihood_sum

Optimizer

We use vanilla stochastic gradient descent to optimize the variational parameters. Note that this
implements the updates described in the paper, as the gradient contribution due to the
reparametrization trick is automatically included by taking the gradients of the combined loss
function with respect to the variational parameters.

In [11]: def SGD(params, 1r):
for param in params:
param[:] = param - 1lr * param.grad

Evaluation metric

In order to being able to assess our model performance we define a helper function which
evaluates our accuracy on an ongoing basis.

In [12]: def evaluate_accuracy(data_iterator, net, layer_params):

numerator = 0.

denominator = ©.

for i, (data, label) in enumerate(data_iterator):
data = data.as_in_context(ctx).reshape((-1, 784))
label = label.as_in_context(ctx)
output = net(data, layer_params)
predictions = nd.argmax(output, axis=1)
numerator += nd.sum(predictions == label)
denominator += data.shape[0]

return (numerator / denominator).asscalar()

Parameter initialization

We are using a Gaussian distribution for each individual weight as our variational posterior,
which means that we need to store two parameters, mean and variance, for each weight. For the
variance we need to ensure that it is non-negative, which we will do by using the softplus
function to express ¢ in terms of an unconstrained parameter p. While gradient descent will be
performed on 8 = (u, p), the distribution for each individual weight is represented as

wi ~ N'(w; | pi, 0;) with 6; = softplus(p;).

We initialize u with a Gaussian around O (just as we would initialize standard weights of a neural
network). It is important to initialize p (and hence o) to a small value, otherwise learning might
not work properly.

In [13]: weight_scale = .1
rho_offset = -3

initialize variational parameters; mean and variance for each weight
mus = []
rhos = []

for shape in layer_param_shapes:
mu = nd.random_normal(shape=shape, ctx=ctx, scale=weight_scale)
rho = rho_offset + nd.zeros(shape=shape, ctx=ctx)
mus.append(mu)
rhos.append(rho)

variational_params = mus + rhos

Since these are the parameters we wish to do gradient descent on, we need to allocate space for
storing the gradients.

In [14]: for param in variational_params:
param.attach_grad()

Main training loop

The main training loop is pretty similar to the one we used in the MLP example. The only
adaptation we need to make is to add the weight sampling which is performed during each
optimization step. Generating a set of weights, which will subsequently be used in the neural
network and the loss function, is a 3-step process:

1. Sample € ~ N'(0,19)

In [15]: def sample_epsilons(param_shapes):
epsilons = [nd.random_normal(shape=shape, loc=0., scale=1.0, ctx=ctx) for shape in
param_shapes]
return epsilons

2. Transform p to a postive vector via the softplus function:

o = softplus(p) = log(1 + exp(p))

In [16]: def softplus(x):
return nd.log(1l. + nd.exp(x))

def transform_rhos(rhos):
return [softplus(rho) for rho in rhos]

3. Compute W: W = p + o ° € where the o operator represents the element-wise
multiplication. This is the “reparametrization trick” for separating the randomness from the
parameters of g.

In [17]: def transform_gaussian_samples(mus, sigmas, epsilons):
samples = []
for j in range(len(mus)):
samples.append(mus[j] + sigmas[j] * epsilons[j])
return samples

Complete loop

The complete training loop is given below.

In [18]: epochs = config['epochs']
learning_rate = config['learning_rate']
smoothing_constant = .01
train_acc = []
test _acc = []

for e in range(epochs):
for i, (data, label) in enumerate(train_data):
data = data.as_in_context(ctx).reshape((-1, 784))
label = label.as_in_context(ctx)
label_one_hot = nd.one_hot(label, 10)

with autograd.record():
sample epsilons from standard normal

epsilons = sample_epsilons(layer_param_shapes)

compute softplus for variance

sigmas = transform_rhos(rhos)

obtain a sample from q(w|theta) by transforming the epsilons
layer_params = transform_gaussian_samples(mus, sigmas, epsilons)

forward-propagate the batch
output = net(data, layer_params)

calculate the loss
loss = combined_loss(output, label one_hot, layer_params, mus, sigmas,

gaussian_prior, log_softmax_likelihood)

backpropagate for gradient calculation
loss.backward()

apply stochastic gradient descent to variational parameters
SGD(variational params, learning_rate)

calculate moving Loss for monitoring convergence
curr_loss = nd.mean(loss).asscalar()
moving_loss = (curr_loss if ((i == @) and (e == 0))
else (1 - smoothing_constant) * moving_loss + (smoothing_constant)

* curr_loss)

test_accuracy = evaluate_accuracy(test_data, net, mus)
train_accuracy = evaluate_accuracy(train_data, net, mus)
train_acc.append(np.asscalar(train_accuracy))
test_acc.append(np.asscalar(test_accuracy))

print("Epoch %s. Loss: %s, Train_acc %s, Test_acc %s" %

(e, moving_loss, train_accuracy, test_accuracy))

plt.plot(train_acc)
plt.plot(test_acc)

plt.show()
Epoch @. Loss: 2626.47417991, Train_acc 0.945617, Test_acc 0.9455
Epoch 1. Loss: 2606.28165139, Train_acc 0.962783, Test_acc 0.9593
Epoch 2. Loss: 2600.2452303, Train_acc 0.969783, Test_acc 0.9641
Epoch 3. Loss: 2595.75639899, Train_acc 0.9753, Test_acc 0.9684
Epoch 4. Loss: 2592.98582057, Train_acc 0.978633, Test_acc 0.9723
Epoch 5. Loss: 2590.05895182, Train_acc 0.980483, Test_acc 0.9733
Epoch 6. Loss: 2588.57918775, Train_acc 0.9823, Test_acc 0.9756
Epoch 7. Loss: 2586.00932367, Train_acc 0.984, Test_acc 0.9749
Epoch 8. Loss: 2585.4614887, Train_acc ©.985883, Test_acc 0.9765
Epoch 9. Loss: 2582.92995846, Train_acc 0.9878, Test_acc 0.9775

0.99

098 4

097 4

096 4

095 4

For demonstration purposes, we can now take a look at one particular weight by plotting its

distribution.

In [19]: def show_weight_dist(mean, variance):
sigma = nd.sqrt(variance)
X = np.linspace(mean.asscalar() - 4*sigma.asscalar(), mean.asscalar() +
4*sigma.asscalar(), 100)
plt.plot(x, gaussian(nd.array(x, ctx=ctx), mean, sigma).asnumpy())
plt.show()

mu = mus[@][@][@]
var = softplus(rhos[@][0][0]) ** 2

show_weight_dist(mu, var)

B_

74

B

5__

4]

3 4

2_

14

D_
-0.10 -005 000 005 010 015 020 025 030

Great! We have obtained a fully functional Bayesian neural network. However, the number of
weights now is twice as high as for traditional neural networks. As we will see in the final section
of this notebook, we are able to drastically reduce the number of weights our network uses for
prediction with weight pruning.

Weight pruning

To measure the degree of redundancy present in the trained network and to reduce the model’s
parameter count, we now want to examine the effect of setting some of the weights to 0 and

evaluate the test accuracy afterwards. We can achieve this by ordering the weights according to

their signal-to-noise-ratio, %, and setting a certain percentage of the weights with the lowest

ratios to O.

We can calculate the signal-to-noise-ratio as follows:

In [20]: def signal_to_noise_ratio(mus, sigmas):
sign_to_noise = []
for j in range(len(mus)):
sign_to_noise.extend([nd.abs(mus[j]) / sigmas[j]])
return sign_to_noise

We further introduce a few helper methods which turn our list of weights into a single vector
containing all weights. This will make our subsequent actions easier.

In [21]: def vectorize_matrices_in_vector(vec):
for i in range(@, (num_layers + 1) * 2, 2):

if i ==

vec[i] = nd.reshape(vec[i], num_inputs * num_hidden)
elif i == num_layers * 2:

vec[i] = nd.reshape(vec[i], num_hidden * num_outputs)
else:

vec[i] = nd.reshape(vec[i], num_hidden * num_hidden)
return vec
def concact_vectors_in_vector(vec):
concat_vec = vec[9]
for i in range(1l, len(vec)):
concat_vec = nd.concat(concat_vec, vec[i], dim=0)
return concat_vec
def transform_vector_structure(vec):
vec = vectorize_matrices_in_vector(vec)

vec = concact_vectors_in_vector(vec)

return vec

In addition, we also have a helper method which transforms the pruned weight vector back to

the original layered structure.

In [22]: from functools import reduce
import operator

def prod(iterable):
return reduce(operator.mul, iterable, 1)

def restore_weight_structure(vec):
pruned_weights = []

index = 0@

for shape in layer_param_shapes:
incr = prod(shape)

pruned_weights.extend([nd.reshape(vec[index : index + incr], shape)])

index += incr

return pruned_weights

The actual pruning of the vector happens in the following function. Note that this function

accepts an ordered list of percentages to evaluate the performance at different pruning rates. In

this setting, pruning at each iteration means extracting the index of the lowest signal-to-noise-

ratio weight and setting the weight at this index to 0.

In [23]: def prune_weights(sign_to_noise_vec, prediction_vector, percentages):
pruning indices = nd.argsort(sign_to noise_vec, axis=0)

for percentage in percentages:

prediction_vector = mus_copy_vec.copy()
pruning_indices_percent = pruning_indices[@:int(len(pruning_indices)*percentage)]
for pr_ind in pruning_indices_percent:
prediction_vector[int(pr_ind.asscalar())] = ©
pruned_weights = restore_weight_structure(prediction_vector)
test_accuracy = evaluate_accuracy(test_data, net, pruned_weights)
print("%s --> %s" % (percentage, test_accuracy))

Putting the above functions together:

In [24]: sign_to_noise = signal to_noise_ratio(mus, sigmas)
sign_to_noise_vec = transform_vector_structure(sign_to_noise)

mus_copy = mus.copy()
mus_copy_vec = transform_vector_structure(mus_copy)

prune_weights(sign_to_noise_vec, mus_copy vec, [©0.1, ©.25, 0.5, 0.75, ©0.95, 0.99, 1.0])

0.1 --> 0.9777
0.25 --> 0.9779
0.5 --> 0.9756
0.75 --> 0.9602
0.95 --> 0.7259
0.99 --> 0.3753
1.0 --> 0.098

Depending on the number of units used in the original network and the number of training
epochs, the highest achievable pruning percentages (without significantly reducing the
predictive performance) can vary. The paper, for example, reports almost no change in the test
accuracy when pruning 95% of the weights in a 2x1200 unit Bayesian neural network, which
creates a significantly sparser network, leading to faster predictions and reduced memory
requirements.

Conclusion

We have taken a look at an efficient Bayesian treatment for neural networks using variational
inference via the “Bayes by Backprop” algorithm (introduced by the “Weight Uncertainity in
Neural Networks” paper). We have implemented a stochastic version of the variational lower
bound and optimized it in order to find an approximation to the posterior distribution over the
weights of a MLP network on the MNIST data set. As a result, we achieve regularization on the
network’s parameters and can quantify our uncertainty about the weights accurately. Finally, we
saw that it is possible to significantly reduce the number of weights in the neural network after
training while still keeping a high accuracy on the test set.

We also note that, given this model implementation, we were able to reproduce the paper’s
results on the MNIST data set, achieving a comparable test accuracy for all documented

instances of the MNIST classification problem.

For whinges or inquiries, open an issue on GitHub.

https://arxiv.org/abs/1505.05424
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Bayes by Backprop with giuon (NN, classification)

Bayes by Backprop with giuon (NN, classification)

After discussing Bayes by Backprop from scratch in a previous notebook, we can now look at the
corresponding implementation as gluon components.

We start off with the usual set of imports.

In [1]: from _ future__ import print_function
import collections
import mxnet as mx
import numpy as np
from mxnet import nd, autograd
from matplotlib import pyplot as plt
from mxnet import gluon

For easy tuning and experimentation, we define a dictionary holding the hyper-parameters of
our model.

In [2]: config = {
"num_hidden_layers": 2,
"num_hidden_units": 400,
"batch_size": 128,
"epochs": 10,
"learning_rate": 0.001,
"num_samples”: 1,

"pi": 0.25,
"sigma_p": 1.0,
"sigma_pl": 0.75,
"sigma_p2": 0.01,

Also, we specify the device context for MXNet.
In [3]: ctx = mx.cpu()

Load MNIST data

We will again train and evaluate the algorithm on the MNIST data set and therefore load the
data set as follows:

In [4]: def transform(data, label):
return data.astype(np.float32)/126.0, label.astype(np.float32)

mnist = mx.test_utils.get_mnist()

http://gluon.mxnet.io/index.html
https://github.com/zackchase/mxnet-the-straight-dope/blob/master/chapter18_variational-methods-and-uncertainty/bayes-by-backprop.ipynb

num_inputs = 784
num_outputs = 10
batch_size = config['batch_size']

train_data = mx.gluon.data.DatalLoader(mx.gluon.data.vision.MNIST(train=True,
transform=transform),

batch_size, shuffle=True)
test_data = mx.gluon.data.DatalLoader(mx.gluon.data.vision.MNIST(train=False,
transform=transform),

batch_size, shuffle=False)

num_train = sum([batch_size for i in train_data])
num_batches = num_train / batch_size

In order to reproduce and compare the results from the paper, we preprocess the pixels by
dividing by 126.

Model definition

Neural net modeling

As our model we are using a straightforward MLP and we are wiring up our network just as we
are used to in giuon . Note that we are not using any special layers during the definition of our
network, as we believe that Bayes by Backprop should be thought of as a training method,
rather than a speical architecture.

In [5]: num_layers
num_hidden

config['num_hidden_layers"']
config['num_hidden_units"']

net = gluon.nn.Sequential()
with net.name_scope():
for i in range(num_layers):
net.add(gluon.nn.Dense(num_hidden, activation="relu"))
net.add(gluon.nn.Dense(num_outputs))

Build objective/loss

Again, we define our loss function as described in Bayes by Backprop from scratch. Note that we
are bundling all of this functionality as part of a gluon.1oss.Loss subclass, where the loss

computation is performed in the hybrid_forward function.

In [6]: class BBBLoss(gluon.loss.Loss):
def __init_ (self, log_prior="gaussian", log likelihood="softmax_cross_entropy",
sigma_pl=1.0, sigma_p2=0.1, pi=0.5, weight=None, batch_axis=0, **kwargs):
super(BBBLoss, self)._init_ (weight, batch_axis, **kwargs)
self.log_prior = log_prior
self.log_likelihood = log_likelihood
self.sigma_pl = sigma_pl
self.sigma_p2 = sigma_p2
self.pi = pi

def log_softmax_likelihood(self, yhat_linear, y):
return nd.nansum(y * nd.log_softmax(yhat_linear), axis=0, exclude=True)

https://github.com/zackchase/mxnet-the-straight-dope/blob/master/chapter18_variational-methods-and-uncertainty/bayes-by-backprop.ipynb

def log_gaussian(self, x, mu, sigma):
return -0.5 * np.log(2.0 * np.pi) - nd.log(sigma) - (x - mu) ** 2 / (2 * sigma **
2)

def gaussian_prior(self, x):
sigma_p = nd.array([self.sigma_p1l], ctx=ctx)
return nd.sum(self.log_gaussian(x, 0., sigma_p))

def gaussian(self, x, mu, sigma):
scaling = 1.0 / nd.sqrt(2.0 * np.pi * (sigma ** 2))
bell = nd.exp(- (x - mu) ** 2 / (2.0 * sigma ** 2))

return scaling * bell

def scale_mixture_prior(self, x):
sigma_pl = nd.array([self.sigma_p1l], ctx=ctx)
sigma_p2 = nd.array([self.sigma_p2], ctx=ctx)
pi = self.pi

first_gaussian = pi * self.gaussian(x, 0., sigma_p1l)
second_gaussian = (1 - pi) * self.gaussian(x, 0., sigma_p2)

return nd.log(first_gaussian + second_gaussian)
def hybrid_forward(self, F, output, label, params, mus, sigmas, sample_weight=None):

log_likelihood_sum = nd.sum(self.log_softmax_likelihood(output, label))
prior = None

if self.log prior == "gaussian":
prior = self.gaussian_prior
elif self.log_prior == "scale_mixture":

prior = self.scale_mixture_prior
log_prior_sum = sum([nd.sum(prior(param)) for param in params])
log_var_posterior_sum = sum([nd.sum(self.log_gaussian(params[i], mus[i],
sigmas[i])) for i in range(len(params))])
return 1.0 / num_batches * (log_var_posterior_sum - log_prior_sum) -
log_likelihood_sum

bbb_loss = BBBLoss(log_prior="scale_mixture", sigma_pl=config['sigma_p1'],
sigma_p2=config['sigma_p2'])

Parameter initialization

First, we need to initialize all the network’s parameters, which are only point estimates of the

weights at this point. We will soon see, how we can still train the netork in a Bayesian fashion,

without interfering with the netowk’s architecture.

In [7]:

net.collect_params().initialize(mx.init.Xavier(magnitude=2.24), ctx=ctx)

Then we have to forward-propagate a single data set entry once to set up all network

parameters (weights and biases) with the desired initliaizer specified above.

In [8]:

In [9]:

for i, (data, label) in enumerate(train_data):
data = data.as_in_context(ctx).reshape((-1, 784))
net(data)
break

weight_scale = .1
rho_offset = -3

initialize variational parameters; mean and variance for each weight
mus = []

rhos = []

shapes = list(map(lambda x: x.shape, net.collect_params().values()))

for shape in shapes:
mu = gluon.Parameter('mu', shape=shape, init=mx.init.Normal(weight_scale))
rho = gluon.Parameter('rho',shape=shape, init=mx.init.Constant(rho_offset))
mu.initialize(ctx=ctx)
rho.initialize(ctx=ctx)
mus .append(mu)
rhos.append(rho)

variational_params = mus + rhos

raw_mus = list(map(lambda x: x.data(ctx), mus))
raw_rhos = list(map(lambda x: x.data(ctx), rhos))

Optimizer

Now, we still have to choose the optimizer we wish to use for training. This time, we are using
the adam optimizer.

In [10]: trainer = gluon.Trainer(variational params, 'adam', {'learning_ rate':
config['learning_rate']})

Main training loop
Sampling
Recall the 3-step process for the variational parameters:

1. Sample € ~ N'(0,19)

In [11]: def sample_epsilons(param_shapes):
epsilons = [nd.random_normal(shape=shape, loc=0., scale=1.0, ctx=ctx) for shape in
param_shapes]
return epsilons

2. Transform p to a positive vector via the softplus function:

o = softplus(p) = log(1 + exp(p))

In [12]: def softplus(x):
return nd.log(1l. + nd.exp(x))

def transform_rhos(rhos):
return [softplus(rho) for rho in rhos]

3. Compute W: W = i + o ° € where the o operator represents the element-wise
multiplication. This is the “reparametrization trick” for separating the randomness from the
parameters of g.

In [13]:

def transform_gaussian_samples(mus, sigmas, epsilons):
samples = []
for j in range(len(mus)):
samples.append(mus[j] + sigmas[j] * epsilons[j])
return samples

Putting these three steps together we get:

In [14]: def generate_weight_sample(layer_param_shapes, mus, rhos):
sample epsilons from standard normal
epsilons = sample_epsilons(layer_param_shapes)
compute softplus for variance
sigmas = transform_rhos(rhos)
obtain a sample from q(w|theta) by transforming the epsilons
layer_params = transform_gaussian_samples(mus, sigmas, epsilons)
return layer_params, sigmas
Evaluation metric

In order to being able to assess our model performance we define a helper function which

evaluates our accuracy on an ongoing basis.

In [15]:

def evaluate_accuracy(data_iterator, net, layer_params):
numerator = 0.
denominator = 0.
for i, (data, label) in enumerate(data_iterator):
data = data.as_in_context(ctx).reshape((-1, 784))
label = label.as_in_context(ctx)

for 1_param, param in zip(layer_params, net.collect_params().values()):
param._data[list(param._data.keys())[@]] = 1_param

output = net(data)
predictions = nd.argmax(output, axis=1)
numerator += nd.sum(predictions == label)
denominator += data.shape[0]

return (numerator / denominator).asscalar()

Complete loop

The complete training loop is given below.

In [16]:

epochs = config['epochs']

learning_rate = config['learning_rate']
smoothing_constant = .01

train_acc = []

test_acc = []

for e in range(epochs):
for i, (data, label) in enumerate(train_data):
data = data.as_in_context(ctx).reshape((-1, 784))
label = label.as_in_context(ctx)
label one_hot = nd.one_hot(label, 10)

with autograd.record():

generate sample
layer_params, sigmas = generate_weight_sample(shapes, raw_mus, raw_rhos)

overwrite network parameters with sampled parameters
for sample, param in zip(layer_params, net.collect_params().values()):
param._data[list(param._data.keys())[@]] = sample

forward-propagate the batch
output

net(data)

calculate the Lloss
loss = bbb_loss(output, label one_hot, layer_params, raw_mus, sigmas)

backpropagate for gradient calculation
loss.backward()

trainer.step(data.shape[@])

calculate moving Loss for monitoring convergence
curr_loss =
moving_loss

* curr_loss)

nd.mean(loss).asscalar()
= (curr_loss if ((i == @) and (e == 0))
else (1 - smoothing_constant) * moving_loss + (smoothing_constant)

test_accuracy = evaluate_accuracy(test_data, net, raw_mus)
train_accuracy = evaluate_accuracy(train_data, net, raw_mus)
train_acc.append(np.asscalar(train_accuracy))
test_acc.append(np.asscalar(test_accuracy))

print("Epoch %s. Loss: %s, Train_acc %s, Test_acc %s" %

(e, moving_loss, train_accuracy, test_accuracy))

plt.plot(train_acc)
plt.plot(test_acc)

2121
1918
1813

1740.

1681
1625

1568.
1509.
1449.
1390.

.26601683, Train_acc 0.950017, Test_acc 0.9503
.8522369, Train_acc 0.963667, Test_acc 0.961
.43826684, Train_acc ©.970483, Test_acc 0.966

46931458, Train_acc 0.969417, Test_acc 0.9658

.04620544, Train_acc 0.973767, Test_acc 0.9694
.9179831, Train_acc 0.975267, Test_acc 0.9709

97912286, Train_acc 0.975317, Test_acc 0.9709
50606071, Train_acc ©.977733, Test_acc 0.973
39600539, Train_acc 0.978467, Test_acc 0.9721
66561781, Train_acc 0.97885, Test_acc 0.9736

plt.show()
Epoch ©. Loss:
Epoch 1. Loss:
Epoch 2. Loss:
Epoch 3. Loss:
Epoch 4. Loss:
Epoch 5. Loss:
Epoch 6. Loss:
Epoch 7. Loss:
Epoch 8. Loss:
Epoch 9. Loss:

0980 A

0.975 -

0.970 -

0.965 1

0960 -

0.955 -

0.950 -

For demonstration purposes, we can now take a look at one particular weight by plotting its

distribution.

In [17]: def gaussian(x, mu, sigma):
scaling = 1.0 / nd.sqrt(2.9 * np.pi * (sigma ** 2))
bell = nd.exp(- (x - mu) ** 2 / (2.0 * sigma ** 2))

return scaling * bell

def show_weight_dist(mean, variance):

sigma = nd.sqrt(variance)

X = np.linspace(mean.asscalar() - 4*sigma.asscalar(), mean.asscalar() +
4*sigma.asscalar(), 100)

plt.plot(x, gaussian(nd.array(x, ctx=ctx), mean, sigma).asnumpy())
plt.show()

mu = raw_mus[0][0][@]
var = softplus(raw_rhos[@][0][0]) ** 2

show_weight_dist(mu, var)

20 1

006 -004 -002 000 002 004 006 008

Weight pruning

To measure the degree of redundancy present in the trained network and to reduce the model’s
parameter count, we now want to examine the effect of setting some of the weights to 0 and
evaluate the test accuracy afterwards. We can achieve this by ordering the weights according to

their signal-to-noise-ratio, %, and setting a certain percentage of the weights with the lowest
ratios to O.

We can calculate the signal-to-noise-ratio as follows:

In [18]: def signal_to_noise_ratio(mus, sigmas):
sign_to_noise = []
for j in range(len(mus)):
sign_to_noise.extend([nd.abs(mus[j]) / sigmas[j]])
return sign_to_noise

We further introduce a few helper methods which turn our list of weights into a single vector
containing all weights. This will make our subsequent actions easier.

In [19]: def vectorize_matrices_in_vector(vec):
for i in range(@, (num_layers + 1) * 2, 2):

if i ==

vec[i] = nd.reshape(vec[i], num_inputs * num_hidden)
elif i == num_layers * 2:

vec[i] = nd.reshape(vec[i], num_hidden * num_outputs)
else:

vec[i] = nd.reshape(vec[i], num_hidden * num_hidden)

return vec
def concact_vectors_in_vector(vec):
concat_vec = vec[9]
for i in range(1l, len(vec)):
concat_vec = nd.concat(concat_vec, vec[i], dim=0)
return concat_vec
def transform_vector_structure(vec):
vec = vectorize_matrices_in_vector(vec)

vec = concact_vectors_in_vector(vec)

return vec

In addition, we also have a helper method which transforms the pruned weight vector back to

the original layered structure.

In [20]: from functools import reduce
import operator

def prod(iterable):
return reduce(operator.mul, iterable, 1)

def restore_weight_structure(vec):
pruned_weights = []

index = 0@

for shape in shapes:
incr = prod(shape)

pruned_weights.extend([nd.reshape(vec[index : index + incr], shape)])

index += incr

return pruned_weights

The actual pruning of the vector happens in the following function. Note that this function

accepts an ordered list of percentages to evaluate the performance at different pruning rates. In

this setting, pruning at each iteration means extracting the index of the lowest signal-to-noise-

ratio weight and setting the weight at this index to 0.

In [21]: def prune_weights(sign_to_noise_vec, prediction_vector, percentages):
pruning_indices = nd.argsort(sign_to_noise_vec, axis=0)

for percentage in percentages:

prediction_vector = mus_copy_vec.copy()
pruning_indices_percent = pruning_indices[@:int(len(pruning_indices)*percentage)]
for pr_ind in pruning_indices_percent:
prediction_vector[int(pr_ind.asscalar())] = ©
pruned_weights = restore_weight_structure(prediction_vector)
test_accuracy = evaluate_accuracy(test_data, net, pruned_weights)
print("%s --> %s" % (percentage, test_accuracy))

Putting the above function together:

In [22]: sign_to_noise = signal to_noise_ratio(raw_mus, sigmas)
sign_to_noise_vec = transform_vector_structure(sign_to_noise)

mus_copy = raw_mus.copy()
mus_copy_vec = transform_vector_structure(mus_copy)

prune_weights(sign_to_noise_vec, mus_copy vec, [©0.1, ©.25, 0.5, 0.75, ©0.95, 0.98, 1.0])

0.1 --> 0.9737
0.25 --> 0.9737
0.5 --> 0.9748
0.75 --> 0.9754
0.95 --> 0.9697
0.98 --> 0.9549
1.0 --> 0.098

Depending on the number of units used in the original network, the highest achievable pruning
percentages (without significantly reducing the predictive performance) can vary. The paper, for
example, reports almost no change in the test accuracy when pruning 95% of the weights in a
1200 unit Bayesian neural network, which creates a significantly sparser network, leading to
faster predictions and reduced memory requirements.

Conclusion

We have taken a look at an efficient Bayesian treatment for neural networks using variational
inference via the “Bayes by Backprop” algorithm (introduced by the “Weight Uncertainity in
Neural Networks” paper). We have implemented a stochastic version of the variational lower
bound and optimized it in order to find an approximation to the posterior distribution over the
weights of a MLP network on the MNIST data set. As a result, we achieve regularization on the
network’s parameters and can quantify our uncertainty about the weights accurately. Finally, we
saw that it is possible to significantly reduce the number of weights in the neural network after
training while still keeping a high accuracy on the test set.

We also note that, given this model implementation, we were able to reproduce the paper’s
results on the MNIST data set, achieving a comparable test accuracy for all documented

instances of the MNIST classification problem.

For whinges or inquiries, open an issue on GitHub.

https://arxiv.org/abs/1505.05424
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Kaggle house price prediction with 1uon and k-fold cross-validation

Kaggle house price prediction with ciuvon and k-
fold cross-validation

Updates: “Share your score and method here <https:/discuss.mxnet.io/t/kaggle-exercise-1-
house-price-prediction-with-gluon/51>" __

How have you been doing so far on the journey of Dpeep Learning---the Straight Dope ?
It's time to get your hands dirty.

Let’s get started.

Introduction

In this tutorial, we introduce how to use ciuon for competition on Kaggle. Specifically, we will

take the house price prediction problem as a case study.

We will provide a basic end-to-end pipeline for completing a common Kaggle challenge. We will
demonstrate how to use pandas to pre-process the real-world data sets, such as:

e Handling categorical data
e Handling missing values
e Standardizing numerical features

Note that this tutorial only provides a very basic pipeline. We expect you to tweak the following

code, such as re-designing models and fine-tuning parameters, to obtain a desirable score on
Kaggle.

House Price Prediction Problem on Kaggle

Kaggle is a popular platform for people who love machine learning. To submit the results, please
register a Kaggle account. Please note that, Kaggle limits the number of daily submissions to 10.

http://gluon.mxnet.io/index.html
https://www.kaggle.com/
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/
https://www.kaggle.com/

Search kaggle Q Competitions Datasets Kernels Discussion Jobs =+«

The Home of Data Science
& Machine Learning

Kaggle helps you learn, work, and play

Create an account

Competitions » Datasets » Kernels »

Climb the world’s most elite Explore and analyze a collection Run code in the cloud and
machine learning leaderboards of high quality public datasets receive community feedback on
your work

We take the house price prediction problem as an example to demonstrate how to complete a
Kaggle competition with ciuon . Please learn details of the problem by clicking the link to the

house price prediction problem before starting.

https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/house-prices-advanced-regression-techniques

I . House Prices: Advanced Regression Techniques
.. Pradict sales prices and practice feature engineering, RFs, and gradient boosting
1,698 teams - 2 years to go

COverview Data Kernels Discussion Leaderboard Rules

Overview
Description Start here if...
Evaluation You have some experience with R or Python and machine learning basics. This is a perfect competition
Fraquently Asked for data science students who have completed an online course in machine learning and are looking to
Elsaations expand their skill set before trying a featured competition.
Tutorials Competition Description

.

There are separate training and testing data sets for this competition. Both data sets describe
features of every house, such as type of the street, year of building, and basement conditions.
Such features can be numeric, categorical, or even missing (na). Only the training dat set has

the sale price of each house, which shall be predicted based on features of the testing data set.

The data sets can be downloaded via the link to problem. Specifically, you can directly access the

training data set and the testing data set after logging in Kaggle.

We load the data via pandas . Please make sure that it is installed (pip install pandas).

In [1]: import pandas as pd
import numpy as np

train = pd.read_csv("../data/kaggle/house_pred_train.csv")

test = pd.read_csv("../data/kaggle/house_pred_test.csv")

all X = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'],
test.loc[:, 'MSSubClass':'SaleCondition']))

We can take a look at a few rows of the training data set.

https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/house-prices-advanced-regression-techniques/download/train.csv
https://www.kaggle.com/c/house-prices-advanced-regression-techniques/download/test.csv

In [2]: train.head()

Out[2]: Id|MSSubClassMSZoning|LotFrontage|LotArea|Street|Alley|LotShape|LandContour
0[1 |60 RL 65.0 8450 |Pave [NaN |Reg Lvl
112 |20 RL 80.0 9600 |Pave |NaN |Reg Lvl
2|3 |60 RL 68.0 11250 |Pave |NaN |IR1 Lvl
3|4 |70 RL 60.0 9550 [Pave [NaN |IR1 Lvl
4/5 |60 RL 84.0 14260 |Pave [NaN [IR1 Lvl
5 rows x 81 columns
Here is the shapes of the data sets.
In [3]: train.shape
out[3]: (1460, 81)
In [4]: test.shape
out[4]: (1459, 80)
Pre-processing data
We can use pandas to standardize the numerical features:
Xi — [Ex,-
Xj = ———
: std(x,-)
In [5]: numeric_feas = all X.dtypes[all X.dtypes != "object"].index

all X[numeric_feas] = all X[numeric_feas].apply(
lambda x: (x - x.mean()) / (x.std()))

Let us transform categorical values to numerical ones.

In [6]: all X = pd.get_dummies(all_X, dummy_na=True)

We can approximate the missing values by the mean values of the current feature.

In [7]: all X = all X.fillna(all_X.mean())

Let us convert the formats of the data

In [8]: num_train = train.shape[0]

sets.

X_train = all_X[:num_train].as_matrix()

X_test = all X[num_train:].as_matrix()
y_train = train.SalePrice.as_matrix()

Loading data 1n nparray

To facilitate the interations with ciuon , we need to load data in the wnparray format.

In [9]: from mxnet import ndarray as nd
from mxnet import autograd
from mxnet import gluon

X_train = nd.array(X_train)
y_train = nd.array(y_train)
y_train.reshape((num_train, 1))

X_test = nd.array(X_test)
We define the loss function to be the squared loss.

In [10]: square_loss = gluon.loss.L2Loss()

Below defines the root mean square loss between the logarithm of the predicted values and the
true values used in the competition.

In [11]: def get_rmse_log(net, X_train, y train):
num_train = X_train.shape[9]
clipped_preds = nd.clip(net(X_train), 1, float('inf"))
return np.sqrt(2 * nd.sum(square_loss(
nd.log(clipped_preds), nd.log(y_train))).asscalar() / num_train)

Define the model

We define a basic linear regression model here. This may be modified to achieve better results
on Kaggle.

In [12]: def get_net():
net = gluon.nn.Sequential()
with net.name_scope():
net.add(gluon.nn.Dense(1))
net.initialize()
return net

We define the training function.

In [13]: | %matplotlib inline
import matplotlib as mpl
mpl.rcParams['figure.dpi']= 120
import matplotlib.pyplot as plt

def train(net, X_train, y_train, X_test, y_ test, epochs,

verbose_epoch, learning_rate, weight_decay):
train_loss = []
if X_test is not None:
test loss = []
batch_size = 100
dataset_train = gluon.data.ArrayDataset(X_train, y_train)
data_iter_train = gluon.data.DatalLoader(
dataset_train, batch_size,shuffle=True)
trainer = gluon.Trainer(net.collect_params(), 'adam',
{'learning_rate': learning_rate,
'wd': weight_decay})
net.collect_params().initialize(force_reinit=True)
for epoch in range(epochs):
for data, label in data_iter_train:
with autograd.record():
output = net(data)
loss = square_loss(output, label)
loss.backward()
trainer.step(batch_size)

cur_train_loss = get_rmse_log(net, X_train, y_train)
if epoch > verbose_epoch:
print("Epoch %d, train loss: %f" % (epoch, cur_train_loss))
train_loss.append(cur_train_loss)
if X_test is not None:
cur_test_loss = get_rmse_log(net, X_test, y_test)
test_loss.append(cur_test_loss)
plt.plot(train_loss)
plt.legend(['train'])
if X_test is not None:
plt.plot(test_loss)
plt.legend(['train’', 'test'])
plt.show()
if X_test is not None:
return cur_train_loss, cur_test_loss
else:
return cur_train_loss

K-Fold Cross-Validation

We described the overfitting problem, where we cannot rely on the training loss to infer the
testing loss. In fact, when we fine-tune the parameters, we typically rely on k-fold cross-
validation.

In k-fold cross-validation, we divide the training data sets into k subsets, where one set is
used for the validation and the remaining k — 1 subsets are used for training.

We care about the average training loss and average testing loss of the k experimental results.
Hence, we can define the k-fold cross-validation as follows.

In [14]: def k_fold_cross_valid(k, epochs, verbose_epoch, X_train, y_train,
learning_rate, weight_decay):

assert k > 1

fold_size = X_train.shape[0] // k

train_loss_sum = 0.0

test_loss_sum = 0.0

for test i in range(k):
X_val_test = X _train[test_i * fold_size: (test_i + 1) * fold_size, :]
y_val_test = y_train[test_i * fold_size: (test_i + 1) * fold_size]

val train_defined = False

http://gluon.mxnet.io/chapter02_supervised-learning/regularization-scratch.html

for i in range(k):
if i I= test_i:
X_cur_fold = X_train[i * fold_size: (i + 1) * fold_size, :]
y_cur_fold = y_train[i * fold_size: (i + 1) * fold_size]
if not val_train_defined:
X_val_train = X_cur_fold
y_val_train = y_cur_fold
val train_defined = True
else:
X_val_train = nd.concat(X_val_train, X_cur_fold, dim=0)
y_val_train = nd.concat(y_val_train, y_cur_fold, dim=0)
net = get_net()
train_loss, test_loss = train(
net, X_val_train, y_val_train, X_val_test, y val_test,
epochs, verbose_epoch, learning_rate, weight_decay)
train_loss_sum += train_loss
print("Test loss: %f" % test_loss)
test_loss_sum += test_loss
return train_loss_sum / k, test_loss_sum / k

Train and cross-validate the model

The following parameters can be fine-tuned.

In [15]: k =5
epochs = 100
verbose_epoch = 95
learning_rate = 5
weight_decay = 0.0

Given the above parameters, we can train and cross-validate our model.

In [16]: train_loss, test loss = k_fold cross_valid(k, epochs, verbose epoch, X_train,
y_train, learning_rate, weight_decay)
print("%d-fold validation: Avg train loss: %f, Avg test loss: %f" %
(k, train_loss, test_loss))

Epoch 96, train loss: 0.201713
Epoch 97, train loss: ©.199597
Epoch 98, train loss: 0.197594
Epoch 99, train loss: ©.195709

4.0 -

3.5 1

3.0 1

2.5 1

2.0 1

1.5 1

1.0 A

0.5 1

0.0

— frain
— test

Test loss:

Epoch 96,
Epoch 97,
Epoch 98,
Epoch 99,

0

0.188469

train
train
train
train

loss:
loss:
loss:
loss:

20

0.198065
0.195917
0.193840
0.191888

40

80

T
100

4.0 1

3.5 1

3.0 1

2.5 1

2.0 1

1.5 1

1.0 A

0.5 1

0.0

— frain
— test

Test loss:

Epoch 96,
Epoch 97,
Epoch 98,
Epoch 99,

0

0.211287

train
train
train
train

loss:
loss:
loss:
loss:

20

0.199244
0.197074
0.194988
0.193050

40

80

100

4.0 1

3.5 1

3.0 1

2.5 1

2.0 1

1.5 1

1.0 A

0.5 1

0.0

— frain
— test

Test loss:

Epoch 96,
Epoch 97,
Epoch 98,
Epoch 99,

0

0.201556

train
train
train
train

loss:
loss:
loss:
loss:

20

0.201637
0.199430
0.197397
0.195466

40

80

T
100

4.0 1

3.5 1

3.0 1

2.5 1

2.0 1

1.5 1

1.0 A

0.5 1

0.0 -

— frain
— test

Test loss:

Epoch 96,
Epoch 97,
Epoch 98,
Epoch 99,

0

0.178427

train
train
train
train

loss:
loss:
loss:
loss:

20

0.196650
0.194443
0.192334
0.190332

40

80

100

— frain
— test

4.0 -

3.5 1

3.0 1

2.5 1

2.0 1

1.5 1

1.0 A

0.5 1

0.0 T T T T T T
0 20 40 60 80 100

Test loss: 0.206326
5-fold validation: Avg train loss: ©.193289, Avg test loss: ©.197213

After fine-tuning, even though the training loss can be very low, but the validation loss for the k-
fold cross validation can be very high. Thus, when the training loss is very low, we need to
observe whether the validation loss is reduced at the same time and watch out for overfitting.
We often rely on k-fold cross-validation to fine-tune parameters.

Make predictions and submit results on Kaggle

Let us define the prediction function.

In [17]: def learn(epochs, verbose_epoch, X_train, y train, test, learning_rate,

weight_decay):

net = get_net()

train(net, X_train, y_train, None, None, epochs, verbose_epoch,
learning_rate, weight_decay)

preds = net(X_test).asnumpy()

test['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])

submission = pd.concat([test['Id'], test['SalePrice']], axis=1)

submission.to_csv('submission.csv', index=False)

After fine-tuning parameters, we can predict and submit results on Kaggle.

In [18]: 1learn(epochs, verbose epoch, X train, y train, test, learning_rate,
weight_decay)

Epoch 96, train loss: ©.171151
Epoch 97, train loss: ©.170580

Epoch 98, train loss: 0.170049
Epoch 99, train loss: 0.169546

4.0 1 — train
3.5 1
3.0 A
2.5 1
2.0 A
1.5 1
1.0 A

0.5 1

D.D T T T T T T
0 20 40 60 80 100

After executing the above code, a submission.csv file will be generated. It is in the required

format by Kaggle. Now, we can submit our predicted sales prices of houses based on the testing
data set and compare them with the true prices on Kaggle. You need to log in Kaggle, open the
link to the house prediction problem, and click the submit Predictions button.

I. House Prices: Advanced Regression Techniques
.. Predict sales prices and practice feature engineering, RFs, and gradient boasting
1,698 teams - 2 years to Qo
Overviews Data Kernels Discussion Leaderboard Rules Team My Submissions Submit Predictions

You may click the upload submission File button to select your results. Then click

Make submission atthe bottom to view your results.

http://gluon.mxnet.io/cheatsheets/(https://www.kaggle.com/c/house-prices-advanced-regression-techniques)

Step1
Upload submission file

1

Upload Submission File

File Format Number of Predictions

Your submission should be in CSV farmat. We expect the solutien file to have 1459 prediction rows. This file
You can upload this in a zipfgze/frar/7z should have a header row. Please see sample submission file on
archive, if you prefer. the data page.
Step 2 B [% ok o == H - IE' Styling with Markdown supported
Describe submission
Make Submission

Just a kind reminder again, Kaggle limits the number of daily submissions to 10.

Exercise (Share your score and method here):

e What loss can you obtain on Kaggle by using this tutorial?

e By re-designing and fine-tuning the model and k-fold cross-validation, can you beat the
0.14765 baseline achieved by Random Forest regressor (a powerful model) on Kaggle? You
may start by getting some ideas after reading a few previous chapters, such as

e Multilayer perceptrons in gluon

e Overfitting and regularization (with gluon)

e Dropout regularization with gluon

For whinges or inquiries, open an issue on GitHub.

https://discuss.mxnet.io/t/kaggle-exercise-1-house-price-prediction-with-gluon/51
https://www.kaggle.com/zubairahmed/randomforestregressor-with-score-of-0-14765/
http://gluon.mxnet.io/chapter03_deep-neural-networks/mlp-gluon.html
http://gluon.mxnet.io/chapter02_supervised-learning/regularization-gluon.html
http://gluon.mxnet.io/chapter03_deep-neural-networks/mlp-dropout-gluon.html
https://github.com/zackchase/mxnet-the-straight-dope

Docs » Run these tutorials

Run these tutorials

Each tutorial is made from a Jupyter notebook, which is editable and runable. Assume python in
already installed, then in additional, both jupyter and a recent version of mxnet are required.

The following commands install them through pip :

optional: update pip to the newest version
sudo pip install --upgrade pip

install jupyter

pip install jupyter --user

install the nightly built mxnet

pip install mxnet --pre --user

The default mxnet package only supports CPU while some tutorials may need GPUs. If GPU is
available and either CUDA 7.5 or 8.0 is installed, then we can install the GPU-supported package

pip install mxnet-cu75 --pre --user # for CUDA 7.5
pip install mxnet-cu80 --pre --user # for CUDA 8.0

Now we are ready to obtain the source codes and run them

git clone https://github.com/zackchase/mxnet-the-straight-dope/
cd mxnet-the-straight-dope
jupyter notebook

The last command starts the jupyter notebook, and now you can edit and run these tutorials
NOw.

http://gluon.mxnet.io/index.html

Docs » How to contribute

How to contribute

For whinges and inquiries, please open an issue at github.
To contribute codes, please follow the following guidelines:

1. Check the roadmap before creating a new tutorial.

2. Only cover a single new concept on a tutorial, and explain it in detail. Do not assume
readers will know it before.

3. Make both words and codes as simple as possible. Each tutorial should take no more than
20 minutes to read

4. Do not submit large files, such as dataset or images, to the repo. You can upload them to a
different repo and cross reference it. For example

* Insert an image:

I[1(https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mnist.png)

e Download a dataset if not exists in local:

mx.test_utils.download('https://raw.githubusercontent.com/dmlc/web-
data/master/mxnet/ptb/ptb.train.txt")

5. Resize the images to proper sizes. Large size images look fine in notebook, but they may
be ugly in the HTML or PDF format.
6. Either restart and evaluate all code blocks or clean all outputs before submitting

e For the former, you can click kernel -> Restart & rRun A1l in the Jupyter notebook menu.
e For the latter, use «kernel -> Restart & Clear output . Then our Jenkins server will evaluate
this notebook when building the documents. It is recommended because it can be used
as a unit test. But only do it if this notebook is fast to run (e.g. less than 5 minutes) and
does not require GPU.
7. (Update, this feature is not availabe for Jupyter now.) If you want to reference a function or
class, use sphinx domains. For example

e function: :func: mxnet.ndarray.zeros” 1O mxnet.ndarray.zeros()

http://gluon.mxnet.io/index.html
https://github.com/zackchase/mxnet-the-straight-dope/issues
https://github.com/zackchase/mxnet-the-straight-dope/#roadmap
http://www.sphinx-doc.org/en/stable/domains.html

e class :class: mxnet.gluon.Parameter” 1O mxnet.gluon.Parameter
e also works for NUMPY: :func: numpy.zeros’ 1O numpy.zeros()
8. You can build the documents locally to preview the changes. Assume conda is available,

then following commands create an environment with all requirements installed:

assume at the root directory of this project
conda env create -f environment.yml
source activate gluon_docs

Now you are able to build the HTMLs:

make html

If latex is installed, you can also build the PDF version:

make latex
make -C _build/latex

